blob: 080a5589e2cd25c4af4dfaa5583fe0e9619cfba9 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dst.h>
103#include <net/dst_metadata.h>
104#include <net/pkt_sched.h>
105#include <net/pkt_cls.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/iw_handler.h>
115#include <asm/current.h>
116#include <linux/audit.h>
117#include <linux/dmaengine.h>
118#include <linux/err.h>
119#include <linux/ctype.h>
120#include <linux/if_arp.h>
121#include <linux/if_vlan.h>
122#include <linux/ip.h>
123#include <net/ip.h>
124#include <net/mpls.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/inetdevice.h>
133#include <linux/cpu_rmap.h>
134#include <linux/static_key.h>
135#include <linux/hashtable.h>
136#include <linux/vmalloc.h>
137#include <linux/if_macvlan.h>
138#include <linux/errqueue.h>
139#include <linux/hrtimer.h>
140#include <linux/netfilter_ingress.h>
141#include <linux/crash_dump.h>
142#include <linux/sctp.h>
143#include <net/udp_tunnel.h>
144#include <linux/net_namespace.h>
145#include <linux/indirect_call_wrapper.h>
146#include <net/devlink.h>
147#include <trace/hooks/net.h>
148
149#include "net-sysfs.h"
150#include <linux/skbrb.h>
151
152#define MAX_GRO_SKBS 8
153
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157static DEFINE_SPINLOCK(ptype_lock);
158static DEFINE_SPINLOCK(offload_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161static struct list_head offload_base __read_mostly;
162
163static int netif_rx_internal(struct sk_buff *skb);
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171/*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190DEFINE_RWLOCK(dev_base_lock);
191EXPORT_SYMBOL(dev_base_lock);
192
193static DEFINE_MUTEX(ifalias_mutex);
194
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
198static unsigned int napi_gen_id = NR_CPUS;
199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201static DECLARE_RWSEM(devnet_rename_sem);
202
203static inline void dev_base_seq_inc(struct net *net)
204{
205 while (++net->dev_base_seq == 0)
206 ;
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219}
220
221static inline void rps_lock(struct softnet_data *sd)
222{
223#ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225#endif
226}
227
228static inline void rps_unlock(struct softnet_data *sd)
229{
230#ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232#endif
233}
234
235/* Device list insertion */
236static void list_netdevice(struct net_device *dev)
237{
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250}
251
252/* Device list removal
253 * caller must respect a RCU grace period before freeing/reusing dev
254 */
255static void unlist_netdevice(struct net_device *dev)
256{
257 ASSERT_RTNL();
258
259 /* Unlink dev from the device chain */
260 write_lock_bh(&dev_base_lock);
261 list_del_rcu(&dev->dev_list);
262 hlist_del_rcu(&dev->name_hlist);
263 hlist_del_rcu(&dev->index_hlist);
264 write_unlock_bh(&dev_base_lock);
265
266 dev_base_seq_inc(dev_net(dev));
267}
268
269/*
270 * Our notifier list
271 */
272
273static RAW_NOTIFIER_HEAD(netdev_chain);
274
275/*
276 * Device drivers call our routines to queue packets here. We empty the
277 * queue in the local softnet handler.
278 */
279
280DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283/*******************************************************************************
284 *
285 * Protocol management and registration routines
286 *
287 *******************************************************************************/
288
289
290/*
291 * Add a protocol ID to the list. Now that the input handler is
292 * smarter we can dispense with all the messy stuff that used to be
293 * here.
294 *
295 * BEWARE!!! Protocol handlers, mangling input packets,
296 * MUST BE last in hash buckets and checking protocol handlers
297 * MUST start from promiscuous ptype_all chain in net_bh.
298 * It is true now, do not change it.
299 * Explanation follows: if protocol handler, mangling packet, will
300 * be the first on list, it is not able to sense, that packet
301 * is cloned and should be copied-on-write, so that it will
302 * change it and subsequent readers will get broken packet.
303 * --ANK (980803)
304 */
305
306static inline struct list_head *ptype_head(const struct packet_type *pt)
307{
308 struct list_head vendor_pt = { .next = NULL, };
309
310 trace_android_vh_ptype_head(pt, &vendor_pt);
311 if (vendor_pt.next)
312 return vendor_pt.next;
313
314 if (pt->type == htons(ETH_P_ALL))
315 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
316 else
317 return pt->dev ? &pt->dev->ptype_specific :
318 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
319}
320
321/**
322 * dev_add_pack - add packet handler
323 * @pt: packet type declaration
324 *
325 * Add a protocol handler to the networking stack. The passed &packet_type
326 * is linked into kernel lists and may not be freed until it has been
327 * removed from the kernel lists.
328 *
329 * This call does not sleep therefore it can not
330 * guarantee all CPU's that are in middle of receiving packets
331 * will see the new packet type (until the next received packet).
332 */
333
334void dev_add_pack(struct packet_type *pt)
335{
336 struct list_head *head = ptype_head(pt);
337
338 spin_lock(&ptype_lock);
339 list_add_rcu(&pt->list, head);
340 spin_unlock(&ptype_lock);
341}
342EXPORT_SYMBOL(dev_add_pack);
343
344/**
345 * __dev_remove_pack - remove packet handler
346 * @pt: packet type declaration
347 *
348 * Remove a protocol handler that was previously added to the kernel
349 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
350 * from the kernel lists and can be freed or reused once this function
351 * returns.
352 *
353 * The packet type might still be in use by receivers
354 * and must not be freed until after all the CPU's have gone
355 * through a quiescent state.
356 */
357void __dev_remove_pack(struct packet_type *pt)
358{
359 struct list_head *head = ptype_head(pt);
360 struct packet_type *pt1;
361
362 spin_lock(&ptype_lock);
363
364 list_for_each_entry(pt1, head, list) {
365 if (pt == pt1) {
366 list_del_rcu(&pt->list);
367 goto out;
368 }
369 }
370
371 pr_warn("dev_remove_pack: %p not found\n", pt);
372out:
373 spin_unlock(&ptype_lock);
374}
375EXPORT_SYMBOL(__dev_remove_pack);
376
377/**
378 * dev_remove_pack - remove packet handler
379 * @pt: packet type declaration
380 *
381 * Remove a protocol handler that was previously added to the kernel
382 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
383 * from the kernel lists and can be freed or reused once this function
384 * returns.
385 *
386 * This call sleeps to guarantee that no CPU is looking at the packet
387 * type after return.
388 */
389void dev_remove_pack(struct packet_type *pt)
390{
391 __dev_remove_pack(pt);
392
393 synchronize_net();
394}
395EXPORT_SYMBOL(dev_remove_pack);
396
397
398/**
399 * dev_add_offload - register offload handlers
400 * @po: protocol offload declaration
401 *
402 * Add protocol offload handlers to the networking stack. The passed
403 * &proto_offload is linked into kernel lists and may not be freed until
404 * it has been removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new offload handlers (until the next received packet).
409 */
410void dev_add_offload(struct packet_offload *po)
411{
412 struct packet_offload *elem;
413
414 spin_lock(&offload_lock);
415 list_for_each_entry(elem, &offload_base, list) {
416 if (po->priority < elem->priority)
417 break;
418 }
419 list_add_rcu(&po->list, elem->list.prev);
420 spin_unlock(&offload_lock);
421}
422EXPORT_SYMBOL(dev_add_offload);
423
424/**
425 * __dev_remove_offload - remove offload handler
426 * @po: packet offload declaration
427 *
428 * Remove a protocol offload handler that was previously added to the
429 * kernel offload handlers by dev_add_offload(). The passed &offload_type
430 * is removed from the kernel lists and can be freed or reused once this
431 * function returns.
432 *
433 * The packet type might still be in use by receivers
434 * and must not be freed until after all the CPU's have gone
435 * through a quiescent state.
436 */
437static void __dev_remove_offload(struct packet_offload *po)
438{
439 struct list_head *head = &offload_base;
440 struct packet_offload *po1;
441
442 spin_lock(&offload_lock);
443
444 list_for_each_entry(po1, head, list) {
445 if (po == po1) {
446 list_del_rcu(&po->list);
447 goto out;
448 }
449 }
450
451 pr_warn("dev_remove_offload: %p not found\n", po);
452out:
453 spin_unlock(&offload_lock);
454}
455
456/**
457 * dev_remove_offload - remove packet offload handler
458 * @po: packet offload declaration
459 *
460 * Remove a packet offload handler that was previously added to the kernel
461 * offload handlers by dev_add_offload(). The passed &offload_type is
462 * removed from the kernel lists and can be freed or reused once this
463 * function returns.
464 *
465 * This call sleeps to guarantee that no CPU is looking at the packet
466 * type after return.
467 */
468void dev_remove_offload(struct packet_offload *po)
469{
470 __dev_remove_offload(po);
471
472 synchronize_net();
473}
474EXPORT_SYMBOL(dev_remove_offload);
475
476/******************************************************************************
477 *
478 * Device Boot-time Settings Routines
479 *
480 ******************************************************************************/
481
482/* Boot time configuration table */
483static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
484
485/**
486 * netdev_boot_setup_add - add new setup entry
487 * @name: name of the device
488 * @map: configured settings for the device
489 *
490 * Adds new setup entry to the dev_boot_setup list. The function
491 * returns 0 on error and 1 on success. This is a generic routine to
492 * all netdevices.
493 */
494static int netdev_boot_setup_add(char *name, struct ifmap *map)
495{
496 struct netdev_boot_setup *s;
497 int i;
498
499 s = dev_boot_setup;
500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
502 memset(s[i].name, 0, sizeof(s[i].name));
503 strlcpy(s[i].name, name, IFNAMSIZ);
504 memcpy(&s[i].map, map, sizeof(s[i].map));
505 break;
506 }
507 }
508
509 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
510}
511
512/**
513 * netdev_boot_setup_check - check boot time settings
514 * @dev: the netdevice
515 *
516 * Check boot time settings for the device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found, 1 if they are.
520 */
521int netdev_boot_setup_check(struct net_device *dev)
522{
523 struct netdev_boot_setup *s = dev_boot_setup;
524 int i;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
527 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
528 !strcmp(dev->name, s[i].name)) {
529 dev->irq = s[i].map.irq;
530 dev->base_addr = s[i].map.base_addr;
531 dev->mem_start = s[i].map.mem_start;
532 dev->mem_end = s[i].map.mem_end;
533 return 1;
534 }
535 }
536 return 0;
537}
538EXPORT_SYMBOL(netdev_boot_setup_check);
539
540
541/**
542 * netdev_boot_base - get address from boot time settings
543 * @prefix: prefix for network device
544 * @unit: id for network device
545 *
546 * Check boot time settings for the base address of device.
547 * The found settings are set for the device to be used
548 * later in the device probing.
549 * Returns 0 if no settings found.
550 */
551unsigned long netdev_boot_base(const char *prefix, int unit)
552{
553 const struct netdev_boot_setup *s = dev_boot_setup;
554 char name[IFNAMSIZ];
555 int i;
556
557 sprintf(name, "%s%d", prefix, unit);
558
559 /*
560 * If device already registered then return base of 1
561 * to indicate not to probe for this interface
562 */
563 if (__dev_get_by_name(&init_net, name))
564 return 1;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
567 if (!strcmp(name, s[i].name))
568 return s[i].map.base_addr;
569 return 0;
570}
571
572/*
573 * Saves at boot time configured settings for any netdevice.
574 */
575int __init netdev_boot_setup(char *str)
576{
577 int ints[5];
578 struct ifmap map;
579
580 str = get_options(str, ARRAY_SIZE(ints), ints);
581 if (!str || !*str)
582 return 0;
583
584 /* Save settings */
585 memset(&map, 0, sizeof(map));
586 if (ints[0] > 0)
587 map.irq = ints[1];
588 if (ints[0] > 1)
589 map.base_addr = ints[2];
590 if (ints[0] > 2)
591 map.mem_start = ints[3];
592 if (ints[0] > 3)
593 map.mem_end = ints[4];
594
595 /* Add new entry to the list */
596 return netdev_boot_setup_add(str, &map);
597}
598
599__setup("netdev=", netdev_boot_setup);
600
601/*******************************************************************************
602 *
603 * Device Interface Subroutines
604 *
605 *******************************************************************************/
606
607/**
608 * dev_get_iflink - get 'iflink' value of a interface
609 * @dev: targeted interface
610 *
611 * Indicates the ifindex the interface is linked to.
612 * Physical interfaces have the same 'ifindex' and 'iflink' values.
613 */
614
615int dev_get_iflink(const struct net_device *dev)
616{
617 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
618 return dev->netdev_ops->ndo_get_iflink(dev);
619
620 return dev->ifindex;
621}
622EXPORT_SYMBOL(dev_get_iflink);
623
624/**
625 * dev_fill_metadata_dst - Retrieve tunnel egress information.
626 * @dev: targeted interface
627 * @skb: The packet.
628 *
629 * For better visibility of tunnel traffic OVS needs to retrieve
630 * egress tunnel information for a packet. Following API allows
631 * user to get this info.
632 */
633int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
634{
635 struct ip_tunnel_info *info;
636
637 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
638 return -EINVAL;
639
640 info = skb_tunnel_info_unclone(skb);
641 if (!info)
642 return -ENOMEM;
643 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
644 return -EINVAL;
645
646 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
647}
648EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
649
650/**
651 * __dev_get_by_name - find a device by its name
652 * @net: the applicable net namespace
653 * @name: name to find
654 *
655 * Find an interface by name. Must be called under RTNL semaphore
656 * or @dev_base_lock. If the name is found a pointer to the device
657 * is returned. If the name is not found then %NULL is returned. The
658 * reference counters are not incremented so the caller must be
659 * careful with locks.
660 */
661
662struct net_device *__dev_get_by_name(struct net *net, const char *name)
663{
664 struct net_device *dev;
665 struct hlist_head *head = dev_name_hash(net, name);
666
667 hlist_for_each_entry(dev, head, name_hlist)
668 if (!strncmp(dev->name, name, IFNAMSIZ))
669 return dev;
670
671 return NULL;
672}
673EXPORT_SYMBOL(__dev_get_by_name);
674
675/**
676 * dev_get_by_name_rcu - find a device by its name
677 * @net: the applicable net namespace
678 * @name: name to find
679 *
680 * Find an interface by name.
681 * If the name is found a pointer to the device is returned.
682 * If the name is not found then %NULL is returned.
683 * The reference counters are not incremented so the caller must be
684 * careful with locks. The caller must hold RCU lock.
685 */
686
687struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
688{
689 struct net_device *dev;
690 struct hlist_head *head = dev_name_hash(net, name);
691
692 hlist_for_each_entry_rcu(dev, head, name_hlist)
693 if (!strncmp(dev->name, name, IFNAMSIZ))
694 return dev;
695
696 return NULL;
697}
698EXPORT_SYMBOL(dev_get_by_name_rcu);
699
700/**
701 * dev_get_by_name - find a device by its name
702 * @net: the applicable net namespace
703 * @name: name to find
704 *
705 * Find an interface by name. This can be called from any
706 * context and does its own locking. The returned handle has
707 * the usage count incremented and the caller must use dev_put() to
708 * release it when it is no longer needed. %NULL is returned if no
709 * matching device is found.
710 */
711
712struct net_device *dev_get_by_name(struct net *net, const char *name)
713{
714 struct net_device *dev;
715
716 rcu_read_lock();
717 dev = dev_get_by_name_rcu(net, name);
718 if (dev)
719 dev_hold(dev);
720 rcu_read_unlock();
721 return dev;
722}
723EXPORT_SYMBOL(dev_get_by_name);
724
725/**
726 * __dev_get_by_index - find a device by its ifindex
727 * @net: the applicable net namespace
728 * @ifindex: index of device
729 *
730 * Search for an interface by index. Returns %NULL if the device
731 * is not found or a pointer to the device. The device has not
732 * had its reference counter increased so the caller must be careful
733 * about locking. The caller must hold either the RTNL semaphore
734 * or @dev_base_lock.
735 */
736
737struct net_device *__dev_get_by_index(struct net *net, int ifindex)
738{
739 struct net_device *dev;
740 struct hlist_head *head = dev_index_hash(net, ifindex);
741
742 hlist_for_each_entry(dev, head, index_hlist)
743 if (dev->ifindex == ifindex)
744 return dev;
745
746 return NULL;
747}
748EXPORT_SYMBOL(__dev_get_by_index);
749
750/**
751 * dev_get_by_index_rcu - find a device by its ifindex
752 * @net: the applicable net namespace
753 * @ifindex: index of device
754 *
755 * Search for an interface by index. Returns %NULL if the device
756 * is not found or a pointer to the device. The device has not
757 * had its reference counter increased so the caller must be careful
758 * about locking. The caller must hold RCU lock.
759 */
760
761struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
762{
763 struct net_device *dev;
764 struct hlist_head *head = dev_index_hash(net, ifindex);
765
766 hlist_for_each_entry_rcu(dev, head, index_hlist)
767 if (dev->ifindex == ifindex)
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_index_rcu);
773
774
775/**
776 * dev_get_by_index - find a device by its ifindex
777 * @net: the applicable net namespace
778 * @ifindex: index of device
779 *
780 * Search for an interface by index. Returns NULL if the device
781 * is not found or a pointer to the device. The device returned has
782 * had a reference added and the pointer is safe until the user calls
783 * dev_put to indicate they have finished with it.
784 */
785
786struct net_device *dev_get_by_index(struct net *net, int ifindex)
787{
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_index_rcu(net, ifindex);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796}
797EXPORT_SYMBOL(dev_get_by_index);
798
799/**
800 * dev_get_by_napi_id - find a device by napi_id
801 * @napi_id: ID of the NAPI struct
802 *
803 * Search for an interface by NAPI ID. Returns %NULL if the device
804 * is not found or a pointer to the device. The device has not had
805 * its reference counter increased so the caller must be careful
806 * about locking. The caller must hold RCU lock.
807 */
808
809struct net_device *dev_get_by_napi_id(unsigned int napi_id)
810{
811 struct napi_struct *napi;
812
813 WARN_ON_ONCE(!rcu_read_lock_held());
814
815 if (napi_id < MIN_NAPI_ID)
816 return NULL;
817
818 napi = napi_by_id(napi_id);
819
820 return napi ? napi->dev : NULL;
821}
822EXPORT_SYMBOL(dev_get_by_napi_id);
823
824/**
825 * netdev_get_name - get a netdevice name, knowing its ifindex.
826 * @net: network namespace
827 * @name: a pointer to the buffer where the name will be stored.
828 * @ifindex: the ifindex of the interface to get the name from.
829 */
830int netdev_get_name(struct net *net, char *name, int ifindex)
831{
832 struct net_device *dev;
833 int ret;
834
835 down_read(&devnet_rename_sem);
836 rcu_read_lock();
837
838 dev = dev_get_by_index_rcu(net, ifindex);
839 if (!dev) {
840 ret = -ENODEV;
841 goto out;
842 }
843
844 strcpy(name, dev->name);
845
846 ret = 0;
847out:
848 rcu_read_unlock();
849 up_read(&devnet_rename_sem);
850 return ret;
851}
852
853/**
854 * dev_getbyhwaddr_rcu - find a device by its hardware address
855 * @net: the applicable net namespace
856 * @type: media type of device
857 * @ha: hardware address
858 *
859 * Search for an interface by MAC address. Returns NULL if the device
860 * is not found or a pointer to the device.
861 * The caller must hold RCU or RTNL.
862 * The returned device has not had its ref count increased
863 * and the caller must therefore be careful about locking
864 *
865 */
866
867struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
868 const char *ha)
869{
870 struct net_device *dev;
871
872 for_each_netdev_rcu(net, dev)
873 if (dev->type == type &&
874 !memcmp(dev->dev_addr, ha, dev->addr_len))
875 return dev;
876
877 return NULL;
878}
879EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
880
881struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
882{
883 struct net_device *dev;
884
885 ASSERT_RTNL();
886 for_each_netdev(net, dev)
887 if (dev->type == type)
888 return dev;
889
890 return NULL;
891}
892EXPORT_SYMBOL(__dev_getfirstbyhwtype);
893
894struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
895{
896 struct net_device *dev, *ret = NULL;
897
898 rcu_read_lock();
899 for_each_netdev_rcu(net, dev)
900 if (dev->type == type) {
901 dev_hold(dev);
902 ret = dev;
903 break;
904 }
905 rcu_read_unlock();
906 return ret;
907}
908EXPORT_SYMBOL(dev_getfirstbyhwtype);
909
910/**
911 * __dev_get_by_flags - find any device with given flags
912 * @net: the applicable net namespace
913 * @if_flags: IFF_* values
914 * @mask: bitmask of bits in if_flags to check
915 *
916 * Search for any interface with the given flags. Returns NULL if a device
917 * is not found or a pointer to the device. Must be called inside
918 * rtnl_lock(), and result refcount is unchanged.
919 */
920
921struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
922 unsigned short mask)
923{
924 struct net_device *dev, *ret;
925
926 ASSERT_RTNL();
927
928 ret = NULL;
929 for_each_netdev(net, dev) {
930 if (((dev->flags ^ if_flags) & mask) == 0) {
931 ret = dev;
932 break;
933 }
934 }
935 return ret;
936}
937EXPORT_SYMBOL(__dev_get_by_flags);
938
939/**
940 * dev_valid_name - check if name is okay for network device
941 * @name: name string
942 *
943 * Network device names need to be valid file names to
944 * to allow sysfs to work. We also disallow any kind of
945 * whitespace.
946 */
947bool dev_valid_name(const char *name)
948{
949 if (*name == '\0')
950 return false;
951 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
952 return false;
953 if (!strcmp(name, ".") || !strcmp(name, ".."))
954 return false;
955
956 while (*name) {
957 if (*name == '/' || *name == ':' || isspace(*name))
958 return false;
959 name++;
960 }
961 return true;
962}
963EXPORT_SYMBOL(dev_valid_name);
964
965/**
966 * __dev_alloc_name - allocate a name for a device
967 * @net: network namespace to allocate the device name in
968 * @name: name format string
969 * @buf: scratch buffer and result name string
970 *
971 * Passed a format string - eg "lt%d" it will try and find a suitable
972 * id. It scans list of devices to build up a free map, then chooses
973 * the first empty slot. The caller must hold the dev_base or rtnl lock
974 * while allocating the name and adding the device in order to avoid
975 * duplicates.
976 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
977 * Returns the number of the unit assigned or a negative errno code.
978 */
979
980static int __dev_alloc_name(struct net *net, const char *name, char *buf)
981{
982 int i = 0;
983 const char *p;
984 const int max_netdevices = 8*PAGE_SIZE;
985 unsigned long *inuse;
986 struct net_device *d;
987
988 if (!dev_valid_name(name))
989 return -EINVAL;
990
991 p = strchr(name, '%');
992 if (p) {
993 /*
994 * Verify the string as this thing may have come from
995 * the user. There must be either one "%d" and no other "%"
996 * characters.
997 */
998 if (p[1] != 'd' || strchr(p + 2, '%'))
999 return -EINVAL;
1000
1001 /* Use one page as a bit array of possible slots */
1002 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1003 if (!inuse)
1004 return -ENOMEM;
1005
1006 for_each_netdev(net, d) {
1007 if (!sscanf(d->name, name, &i))
1008 continue;
1009 if (i < 0 || i >= max_netdevices)
1010 continue;
1011
1012 /* avoid cases where sscanf is not exact inverse of printf */
1013 snprintf(buf, IFNAMSIZ, name, i);
1014 if (!strncmp(buf, d->name, IFNAMSIZ))
1015 set_bit(i, inuse);
1016 }
1017
1018 i = find_first_zero_bit(inuse, max_netdevices);
1019 free_page((unsigned long) inuse);
1020 }
1021
1022 snprintf(buf, IFNAMSIZ, name, i);
1023 if (!__dev_get_by_name(net, buf))
1024 return i;
1025
1026 /* It is possible to run out of possible slots
1027 * when the name is long and there isn't enough space left
1028 * for the digits, or if all bits are used.
1029 */
1030 return -ENFILE;
1031}
1032
1033static int dev_alloc_name_ns(struct net *net,
1034 struct net_device *dev,
1035 const char *name)
1036{
1037 char buf[IFNAMSIZ];
1038 int ret;
1039
1040 BUG_ON(!net);
1041 ret = __dev_alloc_name(net, name, buf);
1042 if (ret >= 0)
1043 strlcpy(dev->name, buf, IFNAMSIZ);
1044 return ret;
1045}
1046
1047/**
1048 * dev_alloc_name - allocate a name for a device
1049 * @dev: device
1050 * @name: name format string
1051 *
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1056 * duplicates.
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1059 */
1060
1061int dev_alloc_name(struct net_device *dev, const char *name)
1062{
1063 return dev_alloc_name_ns(dev_net(dev), dev, name);
1064}
1065EXPORT_SYMBOL(dev_alloc_name);
1066
1067int dev_get_valid_name(struct net *net, struct net_device *dev,
1068 const char *name)
1069{
1070 BUG_ON(!net);
1071
1072 if (!dev_valid_name(name))
1073 return -EINVAL;
1074
1075 if (strchr(name, '%'))
1076 return dev_alloc_name_ns(net, dev, name);
1077 else if (__dev_get_by_name(net, name))
1078 return -EEXIST;
1079 else if (dev->name != name)
1080 strlcpy(dev->name, name, IFNAMSIZ);
1081
1082 return 0;
1083}
1084EXPORT_SYMBOL(dev_get_valid_name);
1085
1086/**
1087 * dev_change_name - change name of a device
1088 * @dev: device
1089 * @newname: name (or format string) must be at least IFNAMSIZ
1090 *
1091 * Change name of a device, can pass format strings "eth%d".
1092 * for wildcarding.
1093 */
1094int dev_change_name(struct net_device *dev, const char *newname)
1095{
1096 unsigned char old_assign_type;
1097 char oldname[IFNAMSIZ];
1098 int err = 0;
1099 int ret;
1100 struct net *net;
1101
1102 ASSERT_RTNL();
1103 BUG_ON(!dev_net(dev));
1104
1105 net = dev_net(dev);
1106
1107 /* Some auto-enslaved devices e.g. failover slaves are
1108 * special, as userspace might rename the device after
1109 * the interface had been brought up and running since
1110 * the point kernel initiated auto-enslavement. Allow
1111 * live name change even when these slave devices are
1112 * up and running.
1113 *
1114 * Typically, users of these auto-enslaving devices
1115 * don't actually care about slave name change, as
1116 * they are supposed to operate on master interface
1117 * directly.
1118 */
1119 if (dev->flags & IFF_UP &&
1120 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1121 return -EBUSY;
1122
1123 down_write(&devnet_rename_sem);
1124
1125 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1126 up_write(&devnet_rename_sem);
1127 return 0;
1128 }
1129
1130 memcpy(oldname, dev->name, IFNAMSIZ);
1131
1132 err = dev_get_valid_name(net, dev, newname);
1133 if (err < 0) {
1134 up_write(&devnet_rename_sem);
1135 return err;
1136 }
1137
1138 if (oldname[0] && !strchr(oldname, '%'))
1139 netdev_info(dev, "renamed from %s\n", oldname);
1140
1141 old_assign_type = dev->name_assign_type;
1142 dev->name_assign_type = NET_NAME_RENAMED;
1143
1144rollback:
1145 ret = device_rename(&dev->dev, dev->name);
1146 if (ret) {
1147 memcpy(dev->name, oldname, IFNAMSIZ);
1148 dev->name_assign_type = old_assign_type;
1149 up_write(&devnet_rename_sem);
1150 return ret;
1151 }
1152
1153 up_write(&devnet_rename_sem);
1154
1155 netdev_adjacent_rename_links(dev, oldname);
1156
1157 write_lock_bh(&dev_base_lock);
1158 hlist_del_rcu(&dev->name_hlist);
1159 write_unlock_bh(&dev_base_lock);
1160
1161 synchronize_rcu();
1162
1163 write_lock_bh(&dev_base_lock);
1164 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1165 write_unlock_bh(&dev_base_lock);
1166
1167 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1168 ret = notifier_to_errno(ret);
1169
1170 if (ret) {
1171 /* err >= 0 after dev_alloc_name() or stores the first errno */
1172 if (err >= 0) {
1173 err = ret;
1174 down_write(&devnet_rename_sem);
1175 memcpy(dev->name, oldname, IFNAMSIZ);
1176 memcpy(oldname, newname, IFNAMSIZ);
1177 dev->name_assign_type = old_assign_type;
1178 old_assign_type = NET_NAME_RENAMED;
1179 goto rollback;
1180 } else {
1181 pr_err("%s: name change rollback failed: %d\n",
1182 dev->name, ret);
1183 }
1184 }
1185
1186 return err;
1187}
1188
1189/**
1190 * dev_set_alias - change ifalias of a device
1191 * @dev: device
1192 * @alias: name up to IFALIASZ
1193 * @len: limit of bytes to copy from info
1194 *
1195 * Set ifalias for a device,
1196 */
1197int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1198{
1199 struct dev_ifalias *new_alias = NULL;
1200
1201 if (len >= IFALIASZ)
1202 return -EINVAL;
1203
1204 if (len) {
1205 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1206 if (!new_alias)
1207 return -ENOMEM;
1208
1209 memcpy(new_alias->ifalias, alias, len);
1210 new_alias->ifalias[len] = 0;
1211 }
1212
1213 mutex_lock(&ifalias_mutex);
1214 rcu_swap_protected(dev->ifalias, new_alias,
1215 mutex_is_locked(&ifalias_mutex));
1216 mutex_unlock(&ifalias_mutex);
1217
1218 if (new_alias)
1219 kfree_rcu(new_alias, rcuhead);
1220
1221 return len;
1222}
1223EXPORT_SYMBOL(dev_set_alias);
1224
1225/**
1226 * dev_get_alias - get ifalias of a device
1227 * @dev: device
1228 * @name: buffer to store name of ifalias
1229 * @len: size of buffer
1230 *
1231 * get ifalias for a device. Caller must make sure dev cannot go
1232 * away, e.g. rcu read lock or own a reference count to device.
1233 */
1234int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1235{
1236 const struct dev_ifalias *alias;
1237 int ret = 0;
1238
1239 rcu_read_lock();
1240 alias = rcu_dereference(dev->ifalias);
1241 if (alias)
1242 ret = snprintf(name, len, "%s", alias->ifalias);
1243 rcu_read_unlock();
1244
1245 return ret;
1246}
1247
1248/**
1249 * netdev_features_change - device changes features
1250 * @dev: device to cause notification
1251 *
1252 * Called to indicate a device has changed features.
1253 */
1254void netdev_features_change(struct net_device *dev)
1255{
1256 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1257}
1258EXPORT_SYMBOL(netdev_features_change);
1259
1260/**
1261 * netdev_state_change - device changes state
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed state. This function calls
1265 * the notifier chains for netdev_chain and sends a NEWLINK message
1266 * to the routing socket.
1267 */
1268void netdev_state_change(struct net_device *dev)
1269{
1270 if (dev->flags & IFF_UP) {
1271 struct netdev_notifier_change_info change_info = {
1272 .info.dev = dev,
1273 };
1274
1275 call_netdevice_notifiers_info(NETDEV_CHANGE,
1276 &change_info.info);
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1278 }
1279}
1280EXPORT_SYMBOL(netdev_state_change);
1281
1282/**
1283 * netdev_notify_peers - notify network peers about existence of @dev
1284 * @dev: network device
1285 *
1286 * Generate traffic such that interested network peers are aware of
1287 * @dev, such as by generating a gratuitous ARP. This may be used when
1288 * a device wants to inform the rest of the network about some sort of
1289 * reconfiguration such as a failover event or virtual machine
1290 * migration.
1291 */
1292void netdev_notify_peers(struct net_device *dev)
1293{
1294 rtnl_lock();
1295 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1296 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1297 rtnl_unlock();
1298}
1299EXPORT_SYMBOL(netdev_notify_peers);
1300
1301static int napi_threaded_poll(void *data);
1302
1303static int napi_kthread_create(struct napi_struct *n)
1304{
1305 int err = 0;
1306
1307 /* Create and wake up the kthread once to put it in
1308 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1309 * warning and work with loadavg.
1310 */
1311 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1312 n->dev->name, n->napi_id);
1313 if (IS_ERR(n->thread)) {
1314 err = PTR_ERR(n->thread);
1315 pr_err("kthread_run failed with err %d\n", err);
1316 n->thread = NULL;
1317 }
1318
1319 return err;
1320}
1321
1322static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1323{
1324 const struct net_device_ops *ops = dev->netdev_ops;
1325 int ret;
1326
1327 ASSERT_RTNL();
1328
1329 if (!netif_device_present(dev))
1330 return -ENODEV;
1331
1332 /* Block netpoll from trying to do any rx path servicing.
1333 * If we don't do this there is a chance ndo_poll_controller
1334 * or ndo_poll may be running while we open the device
1335 */
1336 netpoll_poll_disable(dev);
1337
1338 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1339 ret = notifier_to_errno(ret);
1340 if (ret)
1341 return ret;
1342
1343 set_bit(__LINK_STATE_START, &dev->state);
1344
1345 if (ops->ndo_validate_addr)
1346 ret = ops->ndo_validate_addr(dev);
1347
1348 if (!ret && ops->ndo_open)
1349 ret = ops->ndo_open(dev);
1350
1351 netpoll_poll_enable(dev);
1352
1353 if (ret)
1354 clear_bit(__LINK_STATE_START, &dev->state);
1355 else {
1356 dev->flags |= IFF_UP;
1357 dev_set_rx_mode(dev);
1358 dev_activate(dev);
1359 add_device_randomness(dev->dev_addr, dev->addr_len);
1360 }
1361
1362 return ret;
1363}
1364
1365/**
1366 * dev_open - prepare an interface for use.
1367 * @dev: device to open
1368 * @extack: netlink extended ack
1369 *
1370 * Takes a device from down to up state. The device's private open
1371 * function is invoked and then the multicast lists are loaded. Finally
1372 * the device is moved into the up state and a %NETDEV_UP message is
1373 * sent to the netdev notifier chain.
1374 *
1375 * Calling this function on an active interface is a nop. On a failure
1376 * a negative errno code is returned.
1377 */
1378int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379{
1380 int ret;
1381
1382 if (dev->flags & IFF_UP)
1383 return 0;
1384
1385 ret = __dev_open(dev, extack);
1386 if (ret < 0)
1387 return ret;
1388
1389 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1390 call_netdevice_notifiers(NETDEV_UP, dev);
1391
1392 return ret;
1393}
1394EXPORT_SYMBOL(dev_open);
1395
1396static void __dev_close_many(struct list_head *head)
1397{
1398 struct net_device *dev;
1399
1400 ASSERT_RTNL();
1401 might_sleep();
1402
1403 list_for_each_entry(dev, head, close_list) {
1404 /* Temporarily disable netpoll until the interface is down */
1405 netpoll_poll_disable(dev);
1406
1407 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1408
1409 clear_bit(__LINK_STATE_START, &dev->state);
1410
1411 /* Synchronize to scheduled poll. We cannot touch poll list, it
1412 * can be even on different cpu. So just clear netif_running().
1413 *
1414 * dev->stop() will invoke napi_disable() on all of it's
1415 * napi_struct instances on this device.
1416 */
1417 smp_mb__after_atomic(); /* Commit netif_running(). */
1418 }
1419
1420 dev_deactivate_many(head);
1421
1422 list_for_each_entry(dev, head, close_list) {
1423 const struct net_device_ops *ops = dev->netdev_ops;
1424
1425 /*
1426 * Call the device specific close. This cannot fail.
1427 * Only if device is UP
1428 *
1429 * We allow it to be called even after a DETACH hot-plug
1430 * event.
1431 */
1432 if (ops->ndo_stop)
1433 ops->ndo_stop(dev);
1434
1435 dev->flags &= ~IFF_UP;
1436 netpoll_poll_enable(dev);
1437 }
1438}
1439
1440static void __dev_close(struct net_device *dev)
1441{
1442 LIST_HEAD(single);
1443
1444 list_add(&dev->close_list, &single);
1445 __dev_close_many(&single);
1446 list_del(&single);
1447}
1448
1449void dev_close_many(struct list_head *head, bool unlink)
1450{
1451 struct net_device *dev, *tmp;
1452
1453 /* Remove the devices that don't need to be closed */
1454 list_for_each_entry_safe(dev, tmp, head, close_list)
1455 if (!(dev->flags & IFF_UP))
1456 list_del_init(&dev->close_list);
1457
1458 __dev_close_many(head);
1459
1460 list_for_each_entry_safe(dev, tmp, head, close_list) {
1461 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1462 call_netdevice_notifiers(NETDEV_DOWN, dev);
1463 if (unlink)
1464 list_del_init(&dev->close_list);
1465 }
1466}
1467EXPORT_SYMBOL(dev_close_many);
1468
1469/**
1470 * dev_close - shutdown an interface.
1471 * @dev: device to shutdown
1472 *
1473 * This function moves an active device into down state. A
1474 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1475 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1476 * chain.
1477 */
1478void dev_close(struct net_device *dev)
1479{
1480 if (dev->flags & IFF_UP) {
1481 LIST_HEAD(single);
1482
1483 list_add(&dev->close_list, &single);
1484 dev_close_many(&single, true);
1485 list_del(&single);
1486 }
1487}
1488EXPORT_SYMBOL(dev_close);
1489
1490
1491/**
1492 * dev_disable_lro - disable Large Receive Offload on a device
1493 * @dev: device
1494 *
1495 * Disable Large Receive Offload (LRO) on a net device. Must be
1496 * called under RTNL. This is needed if received packets may be
1497 * forwarded to another interface.
1498 */
1499void dev_disable_lro(struct net_device *dev)
1500{
1501 struct net_device *lower_dev;
1502 struct list_head *iter;
1503
1504 dev->wanted_features &= ~NETIF_F_LRO;
1505 netdev_update_features(dev);
1506
1507 if (unlikely(dev->features & NETIF_F_LRO))
1508 netdev_WARN(dev, "failed to disable LRO!\n");
1509
1510 netdev_for_each_lower_dev(dev, lower_dev, iter)
1511 dev_disable_lro(lower_dev);
1512}
1513EXPORT_SYMBOL(dev_disable_lro);
1514
1515/**
1516 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1517 * @dev: device
1518 *
1519 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1520 * called under RTNL. This is needed if Generic XDP is installed on
1521 * the device.
1522 */
1523static void dev_disable_gro_hw(struct net_device *dev)
1524{
1525 dev->wanted_features &= ~NETIF_F_GRO_HW;
1526 netdev_update_features(dev);
1527
1528 if (unlikely(dev->features & NETIF_F_GRO_HW))
1529 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1530}
1531
1532const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1533{
1534#define N(val) \
1535 case NETDEV_##val: \
1536 return "NETDEV_" __stringify(val);
1537 switch (cmd) {
1538 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1539 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1540 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1541 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1542 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1543 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1544 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1545 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1546 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1547 N(PRE_CHANGEADDR)
1548 }
1549#undef N
1550 return "UNKNOWN_NETDEV_EVENT";
1551}
1552EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1553
1554static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1555 struct net_device *dev)
1556{
1557 struct netdev_notifier_info info = {
1558 .dev = dev,
1559 };
1560
1561 return nb->notifier_call(nb, val, &info);
1562}
1563
1564static int dev_boot_phase = 1;
1565
1566/**
1567 * register_netdevice_notifier - register a network notifier block
1568 * @nb: notifier
1569 *
1570 * Register a notifier to be called when network device events occur.
1571 * The notifier passed is linked into the kernel structures and must
1572 * not be reused until it has been unregistered. A negative errno code
1573 * is returned on a failure.
1574 *
1575 * When registered all registration and up events are replayed
1576 * to the new notifier to allow device to have a race free
1577 * view of the network device list.
1578 */
1579
1580int register_netdevice_notifier(struct notifier_block *nb)
1581{
1582 struct net_device *dev;
1583 struct net_device *last;
1584 struct net *net;
1585 int err;
1586
1587 /* Close race with setup_net() and cleanup_net() */
1588 down_write(&pernet_ops_rwsem);
1589 rtnl_lock();
1590 err = raw_notifier_chain_register(&netdev_chain, nb);
1591 if (err)
1592 goto unlock;
1593 if (dev_boot_phase)
1594 goto unlock;
1595 for_each_net(net) {
1596 for_each_netdev(net, dev) {
1597 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1598 err = notifier_to_errno(err);
1599 if (err)
1600 goto rollback;
1601
1602 if (!(dev->flags & IFF_UP))
1603 continue;
1604
1605 call_netdevice_notifier(nb, NETDEV_UP, dev);
1606 }
1607 }
1608
1609unlock:
1610 rtnl_unlock();
1611 up_write(&pernet_ops_rwsem);
1612 return err;
1613
1614rollback:
1615 last = dev;
1616 for_each_net(net) {
1617 for_each_netdev(net, dev) {
1618 if (dev == last)
1619 goto outroll;
1620
1621 if (dev->flags & IFF_UP) {
1622 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 dev);
1624 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1625 }
1626 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1627 }
1628 }
1629
1630outroll:
1631 raw_notifier_chain_unregister(&netdev_chain, nb);
1632 goto unlock;
1633}
1634EXPORT_SYMBOL(register_netdevice_notifier);
1635
1636/**
1637 * unregister_netdevice_notifier - unregister a network notifier block
1638 * @nb: notifier
1639 *
1640 * Unregister a notifier previously registered by
1641 * register_netdevice_notifier(). The notifier is unlinked into the
1642 * kernel structures and may then be reused. A negative errno code
1643 * is returned on a failure.
1644 *
1645 * After unregistering unregister and down device events are synthesized
1646 * for all devices on the device list to the removed notifier to remove
1647 * the need for special case cleanup code.
1648 */
1649
1650int unregister_netdevice_notifier(struct notifier_block *nb)
1651{
1652 struct net_device *dev;
1653 struct net *net;
1654 int err;
1655
1656 /* Close race with setup_net() and cleanup_net() */
1657 down_write(&pernet_ops_rwsem);
1658 rtnl_lock();
1659 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1660 if (err)
1661 goto unlock;
1662
1663 for_each_net(net) {
1664 for_each_netdev(net, dev) {
1665 if (dev->flags & IFF_UP) {
1666 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1667 dev);
1668 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1669 }
1670 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1671 }
1672 }
1673unlock:
1674 rtnl_unlock();
1675 up_write(&pernet_ops_rwsem);
1676 return err;
1677}
1678EXPORT_SYMBOL(unregister_netdevice_notifier);
1679
1680/**
1681 * call_netdevice_notifiers_info - call all network notifier blocks
1682 * @val: value passed unmodified to notifier function
1683 * @info: notifier information data
1684 *
1685 * Call all network notifier blocks. Parameters and return value
1686 * are as for raw_notifier_call_chain().
1687 */
1688
1689static int call_netdevice_notifiers_info(unsigned long val,
1690 struct netdev_notifier_info *info)
1691{
1692 ASSERT_RTNL();
1693 return raw_notifier_call_chain(&netdev_chain, val, info);
1694}
1695
1696static int call_netdevice_notifiers_extack(unsigned long val,
1697 struct net_device *dev,
1698 struct netlink_ext_ack *extack)
1699{
1700 struct netdev_notifier_info info = {
1701 .dev = dev,
1702 .extack = extack,
1703 };
1704
1705 return call_netdevice_notifiers_info(val, &info);
1706}
1707
1708/**
1709 * call_netdevice_notifiers - call all network notifier blocks
1710 * @val: value passed unmodified to notifier function
1711 * @dev: net_device pointer passed unmodified to notifier function
1712 *
1713 * Call all network notifier blocks. Parameters and return value
1714 * are as for raw_notifier_call_chain().
1715 */
1716
1717int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1718{
1719 return call_netdevice_notifiers_extack(val, dev, NULL);
1720}
1721EXPORT_SYMBOL(call_netdevice_notifiers);
1722
1723/**
1724 * call_netdevice_notifiers_mtu - call all network notifier blocks
1725 * @val: value passed unmodified to notifier function
1726 * @dev: net_device pointer passed unmodified to notifier function
1727 * @arg: additional u32 argument passed to the notifier function
1728 *
1729 * Call all network notifier blocks. Parameters and return value
1730 * are as for raw_notifier_call_chain().
1731 */
1732static int call_netdevice_notifiers_mtu(unsigned long val,
1733 struct net_device *dev, u32 arg)
1734{
1735 struct netdev_notifier_info_ext info = {
1736 .info.dev = dev,
1737 .ext.mtu = arg,
1738 };
1739
1740 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1741
1742 return call_netdevice_notifiers_info(val, &info.info);
1743}
1744
1745#ifdef CONFIG_NET_INGRESS
1746static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1747
1748void net_inc_ingress_queue(void)
1749{
1750 static_branch_inc(&ingress_needed_key);
1751}
1752EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1753
1754void net_dec_ingress_queue(void)
1755{
1756 static_branch_dec(&ingress_needed_key);
1757}
1758EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1759#endif
1760
1761#ifdef CONFIG_NET_EGRESS
1762static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1763
1764void net_inc_egress_queue(void)
1765{
1766 static_branch_inc(&egress_needed_key);
1767}
1768EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1769
1770void net_dec_egress_queue(void)
1771{
1772 static_branch_dec(&egress_needed_key);
1773}
1774EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1775#endif
1776
1777static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1778#ifdef CONFIG_JUMP_LABEL
1779static atomic_t netstamp_needed_deferred;
1780static atomic_t netstamp_wanted;
1781static void netstamp_clear(struct work_struct *work)
1782{
1783 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1784 int wanted;
1785
1786 wanted = atomic_add_return(deferred, &netstamp_wanted);
1787 if (wanted > 0)
1788 static_branch_enable(&netstamp_needed_key);
1789 else
1790 static_branch_disable(&netstamp_needed_key);
1791}
1792static DECLARE_WORK(netstamp_work, netstamp_clear);
1793#endif
1794
1795void net_enable_timestamp(void)
1796{
1797#ifdef CONFIG_JUMP_LABEL
1798 int wanted;
1799
1800 while (1) {
1801 wanted = atomic_read(&netstamp_wanted);
1802 if (wanted <= 0)
1803 break;
1804 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1805 return;
1806 }
1807 atomic_inc(&netstamp_needed_deferred);
1808 schedule_work(&netstamp_work);
1809#else
1810 static_branch_inc(&netstamp_needed_key);
1811#endif
1812}
1813EXPORT_SYMBOL(net_enable_timestamp);
1814
1815void net_disable_timestamp(void)
1816{
1817#ifdef CONFIG_JUMP_LABEL
1818 int wanted;
1819
1820 while (1) {
1821 wanted = atomic_read(&netstamp_wanted);
1822 if (wanted <= 1)
1823 break;
1824 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1825 return;
1826 }
1827 atomic_dec(&netstamp_needed_deferred);
1828 schedule_work(&netstamp_work);
1829#else
1830 static_branch_dec(&netstamp_needed_key);
1831#endif
1832}
1833EXPORT_SYMBOL(net_disable_timestamp);
1834
1835static inline void net_timestamp_set(struct sk_buff *skb)
1836{
1837 skb->tstamp = 0;
1838 if (static_branch_unlikely(&netstamp_needed_key))
1839 __net_timestamp(skb);
1840}
1841
1842#define net_timestamp_check(COND, SKB) \
1843 if (static_branch_unlikely(&netstamp_needed_key)) { \
1844 if ((COND) && !(SKB)->tstamp) \
1845 __net_timestamp(SKB); \
1846 } \
1847
1848bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1849{
1850 unsigned int len;
1851
1852 if (!(dev->flags & IFF_UP))
1853 return false;
1854
1855 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1856 if (skb->len <= len)
1857 return true;
1858
1859 /* if TSO is enabled, we don't care about the length as the packet
1860 * could be forwarded without being segmented before
1861 */
1862 if (skb_is_gso(skb))
1863 return true;
1864
1865 return false;
1866}
1867EXPORT_SYMBOL_GPL(is_skb_forwardable);
1868
1869int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1870{
1871 int ret = ____dev_forward_skb(dev, skb);
1872
1873 if (likely(!ret)) {
1874 skb->protocol = eth_type_trans(skb, dev);
1875 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1876 }
1877
1878 return ret;
1879}
1880EXPORT_SYMBOL_GPL(__dev_forward_skb);
1881
1882/**
1883 * dev_forward_skb - loopback an skb to another netif
1884 *
1885 * @dev: destination network device
1886 * @skb: buffer to forward
1887 *
1888 * return values:
1889 * NET_RX_SUCCESS (no congestion)
1890 * NET_RX_DROP (packet was dropped, but freed)
1891 *
1892 * dev_forward_skb can be used for injecting an skb from the
1893 * start_xmit function of one device into the receive queue
1894 * of another device.
1895 *
1896 * The receiving device may be in another namespace, so
1897 * we have to clear all information in the skb that could
1898 * impact namespace isolation.
1899 */
1900int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1901{
1902 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1903}
1904EXPORT_SYMBOL_GPL(dev_forward_skb);
1905
1906static inline int deliver_skb(struct sk_buff *skb,
1907 struct packet_type *pt_prev,
1908 struct net_device *orig_dev)
1909{
1910 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1911 return -ENOMEM;
1912 refcount_inc(&skb->users);
1913 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1914}
1915
1916static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1917 struct packet_type **pt,
1918 struct net_device *orig_dev,
1919 __be16 type,
1920 struct list_head *ptype_list)
1921{
1922 struct packet_type *ptype, *pt_prev = *pt;
1923
1924 list_for_each_entry_rcu(ptype, ptype_list, list) {
1925 if (ptype->type != type)
1926 continue;
1927 if (pt_prev)
1928 deliver_skb(skb, pt_prev, orig_dev);
1929 pt_prev = ptype;
1930 }
1931 *pt = pt_prev;
1932}
1933
1934static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1935{
1936 if (!ptype->af_packet_priv || !skb->sk)
1937 return false;
1938
1939 if (ptype->id_match)
1940 return ptype->id_match(ptype, skb->sk);
1941 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1942 return true;
1943
1944 return false;
1945}
1946
1947/**
1948 * dev_nit_active - return true if any network interface taps are in use
1949 *
1950 * @dev: network device to check for the presence of taps
1951 */
1952bool dev_nit_active(struct net_device *dev)
1953{
1954 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1955}
1956EXPORT_SYMBOL_GPL(dev_nit_active);
1957
1958/*
1959 * Support routine. Sends outgoing frames to any network
1960 * taps currently in use.
1961 */
1962
1963void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964{
1965 struct packet_type *ptype;
1966 struct sk_buff *skb2 = NULL;
1967 struct packet_type *pt_prev = NULL;
1968 struct list_head *ptype_list = &ptype_all;
1969
1970 rcu_read_lock();
1971again:
1972 list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 if (READ_ONCE(ptype->ignore_outgoing))
1974 continue;
1975
1976 /* Never send packets back to the socket
1977 * they originated from - MvS (miquels@drinkel.ow.org)
1978 */
1979 if (skb_loop_sk(ptype, skb))
1980 continue;
1981
1982 if (pt_prev) {
1983 deliver_skb(skb2, pt_prev, skb->dev);
1984 pt_prev = ptype;
1985 continue;
1986 }
1987
1988 /* need to clone skb, done only once */
1989 skb2 = skb_clone(skb, GFP_ATOMIC);
1990 if (!skb2)
1991 goto out_unlock;
1992
1993 net_timestamp_set(skb2);
1994
1995 /* skb->nh should be correctly
1996 * set by sender, so that the second statement is
1997 * just protection against buggy protocols.
1998 */
1999 skb_reset_mac_header(skb2);
2000
2001 if (skb_network_header(skb2) < skb2->data ||
2002 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2003 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2004 ntohs(skb2->protocol),
2005 dev->name);
2006 skb_reset_network_header(skb2);
2007 }
2008
2009 skb2->transport_header = skb2->network_header;
2010 skb2->pkt_type = PACKET_OUTGOING;
2011 pt_prev = ptype;
2012 }
2013
2014 if (ptype_list == &ptype_all) {
2015 ptype_list = &dev->ptype_all;
2016 goto again;
2017 }
2018out_unlock:
2019 if (pt_prev) {
2020 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2021 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2022 else
2023 kfree_skb(skb2);
2024 }
2025 rcu_read_unlock();
2026}
2027EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2028
2029/**
2030 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2031 * @dev: Network device
2032 * @txq: number of queues available
2033 *
2034 * If real_num_tx_queues is changed the tc mappings may no longer be
2035 * valid. To resolve this verify the tc mapping remains valid and if
2036 * not NULL the mapping. With no priorities mapping to this
2037 * offset/count pair it will no longer be used. In the worst case TC0
2038 * is invalid nothing can be done so disable priority mappings. If is
2039 * expected that drivers will fix this mapping if they can before
2040 * calling netif_set_real_num_tx_queues.
2041 */
2042static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2043{
2044 int i;
2045 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2046
2047 /* If TC0 is invalidated disable TC mapping */
2048 if (tc->offset + tc->count > txq) {
2049 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2050 dev->num_tc = 0;
2051 return;
2052 }
2053
2054 /* Invalidated prio to tc mappings set to TC0 */
2055 for (i = 1; i < TC_BITMASK + 1; i++) {
2056 int q = netdev_get_prio_tc_map(dev, i);
2057
2058 tc = &dev->tc_to_txq[q];
2059 if (tc->offset + tc->count > txq) {
2060 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2061 i, q);
2062 netdev_set_prio_tc_map(dev, i, 0);
2063 }
2064 }
2065}
2066
2067int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2068{
2069 if (dev->num_tc) {
2070 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2071 int i;
2072
2073 /* walk through the TCs and see if it falls into any of them */
2074 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2075 if ((txq - tc->offset) < tc->count)
2076 return i;
2077 }
2078
2079 /* didn't find it, just return -1 to indicate no match */
2080 return -1;
2081 }
2082
2083 return 0;
2084}
2085EXPORT_SYMBOL(netdev_txq_to_tc);
2086
2087#ifdef CONFIG_XPS
2088struct static_key xps_needed __read_mostly;
2089EXPORT_SYMBOL(xps_needed);
2090struct static_key xps_rxqs_needed __read_mostly;
2091EXPORT_SYMBOL(xps_rxqs_needed);
2092static DEFINE_MUTEX(xps_map_mutex);
2093#define xmap_dereference(P) \
2094 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2095
2096static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2097 int tci, u16 index)
2098{
2099 struct xps_map *map = NULL;
2100 int pos;
2101
2102 if (dev_maps)
2103 map = xmap_dereference(dev_maps->attr_map[tci]);
2104 if (!map)
2105 return false;
2106
2107 for (pos = map->len; pos--;) {
2108 if (map->queues[pos] != index)
2109 continue;
2110
2111 if (map->len > 1) {
2112 map->queues[pos] = map->queues[--map->len];
2113 break;
2114 }
2115
2116 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2117 kfree_rcu(map, rcu);
2118 return false;
2119 }
2120
2121 return true;
2122}
2123
2124static bool remove_xps_queue_cpu(struct net_device *dev,
2125 struct xps_dev_maps *dev_maps,
2126 int cpu, u16 offset, u16 count)
2127{
2128 int num_tc = dev->num_tc ? : 1;
2129 bool active = false;
2130 int tci;
2131
2132 for (tci = cpu * num_tc; num_tc--; tci++) {
2133 int i, j;
2134
2135 for (i = count, j = offset; i--; j++) {
2136 if (!remove_xps_queue(dev_maps, tci, j))
2137 break;
2138 }
2139
2140 active |= i < 0;
2141 }
2142
2143 return active;
2144}
2145
2146static void reset_xps_maps(struct net_device *dev,
2147 struct xps_dev_maps *dev_maps,
2148 bool is_rxqs_map)
2149{
2150 if (is_rxqs_map) {
2151 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2152 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2153 } else {
2154 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2155 }
2156 static_key_slow_dec_cpuslocked(&xps_needed);
2157 kfree_rcu(dev_maps, rcu);
2158}
2159
2160static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2161 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2162 u16 offset, u16 count, bool is_rxqs_map)
2163{
2164 bool active = false;
2165 int i, j;
2166
2167 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2168 j < nr_ids;)
2169 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2170 count);
2171 if (!active)
2172 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2173
2174 if (!is_rxqs_map) {
2175 for (i = offset + (count - 1); count--; i--) {
2176 netdev_queue_numa_node_write(
2177 netdev_get_tx_queue(dev, i),
2178 NUMA_NO_NODE);
2179 }
2180 }
2181}
2182
2183static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2184 u16 count)
2185{
2186 const unsigned long *possible_mask = NULL;
2187 struct xps_dev_maps *dev_maps;
2188 unsigned int nr_ids;
2189
2190 if (!static_key_false(&xps_needed))
2191 return;
2192
2193 cpus_read_lock();
2194 mutex_lock(&xps_map_mutex);
2195
2196 if (static_key_false(&xps_rxqs_needed)) {
2197 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2198 if (dev_maps) {
2199 nr_ids = dev->num_rx_queues;
2200 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2201 offset, count, true);
2202 }
2203 }
2204
2205 dev_maps = xmap_dereference(dev->xps_cpus_map);
2206 if (!dev_maps)
2207 goto out_no_maps;
2208
2209 if (num_possible_cpus() > 1)
2210 possible_mask = cpumask_bits(cpu_possible_mask);
2211 nr_ids = nr_cpu_ids;
2212 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2213 false);
2214
2215out_no_maps:
2216 mutex_unlock(&xps_map_mutex);
2217 cpus_read_unlock();
2218}
2219
2220static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2221{
2222 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2223}
2224
2225static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2226 u16 index, bool is_rxqs_map)
2227{
2228 struct xps_map *new_map;
2229 int alloc_len = XPS_MIN_MAP_ALLOC;
2230 int i, pos;
2231
2232 for (pos = 0; map && pos < map->len; pos++) {
2233 if (map->queues[pos] != index)
2234 continue;
2235 return map;
2236 }
2237
2238 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2239 if (map) {
2240 if (pos < map->alloc_len)
2241 return map;
2242
2243 alloc_len = map->alloc_len * 2;
2244 }
2245
2246 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2247 * map
2248 */
2249 if (is_rxqs_map)
2250 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2251 else
2252 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2253 cpu_to_node(attr_index));
2254 if (!new_map)
2255 return NULL;
2256
2257 for (i = 0; i < pos; i++)
2258 new_map->queues[i] = map->queues[i];
2259 new_map->alloc_len = alloc_len;
2260 new_map->len = pos;
2261
2262 return new_map;
2263}
2264
2265/* Must be called under cpus_read_lock */
2266int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2267 u16 index, bool is_rxqs_map)
2268{
2269 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2270 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2271 int i, j, tci, numa_node_id = -2;
2272 int maps_sz, num_tc = 1, tc = 0;
2273 struct xps_map *map, *new_map;
2274 bool active = false;
2275 unsigned int nr_ids;
2276
2277 WARN_ON_ONCE(index >= dev->num_tx_queues);
2278
2279 if (dev->num_tc) {
2280 /* Do not allow XPS on subordinate device directly */
2281 num_tc = dev->num_tc;
2282 if (num_tc < 0)
2283 return -EINVAL;
2284
2285 /* If queue belongs to subordinate dev use its map */
2286 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2287
2288 tc = netdev_txq_to_tc(dev, index);
2289 if (tc < 0)
2290 return -EINVAL;
2291 }
2292
2293 mutex_lock(&xps_map_mutex);
2294 if (is_rxqs_map) {
2295 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2296 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2297 nr_ids = dev->num_rx_queues;
2298 } else {
2299 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2300 if (num_possible_cpus() > 1) {
2301 online_mask = cpumask_bits(cpu_online_mask);
2302 possible_mask = cpumask_bits(cpu_possible_mask);
2303 }
2304 dev_maps = xmap_dereference(dev->xps_cpus_map);
2305 nr_ids = nr_cpu_ids;
2306 }
2307
2308 if (maps_sz < L1_CACHE_BYTES)
2309 maps_sz = L1_CACHE_BYTES;
2310
2311 /* allocate memory for queue storage */
2312 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2313 j < nr_ids;) {
2314 if (!new_dev_maps)
2315 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2316 if (!new_dev_maps) {
2317 mutex_unlock(&xps_map_mutex);
2318 return -ENOMEM;
2319 }
2320
2321 tci = j * num_tc + tc;
2322 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2323 NULL;
2324
2325 map = expand_xps_map(map, j, index, is_rxqs_map);
2326 if (!map)
2327 goto error;
2328
2329 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2330 }
2331
2332 if (!new_dev_maps)
2333 goto out_no_new_maps;
2334
2335 if (!dev_maps) {
2336 /* Increment static keys at most once per type */
2337 static_key_slow_inc_cpuslocked(&xps_needed);
2338 if (is_rxqs_map)
2339 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2340 }
2341
2342 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2343 j < nr_ids;) {
2344 /* copy maps belonging to foreign traffic classes */
2345 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2346 /* fill in the new device map from the old device map */
2347 map = xmap_dereference(dev_maps->attr_map[tci]);
2348 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2349 }
2350
2351 /* We need to explicitly update tci as prevous loop
2352 * could break out early if dev_maps is NULL.
2353 */
2354 tci = j * num_tc + tc;
2355
2356 if (netif_attr_test_mask(j, mask, nr_ids) &&
2357 netif_attr_test_online(j, online_mask, nr_ids)) {
2358 /* add tx-queue to CPU/rx-queue maps */
2359 int pos = 0;
2360
2361 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2362 while ((pos < map->len) && (map->queues[pos] != index))
2363 pos++;
2364
2365 if (pos == map->len)
2366 map->queues[map->len++] = index;
2367#ifdef CONFIG_NUMA
2368 if (!is_rxqs_map) {
2369 if (numa_node_id == -2)
2370 numa_node_id = cpu_to_node(j);
2371 else if (numa_node_id != cpu_to_node(j))
2372 numa_node_id = -1;
2373 }
2374#endif
2375 } else if (dev_maps) {
2376 /* fill in the new device map from the old device map */
2377 map = xmap_dereference(dev_maps->attr_map[tci]);
2378 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2379 }
2380
2381 /* copy maps belonging to foreign traffic classes */
2382 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2383 /* fill in the new device map from the old device map */
2384 map = xmap_dereference(dev_maps->attr_map[tci]);
2385 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2386 }
2387 }
2388
2389 if (is_rxqs_map)
2390 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2391 else
2392 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2393
2394 /* Cleanup old maps */
2395 if (!dev_maps)
2396 goto out_no_old_maps;
2397
2398 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2399 j < nr_ids;) {
2400 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2401 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2402 map = xmap_dereference(dev_maps->attr_map[tci]);
2403 if (map && map != new_map)
2404 kfree_rcu(map, rcu);
2405 }
2406 }
2407
2408 kfree_rcu(dev_maps, rcu);
2409
2410out_no_old_maps:
2411 dev_maps = new_dev_maps;
2412 active = true;
2413
2414out_no_new_maps:
2415 if (!is_rxqs_map) {
2416 /* update Tx queue numa node */
2417 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2418 (numa_node_id >= 0) ?
2419 numa_node_id : NUMA_NO_NODE);
2420 }
2421
2422 if (!dev_maps)
2423 goto out_no_maps;
2424
2425 /* removes tx-queue from unused CPUs/rx-queues */
2426 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2427 j < nr_ids;) {
2428 for (i = tc, tci = j * num_tc; i--; tci++)
2429 active |= remove_xps_queue(dev_maps, tci, index);
2430 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2431 !netif_attr_test_online(j, online_mask, nr_ids))
2432 active |= remove_xps_queue(dev_maps, tci, index);
2433 for (i = num_tc - tc, tci++; --i; tci++)
2434 active |= remove_xps_queue(dev_maps, tci, index);
2435 }
2436
2437 /* free map if not active */
2438 if (!active)
2439 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2440
2441out_no_maps:
2442 mutex_unlock(&xps_map_mutex);
2443
2444 return 0;
2445error:
2446 /* remove any maps that we added */
2447 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2448 j < nr_ids;) {
2449 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2450 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2451 map = dev_maps ?
2452 xmap_dereference(dev_maps->attr_map[tci]) :
2453 NULL;
2454 if (new_map && new_map != map)
2455 kfree(new_map);
2456 }
2457 }
2458
2459 mutex_unlock(&xps_map_mutex);
2460
2461 kfree(new_dev_maps);
2462 return -ENOMEM;
2463}
2464EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2465
2466int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2467 u16 index)
2468{
2469 int ret;
2470
2471 cpus_read_lock();
2472 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2473 cpus_read_unlock();
2474
2475 return ret;
2476}
2477EXPORT_SYMBOL(netif_set_xps_queue);
2478
2479#endif
2480static void netdev_unbind_all_sb_channels(struct net_device *dev)
2481{
2482 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2483
2484 /* Unbind any subordinate channels */
2485 while (txq-- != &dev->_tx[0]) {
2486 if (txq->sb_dev)
2487 netdev_unbind_sb_channel(dev, txq->sb_dev);
2488 }
2489}
2490
2491void netdev_reset_tc(struct net_device *dev)
2492{
2493#ifdef CONFIG_XPS
2494 netif_reset_xps_queues_gt(dev, 0);
2495#endif
2496 netdev_unbind_all_sb_channels(dev);
2497
2498 /* Reset TC configuration of device */
2499 dev->num_tc = 0;
2500 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2501 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2502}
2503EXPORT_SYMBOL(netdev_reset_tc);
2504
2505int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2506{
2507 if (tc >= dev->num_tc)
2508 return -EINVAL;
2509
2510#ifdef CONFIG_XPS
2511 netif_reset_xps_queues(dev, offset, count);
2512#endif
2513 dev->tc_to_txq[tc].count = count;
2514 dev->tc_to_txq[tc].offset = offset;
2515 return 0;
2516}
2517EXPORT_SYMBOL(netdev_set_tc_queue);
2518
2519int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2520{
2521 if (num_tc > TC_MAX_QUEUE)
2522 return -EINVAL;
2523
2524#ifdef CONFIG_XPS
2525 netif_reset_xps_queues_gt(dev, 0);
2526#endif
2527 netdev_unbind_all_sb_channels(dev);
2528
2529 dev->num_tc = num_tc;
2530 return 0;
2531}
2532EXPORT_SYMBOL(netdev_set_num_tc);
2533
2534void netdev_unbind_sb_channel(struct net_device *dev,
2535 struct net_device *sb_dev)
2536{
2537 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2538
2539#ifdef CONFIG_XPS
2540 netif_reset_xps_queues_gt(sb_dev, 0);
2541#endif
2542 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2543 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2544
2545 while (txq-- != &dev->_tx[0]) {
2546 if (txq->sb_dev == sb_dev)
2547 txq->sb_dev = NULL;
2548 }
2549}
2550EXPORT_SYMBOL(netdev_unbind_sb_channel);
2551
2552int netdev_bind_sb_channel_queue(struct net_device *dev,
2553 struct net_device *sb_dev,
2554 u8 tc, u16 count, u16 offset)
2555{
2556 /* Make certain the sb_dev and dev are already configured */
2557 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2558 return -EINVAL;
2559
2560 /* We cannot hand out queues we don't have */
2561 if ((offset + count) > dev->real_num_tx_queues)
2562 return -EINVAL;
2563
2564 /* Record the mapping */
2565 sb_dev->tc_to_txq[tc].count = count;
2566 sb_dev->tc_to_txq[tc].offset = offset;
2567
2568 /* Provide a way for Tx queue to find the tc_to_txq map or
2569 * XPS map for itself.
2570 */
2571 while (count--)
2572 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2573
2574 return 0;
2575}
2576EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2577
2578int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2579{
2580 /* Do not use a multiqueue device to represent a subordinate channel */
2581 if (netif_is_multiqueue(dev))
2582 return -ENODEV;
2583
2584 /* We allow channels 1 - 32767 to be used for subordinate channels.
2585 * Channel 0 is meant to be "native" mode and used only to represent
2586 * the main root device. We allow writing 0 to reset the device back
2587 * to normal mode after being used as a subordinate channel.
2588 */
2589 if (channel > S16_MAX)
2590 return -EINVAL;
2591
2592 dev->num_tc = -channel;
2593
2594 return 0;
2595}
2596EXPORT_SYMBOL(netdev_set_sb_channel);
2597
2598/*
2599 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2600 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2601 */
2602int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2603{
2604 bool disabling;
2605 int rc;
2606
2607 disabling = txq < dev->real_num_tx_queues;
2608
2609 if (txq < 1 || txq > dev->num_tx_queues)
2610 return -EINVAL;
2611
2612 if (dev->reg_state == NETREG_REGISTERED ||
2613 dev->reg_state == NETREG_UNREGISTERING) {
2614 ASSERT_RTNL();
2615
2616 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2617 txq);
2618 if (rc)
2619 return rc;
2620
2621 if (dev->num_tc)
2622 netif_setup_tc(dev, txq);
2623
2624 dev_qdisc_change_real_num_tx(dev, txq);
2625
2626 dev->real_num_tx_queues = txq;
2627
2628 if (disabling) {
2629 synchronize_net();
2630 qdisc_reset_all_tx_gt(dev, txq);
2631#ifdef CONFIG_XPS
2632 netif_reset_xps_queues_gt(dev, txq);
2633#endif
2634 }
2635 } else {
2636 dev->real_num_tx_queues = txq;
2637 }
2638
2639 return 0;
2640}
2641EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2642
2643#ifdef CONFIG_SYSFS
2644/**
2645 * netif_set_real_num_rx_queues - set actual number of RX queues used
2646 * @dev: Network device
2647 * @rxq: Actual number of RX queues
2648 *
2649 * This must be called either with the rtnl_lock held or before
2650 * registration of the net device. Returns 0 on success, or a
2651 * negative error code. If called before registration, it always
2652 * succeeds.
2653 */
2654int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2655{
2656 int rc;
2657
2658 if (rxq < 1 || rxq > dev->num_rx_queues)
2659 return -EINVAL;
2660
2661 if (dev->reg_state == NETREG_REGISTERED) {
2662 ASSERT_RTNL();
2663
2664 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2665 rxq);
2666 if (rc)
2667 return rc;
2668 }
2669
2670 dev->real_num_rx_queues = rxq;
2671 return 0;
2672}
2673EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2674#endif
2675
2676/**
2677 * netif_get_num_default_rss_queues - default number of RSS queues
2678 *
2679 * This routine should set an upper limit on the number of RSS queues
2680 * used by default by multiqueue devices.
2681 */
2682int netif_get_num_default_rss_queues(void)
2683{
2684 return is_kdump_kernel() ?
2685 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2686}
2687EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2688
2689static void __netif_reschedule(struct Qdisc *q)
2690{
2691 struct softnet_data *sd;
2692 unsigned long flags;
2693
2694 local_irq_save(flags);
2695 sd = this_cpu_ptr(&softnet_data);
2696 q->next_sched = NULL;
2697 *sd->output_queue_tailp = q;
2698 sd->output_queue_tailp = &q->next_sched;
2699 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2700 local_irq_restore(flags);
2701}
2702
2703void __netif_schedule(struct Qdisc *q)
2704{
2705 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2706 __netif_reschedule(q);
2707}
2708EXPORT_SYMBOL(__netif_schedule);
2709
2710struct dev_kfree_skb_cb {
2711 enum skb_free_reason reason;
2712};
2713
2714static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2715{
2716 return (struct dev_kfree_skb_cb *)skb->cb;
2717}
2718
2719void netif_schedule_queue(struct netdev_queue *txq)
2720{
2721 rcu_read_lock();
2722 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2723 struct Qdisc *q = rcu_dereference(txq->qdisc);
2724
2725 __netif_schedule(q);
2726 }
2727 rcu_read_unlock();
2728}
2729EXPORT_SYMBOL(netif_schedule_queue);
2730
2731void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2732{
2733 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2734 struct Qdisc *q;
2735
2736 rcu_read_lock();
2737 q = rcu_dereference(dev_queue->qdisc);
2738 __netif_schedule(q);
2739 rcu_read_unlock();
2740 }
2741}
2742EXPORT_SYMBOL(netif_tx_wake_queue);
2743
2744void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2745{
2746 unsigned long flags;
2747
2748 if (unlikely(!skb))
2749 return;
2750
2751 if (likely(refcount_read(&skb->users) == 1)) {
2752 smp_rmb();
2753 refcount_set(&skb->users, 0);
2754 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2755 return;
2756 }
2757 get_kfree_skb_cb(skb)->reason = reason;
2758 local_irq_save(flags);
2759 skb->next = __this_cpu_read(softnet_data.completion_queue);
2760 __this_cpu_write(softnet_data.completion_queue, skb);
2761 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2762 local_irq_restore(flags);
2763}
2764EXPORT_SYMBOL(__dev_kfree_skb_irq);
2765
2766void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2767{
2768 if (in_irq() || irqs_disabled())
2769 __dev_kfree_skb_irq(skb, reason);
2770 else if (unlikely(reason == SKB_REASON_DROPPED))
2771 kfree_skb(skb);
2772 else
2773 consume_skb(skb);
2774}
2775EXPORT_SYMBOL(__dev_kfree_skb_any);
2776
2777
2778/**
2779 * netif_device_detach - mark device as removed
2780 * @dev: network device
2781 *
2782 * Mark device as removed from system and therefore no longer available.
2783 */
2784void netif_device_detach(struct net_device *dev)
2785{
2786 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2787 netif_running(dev)) {
2788 netif_tx_stop_all_queues(dev);
2789 }
2790}
2791EXPORT_SYMBOL(netif_device_detach);
2792
2793/**
2794 * netif_device_attach - mark device as attached
2795 * @dev: network device
2796 *
2797 * Mark device as attached from system and restart if needed.
2798 */
2799void netif_device_attach(struct net_device *dev)
2800{
2801 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2802 netif_running(dev)) {
2803 netif_tx_wake_all_queues(dev);
2804 __netdev_watchdog_up(dev);
2805 }
2806}
2807EXPORT_SYMBOL(netif_device_attach);
2808
2809/*
2810 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2811 * to be used as a distribution range.
2812 */
2813static u16 skb_tx_hash(const struct net_device *dev,
2814 const struct net_device *sb_dev,
2815 struct sk_buff *skb)
2816{
2817 u32 hash;
2818 u16 qoffset = 0;
2819 u16 qcount = dev->real_num_tx_queues;
2820
2821 if (dev->num_tc) {
2822 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2823
2824 qoffset = sb_dev->tc_to_txq[tc].offset;
2825 qcount = sb_dev->tc_to_txq[tc].count;
2826 if (unlikely(!qcount)) {
2827 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
2828 sb_dev->name, qoffset, tc);
2829 qoffset = 0;
2830 qcount = dev->real_num_tx_queues;
2831 }
2832 }
2833
2834 if (skb_rx_queue_recorded(skb)) {
2835 hash = skb_get_rx_queue(skb);
2836 if (hash >= qoffset)
2837 hash -= qoffset;
2838 while (unlikely(hash >= qcount))
2839 hash -= qcount;
2840 return hash + qoffset;
2841 }
2842
2843 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2844}
2845
2846static void skb_warn_bad_offload(const struct sk_buff *skb)
2847{
2848 static const netdev_features_t null_features;
2849 struct net_device *dev = skb->dev;
2850 const char *name = "";
2851
2852 if (!net_ratelimit())
2853 return;
2854
2855 if (dev) {
2856 if (dev->dev.parent)
2857 name = dev_driver_string(dev->dev.parent);
2858 else
2859 name = netdev_name(dev);
2860 }
2861 skb_dump(KERN_WARNING, skb, false);
2862 WARN(1, "%s: caps=(%pNF, %pNF)\n",
2863 name, dev ? &dev->features : &null_features,
2864 skb->sk ? &skb->sk->sk_route_caps : &null_features);
2865}
2866
2867/*
2868 * Invalidate hardware checksum when packet is to be mangled, and
2869 * complete checksum manually on outgoing path.
2870 */
2871int skb_checksum_help(struct sk_buff *skb)
2872{
2873 __wsum csum;
2874 int ret = 0, offset;
2875
2876 if (skb->ip_summed == CHECKSUM_COMPLETE)
2877 goto out_set_summed;
2878
2879 if (unlikely(skb_shinfo(skb)->gso_size)) {
2880 skb_warn_bad_offload(skb);
2881 return -EINVAL;
2882 }
2883
2884 /* Before computing a checksum, we should make sure no frag could
2885 * be modified by an external entity : checksum could be wrong.
2886 */
2887 if (skb_has_shared_frag(skb)) {
2888 ret = __skb_linearize(skb);
2889 if (ret)
2890 goto out;
2891 }
2892
2893 offset = skb_checksum_start_offset(skb);
2894 BUG_ON(offset >= skb_headlen(skb));
2895 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2896
2897 offset += skb->csum_offset;
2898 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2899
2900 if (skb_cloned(skb) &&
2901 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2902 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2903 if (ret)
2904 goto out;
2905 }
2906
2907 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2908out_set_summed:
2909 skb->ip_summed = CHECKSUM_NONE;
2910out:
2911 return ret;
2912}
2913EXPORT_SYMBOL(skb_checksum_help);
2914
2915int skb_crc32c_csum_help(struct sk_buff *skb)
2916{
2917 __le32 crc32c_csum;
2918 int ret = 0, offset, start;
2919
2920 if (skb->ip_summed != CHECKSUM_PARTIAL)
2921 goto out;
2922
2923 if (unlikely(skb_is_gso(skb)))
2924 goto out;
2925
2926 /* Before computing a checksum, we should make sure no frag could
2927 * be modified by an external entity : checksum could be wrong.
2928 */
2929 if (unlikely(skb_has_shared_frag(skb))) {
2930 ret = __skb_linearize(skb);
2931 if (ret)
2932 goto out;
2933 }
2934 start = skb_checksum_start_offset(skb);
2935 offset = start + offsetof(struct sctphdr, checksum);
2936 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2937 ret = -EINVAL;
2938 goto out;
2939 }
2940 if (skb_cloned(skb) &&
2941 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2942 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2943 if (ret)
2944 goto out;
2945 }
2946 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2947 skb->len - start, ~(__u32)0,
2948 crc32c_csum_stub));
2949 *(__le32 *)(skb->data + offset) = crc32c_csum;
2950 skb->ip_summed = CHECKSUM_NONE;
2951 skb->csum_not_inet = 0;
2952out:
2953 return ret;
2954}
2955
2956__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2957{
2958 __be16 type = skb->protocol;
2959
2960 /* Tunnel gso handlers can set protocol to ethernet. */
2961 if (type == htons(ETH_P_TEB)) {
2962 struct ethhdr *eth;
2963
2964 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2965 return 0;
2966
2967 eth = (struct ethhdr *)skb->data;
2968 type = eth->h_proto;
2969 }
2970
2971 return vlan_get_protocol_and_depth(skb, type, depth);
2972}
2973
2974/**
2975 * skb_mac_gso_segment - mac layer segmentation handler.
2976 * @skb: buffer to segment
2977 * @features: features for the output path (see dev->features)
2978 */
2979struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2980 netdev_features_t features)
2981{
2982 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2983 struct packet_offload *ptype;
2984 int vlan_depth = skb->mac_len;
2985 __be16 type = skb_network_protocol(skb, &vlan_depth);
2986
2987 if (unlikely(!type))
2988 return ERR_PTR(-EINVAL);
2989
2990 __skb_pull(skb, vlan_depth);
2991
2992 rcu_read_lock();
2993 list_for_each_entry_rcu(ptype, &offload_base, list) {
2994 if (ptype->type == type && ptype->callbacks.gso_segment) {
2995 segs = ptype->callbacks.gso_segment(skb, features);
2996 break;
2997 }
2998 }
2999 rcu_read_unlock();
3000
3001 __skb_push(skb, skb->data - skb_mac_header(skb));
3002
3003 return segs;
3004}
3005EXPORT_SYMBOL(skb_mac_gso_segment);
3006
3007
3008/* openvswitch calls this on rx path, so we need a different check.
3009 */
3010static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3011{
3012 if (tx_path)
3013 return skb->ip_summed != CHECKSUM_PARTIAL &&
3014 skb->ip_summed != CHECKSUM_UNNECESSARY;
3015
3016 return skb->ip_summed == CHECKSUM_NONE;
3017}
3018
3019/**
3020 * __skb_gso_segment - Perform segmentation on skb.
3021 * @skb: buffer to segment
3022 * @features: features for the output path (see dev->features)
3023 * @tx_path: whether it is called in TX path
3024 *
3025 * This function segments the given skb and returns a list of segments.
3026 *
3027 * It may return NULL if the skb requires no segmentation. This is
3028 * only possible when GSO is used for verifying header integrity.
3029 *
3030 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3031 */
3032struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3033 netdev_features_t features, bool tx_path)
3034{
3035 struct sk_buff *segs;
3036
3037 if (unlikely(skb_needs_check(skb, tx_path))) {
3038 int err;
3039
3040 /* We're going to init ->check field in TCP or UDP header */
3041 err = skb_cow_head(skb, 0);
3042 if (err < 0)
3043 return ERR_PTR(err);
3044 }
3045
3046 /* Only report GSO partial support if it will enable us to
3047 * support segmentation on this frame without needing additional
3048 * work.
3049 */
3050 if (features & NETIF_F_GSO_PARTIAL) {
3051 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3052 struct net_device *dev = skb->dev;
3053
3054 partial_features |= dev->features & dev->gso_partial_features;
3055 if (!skb_gso_ok(skb, features | partial_features))
3056 features &= ~NETIF_F_GSO_PARTIAL;
3057 }
3058
3059 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3060 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3061
3062 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3063 SKB_GSO_CB(skb)->encap_level = 0;
3064
3065 skb_reset_mac_header(skb);
3066 skb_reset_mac_len(skb);
3067
3068 segs = skb_mac_gso_segment(skb, features);
3069
3070 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3071 skb_warn_bad_offload(skb);
3072
3073 return segs;
3074}
3075EXPORT_SYMBOL(__skb_gso_segment);
3076
3077/* Take action when hardware reception checksum errors are detected. */
3078#ifdef CONFIG_BUG
3079void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3080{
3081 if (net_ratelimit()) {
3082 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3083 skb_dump(KERN_ERR, skb, true);
3084 dump_stack();
3085 }
3086}
3087EXPORT_SYMBOL(netdev_rx_csum_fault);
3088#endif
3089
3090/* XXX: check that highmem exists at all on the given machine. */
3091static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3092{
3093#ifdef CONFIG_HIGHMEM
3094 int i;
3095
3096 if (!(dev->features & NETIF_F_HIGHDMA)) {
3097 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3098 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3099
3100 if (PageHighMem(skb_frag_page(frag)))
3101 return 1;
3102 }
3103 }
3104#endif
3105 return 0;
3106}
3107
3108/* If MPLS offload request, verify we are testing hardware MPLS features
3109 * instead of standard features for the netdev.
3110 */
3111#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3112static netdev_features_t net_mpls_features(struct sk_buff *skb,
3113 netdev_features_t features,
3114 __be16 type)
3115{
3116 if (eth_p_mpls(type))
3117 features &= skb->dev->mpls_features;
3118
3119 return features;
3120}
3121#else
3122static netdev_features_t net_mpls_features(struct sk_buff *skb,
3123 netdev_features_t features,
3124 __be16 type)
3125{
3126 return features;
3127}
3128#endif
3129
3130static netdev_features_t harmonize_features(struct sk_buff *skb,
3131 netdev_features_t features)
3132{
3133 int tmp;
3134 __be16 type;
3135
3136 type = skb_network_protocol(skb, &tmp);
3137 features = net_mpls_features(skb, features, type);
3138
3139 if (skb->ip_summed != CHECKSUM_NONE &&
3140 !can_checksum_protocol(features, type)) {
3141 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3142 }
3143 if (illegal_highdma(skb->dev, skb))
3144 features &= ~NETIF_F_SG;
3145
3146 return features;
3147}
3148
3149netdev_features_t passthru_features_check(struct sk_buff *skb,
3150 struct net_device *dev,
3151 netdev_features_t features)
3152{
3153 return features;
3154}
3155EXPORT_SYMBOL(passthru_features_check);
3156
3157static netdev_features_t dflt_features_check(struct sk_buff *skb,
3158 struct net_device *dev,
3159 netdev_features_t features)
3160{
3161 return vlan_features_check(skb, features);
3162}
3163
3164static netdev_features_t gso_features_check(const struct sk_buff *skb,
3165 struct net_device *dev,
3166 netdev_features_t features)
3167{
3168 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3169
3170 if (gso_segs > dev->gso_max_segs)
3171 return features & ~NETIF_F_GSO_MASK;
3172
3173 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3174 return features & ~NETIF_F_GSO_MASK;
3175
3176 if (!skb_shinfo(skb)->gso_type) {
3177 skb_warn_bad_offload(skb);
3178 return features & ~NETIF_F_GSO_MASK;
3179 }
3180
3181 /* Support for GSO partial features requires software
3182 * intervention before we can actually process the packets
3183 * so we need to strip support for any partial features now
3184 * and we can pull them back in after we have partially
3185 * segmented the frame.
3186 */
3187 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3188 features &= ~dev->gso_partial_features;
3189
3190 /* Make sure to clear the IPv4 ID mangling feature if the
3191 * IPv4 header has the potential to be fragmented.
3192 */
3193 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3194 struct iphdr *iph = skb->encapsulation ?
3195 inner_ip_hdr(skb) : ip_hdr(skb);
3196
3197 if (!(iph->frag_off & htons(IP_DF)))
3198 features &= ~NETIF_F_TSO_MANGLEID;
3199 }
3200
3201 return features;
3202}
3203
3204netdev_features_t netif_skb_features(struct sk_buff *skb)
3205{
3206 struct net_device *dev = skb->dev;
3207 netdev_features_t features = dev->features;
3208
3209 if (skb_is_gso(skb))
3210 features = gso_features_check(skb, dev, features);
3211
3212 /* If encapsulation offload request, verify we are testing
3213 * hardware encapsulation features instead of standard
3214 * features for the netdev
3215 */
3216 if (skb->encapsulation)
3217 features &= dev->hw_enc_features;
3218
3219 if (skb_vlan_tagged(skb))
3220 features = netdev_intersect_features(features,
3221 dev->vlan_features |
3222 NETIF_F_HW_VLAN_CTAG_TX |
3223 NETIF_F_HW_VLAN_STAG_TX);
3224
3225 if (dev->netdev_ops->ndo_features_check)
3226 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3227 features);
3228 else
3229 features &= dflt_features_check(skb, dev, features);
3230
3231 return harmonize_features(skb, features);
3232}
3233EXPORT_SYMBOL(netif_skb_features);
3234
3235int ptype_all_skb_clone __read_mostly = 1;
3236
3237static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3238 struct netdev_queue *txq, bool more)
3239{
3240 unsigned int len;
3241 int rc;
3242
3243 if ((ptype_all_skb_clone == 1) && (dev_nit_active(dev)))
3244 dev_queue_xmit_nit(skb, dev);
3245
3246#ifdef CONFIG_ETHERNET_PACKET_MANGLE
3247 if (!dev->eth_mangle_tx ||
3248 (skb = dev->eth_mangle_tx(dev, skb)) != NULL)
3249#else
3250 if (1)
3251#endif
3252 {
3253 len = skb->len;
3254 trace_net_dev_start_xmit(skb, dev);
3255 rc = netdev_start_xmit(skb, dev, txq, more);
3256 trace_net_dev_xmit(skb, rc, dev, len);
3257 } else {
3258 rc = NETDEV_TX_OK;
3259 }
3260
3261 return rc;
3262}
3263
3264struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3265 struct netdev_queue *txq, int *ret)
3266{
3267 struct sk_buff *skb = first;
3268 int rc = NETDEV_TX_OK;
3269
3270 while (skb) {
3271 struct sk_buff *next = skb->next;
3272
3273 skb_mark_not_on_list(skb);
3274 rc = xmit_one(skb, dev, txq, next != NULL);
3275 if (unlikely(!dev_xmit_complete(rc))) {
3276 skb->next = next;
3277 goto out;
3278 }
3279
3280 skb = next;
3281 if (netif_tx_queue_stopped(txq) && skb) {
3282 rc = NETDEV_TX_BUSY;
3283 break;
3284 }
3285 }
3286
3287out:
3288 *ret = rc;
3289 return skb;
3290}
3291
3292static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3293 netdev_features_t features)
3294{
3295 if (skb_vlan_tag_present(skb) &&
3296 !vlan_hw_offload_capable(features, skb->vlan_proto))
3297 skb = __vlan_hwaccel_push_inside(skb);
3298 return skb;
3299}
3300
3301int skb_csum_hwoffload_help(struct sk_buff *skb,
3302 const netdev_features_t features)
3303{
3304 if (unlikely(skb->csum_not_inet))
3305 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3306 skb_crc32c_csum_help(skb);
3307
3308 if (features & NETIF_F_HW_CSUM)
3309 return 0;
3310
3311 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3312 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3313 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3314 goto sw_checksum;
3315 switch (skb->csum_offset) {
3316 case offsetof(struct tcphdr, check):
3317 case offsetof(struct udphdr, check):
3318 return 0;
3319 }
3320 }
3321
3322sw_checksum:
3323 return skb_checksum_help(skb);
3324}
3325EXPORT_SYMBOL(skb_csum_hwoffload_help);
3326
3327static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3328{
3329 netdev_features_t features;
3330
3331 features = netif_skb_features(skb);
3332 skb = validate_xmit_vlan(skb, features);
3333 if (unlikely(!skb))
3334 goto out_null;
3335
3336 skb = sk_validate_xmit_skb(skb, dev);
3337 if (unlikely(!skb))
3338 goto out_null;
3339
3340 if (netif_needs_gso(skb, features)) {
3341 struct sk_buff *segs;
3342
3343 segs = skb_gso_segment(skb, features);
3344 if (IS_ERR(segs)) {
3345 goto out_kfree_skb;
3346 } else if (segs) {
3347 consume_skb(skb);
3348 skb = segs;
3349 }
3350 } else {
3351 if (skb_needs_linearize(skb, features) &&
3352 __skb_linearize(skb))
3353 goto out_kfree_skb;
3354
3355 /* If packet is not checksummed and device does not
3356 * support checksumming for this protocol, complete
3357 * checksumming here.
3358 */
3359 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3360 if (skb->encapsulation)
3361 skb_set_inner_transport_header(skb,
3362 skb_checksum_start_offset(skb));
3363 else
3364 skb_set_transport_header(skb,
3365 skb_checksum_start_offset(skb));
3366 if (skb_csum_hwoffload_help(skb, features))
3367 goto out_kfree_skb;
3368 }
3369 }
3370
3371 skb = validate_xmit_xfrm(skb, features, again);
3372
3373 return skb;
3374
3375out_kfree_skb:
3376 kfree_skb(skb);
3377out_null:
3378 atomic_long_inc(&dev->tx_dropped);
3379 return NULL;
3380}
3381
3382struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3383{
3384 struct sk_buff *next, *head = NULL, *tail;
3385
3386 for (; skb != NULL; skb = next) {
3387 next = skb->next;
3388 skb_mark_not_on_list(skb);
3389
3390 /* in case skb wont be segmented, point to itself */
3391 skb->prev = skb;
3392
3393 skb = validate_xmit_skb(skb, dev, again);
3394 if (!skb)
3395 continue;
3396
3397 if (!head)
3398 head = skb;
3399 else
3400 tail->next = skb;
3401 /* If skb was segmented, skb->prev points to
3402 * the last segment. If not, it still contains skb.
3403 */
3404 tail = skb->prev;
3405 }
3406 return head;
3407}
3408EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3409
3410static void qdisc_pkt_len_init(struct sk_buff *skb)
3411{
3412 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3413
3414 qdisc_skb_cb(skb)->pkt_len = skb->len;
3415
3416 /* To get more precise estimation of bytes sent on wire,
3417 * we add to pkt_len the headers size of all segments
3418 */
3419 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3420 unsigned int hdr_len;
3421 u16 gso_segs = shinfo->gso_segs;
3422
3423 /* mac layer + network layer */
3424 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3425
3426 /* + transport layer */
3427 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3428 const struct tcphdr *th;
3429 struct tcphdr _tcphdr;
3430
3431 th = skb_header_pointer(skb, skb_transport_offset(skb),
3432 sizeof(_tcphdr), &_tcphdr);
3433 if (likely(th))
3434 hdr_len += __tcp_hdrlen(th);
3435 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3436 struct udphdr _udphdr;
3437
3438 if (skb_header_pointer(skb, skb_transport_offset(skb),
3439 sizeof(_udphdr), &_udphdr))
3440 hdr_len += sizeof(struct udphdr);
3441 }
3442
3443 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3444 int payload = skb->len - hdr_len;
3445
3446 /* Malicious packet. */
3447 if (payload <= 0)
3448 return;
3449 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3450 }
3451 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3452 }
3453}
3454
3455static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3456 struct net_device *dev,
3457 struct netdev_queue *txq)
3458{
3459 spinlock_t *root_lock = qdisc_lock(q);
3460 struct sk_buff *to_free = NULL;
3461 bool contended;
3462 int rc;
3463
3464 qdisc_calculate_pkt_len(skb, q);
3465
3466 if (q->flags & TCQ_F_NOLOCK) {
3467 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3468 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3469 qdisc_run(q);
3470
3471 if (unlikely(to_free))
3472 kfree_skb_list(to_free);
3473 return rc;
3474 }
3475
3476 /*
3477 * Heuristic to force contended enqueues to serialize on a
3478 * separate lock before trying to get qdisc main lock.
3479 * This permits qdisc->running owner to get the lock more
3480 * often and dequeue packets faster.
3481 */
3482 contended = qdisc_is_running(q);
3483 if (unlikely(contended))
3484 spin_lock(&q->busylock);
3485
3486 spin_lock(root_lock);
3487 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3488 __qdisc_drop(skb, &to_free);
3489 rc = NET_XMIT_DROP;
3490 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3491 qdisc_run_begin(q)) {
3492 /*
3493 * This is a work-conserving queue; there are no old skbs
3494 * waiting to be sent out; and the qdisc is not running -
3495 * xmit the skb directly.
3496 */
3497
3498 qdisc_bstats_update(q, skb);
3499
3500 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3501 if (unlikely(contended)) {
3502 spin_unlock(&q->busylock);
3503 contended = false;
3504 }
3505 __qdisc_run(q);
3506 }
3507
3508 qdisc_run_end(q);
3509 rc = NET_XMIT_SUCCESS;
3510 } else {
3511 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3512 if (qdisc_run_begin(q)) {
3513 if (unlikely(contended)) {
3514 spin_unlock(&q->busylock);
3515 contended = false;
3516 }
3517 __qdisc_run(q);
3518 qdisc_run_end(q);
3519 }
3520 }
3521 spin_unlock(root_lock);
3522 if (unlikely(to_free))
3523 kfree_skb_list(to_free);
3524 if (unlikely(contended))
3525 spin_unlock(&q->busylock);
3526 return rc;
3527}
3528
3529#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3530static void skb_update_prio(struct sk_buff *skb)
3531{
3532 const struct netprio_map *map;
3533 const struct sock *sk;
3534 unsigned int prioidx;
3535
3536 if (skb->priority)
3537 return;
3538 map = rcu_dereference_bh(skb->dev->priomap);
3539 if (!map)
3540 return;
3541 sk = skb_to_full_sk(skb);
3542 if (!sk)
3543 return;
3544
3545 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3546
3547 if (prioidx < map->priomap_len)
3548 skb->priority = map->priomap[prioidx];
3549}
3550#else
3551#define skb_update_prio(skb)
3552#endif
3553
3554/**
3555 * dev_loopback_xmit - loop back @skb
3556 * @net: network namespace this loopback is happening in
3557 * @sk: sk needed to be a netfilter okfn
3558 * @skb: buffer to transmit
3559 */
3560int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3561{
3562 skb_reset_mac_header(skb);
3563 __skb_pull(skb, skb_network_offset(skb));
3564 skb->pkt_type = PACKET_LOOPBACK;
3565 if (skb->ip_summed == CHECKSUM_NONE)
3566 skb->ip_summed = CHECKSUM_UNNECESSARY;
3567 WARN_ON(!skb_dst(skb));
3568 skb_dst_force(skb);
3569 netif_rx_ni(skb);
3570 return 0;
3571}
3572EXPORT_SYMBOL(dev_loopback_xmit);
3573
3574#ifdef CONFIG_NET_EGRESS
3575static struct sk_buff *
3576sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3577{
3578 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3579 struct tcf_result cl_res;
3580
3581 if (!miniq)
3582 return skb;
3583
3584 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3585 mini_qdisc_bstats_cpu_update(miniq, skb);
3586
3587 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3588 case TC_ACT_OK:
3589 case TC_ACT_RECLASSIFY:
3590 skb->tc_index = TC_H_MIN(cl_res.classid);
3591 break;
3592 case TC_ACT_SHOT:
3593 mini_qdisc_qstats_cpu_drop(miniq);
3594 *ret = NET_XMIT_DROP;
3595 kfree_skb(skb);
3596 return NULL;
3597 case TC_ACT_STOLEN:
3598 case TC_ACT_QUEUED:
3599 case TC_ACT_TRAP:
3600 *ret = NET_XMIT_SUCCESS;
3601 consume_skb(skb);
3602 return NULL;
3603 case TC_ACT_REDIRECT:
3604 /* No need to push/pop skb's mac_header here on egress! */
3605 skb_do_redirect(skb);
3606 *ret = NET_XMIT_SUCCESS;
3607 return NULL;
3608 default:
3609 break;
3610 }
3611
3612 return skb;
3613}
3614#endif /* CONFIG_NET_EGRESS */
3615
3616#ifdef CONFIG_XPS
3617static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3618 struct xps_dev_maps *dev_maps, unsigned int tci)
3619{
3620 struct xps_map *map;
3621 int queue_index = -1;
3622
3623 if (dev->num_tc) {
3624 tci *= dev->num_tc;
3625 tci += netdev_get_prio_tc_map(dev, skb->priority);
3626 }
3627
3628 map = rcu_dereference(dev_maps->attr_map[tci]);
3629 if (map) {
3630 if (map->len == 1)
3631 queue_index = map->queues[0];
3632 else
3633 queue_index = map->queues[reciprocal_scale(
3634 skb_get_hash(skb), map->len)];
3635 if (unlikely(queue_index >= dev->real_num_tx_queues))
3636 queue_index = -1;
3637 }
3638 return queue_index;
3639}
3640#endif
3641
3642static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3643 struct sk_buff *skb)
3644{
3645#ifdef CONFIG_XPS
3646 struct xps_dev_maps *dev_maps;
3647 struct sock *sk = skb->sk;
3648 int queue_index = -1;
3649
3650 if (!static_key_false(&xps_needed))
3651 return -1;
3652
3653 rcu_read_lock();
3654 if (!static_key_false(&xps_rxqs_needed))
3655 goto get_cpus_map;
3656
3657 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3658 if (dev_maps) {
3659 int tci = sk_rx_queue_get(sk);
3660
3661 if (tci >= 0 && tci < dev->num_rx_queues)
3662 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3663 tci);
3664 }
3665
3666get_cpus_map:
3667 if (queue_index < 0) {
3668 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3669 if (dev_maps) {
3670 unsigned int tci = skb->sender_cpu - 1;
3671
3672 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3673 tci);
3674 }
3675 }
3676 rcu_read_unlock();
3677
3678 return queue_index;
3679#else
3680 return -1;
3681#endif
3682}
3683
3684u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3685 struct net_device *sb_dev)
3686{
3687 return 0;
3688}
3689EXPORT_SYMBOL(dev_pick_tx_zero);
3690
3691u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3692 struct net_device *sb_dev)
3693{
3694 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3695}
3696EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3697
3698u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3699 struct net_device *sb_dev)
3700{
3701 struct sock *sk = skb->sk;
3702 int queue_index = sk_tx_queue_get(sk);
3703
3704 sb_dev = sb_dev ? : dev;
3705
3706 if (queue_index < 0 || skb->ooo_okay ||
3707 queue_index >= dev->real_num_tx_queues) {
3708 int new_index = get_xps_queue(dev, sb_dev, skb);
3709
3710 if (new_index < 0)
3711 new_index = skb_tx_hash(dev, sb_dev, skb);
3712
3713 if (queue_index != new_index && sk &&
3714 sk_fullsock(sk) &&
3715 rcu_access_pointer(sk->sk_dst_cache))
3716 sk_tx_queue_set(sk, new_index);
3717
3718 queue_index = new_index;
3719 }
3720
3721 return queue_index;
3722}
3723EXPORT_SYMBOL(netdev_pick_tx);
3724
3725struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3726 struct sk_buff *skb,
3727 struct net_device *sb_dev)
3728{
3729 int queue_index = 0;
3730
3731#ifdef CONFIG_XPS
3732 u32 sender_cpu = skb->sender_cpu - 1;
3733
3734 if (sender_cpu >= (u32)NR_CPUS)
3735 skb->sender_cpu = raw_smp_processor_id() + 1;
3736#endif
3737
3738 if (dev->real_num_tx_queues != 1) {
3739 const struct net_device_ops *ops = dev->netdev_ops;
3740
3741 if (ops->ndo_select_queue)
3742 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3743 else
3744 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3745
3746 queue_index = netdev_cap_txqueue(dev, queue_index);
3747 }
3748
3749 skb_set_queue_mapping(skb, queue_index);
3750 return netdev_get_tx_queue(dev, queue_index);
3751}
3752 EXPORT_SYMBOL(netdev_core_pick_tx);
3753
3754/**
3755 * __dev_queue_xmit - transmit a buffer
3756 * @skb: buffer to transmit
3757 * @sb_dev: suboordinate device used for L2 forwarding offload
3758 *
3759 * Queue a buffer for transmission to a network device. The caller must
3760 * have set the device and priority and built the buffer before calling
3761 * this function. The function can be called from an interrupt.
3762 *
3763 * A negative errno code is returned on a failure. A success does not
3764 * guarantee the frame will be transmitted as it may be dropped due
3765 * to congestion or traffic shaping.
3766 *
3767 * -----------------------------------------------------------------------------------
3768 * I notice this method can also return errors from the queue disciplines,
3769 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3770 * be positive.
3771 *
3772 * Regardless of the return value, the skb is consumed, so it is currently
3773 * difficult to retry a send to this method. (You can bump the ref count
3774 * before sending to hold a reference for retry if you are careful.)
3775 *
3776 * When calling this method, interrupts MUST be enabled. This is because
3777 * the BH enable code must have IRQs enabled so that it will not deadlock.
3778 * --BLG
3779 */
3780static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3781{
3782 struct net_device *dev = skb->dev;
3783 struct netdev_queue *txq;
3784 struct Qdisc *q;
3785 int rc = -ENOMEM;
3786 bool again = false;
3787
3788 skb_reset_mac_header(skb);
3789 skb_assert_len(skb);
3790
3791 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3792 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3793
3794 /* Disable soft irqs for various locks below. Also
3795 * stops preemption for RCU.
3796 */
3797 rcu_read_lock_bh();
3798
3799 skb_update_prio(skb);
3800
3801 qdisc_pkt_len_init(skb);
3802#ifdef CONFIG_NET_CLS_ACT
3803 skb->tc_at_ingress = 0;
3804# ifdef CONFIG_NET_EGRESS
3805 if (static_branch_unlikely(&egress_needed_key)) {
3806 skb = sch_handle_egress(skb, &rc, dev);
3807 if (!skb)
3808 goto out;
3809 }
3810# endif
3811#endif
3812 /* If device/qdisc don't need skb->dst, release it right now while
3813 * its hot in this cpu cache.
3814 */
3815 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3816 skb_dst_drop(skb);
3817 else
3818 skb_dst_force(skb);
3819
3820 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3821 q = rcu_dereference_bh(txq->qdisc);
3822
3823 trace_net_dev_queue(skb);
3824 if (q->enqueue) {
3825 rc = __dev_xmit_skb(skb, q, dev, txq);
3826 goto out;
3827 }
3828
3829 /* The device has no queue. Common case for software devices:
3830 * loopback, all the sorts of tunnels...
3831
3832 * Really, it is unlikely that netif_tx_lock protection is necessary
3833 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3834 * counters.)
3835 * However, it is possible, that they rely on protection
3836 * made by us here.
3837
3838 * Check this and shot the lock. It is not prone from deadlocks.
3839 *Either shot noqueue qdisc, it is even simpler 8)
3840 */
3841 if (dev->flags & IFF_UP) {
3842 int cpu = smp_processor_id(); /* ok because BHs are off */
3843
3844 /* Other cpus might concurrently change txq->xmit_lock_owner
3845 * to -1 or to their cpu id, but not to our id.
3846 */
3847 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
3848 if (dev_xmit_recursion())
3849 goto recursion_alert;
3850
3851 skb = validate_xmit_skb(skb, dev, &again);
3852 if (!skb)
3853 goto out;
3854
3855 HARD_TX_LOCK(dev, txq, cpu);
3856
3857 if (!netif_xmit_stopped(txq)) {
3858 dev_xmit_recursion_inc();
3859 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3860 dev_xmit_recursion_dec();
3861 if (dev_xmit_complete(rc)) {
3862 HARD_TX_UNLOCK(dev, txq);
3863 goto out;
3864 }
3865 }
3866 HARD_TX_UNLOCK(dev, txq);
3867 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3868 dev->name);
3869 } else {
3870 /* Recursion is detected! It is possible,
3871 * unfortunately
3872 */
3873recursion_alert:
3874 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3875 dev->name);
3876 }
3877 }
3878
3879 rc = -ENETDOWN;
3880 rcu_read_unlock_bh();
3881
3882 atomic_long_inc(&dev->tx_dropped);
3883 kfree_skb_list(skb);
3884 return rc;
3885out:
3886 rcu_read_unlock_bh();
3887 return rc;
3888}
3889
3890int dev_queue_xmit(struct sk_buff *skb)
3891{
3892 return __dev_queue_xmit(skb, NULL);
3893}
3894EXPORT_SYMBOL(dev_queue_xmit);
3895
3896int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3897{
3898 return __dev_queue_xmit(skb, sb_dev);
3899}
3900EXPORT_SYMBOL(dev_queue_xmit_accel);
3901
3902int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3903{
3904 struct net_device *dev = skb->dev;
3905 struct sk_buff *orig_skb = skb;
3906 struct netdev_queue *txq;
3907 int ret = NETDEV_TX_BUSY;
3908 bool again = false;
3909
3910 if (unlikely(!netif_running(dev) ||
3911 !netif_carrier_ok(dev)))
3912 goto drop;
3913
3914 skb = validate_xmit_skb_list(skb, dev, &again);
3915 if (skb != orig_skb)
3916 goto drop;
3917
3918 skb_set_queue_mapping(skb, queue_id);
3919 txq = skb_get_tx_queue(dev, skb);
3920
3921 local_bh_disable();
3922
3923 dev_xmit_recursion_inc();
3924 HARD_TX_LOCK(dev, txq, smp_processor_id());
3925 if (!netif_xmit_frozen_or_drv_stopped(txq))
3926 ret = netdev_start_xmit(skb, dev, txq, false);
3927 HARD_TX_UNLOCK(dev, txq);
3928 dev_xmit_recursion_dec();
3929
3930 local_bh_enable();
3931
3932 if (!dev_xmit_complete(ret))
3933 kfree_skb(skb);
3934
3935 return ret;
3936drop:
3937 atomic_long_inc(&dev->tx_dropped);
3938 kfree_skb_list(skb);
3939 return NET_XMIT_DROP;
3940}
3941EXPORT_SYMBOL(dev_direct_xmit);
3942
3943/*************************************************************************
3944 * Receiver routines
3945 *************************************************************************/
3946
3947int netdev_max_backlog __read_mostly = 1000;
3948EXPORT_SYMBOL(netdev_max_backlog);
3949
3950int netdev_tstamp_prequeue __read_mostly = 1;
3951int netdev_budget __read_mostly = 300;
3952/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3953unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3954int weight_p __read_mostly = 64; /* old backlog weight */
3955int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3956int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3957int dev_rx_weight __read_mostly = 64;
3958int dev_tx_weight __read_mostly = 64;
3959/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3960int gro_normal_batch __read_mostly = 8;
3961
3962/* Called with irq disabled */
3963static inline void ____napi_schedule(struct softnet_data *sd,
3964 struct napi_struct *napi)
3965{
3966 struct task_struct *thread;
3967
3968 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
3969 /* Paired with smp_mb__before_atomic() in
3970 * napi_enable()/dev_set_threaded().
3971 * Use READ_ONCE() to guarantee a complete
3972 * read on napi->thread. Only call
3973 * wake_up_process() when it's not NULL.
3974 */
3975 thread = READ_ONCE(napi->thread);
3976 if (thread) {
3977 if (thread->state != TASK_INTERRUPTIBLE)
3978 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
3979 wake_up_process(thread);
3980 return;
3981 }
3982 }
3983
3984 list_add_tail(&napi->poll_list, &sd->poll_list);
3985 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3986}
3987
3988#ifdef CONFIG_RPS
3989
3990/* One global table that all flow-based protocols share. */
3991struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3992EXPORT_SYMBOL(rps_sock_flow_table);
3993u32 rps_cpu_mask __read_mostly;
3994EXPORT_SYMBOL(rps_cpu_mask);
3995
3996struct static_key_false rps_needed __read_mostly;
3997EXPORT_SYMBOL(rps_needed);
3998struct static_key_false rfs_needed __read_mostly;
3999EXPORT_SYMBOL(rfs_needed);
4000
4001static struct rps_dev_flow *
4002set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4003 struct rps_dev_flow *rflow, u16 next_cpu)
4004{
4005 if (next_cpu < nr_cpu_ids) {
4006#ifdef CONFIG_RFS_ACCEL
4007 struct netdev_rx_queue *rxqueue;
4008 struct rps_dev_flow_table *flow_table;
4009 struct rps_dev_flow *old_rflow;
4010 u32 flow_id;
4011 u16 rxq_index;
4012 int rc;
4013
4014 /* Should we steer this flow to a different hardware queue? */
4015 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4016 !(dev->features & NETIF_F_NTUPLE))
4017 goto out;
4018 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4019 if (rxq_index == skb_get_rx_queue(skb))
4020 goto out;
4021
4022 rxqueue = dev->_rx + rxq_index;
4023 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4024 if (!flow_table)
4025 goto out;
4026 flow_id = skb_get_hash(skb) & flow_table->mask;
4027 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4028 rxq_index, flow_id);
4029 if (rc < 0)
4030 goto out;
4031 old_rflow = rflow;
4032 rflow = &flow_table->flows[flow_id];
4033 rflow->filter = rc;
4034 if (old_rflow->filter == rflow->filter)
4035 old_rflow->filter = RPS_NO_FILTER;
4036 out:
4037#endif
4038 rflow->last_qtail =
4039 per_cpu(softnet_data, next_cpu).input_queue_head;
4040 }
4041
4042 rflow->cpu = next_cpu;
4043 return rflow;
4044}
4045
4046/*
4047 * get_rps_cpu is called from netif_receive_skb and returns the target
4048 * CPU from the RPS map of the receiving queue for a given skb.
4049 * rcu_read_lock must be held on entry.
4050 */
4051static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4052 struct rps_dev_flow **rflowp)
4053{
4054 const struct rps_sock_flow_table *sock_flow_table;
4055 struct netdev_rx_queue *rxqueue = dev->_rx;
4056 struct rps_dev_flow_table *flow_table;
4057 struct rps_map *map;
4058 int cpu = -1;
4059 u32 tcpu;
4060 u32 hash;
4061
4062 if (skb_rx_queue_recorded(skb)) {
4063 u16 index = skb_get_rx_queue(skb);
4064
4065 if (unlikely(index >= dev->real_num_rx_queues)) {
4066 WARN_ONCE(dev->real_num_rx_queues > 1,
4067 "%s received packet on queue %u, but number "
4068 "of RX queues is %u\n",
4069 dev->name, index, dev->real_num_rx_queues);
4070 goto done;
4071 }
4072 rxqueue += index;
4073 }
4074
4075 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4076
4077 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4078 map = rcu_dereference(rxqueue->rps_map);
4079 if (!flow_table && !map)
4080 goto done;
4081
4082 skb_reset_network_header(skb);
4083 hash = skb_get_hash(skb);
4084 if (!hash)
4085 goto done;
4086
4087 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4088 if (flow_table && sock_flow_table) {
4089 struct rps_dev_flow *rflow;
4090 u32 next_cpu;
4091 u32 ident;
4092
4093 /* First check into global flow table if there is a match.
4094 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4095 */
4096 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4097 if ((ident ^ hash) & ~rps_cpu_mask)
4098 goto try_rps;
4099
4100 next_cpu = ident & rps_cpu_mask;
4101
4102 /* OK, now we know there is a match,
4103 * we can look at the local (per receive queue) flow table
4104 */
4105 rflow = &flow_table->flows[hash & flow_table->mask];
4106 tcpu = rflow->cpu;
4107
4108 /*
4109 * If the desired CPU (where last recvmsg was done) is
4110 * different from current CPU (one in the rx-queue flow
4111 * table entry), switch if one of the following holds:
4112 * - Current CPU is unset (>= nr_cpu_ids).
4113 * - Current CPU is offline.
4114 * - The current CPU's queue tail has advanced beyond the
4115 * last packet that was enqueued using this table entry.
4116 * This guarantees that all previous packets for the flow
4117 * have been dequeued, thus preserving in order delivery.
4118 */
4119 if (unlikely(tcpu != next_cpu) &&
4120 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4121 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4122 rflow->last_qtail)) >= 0)) {
4123 tcpu = next_cpu;
4124 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4125 }
4126
4127 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4128 *rflowp = rflow;
4129 cpu = tcpu;
4130 goto done;
4131 }
4132 }
4133
4134try_rps:
4135
4136 if (map) {
4137 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4138 if (cpu_online(tcpu)) {
4139 cpu = tcpu;
4140 goto done;
4141 }
4142 }
4143
4144done:
4145 return cpu;
4146}
4147
4148#ifdef CONFIG_RFS_ACCEL
4149
4150/**
4151 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4152 * @dev: Device on which the filter was set
4153 * @rxq_index: RX queue index
4154 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4155 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4156 *
4157 * Drivers that implement ndo_rx_flow_steer() should periodically call
4158 * this function for each installed filter and remove the filters for
4159 * which it returns %true.
4160 */
4161bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4162 u32 flow_id, u16 filter_id)
4163{
4164 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4165 struct rps_dev_flow_table *flow_table;
4166 struct rps_dev_flow *rflow;
4167 bool expire = true;
4168 unsigned int cpu;
4169
4170 rcu_read_lock();
4171 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4172 if (flow_table && flow_id <= flow_table->mask) {
4173 rflow = &flow_table->flows[flow_id];
4174 cpu = READ_ONCE(rflow->cpu);
4175 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4176 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4177 rflow->last_qtail) <
4178 (int)(10 * flow_table->mask)))
4179 expire = false;
4180 }
4181 rcu_read_unlock();
4182 return expire;
4183}
4184EXPORT_SYMBOL(rps_may_expire_flow);
4185
4186#endif /* CONFIG_RFS_ACCEL */
4187
4188/* Called from hardirq (IPI) context */
4189static void rps_trigger_softirq(void *data)
4190{
4191 struct softnet_data *sd = data;
4192
4193 ____napi_schedule(sd, &sd->backlog);
4194 sd->received_rps++;
4195}
4196
4197#endif /* CONFIG_RPS */
4198
4199/*
4200 * Check if this softnet_data structure is another cpu one
4201 * If yes, queue it to our IPI list and return 1
4202 * If no, return 0
4203 */
4204static int rps_ipi_queued(struct softnet_data *sd)
4205{
4206#ifdef CONFIG_RPS
4207 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4208
4209 if (sd != mysd) {
4210 sd->rps_ipi_next = mysd->rps_ipi_list;
4211 mysd->rps_ipi_list = sd;
4212
4213 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4214 return 1;
4215 }
4216#endif /* CONFIG_RPS */
4217 return 0;
4218}
4219
4220#ifdef CONFIG_NET_FLOW_LIMIT
4221int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4222#endif
4223
4224static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4225{
4226#ifdef CONFIG_NET_FLOW_LIMIT
4227 struct sd_flow_limit *fl;
4228 struct softnet_data *sd;
4229 unsigned int old_flow, new_flow;
4230
4231 if (qlen < (netdev_max_backlog >> 1))
4232 return false;
4233
4234 sd = this_cpu_ptr(&softnet_data);
4235
4236 rcu_read_lock();
4237 fl = rcu_dereference(sd->flow_limit);
4238 if (fl) {
4239 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4240 old_flow = fl->history[fl->history_head];
4241 fl->history[fl->history_head] = new_flow;
4242
4243 fl->history_head++;
4244 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4245
4246 if (likely(fl->buckets[old_flow]))
4247 fl->buckets[old_flow]--;
4248
4249 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4250 fl->count++;
4251 rcu_read_unlock();
4252 return true;
4253 }
4254 }
4255 rcu_read_unlock();
4256#endif
4257 return false;
4258}
4259
4260/*
4261 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4262 * queue (may be a remote CPU queue).
4263 */
4264static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4265 unsigned int *qtail)
4266{
4267 struct softnet_data *sd;
4268 unsigned long flags;
4269 unsigned int qlen;
4270
4271 sd = &per_cpu(softnet_data, cpu);
4272
4273 local_irq_save(flags);
4274
4275 rps_lock(sd);
4276 if (!netif_running(skb->dev))
4277 goto drop;
4278 qlen = skb_queue_len(&sd->input_pkt_queue);
4279 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4280 if (qlen) {
4281enqueue:
4282 __skb_queue_tail(&sd->input_pkt_queue, skb);
4283 input_queue_tail_incr_save(sd, qtail);
4284 rps_unlock(sd);
4285 local_irq_restore(flags);
4286 return NET_RX_SUCCESS;
4287 }
4288
4289 /* Schedule NAPI for backlog device
4290 * We can use non atomic operation since we own the queue lock
4291 */
4292 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4293 if (!rps_ipi_queued(sd))
4294 ____napi_schedule(sd, &sd->backlog);
4295 }
4296 goto enqueue;
4297 }
4298
4299drop:
4300 sd->dropped++;
4301 rps_unlock(sd);
4302
4303 local_irq_restore(flags);
4304
4305 atomic_long_inc(&skb->dev->rx_dropped);
4306 kfree_skb(skb);
4307 return NET_RX_DROP;
4308}
4309
4310#ifdef CONFIG_NETIF_RX_FASTPATH_HOOK
4311static int netif_rx_fastpath_default(struct sk_buff *skb)
4312{
4313 return 0; /* always slow */
4314}
4315
4316static int (*netif_rx_fastpath_hook)(struct sk_buff *skb) = &netif_rx_fastpath_default;
4317
4318void netif_rx_fastpath_register(int (*hook)(struct sk_buff *))
4319{
4320 pr_info("netif_rx_fastpath_register hook=%p\n", hook);
4321 netif_rx_fastpath_hook = hook;
4322}
4323EXPORT_SYMBOL(netif_rx_fastpath_register);
4324
4325void netif_rx_fastpath_unregister(void)
4326{
4327 pr_info("netif_rx_fastpath_unregister\n");
4328 netif_rx_fastpath_hook = &netif_rx_fastpath_default;
4329}
4330EXPORT_SYMBOL(netif_rx_fastpath_unregister);
4331
4332static inline int netif_rx_fastpath(struct sk_buff *skb)
4333{
4334 return netif_rx_fastpath_hook(skb);
4335}
4336
4337#else /* !CONFIG_NETIF_RX_FASTPATH_HOOK */
4338static inline int netif_rx_fastpath(struct sk_buff *skb)
4339{
4340 return 0;
4341}
4342#endif
4343
4344#define IS_SKB_P(skb) ((skb)->shared_info_ptr)
4345
4346static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4347{
4348 struct net_device *dev = skb->dev;
4349 struct netdev_rx_queue *rxqueue;
4350
4351 rxqueue = dev->_rx;
4352
4353 if (skb_rx_queue_recorded(skb)) {
4354 u16 index = skb_get_rx_queue(skb);
4355
4356 if (unlikely(index >= dev->real_num_rx_queues)) {
4357 WARN_ONCE(dev->real_num_rx_queues > 1,
4358 "%s received packet on queue %u, but number "
4359 "of RX queues is %u\n",
4360 dev->name, index, dev->real_num_rx_queues);
4361
4362 return rxqueue; /* Return first rxqueue */
4363 }
4364 rxqueue += index;
4365 }
4366 return rxqueue;
4367}
4368
4369static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4370 struct xdp_buff *xdp,
4371 struct bpf_prog *xdp_prog)
4372{
4373 struct netdev_rx_queue *rxqueue;
4374 void *orig_data, *orig_data_end;
4375 u32 metalen, act = XDP_DROP;
4376 __be16 orig_eth_type;
4377 struct ethhdr *eth;
4378 bool orig_bcast;
4379 int hlen, off;
4380 u32 mac_len;
4381
4382 /* Reinjected packets coming from act_mirred or similar should
4383 * not get XDP generic processing.
4384 */
4385 if (skb_is_redirected(skb))
4386 return XDP_PASS;
4387
4388 /* XDP packets must be linear and must have sufficient headroom
4389 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4390 * native XDP provides, thus we need to do it here as well.
4391 */
4392 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4393 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4394 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4395 int troom = skb->tail + skb->data_len - skb->end;
4396
4397 /* In case we have to go down the path and also linearize,
4398 * then lets do the pskb_expand_head() work just once here.
4399 */
4400 if (pskb_expand_head(skb,
4401 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4402 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4403 goto do_drop;
4404 if (skb_linearize(skb))
4405 goto do_drop;
4406 }
4407
4408 /* The XDP program wants to see the packet starting at the MAC
4409 * header.
4410 */
4411 mac_len = skb->data - skb_mac_header(skb);
4412 hlen = skb_headlen(skb) + mac_len;
4413 xdp->data = skb->data - mac_len;
4414 xdp->data_meta = xdp->data;
4415 xdp->data_end = xdp->data + hlen;
4416 xdp->data_hard_start = skb->data - skb_headroom(skb);
4417 orig_data_end = xdp->data_end;
4418 orig_data = xdp->data;
4419 eth = (struct ethhdr *)xdp->data;
4420 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4421 orig_eth_type = eth->h_proto;
4422
4423 rxqueue = netif_get_rxqueue(skb);
4424 xdp->rxq = &rxqueue->xdp_rxq;
4425
4426 act = bpf_prog_run_xdp(xdp_prog, xdp);
4427
4428 /* check if bpf_xdp_adjust_head was used */
4429 off = xdp->data - orig_data;
4430 if (off) {
4431 if (off > 0)
4432 __skb_pull(skb, off);
4433 else if (off < 0)
4434 __skb_push(skb, -off);
4435
4436 skb->mac_header += off;
4437 skb_reset_network_header(skb);
4438 }
4439
4440 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4441 * pckt.
4442 */
4443 off = orig_data_end - xdp->data_end;
4444 if (off != 0) {
4445 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4446 skb->len -= off;
4447
4448 }
4449
4450 /* check if XDP changed eth hdr such SKB needs update */
4451 eth = (struct ethhdr *)xdp->data;
4452 if ((orig_eth_type != eth->h_proto) ||
4453 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4454 __skb_push(skb, ETH_HLEN);
4455 skb->protocol = eth_type_trans(skb, skb->dev);
4456 }
4457
4458 switch (act) {
4459 case XDP_REDIRECT:
4460 case XDP_TX:
4461 __skb_push(skb, mac_len);
4462 break;
4463 case XDP_PASS:
4464 metalen = xdp->data - xdp->data_meta;
4465 if (metalen)
4466 skb_metadata_set(skb, metalen);
4467 break;
4468 default:
4469 bpf_warn_invalid_xdp_action(act);
4470 /* fall through */
4471 case XDP_ABORTED:
4472 trace_xdp_exception(skb->dev, xdp_prog, act);
4473 /* fall through */
4474 case XDP_DROP:
4475 do_drop:
4476 kfree_skb(skb);
4477 break;
4478 }
4479
4480 return act;
4481}
4482
4483/* When doing generic XDP we have to bypass the qdisc layer and the
4484 * network taps in order to match in-driver-XDP behavior.
4485 */
4486void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4487{
4488 struct net_device *dev = skb->dev;
4489 struct netdev_queue *txq;
4490 bool free_skb = true;
4491 int cpu, rc;
4492
4493 txq = netdev_core_pick_tx(dev, skb, NULL);
4494 cpu = smp_processor_id();
4495 HARD_TX_LOCK(dev, txq, cpu);
4496 if (!netif_xmit_stopped(txq)) {
4497 rc = netdev_start_xmit(skb, dev, txq, 0);
4498 if (dev_xmit_complete(rc))
4499 free_skb = false;
4500 }
4501 HARD_TX_UNLOCK(dev, txq);
4502 if (free_skb) {
4503 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4504 kfree_skb(skb);
4505 }
4506}
4507EXPORT_SYMBOL_GPL(generic_xdp_tx);
4508
4509static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4510
4511int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4512{
4513 if (xdp_prog) {
4514 struct xdp_buff xdp;
4515 u32 act;
4516 int err;
4517
4518 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4519 if (act != XDP_PASS) {
4520 switch (act) {
4521 case XDP_REDIRECT:
4522 err = xdp_do_generic_redirect(skb->dev, skb,
4523 &xdp, xdp_prog);
4524 if (err)
4525 goto out_redir;
4526 break;
4527 case XDP_TX:
4528 generic_xdp_tx(skb, xdp_prog);
4529 break;
4530 }
4531 return XDP_DROP;
4532 }
4533 }
4534 return XDP_PASS;
4535out_redir:
4536 kfree_skb(skb);
4537 return XDP_DROP;
4538}
4539EXPORT_SYMBOL_GPL(do_xdp_generic);
4540
4541static int netif_rx_internal(struct sk_buff *skb)
4542{
4543 int ret;
4544
4545 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4546
4547 trace_netif_rx(skb);
4548
4549#ifdef CONFIG_RPS
4550 if (static_branch_unlikely(&rps_needed)) {
4551 struct rps_dev_flow voidflow, *rflow = &voidflow;
4552 int cpu;
4553
4554 preempt_disable();
4555 rcu_read_lock();
4556
4557 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4558 if (cpu < 0)
4559 cpu = smp_processor_id();
4560
4561 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4562
4563 rcu_read_unlock();
4564 preempt_enable();
4565 } else
4566#endif
4567 {
4568 unsigned int qtail;
4569
4570 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4571 put_cpu();
4572 }
4573 return ret;
4574}
4575
4576/**
4577 * netif_rx - post buffer to the network code
4578 * @skb: buffer to post
4579 *
4580 * This function receives a packet from a device driver and queues it for
4581 * the upper (protocol) levels to process. It always succeeds. The buffer
4582 * may be dropped during processing for congestion control or by the
4583 * protocol layers.
4584 *
4585 * return values:
4586 * NET_RX_SUCCESS (no congestion)
4587 * NET_RX_DROP (packet was dropped)
4588 *
4589 */
4590
4591int netif_rx(struct sk_buff *skb)
4592{
4593 int ret;
4594
4595 trace_netif_rx_entry(skb);
4596
4597 ret = netif_rx_internal(skb);
4598 trace_netif_rx_exit(ret);
4599
4600 return ret;
4601}
4602EXPORT_SYMBOL(netif_rx);
4603
4604int netif_rx_ni(struct sk_buff *skb)
4605{
4606 int err;
4607
4608 trace_netif_rx_ni_entry(skb);
4609
4610 preempt_disable();
4611 err = netif_rx_internal(skb);
4612 if (local_softirq_pending())
4613 do_softirq();
4614 preempt_enable();
4615 trace_netif_rx_ni_exit(err);
4616
4617 return err;
4618}
4619EXPORT_SYMBOL(netif_rx_ni);
4620
4621static __latent_entropy void net_tx_action(struct softirq_action *h)
4622{
4623 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4624
4625 if (sd->completion_queue) {
4626 struct sk_buff *clist;
4627
4628 local_irq_disable();
4629 clist = sd->completion_queue;
4630 sd->completion_queue = NULL;
4631 local_irq_enable();
4632
4633 while (clist) {
4634 struct sk_buff *skb = clist;
4635
4636 clist = clist->next;
4637
4638 WARN_ON(refcount_read(&skb->users));
4639 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4640 trace_consume_skb(skb);
4641 else
4642 trace_kfree_skb(skb, net_tx_action);
4643
4644 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4645 __kfree_skb(skb);
4646 else
4647 __kfree_skb_defer(skb);
4648 }
4649
4650 __kfree_skb_flush();
4651 }
4652
4653 if (sd->output_queue) {
4654 struct Qdisc *head;
4655
4656 local_irq_disable();
4657 head = sd->output_queue;
4658 sd->output_queue = NULL;
4659 sd->output_queue_tailp = &sd->output_queue;
4660 local_irq_enable();
4661
4662 rcu_read_lock();
4663
4664 while (head) {
4665 struct Qdisc *q = head;
4666 spinlock_t *root_lock = NULL;
4667
4668 head = head->next_sched;
4669
4670 /* We need to make sure head->next_sched is read
4671 * before clearing __QDISC_STATE_SCHED
4672 */
4673 smp_mb__before_atomic();
4674
4675 if (!(q->flags & TCQ_F_NOLOCK)) {
4676 root_lock = qdisc_lock(q);
4677 spin_lock(root_lock);
4678 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4679 &q->state))) {
4680 /* There is a synchronize_net() between
4681 * STATE_DEACTIVATED flag being set and
4682 * qdisc_reset()/some_qdisc_is_busy() in
4683 * dev_deactivate(), so we can safely bail out
4684 * early here to avoid data race between
4685 * qdisc_deactivate() and some_qdisc_is_busy()
4686 * for lockless qdisc.
4687 */
4688 clear_bit(__QDISC_STATE_SCHED, &q->state);
4689 continue;
4690 }
4691
4692 clear_bit(__QDISC_STATE_SCHED, &q->state);
4693 qdisc_run(q);
4694 if (root_lock)
4695 spin_unlock(root_lock);
4696 }
4697
4698 rcu_read_unlock();
4699 }
4700
4701 xfrm_dev_backlog(sd);
4702}
4703
4704#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4705/* This hook is defined here for ATM LANE */
4706int (*br_fdb_test_addr_hook)(struct net_device *dev,
4707 unsigned char *addr) __read_mostly;
4708EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4709#endif
4710
4711static inline struct sk_buff *
4712sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4713 struct net_device *orig_dev)
4714{
4715#ifdef CONFIG_NET_CLS_ACT
4716 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4717 struct tcf_result cl_res;
4718
4719 /* If there's at least one ingress present somewhere (so
4720 * we get here via enabled static key), remaining devices
4721 * that are not configured with an ingress qdisc will bail
4722 * out here.
4723 */
4724 if (!miniq)
4725 return skb;
4726
4727 if (*pt_prev) {
4728 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4729 *pt_prev = NULL;
4730 }
4731
4732 qdisc_skb_cb(skb)->pkt_len = skb->len;
4733 skb->tc_at_ingress = 1;
4734 mini_qdisc_bstats_cpu_update(miniq, skb);
4735
4736 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4737 case TC_ACT_OK:
4738 case TC_ACT_RECLASSIFY:
4739 skb->tc_index = TC_H_MIN(cl_res.classid);
4740 break;
4741 case TC_ACT_SHOT:
4742 mini_qdisc_qstats_cpu_drop(miniq);
4743 kfree_skb(skb);
4744 return NULL;
4745 case TC_ACT_STOLEN:
4746 case TC_ACT_QUEUED:
4747 case TC_ACT_TRAP:
4748 consume_skb(skb);
4749 return NULL;
4750 case TC_ACT_REDIRECT:
4751 /* skb_mac_header check was done by cls/act_bpf, so
4752 * we can safely push the L2 header back before
4753 * redirecting to another netdev
4754 */
4755 __skb_push(skb, skb->mac_len);
4756 skb_do_redirect(skb);
4757 return NULL;
4758 case TC_ACT_CONSUMED:
4759 return NULL;
4760 default:
4761 break;
4762 }
4763#endif /* CONFIG_NET_CLS_ACT */
4764 return skb;
4765}
4766
4767/**
4768 * netdev_is_rx_handler_busy - check if receive handler is registered
4769 * @dev: device to check
4770 *
4771 * Check if a receive handler is already registered for a given device.
4772 * Return true if there one.
4773 *
4774 * The caller must hold the rtnl_mutex.
4775 */
4776bool netdev_is_rx_handler_busy(struct net_device *dev)
4777{
4778 ASSERT_RTNL();
4779 return dev && rtnl_dereference(dev->rx_handler);
4780}
4781EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4782
4783/**
4784 * netdev_rx_handler_register - register receive handler
4785 * @dev: device to register a handler for
4786 * @rx_handler: receive handler to register
4787 * @rx_handler_data: data pointer that is used by rx handler
4788 *
4789 * Register a receive handler for a device. This handler will then be
4790 * called from __netif_receive_skb. A negative errno code is returned
4791 * on a failure.
4792 *
4793 * The caller must hold the rtnl_mutex.
4794 *
4795 * For a general description of rx_handler, see enum rx_handler_result.
4796 */
4797int netdev_rx_handler_register(struct net_device *dev,
4798 rx_handler_func_t *rx_handler,
4799 void *rx_handler_data)
4800{
4801 if (netdev_is_rx_handler_busy(dev))
4802 return -EBUSY;
4803
4804 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4805 return -EINVAL;
4806
4807 /* Note: rx_handler_data must be set before rx_handler */
4808 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4809 rcu_assign_pointer(dev->rx_handler, rx_handler);
4810
4811 return 0;
4812}
4813EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4814
4815/**
4816 * netdev_rx_handler_unregister - unregister receive handler
4817 * @dev: device to unregister a handler from
4818 *
4819 * Unregister a receive handler from a device.
4820 *
4821 * The caller must hold the rtnl_mutex.
4822 */
4823void netdev_rx_handler_unregister(struct net_device *dev)
4824{
4825
4826 ASSERT_RTNL();
4827 RCU_INIT_POINTER(dev->rx_handler, NULL);
4828 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4829 * section has a guarantee to see a non NULL rx_handler_data
4830 * as well.
4831 */
4832 synchronize_net();
4833 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4834}
4835EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4836
4837/*
4838 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4839 * the special handling of PFMEMALLOC skbs.
4840 */
4841static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4842{
4843 switch (skb->protocol) {
4844 case htons(ETH_P_ARP):
4845 case htons(ETH_P_IP):
4846 case htons(ETH_P_IPV6):
4847 case htons(ETH_P_8021Q):
4848 case htons(ETH_P_8021AD):
4849 return true;
4850 default:
4851 return false;
4852 }
4853}
4854
4855static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4856 int *ret, struct net_device *orig_dev)
4857{
4858#ifdef CONFIG_NETFILTER_INGRESS
4859 if (nf_hook_ingress_active(skb)) {
4860 int ingress_retval;
4861
4862 if (*pt_prev) {
4863 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4864 *pt_prev = NULL;
4865 }
4866
4867 rcu_read_lock();
4868 ingress_retval = nf_hook_ingress(skb);
4869 rcu_read_unlock();
4870 return ingress_retval;
4871 }
4872#endif /* CONFIG_NETFILTER_INGRESS */
4873 return 0;
4874}
4875
4876static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4877 struct packet_type **ppt_prev)
4878{
4879 struct packet_type *ptype, *pt_prev;
4880 rx_handler_func_t *rx_handler;
4881 struct sk_buff *skb = *pskb;
4882 struct net_device *orig_dev;
4883 bool deliver_exact = false;
4884 int ret = NET_RX_DROP;
4885 __be16 type;
4886
4887 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
4888
4889 trace_netif_receive_skb(skb);
4890
4891 orig_dev = skb->dev;
4892
4893 skb_reset_network_header(skb);
4894 if (!skb_transport_header_was_set(skb))
4895 skb_reset_transport_header(skb);
4896 skb_reset_mac_len(skb);
4897
4898 pt_prev = NULL;
4899
4900another_round:
4901 skb->skb_iif = skb->dev->ifindex;
4902
4903 __this_cpu_inc(softnet_data.processed);
4904
4905 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4906 int ret2;
4907
4908 preempt_disable();
4909 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4910 preempt_enable();
4911
4912 if (ret2 != XDP_PASS) {
4913 ret = NET_RX_DROP;
4914 goto out;
4915 }
4916 skb_reset_mac_len(skb);
4917 }
4918
4919 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4920 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4921 skb = skb_vlan_untag(skb);
4922 if (unlikely(!skb))
4923 goto out;
4924 }
4925
4926 if (skb_skip_tc_classify(skb))
4927 goto skip_classify;
4928
4929 if (pfmemalloc)
4930 goto skip_taps;
4931
4932 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4933 if (pt_prev)
4934 ret = deliver_skb(skb, pt_prev, orig_dev);
4935 pt_prev = ptype;
4936 }
4937
4938 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4939 if (pt_prev)
4940 ret = deliver_skb(skb, pt_prev, orig_dev);
4941 pt_prev = ptype;
4942 }
4943
4944skip_taps:
4945#ifdef CONFIG_NET_INGRESS
4946 if (static_branch_unlikely(&ingress_needed_key)) {
4947 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4948 if (!skb)
4949 goto out;
4950
4951 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4952 goto out;
4953 }
4954#endif
4955 skb_reset_redirect(skb);
4956skip_classify:
4957 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4958 goto drop;
4959
4960 if (skb_vlan_tag_present(skb)) {
4961 if (pt_prev) {
4962 ret = deliver_skb(skb, pt_prev, orig_dev);
4963 pt_prev = NULL;
4964 }
4965 if (vlan_do_receive(&skb))
4966 goto another_round;
4967 else if (unlikely(!skb))
4968 goto out;
4969 }
4970
4971 rx_handler = rcu_dereference(skb->dev->rx_handler);
4972 if (rx_handler) {
4973 if (pt_prev) {
4974 ret = deliver_skb(skb, pt_prev, orig_dev);
4975 pt_prev = NULL;
4976 }
4977 switch (rx_handler(&skb)) {
4978 case RX_HANDLER_CONSUMED:
4979 ret = NET_RX_SUCCESS;
4980 goto out;
4981 case RX_HANDLER_ANOTHER:
4982 goto another_round;
4983 case RX_HANDLER_EXACT:
4984 deliver_exact = true;
4985 case RX_HANDLER_PASS:
4986 break;
4987 default:
4988 BUG();
4989 }
4990 }
4991
4992 if (unlikely(skb_vlan_tag_present(skb))) {
4993check_vlan_id:
4994 if (skb_vlan_tag_get_id(skb)) {
4995 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4996 * find vlan device.
4997 */
4998 skb->pkt_type = PACKET_OTHERHOST;
4999 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5000 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5001 /* Outer header is 802.1P with vlan 0, inner header is
5002 * 802.1Q or 802.1AD and vlan_do_receive() above could
5003 * not find vlan dev for vlan id 0.
5004 */
5005 __vlan_hwaccel_clear_tag(skb);
5006 skb = skb_vlan_untag(skb);
5007 if (unlikely(!skb))
5008 goto out;
5009 if (vlan_do_receive(&skb))
5010 /* After stripping off 802.1P header with vlan 0
5011 * vlan dev is found for inner header.
5012 */
5013 goto another_round;
5014 else if (unlikely(!skb))
5015 goto out;
5016 else
5017 /* We have stripped outer 802.1P vlan 0 header.
5018 * But could not find vlan dev.
5019 * check again for vlan id to set OTHERHOST.
5020 */
5021 goto check_vlan_id;
5022 }
5023 /* Note: we might in the future use prio bits
5024 * and set skb->priority like in vlan_do_receive()
5025 * For the time being, just ignore Priority Code Point
5026 */
5027 __vlan_hwaccel_clear_tag(skb);
5028 }
5029
5030 type = skb->protocol;
5031
5032 /* deliver only exact match when indicated */
5033 if (likely(!deliver_exact)) {
5034 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5035 &ptype_base[ntohs(type) &
5036 PTYPE_HASH_MASK]);
5037 }
5038
5039 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5040 &orig_dev->ptype_specific);
5041
5042 if (unlikely(skb->dev != orig_dev)) {
5043 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5044 &skb->dev->ptype_specific);
5045 }
5046
5047 if (pt_prev) {
5048 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5049 goto drop;
5050 *ppt_prev = pt_prev;
5051 } else {
5052drop:
5053 if (!deliver_exact)
5054 atomic_long_inc(&skb->dev->rx_dropped);
5055 else
5056 atomic_long_inc(&skb->dev->rx_nohandler);
5057 kfree_skb(skb);
5058 /* Jamal, now you will not able to escape explaining
5059 * me how you were going to use this. :-)
5060 */
5061 ret = NET_RX_DROP;
5062 }
5063
5064out:
5065 /* The invariant here is that if *ppt_prev is not NULL
5066 * then skb should also be non-NULL.
5067 *
5068 * Apparently *ppt_prev assignment above holds this invariant due to
5069 * skb dereferencing near it.
5070 */
5071 *pskb = skb;
5072 return ret;
5073}
5074
5075static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5076{
5077 struct net_device *orig_dev = skb->dev;
5078 struct packet_type *pt_prev = NULL;
5079 int ret;
5080
5081 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5082 if (pt_prev)
5083 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5084 skb->dev, pt_prev, orig_dev);
5085 return ret;
5086}
5087
5088/**
5089 * netif_receive_skb_core - special purpose version of netif_receive_skb
5090 * @skb: buffer to process
5091 *
5092 * More direct receive version of netif_receive_skb(). It should
5093 * only be used by callers that have a need to skip RPS and Generic XDP.
5094 * Caller must also take care of handling if (page_is_)pfmemalloc.
5095 *
5096 * This function may only be called from softirq context and interrupts
5097 * should be enabled.
5098 *
5099 * Return values (usually ignored):
5100 * NET_RX_SUCCESS: no congestion
5101 * NET_RX_DROP: packet was dropped
5102 */
5103int netif_receive_skb_core(struct sk_buff *skb)
5104{
5105 int ret;
5106
5107 rcu_read_lock();
5108 ret = __netif_receive_skb_one_core(skb, false);
5109 rcu_read_unlock();
5110
5111 return ret;
5112}
5113EXPORT_SYMBOL(netif_receive_skb_core);
5114
5115static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5116 struct packet_type *pt_prev,
5117 struct net_device *orig_dev)
5118{
5119 struct sk_buff *skb, *next;
5120
5121 if (!pt_prev)
5122 return;
5123 if (list_empty(head))
5124 return;
5125 if (pt_prev->list_func != NULL)
5126 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5127 ip_list_rcv, head, pt_prev, orig_dev);
5128 else
5129 list_for_each_entry_safe(skb, next, head, list) {
5130 skb_list_del_init(skb);
5131 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5132 }
5133}
5134
5135static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5136{
5137 /* Fast-path assumptions:
5138 * - There is no RX handler.
5139 * - Only one packet_type matches.
5140 * If either of these fails, we will end up doing some per-packet
5141 * processing in-line, then handling the 'last ptype' for the whole
5142 * sublist. This can't cause out-of-order delivery to any single ptype,
5143 * because the 'last ptype' must be constant across the sublist, and all
5144 * other ptypes are handled per-packet.
5145 */
5146 /* Current (common) ptype of sublist */
5147 struct packet_type *pt_curr = NULL;
5148 /* Current (common) orig_dev of sublist */
5149 struct net_device *od_curr = NULL;
5150 struct list_head sublist;
5151 struct sk_buff *skb, *next;
5152
5153 INIT_LIST_HEAD(&sublist);
5154 list_for_each_entry_safe(skb, next, head, list) {
5155 struct net_device *orig_dev = skb->dev;
5156 struct packet_type *pt_prev = NULL;
5157
5158 skb_list_del_init(skb);
5159 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5160 if (!pt_prev)
5161 continue;
5162 if (pt_curr != pt_prev || od_curr != orig_dev) {
5163 /* dispatch old sublist */
5164 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5165 /* start new sublist */
5166 INIT_LIST_HEAD(&sublist);
5167 pt_curr = pt_prev;
5168 od_curr = orig_dev;
5169 }
5170 list_add_tail(&skb->list, &sublist);
5171 }
5172
5173 /* dispatch final sublist */
5174 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5175}
5176
5177static int __netif_receive_skb(struct sk_buff *skb)
5178{
5179 int ret;
5180
5181 /* if fastpath forwarded it, return... */
5182 if (netif_rx_fastpath(skb))
5183 return NET_RX_SUCCESS;
5184
5185 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5186 unsigned int noreclaim_flag;
5187
5188 /*
5189 * PFMEMALLOC skbs are special, they should
5190 * - be delivered to SOCK_MEMALLOC sockets only
5191 * - stay away from userspace
5192 * - have bounded memory usage
5193 *
5194 * Use PF_MEMALLOC as this saves us from propagating the allocation
5195 * context down to all allocation sites.
5196 */
5197 noreclaim_flag = memalloc_noreclaim_save();
5198 ret = __netif_receive_skb_one_core(skb, true);
5199 memalloc_noreclaim_restore(noreclaim_flag);
5200 } else
5201 ret = __netif_receive_skb_one_core(skb, false);
5202
5203 return ret;
5204}
5205
5206static void __netif_receive_skb_list(struct list_head *head)
5207{
5208 unsigned long noreclaim_flag = 0;
5209 struct sk_buff *skb, *next;
5210 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5211
5212 list_for_each_entry_safe(skb, next, head, list) {
5213 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5214 struct list_head sublist;
5215
5216 /* Handle the previous sublist */
5217 list_cut_before(&sublist, head, &skb->list);
5218 if (!list_empty(&sublist))
5219 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5220 pfmemalloc = !pfmemalloc;
5221 /* See comments in __netif_receive_skb */
5222 if (pfmemalloc)
5223 noreclaim_flag = memalloc_noreclaim_save();
5224 else
5225 memalloc_noreclaim_restore(noreclaim_flag);
5226 }
5227 }
5228 /* Handle the remaining sublist */
5229 if (!list_empty(head))
5230 __netif_receive_skb_list_core(head, pfmemalloc);
5231 /* Restore pflags */
5232 if (pfmemalloc)
5233 memalloc_noreclaim_restore(noreclaim_flag);
5234}
5235
5236static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5237{
5238 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5239 struct bpf_prog *new = xdp->prog;
5240 int ret = 0;
5241
5242 switch (xdp->command) {
5243 case XDP_SETUP_PROG:
5244 rcu_assign_pointer(dev->xdp_prog, new);
5245 if (old)
5246 bpf_prog_put(old);
5247
5248 if (old && !new) {
5249 static_branch_dec(&generic_xdp_needed_key);
5250 } else if (new && !old) {
5251 static_branch_inc(&generic_xdp_needed_key);
5252 dev_disable_lro(dev);
5253 dev_disable_gro_hw(dev);
5254 }
5255 break;
5256
5257 case XDP_QUERY_PROG:
5258 xdp->prog_id = old ? old->aux->id : 0;
5259 break;
5260
5261 default:
5262 ret = -EINVAL;
5263 break;
5264 }
5265
5266 return ret;
5267}
5268
5269static int netif_receive_skb_internal(struct sk_buff *skb)
5270{
5271 int ret;
5272
5273 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5274
5275 if (skb_defer_rx_timestamp(skb))
5276 return NET_RX_SUCCESS;
5277
5278 rcu_read_lock();
5279#ifdef CONFIG_RPS
5280 if (static_branch_unlikely(&rps_needed)) {
5281 struct rps_dev_flow voidflow, *rflow = &voidflow;
5282 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5283
5284 if (cpu >= 0) {
5285 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5286 rcu_read_unlock();
5287 return ret;
5288 }
5289 }
5290#endif
5291 ret = __netif_receive_skb(skb);
5292 rcu_read_unlock();
5293 return ret;
5294}
5295
5296static void netif_receive_skb_list_internal(struct list_head *head)
5297{
5298 struct sk_buff *skb, *next;
5299 struct list_head sublist;
5300
5301 INIT_LIST_HEAD(&sublist);
5302 list_for_each_entry_safe(skb, next, head, list) {
5303 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5304 skb_list_del_init(skb);
5305 if (!skb_defer_rx_timestamp(skb))
5306 list_add_tail(&skb->list, &sublist);
5307 }
5308 list_splice_init(&sublist, head);
5309
5310 rcu_read_lock();
5311#ifdef CONFIG_RPS
5312 if (static_branch_unlikely(&rps_needed)) {
5313 list_for_each_entry_safe(skb, next, head, list) {
5314 struct rps_dev_flow voidflow, *rflow = &voidflow;
5315 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5316
5317 if (cpu >= 0) {
5318 /* Will be handled, remove from list */
5319 skb_list_del_init(skb);
5320 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5321 }
5322 }
5323 }
5324#endif
5325 __netif_receive_skb_list(head);
5326 rcu_read_unlock();
5327}
5328
5329/**
5330 * netif_receive_skb - process receive buffer from network
5331 * @skb: buffer to process
5332 *
5333 * netif_receive_skb() is the main receive data processing function.
5334 * It always succeeds. The buffer may be dropped during processing
5335 * for congestion control or by the protocol layers.
5336 *
5337 * This function may only be called from softirq context and interrupts
5338 * should be enabled.
5339 *
5340 * Return values (usually ignored):
5341 * NET_RX_SUCCESS: no congestion
5342 * NET_RX_DROP: packet was dropped
5343 */
5344int netif_receive_skb(struct sk_buff *skb)
5345{
5346 int ret;
5347
5348 trace_netif_receive_skb_entry(skb);
5349
5350 ret = netif_receive_skb_internal(skb);
5351 trace_netif_receive_skb_exit(ret);
5352
5353 return ret;
5354}
5355EXPORT_SYMBOL(netif_receive_skb);
5356
5357/**
5358 * netif_receive_skb_list - process many receive buffers from network
5359 * @head: list of skbs to process.
5360 *
5361 * Since return value of netif_receive_skb() is normally ignored, and
5362 * wouldn't be meaningful for a list, this function returns void.
5363 *
5364 * This function may only be called from softirq context and interrupts
5365 * should be enabled.
5366 */
5367void netif_receive_skb_list(struct list_head *head)
5368{
5369 struct sk_buff *skb;
5370
5371 if (list_empty(head))
5372 return;
5373 if (trace_netif_receive_skb_list_entry_enabled()) {
5374 list_for_each_entry(skb, head, list)
5375 trace_netif_receive_skb_list_entry(skb);
5376 }
5377 netif_receive_skb_list_internal(head);
5378 trace_netif_receive_skb_list_exit(0);
5379}
5380EXPORT_SYMBOL(netif_receive_skb_list);
5381
5382DEFINE_PER_CPU(struct work_struct, flush_works);
5383
5384/* Network device is going away, flush any packets still pending */
5385static void flush_backlog(struct work_struct *work)
5386{
5387 struct sk_buff *skb, *tmp;
5388 struct softnet_data *sd;
5389
5390 local_bh_disable();
5391 sd = this_cpu_ptr(&softnet_data);
5392
5393 local_irq_disable();
5394 rps_lock(sd);
5395 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5396 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5397 __skb_unlink(skb, &sd->input_pkt_queue);
5398 dev_kfree_skb_irq(skb);
5399 input_queue_head_incr(sd);
5400 }
5401 }
5402 rps_unlock(sd);
5403 local_irq_enable();
5404
5405 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5406 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5407 __skb_unlink(skb, &sd->process_queue);
5408 kfree_skb(skb);
5409 input_queue_head_incr(sd);
5410 }
5411 }
5412 local_bh_enable();
5413}
5414
5415static void flush_all_backlogs(void)
5416{
5417 unsigned int cpu;
5418
5419 get_online_cpus();
5420
5421 for_each_online_cpu(cpu)
5422 queue_work_on(cpu, system_highpri_wq,
5423 per_cpu_ptr(&flush_works, cpu));
5424
5425 for_each_online_cpu(cpu)
5426 flush_work(per_cpu_ptr(&flush_works, cpu));
5427
5428 put_online_cpus();
5429}
5430
5431/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5432static void gro_normal_list(struct napi_struct *napi)
5433{
5434 if (!napi->rx_count)
5435 return;
5436 netif_receive_skb_list_internal(&napi->rx_list);
5437 INIT_LIST_HEAD(&napi->rx_list);
5438 napi->rx_count = 0;
5439}
5440
5441/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5442 * pass the whole batch up to the stack.
5443 */
5444static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5445{
5446 list_add_tail(&skb->list, &napi->rx_list);
5447 napi->rx_count += segs;
5448 if (napi->rx_count >= gro_normal_batch)
5449 gro_normal_list(napi);
5450}
5451
5452INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5453INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5454static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5455{
5456 struct packet_offload *ptype;
5457 __be16 type = skb->protocol;
5458 struct list_head *head = &offload_base;
5459 int err = -ENOENT;
5460
5461 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5462
5463 if (NAPI_GRO_CB(skb)->count == 1) {
5464 skb_shinfo(skb)->gso_size = 0;
5465 goto out;
5466 }
5467
5468 rcu_read_lock();
5469 list_for_each_entry_rcu(ptype, head, list) {
5470 if (ptype->type != type || !ptype->callbacks.gro_complete)
5471 continue;
5472
5473 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5474 ipv6_gro_complete, inet_gro_complete,
5475 skb, 0);
5476 break;
5477 }
5478 rcu_read_unlock();
5479
5480 if (err) {
5481 WARN_ON(&ptype->list == head);
5482 kfree_skb(skb);
5483 return NET_RX_SUCCESS;
5484 }
5485
5486out:
5487 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5488 return NET_RX_SUCCESS;
5489}
5490
5491static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5492 bool flush_old)
5493{
5494 struct list_head *head = &napi->gro_hash[index].list;
5495 struct sk_buff *skb, *p;
5496
5497 list_for_each_entry_safe_reverse(skb, p, head, list) {
5498 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5499 return;
5500 skb_list_del_init(skb);
5501 napi_gro_complete(napi, skb);
5502 napi->gro_hash[index].count--;
5503 }
5504
5505 if (!napi->gro_hash[index].count)
5506 __clear_bit(index, &napi->gro_bitmask);
5507}
5508
5509/* napi->gro_hash[].list contains packets ordered by age.
5510 * youngest packets at the head of it.
5511 * Complete skbs in reverse order to reduce latencies.
5512 */
5513void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5514{
5515 unsigned long bitmask = napi->gro_bitmask;
5516 unsigned int i, base = ~0U;
5517
5518 while ((i = ffs(bitmask)) != 0) {
5519 bitmask >>= i;
5520 base += i;
5521 __napi_gro_flush_chain(napi, base, flush_old);
5522 }
5523}
5524EXPORT_SYMBOL(napi_gro_flush);
5525
5526static struct list_head *gro_list_prepare(struct napi_struct *napi,
5527 struct sk_buff *skb)
5528{
5529 unsigned int maclen = skb->dev->hard_header_len;
5530 u32 hash = skb_get_hash_raw(skb);
5531 struct list_head *head;
5532 struct sk_buff *p;
5533
5534 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5535 list_for_each_entry(p, head, list) {
5536 unsigned long diffs;
5537
5538 NAPI_GRO_CB(p)->flush = 0;
5539
5540 if (hash != skb_get_hash_raw(p)) {
5541 NAPI_GRO_CB(p)->same_flow = 0;
5542 continue;
5543 }
5544
5545 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5546 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5547 if (skb_vlan_tag_present(p))
5548 diffs |= p->vlan_tci ^ skb->vlan_tci;
5549 diffs |= skb_metadata_dst_cmp(p, skb);
5550 diffs |= skb_metadata_differs(p, skb);
5551 if (maclen == ETH_HLEN)
5552 diffs |= compare_ether_header(skb_mac_header(p),
5553 skb_mac_header(skb));
5554 else if (!diffs)
5555 diffs = memcmp(skb_mac_header(p),
5556 skb_mac_header(skb),
5557 maclen);
5558 NAPI_GRO_CB(p)->same_flow = !diffs;
5559 }
5560
5561 return head;
5562}
5563
5564static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5565{
5566 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5567 const skb_frag_t *frag0 = &pinfo->frags[0];
5568
5569 NAPI_GRO_CB(skb)->data_offset = 0;
5570 NAPI_GRO_CB(skb)->frag0 = NULL;
5571 NAPI_GRO_CB(skb)->frag0_len = 0;
5572
5573 if (!skb_headlen(skb) && pinfo->nr_frags &&
5574 !PageHighMem(skb_frag_page(frag0)) &&
5575 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5576 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5577 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5578 skb_frag_size(frag0),
5579 skb->end - skb->tail);
5580 }
5581}
5582
5583static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5584{
5585 struct skb_shared_info *pinfo = skb_shinfo(skb);
5586
5587 BUG_ON(skb->end - skb->tail < grow);
5588
5589 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5590
5591 skb->data_len -= grow;
5592 skb->tail += grow;
5593
5594 skb_frag_off_add(&pinfo->frags[0], grow);
5595 skb_frag_size_sub(&pinfo->frags[0], grow);
5596
5597 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5598 skb_frag_unref(skb, 0);
5599 memmove(pinfo->frags, pinfo->frags + 1,
5600 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5601 }
5602}
5603
5604static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5605{
5606 struct sk_buff *oldest;
5607
5608 oldest = list_last_entry(head, struct sk_buff, list);
5609
5610 /* We are called with head length >= MAX_GRO_SKBS, so this is
5611 * impossible.
5612 */
5613 if (WARN_ON_ONCE(!oldest))
5614 return;
5615
5616 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5617 * SKB to the chain.
5618 */
5619 skb_list_del_init(oldest);
5620 napi_gro_complete(napi, oldest);
5621}
5622
5623INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5624 struct sk_buff *));
5625INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5626 struct sk_buff *));
5627static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5628{
5629 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5630 struct list_head *head = &offload_base;
5631 struct packet_offload *ptype;
5632 __be16 type = skb->protocol;
5633 struct list_head *gro_head;
5634 struct sk_buff *pp = NULL;
5635 enum gro_result ret;
5636 int same_flow;
5637 int grow;
5638
5639 if (skb->gro_skip)
5640 goto normal;
5641
5642 if (netif_elide_gro(skb->dev))
5643 goto normal;
5644
5645 gro_head = gro_list_prepare(napi, skb);
5646
5647 rcu_read_lock();
5648 list_for_each_entry_rcu(ptype, head, list) {
5649 if (ptype->type != type || !ptype->callbacks.gro_receive)
5650 continue;
5651
5652 skb_set_network_header(skb, skb_gro_offset(skb));
5653 skb_reset_mac_len(skb);
5654 NAPI_GRO_CB(skb)->same_flow = 0;
5655 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5656 NAPI_GRO_CB(skb)->free = 0;
5657 NAPI_GRO_CB(skb)->encap_mark = 0;
5658 NAPI_GRO_CB(skb)->recursion_counter = 0;
5659 NAPI_GRO_CB(skb)->is_fou = 0;
5660 NAPI_GRO_CB(skb)->is_atomic = 1;
5661 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5662
5663 /* Setup for GRO checksum validation */
5664 switch (skb->ip_summed) {
5665 case CHECKSUM_COMPLETE:
5666 NAPI_GRO_CB(skb)->csum = skb->csum;
5667 NAPI_GRO_CB(skb)->csum_valid = 1;
5668 NAPI_GRO_CB(skb)->csum_cnt = 0;
5669 break;
5670 case CHECKSUM_UNNECESSARY:
5671 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5672 NAPI_GRO_CB(skb)->csum_valid = 0;
5673 break;
5674 default:
5675 NAPI_GRO_CB(skb)->csum_cnt = 0;
5676 NAPI_GRO_CB(skb)->csum_valid = 0;
5677 }
5678
5679 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5680 ipv6_gro_receive, inet_gro_receive,
5681 gro_head, skb);
5682 break;
5683 }
5684 rcu_read_unlock();
5685
5686 if (&ptype->list == head)
5687 goto normal;
5688
5689 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5690 ret = GRO_CONSUMED;
5691 goto ok;
5692 }
5693
5694 same_flow = NAPI_GRO_CB(skb)->same_flow;
5695 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5696
5697 if (pp) {
5698 skb_list_del_init(pp);
5699 napi_gro_complete(napi, pp);
5700 napi->gro_hash[hash].count--;
5701 }
5702
5703 if (same_flow)
5704 goto ok;
5705
5706 if (NAPI_GRO_CB(skb)->flush)
5707 goto normal;
5708
5709 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5710 gro_flush_oldest(napi, gro_head);
5711 } else {
5712 napi->gro_hash[hash].count++;
5713 }
5714 NAPI_GRO_CB(skb)->count = 1;
5715 NAPI_GRO_CB(skb)->age = jiffies;
5716 NAPI_GRO_CB(skb)->last = skb;
5717 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5718 list_add(&skb->list, gro_head);
5719 ret = GRO_HELD;
5720
5721pull:
5722 grow = skb_gro_offset(skb) - skb_headlen(skb);
5723 if (grow > 0)
5724 gro_pull_from_frag0(skb, grow);
5725ok:
5726 if (napi->gro_hash[hash].count) {
5727 if (!test_bit(hash, &napi->gro_bitmask))
5728 __set_bit(hash, &napi->gro_bitmask);
5729 } else if (test_bit(hash, &napi->gro_bitmask)) {
5730 __clear_bit(hash, &napi->gro_bitmask);
5731 }
5732
5733 return ret;
5734
5735normal:
5736 ret = GRO_NORMAL;
5737 goto pull;
5738}
5739
5740struct packet_offload *gro_find_receive_by_type(__be16 type)
5741{
5742 struct list_head *offload_head = &offload_base;
5743 struct packet_offload *ptype;
5744
5745 list_for_each_entry_rcu(ptype, offload_head, list) {
5746 if (ptype->type != type || !ptype->callbacks.gro_receive)
5747 continue;
5748 return ptype;
5749 }
5750 return NULL;
5751}
5752EXPORT_SYMBOL(gro_find_receive_by_type);
5753
5754struct packet_offload *gro_find_complete_by_type(__be16 type)
5755{
5756 struct list_head *offload_head = &offload_base;
5757 struct packet_offload *ptype;
5758
5759 list_for_each_entry_rcu(ptype, offload_head, list) {
5760 if (ptype->type != type || !ptype->callbacks.gro_complete)
5761 continue;
5762 return ptype;
5763 }
5764 return NULL;
5765}
5766EXPORT_SYMBOL(gro_find_complete_by_type);
5767
5768static void napi_skb_free_stolen_head(struct sk_buff *skb)
5769{
5770 skb_dst_drop(skb);
5771 skb_ext_put(skb);
5772 kmem_cache_free(skbuff_head_cache, skb);
5773}
5774
5775static gro_result_t napi_skb_finish(struct napi_struct *napi,
5776 struct sk_buff *skb,
5777 gro_result_t ret)
5778{
5779 switch (ret) {
5780 case GRO_NORMAL:
5781 gro_normal_one(napi, skb, 1);
5782 break;
5783
5784 case GRO_DROP:
5785 kfree_skb(skb);
5786 break;
5787
5788 case GRO_MERGED_FREE:
5789 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5790 napi_skb_free_stolen_head(skb);
5791 else
5792 __kfree_skb(skb);
5793 break;
5794
5795 case GRO_HELD:
5796 case GRO_MERGED:
5797 case GRO_CONSUMED:
5798 break;
5799 }
5800
5801 return ret;
5802}
5803
5804gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5805{
5806 gro_result_t ret;
5807
5808 /* if fastpath forwarded it, return... */
5809 if (netif_rx_fastpath(skb))
5810 return GRO_DROP;
5811
5812 skb_mark_napi_id(skb, napi);
5813 trace_napi_gro_receive_entry(skb);
5814
5815 skb_gro_reset_offset(skb, 0);
5816
5817 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5818 trace_napi_gro_receive_exit(ret);
5819
5820 return ret;
5821}
5822EXPORT_SYMBOL(napi_gro_receive);
5823
5824static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5825{
5826 if (unlikely(skb->pfmemalloc)) {
5827 consume_skb(skb);
5828 return;
5829 }
5830 __skb_pull(skb, skb_headlen(skb));
5831 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5832 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5833 __vlan_hwaccel_clear_tag(skb);
5834 skb->dev = napi->dev;
5835 skb->skb_iif = 0;
5836
5837 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5838 skb->pkt_type = PACKET_HOST;
5839
5840 skb->encapsulation = 0;
5841 skb_shinfo(skb)->gso_type = 0;
5842 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5843 skb_ext_reset(skb);
5844
5845 napi->skb = skb;
5846}
5847
5848struct sk_buff *napi_get_frags(struct napi_struct *napi)
5849{
5850 struct sk_buff *skb = napi->skb;
5851
5852 if (!skb) {
5853 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5854 if (skb) {
5855 napi->skb = skb;
5856 skb_mark_napi_id(skb, napi);
5857 }
5858 }
5859 return skb;
5860}
5861EXPORT_SYMBOL(napi_get_frags);
5862
5863static gro_result_t napi_frags_finish(struct napi_struct *napi,
5864 struct sk_buff *skb,
5865 gro_result_t ret)
5866{
5867 switch (ret) {
5868 case GRO_NORMAL:
5869 case GRO_HELD:
5870 __skb_push(skb, ETH_HLEN);
5871 skb->protocol = eth_type_trans(skb, skb->dev);
5872 if (ret == GRO_NORMAL)
5873 gro_normal_one(napi, skb, 1);
5874 break;
5875
5876 case GRO_DROP:
5877 napi_reuse_skb(napi, skb);
5878 break;
5879
5880 case GRO_MERGED_FREE:
5881 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5882 napi_skb_free_stolen_head(skb);
5883 else
5884 napi_reuse_skb(napi, skb);
5885 break;
5886
5887 case GRO_MERGED:
5888 case GRO_CONSUMED:
5889 break;
5890 }
5891
5892 return ret;
5893}
5894
5895/* Upper GRO stack assumes network header starts at gro_offset=0
5896 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5897 * We copy ethernet header into skb->data to have a common layout.
5898 */
5899static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5900{
5901 struct sk_buff *skb = napi->skb;
5902 const struct ethhdr *eth;
5903 unsigned int hlen = sizeof(*eth);
5904
5905 napi->skb = NULL;
5906
5907 skb_reset_mac_header(skb);
5908 skb_gro_reset_offset(skb, hlen);
5909
5910 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5911 eth = skb_gro_header_slow(skb, hlen, 0);
5912 if (unlikely(!eth)) {
5913 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5914 __func__, napi->dev->name);
5915 napi_reuse_skb(napi, skb);
5916 return NULL;
5917 }
5918 } else {
5919 eth = (const struct ethhdr *)skb->data;
5920 gro_pull_from_frag0(skb, hlen);
5921 NAPI_GRO_CB(skb)->frag0 += hlen;
5922 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5923 }
5924 __skb_pull(skb, hlen);
5925
5926 /*
5927 * This works because the only protocols we care about don't require
5928 * special handling.
5929 * We'll fix it up properly in napi_frags_finish()
5930 */
5931 skb->protocol = eth->h_proto;
5932
5933 return skb;
5934}
5935
5936gro_result_t napi_gro_frags(struct napi_struct *napi)
5937{
5938 gro_result_t ret;
5939 struct sk_buff *skb = napi_frags_skb(napi);
5940
5941 if (!skb)
5942 return GRO_DROP;
5943
5944 trace_napi_gro_frags_entry(skb);
5945
5946 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5947 trace_napi_gro_frags_exit(ret);
5948
5949 return ret;
5950}
5951EXPORT_SYMBOL(napi_gro_frags);
5952
5953/* Compute the checksum from gro_offset and return the folded value
5954 * after adding in any pseudo checksum.
5955 */
5956__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5957{
5958 __wsum wsum;
5959 __sum16 sum;
5960
5961 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5962
5963 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5964 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5965 /* See comments in __skb_checksum_complete(). */
5966 if (likely(!sum)) {
5967 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5968 !skb->csum_complete_sw)
5969 netdev_rx_csum_fault(skb->dev, skb);
5970 }
5971
5972 NAPI_GRO_CB(skb)->csum = wsum;
5973 NAPI_GRO_CB(skb)->csum_valid = 1;
5974
5975 return sum;
5976}
5977EXPORT_SYMBOL(__skb_gro_checksum_complete);
5978
5979static void net_rps_send_ipi(struct softnet_data *remsd)
5980{
5981#ifdef CONFIG_RPS
5982 while (remsd) {
5983 struct softnet_data *next = remsd->rps_ipi_next;
5984
5985 if (cpu_online(remsd->cpu))
5986 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5987 remsd = next;
5988 }
5989#endif
5990}
5991
5992/*
5993 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5994 * Note: called with local irq disabled, but exits with local irq enabled.
5995 */
5996static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5997{
5998#ifdef CONFIG_RPS
5999 struct softnet_data *remsd = sd->rps_ipi_list;
6000
6001 if (remsd) {
6002 sd->rps_ipi_list = NULL;
6003
6004 local_irq_enable();
6005
6006 /* Send pending IPI's to kick RPS processing on remote cpus. */
6007 net_rps_send_ipi(remsd);
6008 } else
6009#endif
6010 local_irq_enable();
6011}
6012
6013static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6014{
6015#ifdef CONFIG_RPS
6016 return sd->rps_ipi_list != NULL;
6017#else
6018 return false;
6019#endif
6020}
6021
6022static int process_backlog(struct napi_struct *napi, int quota)
6023{
6024 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6025 bool again = true;
6026 int work = 0;
6027
6028 /* Check if we have pending ipi, its better to send them now,
6029 * not waiting net_rx_action() end.
6030 */
6031 if (sd_has_rps_ipi_waiting(sd)) {
6032 local_irq_disable();
6033 net_rps_action_and_irq_enable(sd);
6034 }
6035
6036 napi->weight = READ_ONCE(dev_rx_weight);
6037 while (again) {
6038 struct sk_buff *skb;
6039
6040 while ((skb = __skb_dequeue(&sd->process_queue))) {
6041 rcu_read_lock();
6042 __netif_receive_skb(skb);
6043 rcu_read_unlock();
6044 input_queue_head_incr(sd);
6045 if (++work >= quota)
6046 return work;
6047
6048 }
6049
6050 local_irq_disable();
6051 rps_lock(sd);
6052 if (skb_queue_empty(&sd->input_pkt_queue)) {
6053 /*
6054 * Inline a custom version of __napi_complete().
6055 * only current cpu owns and manipulates this napi,
6056 * and NAPI_STATE_SCHED is the only possible flag set
6057 * on backlog.
6058 * We can use a plain write instead of clear_bit(),
6059 * and we dont need an smp_mb() memory barrier.
6060 */
6061 napi->state = 0;
6062 again = false;
6063 } else {
6064 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6065 &sd->process_queue);
6066 }
6067 rps_unlock(sd);
6068 local_irq_enable();
6069 }
6070
6071 return work;
6072}
6073
6074/**
6075 * __napi_schedule - schedule for receive
6076 * @n: entry to schedule
6077 *
6078 * The entry's receive function will be scheduled to run.
6079 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6080 */
6081void __napi_schedule(struct napi_struct *n)
6082{
6083 unsigned long flags;
6084
6085 local_irq_save(flags);
6086 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6087 local_irq_restore(flags);
6088}
6089EXPORT_SYMBOL(__napi_schedule);
6090
6091/**
6092 * napi_schedule_prep - check if napi can be scheduled
6093 * @n: napi context
6094 *
6095 * Test if NAPI routine is already running, and if not mark
6096 * it as running. This is used as a condition variable
6097 * insure only one NAPI poll instance runs. We also make
6098 * sure there is no pending NAPI disable.
6099 */
6100bool napi_schedule_prep(struct napi_struct *n)
6101{
6102 unsigned long val, new;
6103
6104 do {
6105 val = READ_ONCE(n->state);
6106 if (unlikely(val & NAPIF_STATE_DISABLE))
6107 return false;
6108 new = val | NAPIF_STATE_SCHED;
6109
6110 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6111 * This was suggested by Alexander Duyck, as compiler
6112 * emits better code than :
6113 * if (val & NAPIF_STATE_SCHED)
6114 * new |= NAPIF_STATE_MISSED;
6115 */
6116 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6117 NAPIF_STATE_MISSED;
6118 } while (cmpxchg(&n->state, val, new) != val);
6119
6120 return !(val & NAPIF_STATE_SCHED);
6121}
6122EXPORT_SYMBOL(napi_schedule_prep);
6123
6124/**
6125 * __napi_schedule_irqoff - schedule for receive
6126 * @n: entry to schedule
6127 *
6128 * Variant of __napi_schedule() assuming hard irqs are masked.
6129 *
6130 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6131 * because the interrupt disabled assumption might not be true
6132 * due to force-threaded interrupts and spinlock substitution.
6133 */
6134void __napi_schedule_irqoff(struct napi_struct *n)
6135{
6136 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6137 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6138 else
6139 __napi_schedule(n);
6140}
6141EXPORT_SYMBOL(__napi_schedule_irqoff);
6142
6143bool napi_complete_done(struct napi_struct *n, int work_done)
6144{
6145 unsigned long flags, val, new;
6146
6147 /*
6148 * 1) Don't let napi dequeue from the cpu poll list
6149 * just in case its running on a different cpu.
6150 * 2) If we are busy polling, do nothing here, we have
6151 * the guarantee we will be called later.
6152 */
6153 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6154 NAPIF_STATE_IN_BUSY_POLL)))
6155 return false;
6156
6157 if (n->gro_bitmask) {
6158 unsigned long timeout = 0;
6159
6160 if (work_done)
6161 timeout = n->dev->gro_flush_timeout;
6162
6163 /* When the NAPI instance uses a timeout and keeps postponing
6164 * it, we need to bound somehow the time packets are kept in
6165 * the GRO layer
6166 */
6167 napi_gro_flush(n, !!timeout);
6168 if (timeout)
6169 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6170 HRTIMER_MODE_REL_PINNED);
6171 }
6172
6173 gro_normal_list(n);
6174
6175 if (unlikely(!list_empty(&n->poll_list))) {
6176 /* If n->poll_list is not empty, we need to mask irqs */
6177 local_irq_save(flags);
6178 list_del_init(&n->poll_list);
6179 local_irq_restore(flags);
6180 }
6181
6182 do {
6183 val = READ_ONCE(n->state);
6184
6185 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6186
6187 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6188 NAPIF_STATE_SCHED_THREADED);
6189
6190 /* If STATE_MISSED was set, leave STATE_SCHED set,
6191 * because we will call napi->poll() one more time.
6192 * This C code was suggested by Alexander Duyck to help gcc.
6193 */
6194 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6195 NAPIF_STATE_SCHED;
6196 } while (cmpxchg(&n->state, val, new) != val);
6197
6198 if (unlikely(val & NAPIF_STATE_MISSED)) {
6199 __napi_schedule(n);
6200 return false;
6201 }
6202
6203 return true;
6204}
6205EXPORT_SYMBOL(napi_complete_done);
6206
6207/* must be called under rcu_read_lock(), as we dont take a reference */
6208static struct napi_struct *napi_by_id(unsigned int napi_id)
6209{
6210 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6211 struct napi_struct *napi;
6212
6213 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6214 if (napi->napi_id == napi_id)
6215 return napi;
6216
6217 return NULL;
6218}
6219
6220#if defined(CONFIG_NET_RX_BUSY_POLL)
6221
6222#define BUSY_POLL_BUDGET 8
6223
6224static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6225{
6226 int rc;
6227
6228 /* Busy polling means there is a high chance device driver hard irq
6229 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6230 * set in napi_schedule_prep().
6231 * Since we are about to call napi->poll() once more, we can safely
6232 * clear NAPI_STATE_MISSED.
6233 *
6234 * Note: x86 could use a single "lock and ..." instruction
6235 * to perform these two clear_bit()
6236 */
6237 clear_bit(NAPI_STATE_MISSED, &napi->state);
6238 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6239
6240 local_bh_disable();
6241
6242 /* All we really want here is to re-enable device interrupts.
6243 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6244 */
6245 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6246 /* We can't gro_normal_list() here, because napi->poll() might have
6247 * rearmed the napi (napi_complete_done()) in which case it could
6248 * already be running on another CPU.
6249 */
6250 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6251 netpoll_poll_unlock(have_poll_lock);
6252 if (rc == BUSY_POLL_BUDGET) {
6253 /* As the whole budget was spent, we still own the napi so can
6254 * safely handle the rx_list.
6255 */
6256 gro_normal_list(napi);
6257 __napi_schedule(napi);
6258 }
6259 local_bh_enable();
6260}
6261
6262void napi_busy_loop(unsigned int napi_id,
6263 bool (*loop_end)(void *, unsigned long),
6264 void *loop_end_arg)
6265{
6266 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6267 int (*napi_poll)(struct napi_struct *napi, int budget);
6268 void *have_poll_lock = NULL;
6269 struct napi_struct *napi;
6270
6271restart:
6272 napi_poll = NULL;
6273
6274 rcu_read_lock();
6275
6276 napi = napi_by_id(napi_id);
6277 if (!napi)
6278 goto out;
6279
6280 preempt_disable();
6281 for (;;) {
6282 int work = 0;
6283
6284 local_bh_disable();
6285 if (!napi_poll) {
6286 unsigned long val = READ_ONCE(napi->state);
6287
6288 /* If multiple threads are competing for this napi,
6289 * we avoid dirtying napi->state as much as we can.
6290 */
6291 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6292 NAPIF_STATE_IN_BUSY_POLL))
6293 goto count;
6294 if (cmpxchg(&napi->state, val,
6295 val | NAPIF_STATE_IN_BUSY_POLL |
6296 NAPIF_STATE_SCHED) != val)
6297 goto count;
6298 have_poll_lock = netpoll_poll_lock(napi);
6299 napi_poll = napi->poll;
6300 }
6301 work = napi_poll(napi, BUSY_POLL_BUDGET);
6302 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6303 gro_normal_list(napi);
6304count:
6305 if (work > 0)
6306 __NET_ADD_STATS(dev_net(napi->dev),
6307 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6308 local_bh_enable();
6309
6310 if (!loop_end || loop_end(loop_end_arg, start_time))
6311 break;
6312
6313 if (unlikely(need_resched())) {
6314 if (napi_poll)
6315 busy_poll_stop(napi, have_poll_lock);
6316 preempt_enable();
6317 rcu_read_unlock();
6318 cond_resched();
6319 if (loop_end(loop_end_arg, start_time))
6320 return;
6321 goto restart;
6322 }
6323 cpu_relax();
6324 }
6325 if (napi_poll)
6326 busy_poll_stop(napi, have_poll_lock);
6327 preempt_enable();
6328out:
6329 rcu_read_unlock();
6330}
6331EXPORT_SYMBOL(napi_busy_loop);
6332
6333#endif /* CONFIG_NET_RX_BUSY_POLL */
6334
6335static void napi_hash_add(struct napi_struct *napi)
6336{
6337 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6338 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6339 return;
6340
6341 spin_lock(&napi_hash_lock);
6342
6343 /* 0..NR_CPUS range is reserved for sender_cpu use */
6344 do {
6345 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6346 napi_gen_id = MIN_NAPI_ID;
6347 } while (napi_by_id(napi_gen_id));
6348 napi->napi_id = napi_gen_id;
6349
6350 hlist_add_head_rcu(&napi->napi_hash_node,
6351 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6352
6353 spin_unlock(&napi_hash_lock);
6354}
6355
6356/* Warning : caller is responsible to make sure rcu grace period
6357 * is respected before freeing memory containing @napi
6358 */
6359bool napi_hash_del(struct napi_struct *napi)
6360{
6361 bool rcu_sync_needed = false;
6362
6363 spin_lock(&napi_hash_lock);
6364
6365 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6366 rcu_sync_needed = true;
6367 hlist_del_rcu(&napi->napi_hash_node);
6368 }
6369 spin_unlock(&napi_hash_lock);
6370 return rcu_sync_needed;
6371}
6372EXPORT_SYMBOL_GPL(napi_hash_del);
6373
6374static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6375{
6376 struct napi_struct *napi;
6377
6378 napi = container_of(timer, struct napi_struct, timer);
6379
6380 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6381 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6382 */
6383 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6384 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6385 __napi_schedule_irqoff(napi);
6386
6387 return HRTIMER_NORESTART;
6388}
6389
6390static void init_gro_hash(struct napi_struct *napi)
6391{
6392 int i;
6393
6394 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6395 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6396 napi->gro_hash[i].count = 0;
6397 }
6398 napi->gro_bitmask = 0;
6399}
6400
6401int dev_set_threaded(struct net_device *dev, bool threaded)
6402{
6403 struct napi_struct *napi;
6404 int err = 0;
6405
6406 if (dev->threaded == threaded)
6407 return 0;
6408
6409 if (threaded) {
6410 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6411 if (!napi->thread) {
6412 err = napi_kthread_create(napi);
6413 if (err) {
6414 threaded = false;
6415 break;
6416 }
6417 }
6418 }
6419 }
6420
6421 dev->threaded = threaded;
6422
6423 /* Make sure kthread is created before THREADED bit
6424 * is set.
6425 */
6426 smp_mb__before_atomic();
6427
6428 /* Setting/unsetting threaded mode on a napi might not immediately
6429 * take effect, if the current napi instance is actively being
6430 * polled. In this case, the switch between threaded mode and
6431 * softirq mode will happen in the next round of napi_schedule().
6432 * This should not cause hiccups/stalls to the live traffic.
6433 */
6434 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6435 if (threaded)
6436 set_bit(NAPI_STATE_THREADED, &napi->state);
6437 else
6438 clear_bit(NAPI_STATE_THREADED, &napi->state);
6439 }
6440
6441 return err;
6442}
6443
6444void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6445 int (*poll)(struct napi_struct *, int), int weight)
6446{
6447 INIT_LIST_HEAD(&napi->poll_list);
6448 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6449 napi->timer.function = napi_watchdog;
6450 init_gro_hash(napi);
6451 napi->skb = NULL;
6452 INIT_LIST_HEAD(&napi->rx_list);
6453 napi->rx_count = 0;
6454 napi->poll = poll;
6455 if (weight > NAPI_POLL_WEIGHT)
6456 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6457 weight);
6458 napi->weight = weight;
6459 napi->dev = dev;
6460#ifdef CONFIG_NETPOLL
6461 napi->poll_owner = -1;
6462#endif
6463 set_bit(NAPI_STATE_SCHED, &napi->state);
6464 set_bit(NAPI_STATE_NPSVC, &napi->state);
6465 list_add_rcu(&napi->dev_list, &dev->napi_list);
6466 napi_hash_add(napi);
6467 /* Create kthread for this napi if dev->threaded is set.
6468 * Clear dev->threaded if kthread creation failed so that
6469 * threaded mode will not be enabled in napi_enable().
6470 */
6471 if (dev->threaded && napi_kthread_create(napi))
6472 dev->threaded = 0;
6473}
6474EXPORT_SYMBOL(netif_napi_add);
6475
6476void napi_disable(struct napi_struct *n)
6477{
6478 might_sleep();
6479 set_bit(NAPI_STATE_DISABLE, &n->state);
6480
6481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6482 msleep(1);
6483 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6484 msleep(1);
6485
6486 hrtimer_cancel(&n->timer);
6487
6488 clear_bit(NAPI_STATE_DISABLE, &n->state);
6489 clear_bit(NAPI_STATE_THREADED, &n->state);
6490}
6491EXPORT_SYMBOL(napi_disable);
6492
6493/**
6494 * napi_enable - enable NAPI scheduling
6495 * @n: NAPI context
6496 *
6497 * Resume NAPI from being scheduled on this context.
6498 * Must be paired with napi_disable.
6499 */
6500void napi_enable(struct napi_struct *n)
6501{
6502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6503 smp_mb__before_atomic();
6504 clear_bit(NAPI_STATE_SCHED, &n->state);
6505 clear_bit(NAPI_STATE_NPSVC, &n->state);
6506 if (n->dev->threaded && n->thread)
6507 set_bit(NAPI_STATE_THREADED, &n->state);
6508}
6509EXPORT_SYMBOL(napi_enable);
6510
6511static void flush_gro_hash(struct napi_struct *napi)
6512{
6513 int i;
6514
6515 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6516 struct sk_buff *skb, *n;
6517
6518 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6519 kfree_skb(skb);
6520 napi->gro_hash[i].count = 0;
6521 }
6522}
6523
6524/* Must be called in process context */
6525void netif_napi_del(struct napi_struct *napi)
6526{
6527 might_sleep();
6528 if (napi_hash_del(napi))
6529 synchronize_net();
6530 list_del_init(&napi->dev_list);
6531 napi_free_frags(napi);
6532
6533 flush_gro_hash(napi);
6534 napi->gro_bitmask = 0;
6535
6536 if (napi->thread) {
6537 kthread_stop(napi->thread);
6538 napi->thread = NULL;
6539 }
6540}
6541EXPORT_SYMBOL(netif_napi_del);
6542
6543static int __napi_poll(struct napi_struct *n, bool *repoll)
6544{
6545 int work, weight;
6546
6547 weight = n->weight;
6548
6549 /* This NAPI_STATE_SCHED test is for avoiding a race
6550 * with netpoll's poll_napi(). Only the entity which
6551 * obtains the lock and sees NAPI_STATE_SCHED set will
6552 * actually make the ->poll() call. Therefore we avoid
6553 * accidentally calling ->poll() when NAPI is not scheduled.
6554 */
6555 work = 0;
6556 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6557 work = n->poll(n, weight);
6558 trace_napi_poll(n, work, weight);
6559 }
6560
6561 WARN_ON_ONCE(work > weight);
6562
6563 if (likely(work < weight))
6564 return work;
6565
6566 /* Drivers must not modify the NAPI state if they
6567 * consume the entire weight. In such cases this code
6568 * still "owns" the NAPI instance and therefore can
6569 * move the instance around on the list at-will.
6570 */
6571 if (unlikely(napi_disable_pending(n))) {
6572 napi_complete(n);
6573 return work;
6574 }
6575
6576 if (n->gro_bitmask) {
6577 /* flush too old packets
6578 * If HZ < 1000, flush all packets.
6579 */
6580 napi_gro_flush(n, HZ >= 1000);
6581 }
6582
6583 gro_normal_list(n);
6584
6585 /* Some drivers may have called napi_schedule
6586 * prior to exhausting their budget.
6587 */
6588 if (unlikely(!list_empty(&n->poll_list))) {
6589 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6590 n->dev ? n->dev->name : "backlog");
6591 return work;
6592 }
6593
6594 *repoll = true;
6595
6596 return work;
6597}
6598
6599static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6600{
6601 bool do_repoll = false;
6602 void *have;
6603 int work;
6604
6605 list_del_init(&n->poll_list);
6606
6607 have = netpoll_poll_lock(n);
6608
6609 work = __napi_poll(n, &do_repoll);
6610
6611 if (do_repoll)
6612 list_add_tail(&n->poll_list, repoll);
6613
6614 netpoll_poll_unlock(have);
6615
6616 return work;
6617}
6618
6619static int napi_thread_wait(struct napi_struct *napi)
6620{
6621 bool woken = false;
6622
6623 set_current_state(TASK_INTERRUPTIBLE);
6624
6625 while (!kthread_should_stop()) {
6626 /* Testing SCHED_THREADED bit here to make sure the current
6627 * kthread owns this napi and could poll on this napi.
6628 * Testing SCHED bit is not enough because SCHED bit might be
6629 * set by some other busy poll thread or by napi_disable().
6630 */
6631 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6632 WARN_ON(!list_empty(&napi->poll_list));
6633 __set_current_state(TASK_RUNNING);
6634 return 0;
6635 }
6636
6637 schedule();
6638 /* woken being true indicates this thread owns this napi. */
6639 woken = true;
6640 set_current_state(TASK_INTERRUPTIBLE);
6641 }
6642 __set_current_state(TASK_RUNNING);
6643
6644 return -1;
6645}
6646
6647static int napi_threaded_poll(void *data)
6648{
6649 struct napi_struct *napi = data;
6650 void *have;
6651
6652 while (!napi_thread_wait(napi)) {
6653 for (;;) {
6654 bool repoll = false;
6655
6656 local_bh_disable();
6657
6658 have = netpoll_poll_lock(napi);
6659 __napi_poll(napi, &repoll);
6660 netpoll_poll_unlock(have);
6661
6662 __kfree_skb_flush();
6663 local_bh_enable();
6664
6665 if (!repoll)
6666 break;
6667
6668 cond_resched();
6669 }
6670 }
6671 return 0;
6672}
6673
6674static __latent_entropy void net_rx_action(struct softirq_action *h)
6675{
6676 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6677 unsigned long time_limit = jiffies +
6678 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6679 int budget = READ_ONCE(netdev_budget);
6680 LIST_HEAD(list);
6681 LIST_HEAD(repoll);
6682
6683 local_irq_disable();
6684 list_splice_init(&sd->poll_list, &list);
6685 local_irq_enable();
6686
6687 for (;;) {
6688 struct napi_struct *n;
6689
6690 if (list_empty(&list)) {
6691 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6692 goto out;
6693 break;
6694 }
6695
6696 n = list_first_entry(&list, struct napi_struct, poll_list);
6697 budget -= napi_poll(n, &repoll);
6698
6699 /* If softirq window is exhausted then punt.
6700 * Allow this to run for 2 jiffies since which will allow
6701 * an average latency of 1.5/HZ.
6702 */
6703 if (unlikely(budget <= 0 ||
6704 time_after_eq(jiffies, time_limit))) {
6705 sd->time_squeeze++;
6706 break;
6707 }
6708 }
6709
6710 local_irq_disable();
6711
6712 list_splice_tail_init(&sd->poll_list, &list);
6713 list_splice_tail(&repoll, &list);
6714 list_splice(&list, &sd->poll_list);
6715 if (!list_empty(&sd->poll_list))
6716 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6717
6718 net_rps_action_and_irq_enable(sd);
6719out:
6720 __kfree_skb_flush();
6721}
6722
6723struct netdev_adjacent {
6724 struct net_device *dev;
6725
6726 /* upper master flag, there can only be one master device per list */
6727 bool master;
6728
6729 /* lookup ignore flag */
6730 bool ignore;
6731
6732 /* counter for the number of times this device was added to us */
6733 u16 ref_nr;
6734
6735 /* private field for the users */
6736 void *private;
6737
6738 struct list_head list;
6739 struct rcu_head rcu;
6740};
6741
6742static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6743 struct list_head *adj_list)
6744{
6745 struct netdev_adjacent *adj;
6746
6747 list_for_each_entry(adj, adj_list, list) {
6748 if (adj->dev == adj_dev)
6749 return adj;
6750 }
6751 return NULL;
6752}
6753
6754static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6755{
6756 struct net_device *dev = data;
6757
6758 return upper_dev == dev;
6759}
6760
6761/**
6762 * netdev_has_upper_dev - Check if device is linked to an upper device
6763 * @dev: device
6764 * @upper_dev: upper device to check
6765 *
6766 * Find out if a device is linked to specified upper device and return true
6767 * in case it is. Note that this checks only immediate upper device,
6768 * not through a complete stack of devices. The caller must hold the RTNL lock.
6769 */
6770bool netdev_has_upper_dev(struct net_device *dev,
6771 struct net_device *upper_dev)
6772{
6773 ASSERT_RTNL();
6774
6775 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6776 upper_dev);
6777}
6778EXPORT_SYMBOL(netdev_has_upper_dev);
6779
6780/**
6781 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6782 * @dev: device
6783 * @upper_dev: upper device to check
6784 *
6785 * Find out if a device is linked to specified upper device and return true
6786 * in case it is. Note that this checks the entire upper device chain.
6787 * The caller must hold rcu lock.
6788 */
6789
6790bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6791 struct net_device *upper_dev)
6792{
6793 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6794 upper_dev);
6795}
6796EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6797
6798/**
6799 * netdev_has_any_upper_dev - Check if device is linked to some device
6800 * @dev: device
6801 *
6802 * Find out if a device is linked to an upper device and return true in case
6803 * it is. The caller must hold the RTNL lock.
6804 */
6805bool netdev_has_any_upper_dev(struct net_device *dev)
6806{
6807 ASSERT_RTNL();
6808
6809 return !list_empty(&dev->adj_list.upper);
6810}
6811EXPORT_SYMBOL(netdev_has_any_upper_dev);
6812
6813/**
6814 * netdev_master_upper_dev_get - Get master upper device
6815 * @dev: device
6816 *
6817 * Find a master upper device and return pointer to it or NULL in case
6818 * it's not there. The caller must hold the RTNL lock.
6819 */
6820struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6821{
6822 struct netdev_adjacent *upper;
6823
6824 ASSERT_RTNL();
6825
6826 if (list_empty(&dev->adj_list.upper))
6827 return NULL;
6828
6829 upper = list_first_entry(&dev->adj_list.upper,
6830 struct netdev_adjacent, list);
6831 if (likely(upper->master))
6832 return upper->dev;
6833 return NULL;
6834}
6835EXPORT_SYMBOL(netdev_master_upper_dev_get);
6836
6837static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6838{
6839 struct netdev_adjacent *upper;
6840
6841 ASSERT_RTNL();
6842
6843 if (list_empty(&dev->adj_list.upper))
6844 return NULL;
6845
6846 upper = list_first_entry(&dev->adj_list.upper,
6847 struct netdev_adjacent, list);
6848 if (likely(upper->master) && !upper->ignore)
6849 return upper->dev;
6850 return NULL;
6851}
6852
6853/**
6854 * netdev_has_any_lower_dev - Check if device is linked to some device
6855 * @dev: device
6856 *
6857 * Find out if a device is linked to a lower device and return true in case
6858 * it is. The caller must hold the RTNL lock.
6859 */
6860static bool netdev_has_any_lower_dev(struct net_device *dev)
6861{
6862 ASSERT_RTNL();
6863
6864 return !list_empty(&dev->adj_list.lower);
6865}
6866
6867void *netdev_adjacent_get_private(struct list_head *adj_list)
6868{
6869 struct netdev_adjacent *adj;
6870
6871 adj = list_entry(adj_list, struct netdev_adjacent, list);
6872
6873 return adj->private;
6874}
6875EXPORT_SYMBOL(netdev_adjacent_get_private);
6876
6877/**
6878 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6879 * @dev: device
6880 * @iter: list_head ** of the current position
6881 *
6882 * Gets the next device from the dev's upper list, starting from iter
6883 * position. The caller must hold RCU read lock.
6884 */
6885struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6886 struct list_head **iter)
6887{
6888 struct netdev_adjacent *upper;
6889
6890 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6891
6892 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6893
6894 if (&upper->list == &dev->adj_list.upper)
6895 return NULL;
6896
6897 *iter = &upper->list;
6898
6899 return upper->dev;
6900}
6901EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6902
6903static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6904 struct list_head **iter,
6905 bool *ignore)
6906{
6907 struct netdev_adjacent *upper;
6908
6909 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6910
6911 if (&upper->list == &dev->adj_list.upper)
6912 return NULL;
6913
6914 *iter = &upper->list;
6915 *ignore = upper->ignore;
6916
6917 return upper->dev;
6918}
6919
6920static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6921 struct list_head **iter)
6922{
6923 struct netdev_adjacent *upper;
6924
6925 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6926
6927 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6928
6929 if (&upper->list == &dev->adj_list.upper)
6930 return NULL;
6931
6932 *iter = &upper->list;
6933
6934 return upper->dev;
6935}
6936
6937static int __netdev_walk_all_upper_dev(struct net_device *dev,
6938 int (*fn)(struct net_device *dev,
6939 void *data),
6940 void *data)
6941{
6942 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6943 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6944 int ret, cur = 0;
6945 bool ignore;
6946
6947 now = dev;
6948 iter = &dev->adj_list.upper;
6949
6950 while (1) {
6951 if (now != dev) {
6952 ret = fn(now, data);
6953 if (ret)
6954 return ret;
6955 }
6956
6957 next = NULL;
6958 while (1) {
6959 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6960 if (!udev)
6961 break;
6962 if (ignore)
6963 continue;
6964
6965 next = udev;
6966 niter = &udev->adj_list.upper;
6967 dev_stack[cur] = now;
6968 iter_stack[cur++] = iter;
6969 break;
6970 }
6971
6972 if (!next) {
6973 if (!cur)
6974 return 0;
6975 next = dev_stack[--cur];
6976 niter = iter_stack[cur];
6977 }
6978
6979 now = next;
6980 iter = niter;
6981 }
6982
6983 return 0;
6984}
6985
6986int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6987 int (*fn)(struct net_device *dev,
6988 void *data),
6989 void *data)
6990{
6991 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6992 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6993 int ret, cur = 0;
6994
6995 now = dev;
6996 iter = &dev->adj_list.upper;
6997
6998 while (1) {
6999 if (now != dev) {
7000 ret = fn(now, data);
7001 if (ret)
7002 return ret;
7003 }
7004
7005 next = NULL;
7006 while (1) {
7007 udev = netdev_next_upper_dev_rcu(now, &iter);
7008 if (!udev)
7009 break;
7010
7011 next = udev;
7012 niter = &udev->adj_list.upper;
7013 dev_stack[cur] = now;
7014 iter_stack[cur++] = iter;
7015 break;
7016 }
7017
7018 if (!next) {
7019 if (!cur)
7020 return 0;
7021 next = dev_stack[--cur];
7022 niter = iter_stack[cur];
7023 }
7024
7025 now = next;
7026 iter = niter;
7027 }
7028
7029 return 0;
7030}
7031EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7032
7033static bool __netdev_has_upper_dev(struct net_device *dev,
7034 struct net_device *upper_dev)
7035{
7036 ASSERT_RTNL();
7037
7038 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7039 upper_dev);
7040}
7041
7042/**
7043 * netdev_lower_get_next_private - Get the next ->private from the
7044 * lower neighbour list
7045 * @dev: device
7046 * @iter: list_head ** of the current position
7047 *
7048 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7049 * list, starting from iter position. The caller must hold either hold the
7050 * RTNL lock or its own locking that guarantees that the neighbour lower
7051 * list will remain unchanged.
7052 */
7053void *netdev_lower_get_next_private(struct net_device *dev,
7054 struct list_head **iter)
7055{
7056 struct netdev_adjacent *lower;
7057
7058 lower = list_entry(*iter, struct netdev_adjacent, list);
7059
7060 if (&lower->list == &dev->adj_list.lower)
7061 return NULL;
7062
7063 *iter = lower->list.next;
7064
7065 return lower->private;
7066}
7067EXPORT_SYMBOL(netdev_lower_get_next_private);
7068
7069/**
7070 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7071 * lower neighbour list, RCU
7072 * variant
7073 * @dev: device
7074 * @iter: list_head ** of the current position
7075 *
7076 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7077 * list, starting from iter position. The caller must hold RCU read lock.
7078 */
7079void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7080 struct list_head **iter)
7081{
7082 struct netdev_adjacent *lower;
7083
7084 WARN_ON_ONCE(!rcu_read_lock_held());
7085
7086 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7087
7088 if (&lower->list == &dev->adj_list.lower)
7089 return NULL;
7090
7091 *iter = &lower->list;
7092
7093 return lower->private;
7094}
7095EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7096
7097/**
7098 * netdev_lower_get_next - Get the next device from the lower neighbour
7099 * list
7100 * @dev: device
7101 * @iter: list_head ** of the current position
7102 *
7103 * Gets the next netdev_adjacent from the dev's lower neighbour
7104 * list, starting from iter position. The caller must hold RTNL lock or
7105 * its own locking that guarantees that the neighbour lower
7106 * list will remain unchanged.
7107 */
7108void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7109{
7110 struct netdev_adjacent *lower;
7111
7112 lower = list_entry(*iter, struct netdev_adjacent, list);
7113
7114 if (&lower->list == &dev->adj_list.lower)
7115 return NULL;
7116
7117 *iter = lower->list.next;
7118
7119 return lower->dev;
7120}
7121EXPORT_SYMBOL(netdev_lower_get_next);
7122
7123static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7124 struct list_head **iter)
7125{
7126 struct netdev_adjacent *lower;
7127
7128 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7129
7130 if (&lower->list == &dev->adj_list.lower)
7131 return NULL;
7132
7133 *iter = &lower->list;
7134
7135 return lower->dev;
7136}
7137
7138static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7139 struct list_head **iter,
7140 bool *ignore)
7141{
7142 struct netdev_adjacent *lower;
7143
7144 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7145
7146 if (&lower->list == &dev->adj_list.lower)
7147 return NULL;
7148
7149 *iter = &lower->list;
7150 *ignore = lower->ignore;
7151
7152 return lower->dev;
7153}
7154
7155int netdev_walk_all_lower_dev(struct net_device *dev,
7156 int (*fn)(struct net_device *dev,
7157 void *data),
7158 void *data)
7159{
7160 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7161 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7162 int ret, cur = 0;
7163
7164 now = dev;
7165 iter = &dev->adj_list.lower;
7166
7167 while (1) {
7168 if (now != dev) {
7169 ret = fn(now, data);
7170 if (ret)
7171 return ret;
7172 }
7173
7174 next = NULL;
7175 while (1) {
7176 ldev = netdev_next_lower_dev(now, &iter);
7177 if (!ldev)
7178 break;
7179
7180 next = ldev;
7181 niter = &ldev->adj_list.lower;
7182 dev_stack[cur] = now;
7183 iter_stack[cur++] = iter;
7184 break;
7185 }
7186
7187 if (!next) {
7188 if (!cur)
7189 return 0;
7190 next = dev_stack[--cur];
7191 niter = iter_stack[cur];
7192 }
7193
7194 now = next;
7195 iter = niter;
7196 }
7197
7198 return 0;
7199}
7200EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7201
7202static int __netdev_walk_all_lower_dev(struct net_device *dev,
7203 int (*fn)(struct net_device *dev,
7204 void *data),
7205 void *data)
7206{
7207 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7208 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7209 int ret, cur = 0;
7210 bool ignore;
7211
7212 now = dev;
7213 iter = &dev->adj_list.lower;
7214
7215 while (1) {
7216 if (now != dev) {
7217 ret = fn(now, data);
7218 if (ret)
7219 return ret;
7220 }
7221
7222 next = NULL;
7223 while (1) {
7224 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7225 if (!ldev)
7226 break;
7227 if (ignore)
7228 continue;
7229
7230 next = ldev;
7231 niter = &ldev->adj_list.lower;
7232 dev_stack[cur] = now;
7233 iter_stack[cur++] = iter;
7234 break;
7235 }
7236
7237 if (!next) {
7238 if (!cur)
7239 return 0;
7240 next = dev_stack[--cur];
7241 niter = iter_stack[cur];
7242 }
7243
7244 now = next;
7245 iter = niter;
7246 }
7247
7248 return 0;
7249}
7250
7251struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7252 struct list_head **iter)
7253{
7254 struct netdev_adjacent *lower;
7255
7256 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7257 if (&lower->list == &dev->adj_list.lower)
7258 return NULL;
7259
7260 *iter = &lower->list;
7261
7262 return lower->dev;
7263}
7264EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7265
7266static u8 __netdev_upper_depth(struct net_device *dev)
7267{
7268 struct net_device *udev;
7269 struct list_head *iter;
7270 u8 max_depth = 0;
7271 bool ignore;
7272
7273 for (iter = &dev->adj_list.upper,
7274 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7275 udev;
7276 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7277 if (ignore)
7278 continue;
7279 if (max_depth < udev->upper_level)
7280 max_depth = udev->upper_level;
7281 }
7282
7283 return max_depth;
7284}
7285
7286static u8 __netdev_lower_depth(struct net_device *dev)
7287{
7288 struct net_device *ldev;
7289 struct list_head *iter;
7290 u8 max_depth = 0;
7291 bool ignore;
7292
7293 for (iter = &dev->adj_list.lower,
7294 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7295 ldev;
7296 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7297 if (ignore)
7298 continue;
7299 if (max_depth < ldev->lower_level)
7300 max_depth = ldev->lower_level;
7301 }
7302
7303 return max_depth;
7304}
7305
7306static int __netdev_update_upper_level(struct net_device *dev, void *data)
7307{
7308 dev->upper_level = __netdev_upper_depth(dev) + 1;
7309 return 0;
7310}
7311
7312static int __netdev_update_lower_level(struct net_device *dev, void *data)
7313{
7314 dev->lower_level = __netdev_lower_depth(dev) + 1;
7315 return 0;
7316}
7317
7318int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7319 int (*fn)(struct net_device *dev,
7320 void *data),
7321 void *data)
7322{
7323 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7324 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7325 int ret, cur = 0;
7326
7327 now = dev;
7328 iter = &dev->adj_list.lower;
7329
7330 while (1) {
7331 if (now != dev) {
7332 ret = fn(now, data);
7333 if (ret)
7334 return ret;
7335 }
7336
7337 next = NULL;
7338 while (1) {
7339 ldev = netdev_next_lower_dev_rcu(now, &iter);
7340 if (!ldev)
7341 break;
7342
7343 next = ldev;
7344 niter = &ldev->adj_list.lower;
7345 dev_stack[cur] = now;
7346 iter_stack[cur++] = iter;
7347 break;
7348 }
7349
7350 if (!next) {
7351 if (!cur)
7352 return 0;
7353 next = dev_stack[--cur];
7354 niter = iter_stack[cur];
7355 }
7356
7357 now = next;
7358 iter = niter;
7359 }
7360
7361 return 0;
7362}
7363EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7364
7365/**
7366 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7367 * lower neighbour list, RCU
7368 * variant
7369 * @dev: device
7370 *
7371 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7372 * list. The caller must hold RCU read lock.
7373 */
7374void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7375{
7376 struct netdev_adjacent *lower;
7377
7378 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7379 struct netdev_adjacent, list);
7380 if (lower)
7381 return lower->private;
7382 return NULL;
7383}
7384EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7385
7386/**
7387 * netdev_master_upper_dev_get_rcu - Get master upper device
7388 * @dev: device
7389 *
7390 * Find a master upper device and return pointer to it or NULL in case
7391 * it's not there. The caller must hold the RCU read lock.
7392 */
7393struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7394{
7395 struct netdev_adjacent *upper;
7396
7397 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7398 struct netdev_adjacent, list);
7399 if (upper && likely(upper->master))
7400 return upper->dev;
7401 return NULL;
7402}
7403EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7404
7405static int netdev_adjacent_sysfs_add(struct net_device *dev,
7406 struct net_device *adj_dev,
7407 struct list_head *dev_list)
7408{
7409 char linkname[IFNAMSIZ+7];
7410
7411 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7412 "upper_%s" : "lower_%s", adj_dev->name);
7413 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7414 linkname);
7415}
7416static void netdev_adjacent_sysfs_del(struct net_device *dev,
7417 char *name,
7418 struct list_head *dev_list)
7419{
7420 char linkname[IFNAMSIZ+7];
7421
7422 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7423 "upper_%s" : "lower_%s", name);
7424 sysfs_remove_link(&(dev->dev.kobj), linkname);
7425}
7426
7427static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7428 struct net_device *adj_dev,
7429 struct list_head *dev_list)
7430{
7431 return (dev_list == &dev->adj_list.upper ||
7432 dev_list == &dev->adj_list.lower) &&
7433 net_eq(dev_net(dev), dev_net(adj_dev));
7434}
7435
7436static int __netdev_adjacent_dev_insert(struct net_device *dev,
7437 struct net_device *adj_dev,
7438 struct list_head *dev_list,
7439 void *private, bool master)
7440{
7441 struct netdev_adjacent *adj;
7442 int ret;
7443
7444 adj = __netdev_find_adj(adj_dev, dev_list);
7445
7446 if (adj) {
7447 adj->ref_nr += 1;
7448 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7449 dev->name, adj_dev->name, adj->ref_nr);
7450
7451 return 0;
7452 }
7453
7454 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7455 if (!adj)
7456 return -ENOMEM;
7457
7458 adj->dev = adj_dev;
7459 adj->master = master;
7460 adj->ref_nr = 1;
7461 adj->private = private;
7462 adj->ignore = false;
7463 dev_hold(adj_dev);
7464
7465 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7466 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7467
7468 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7469 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7470 if (ret)
7471 goto free_adj;
7472 }
7473
7474 /* Ensure that master link is always the first item in list. */
7475 if (master) {
7476 ret = sysfs_create_link(&(dev->dev.kobj),
7477 &(adj_dev->dev.kobj), "master");
7478 if (ret)
7479 goto remove_symlinks;
7480
7481 list_add_rcu(&adj->list, dev_list);
7482 } else {
7483 list_add_tail_rcu(&adj->list, dev_list);
7484 }
7485
7486 return 0;
7487
7488remove_symlinks:
7489 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7490 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7491free_adj:
7492 kfree(adj);
7493 dev_put(adj_dev);
7494
7495 return ret;
7496}
7497
7498static void __netdev_adjacent_dev_remove(struct net_device *dev,
7499 struct net_device *adj_dev,
7500 u16 ref_nr,
7501 struct list_head *dev_list)
7502{
7503 struct netdev_adjacent *adj;
7504
7505 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7506 dev->name, adj_dev->name, ref_nr);
7507
7508 adj = __netdev_find_adj(adj_dev, dev_list);
7509
7510 if (!adj) {
7511 pr_err("Adjacency does not exist for device %s from %s\n",
7512 dev->name, adj_dev->name);
7513 WARN_ON(1);
7514 return;
7515 }
7516
7517 if (adj->ref_nr > ref_nr) {
7518 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7519 dev->name, adj_dev->name, ref_nr,
7520 adj->ref_nr - ref_nr);
7521 adj->ref_nr -= ref_nr;
7522 return;
7523 }
7524
7525 if (adj->master)
7526 sysfs_remove_link(&(dev->dev.kobj), "master");
7527
7528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7529 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7530
7531 list_del_rcu(&adj->list);
7532 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7533 adj_dev->name, dev->name, adj_dev->name);
7534 dev_put(adj_dev);
7535 kfree_rcu(adj, rcu);
7536}
7537
7538static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7539 struct net_device *upper_dev,
7540 struct list_head *up_list,
7541 struct list_head *down_list,
7542 void *private, bool master)
7543{
7544 int ret;
7545
7546 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7547 private, master);
7548 if (ret)
7549 return ret;
7550
7551 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7552 private, false);
7553 if (ret) {
7554 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7555 return ret;
7556 }
7557
7558 return 0;
7559}
7560
7561static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7562 struct net_device *upper_dev,
7563 u16 ref_nr,
7564 struct list_head *up_list,
7565 struct list_head *down_list)
7566{
7567 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7568 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7569}
7570
7571static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7572 struct net_device *upper_dev,
7573 void *private, bool master)
7574{
7575 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7576 &dev->adj_list.upper,
7577 &upper_dev->adj_list.lower,
7578 private, master);
7579}
7580
7581static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7582 struct net_device *upper_dev)
7583{
7584 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7585 &dev->adj_list.upper,
7586 &upper_dev->adj_list.lower);
7587}
7588
7589static void __netdev_addr_mask(unsigned char *mask, const unsigned char *addr,
7590 struct net_device *dev)
7591{
7592 int i;
7593
7594 for (i = 0; i < dev->addr_len; i++)
7595 mask[i] |= addr[i] ^ dev->dev_addr[i];
7596}
7597
7598static void __netdev_upper_mask(unsigned char *mask, struct net_device *dev,
7599 struct net_device *lower)
7600{
7601 struct net_device *cur;
7602 struct list_head *iter;
7603
7604 netdev_for_each_upper_dev_rcu(dev, cur, iter) {
7605 __netdev_addr_mask(mask, cur->dev_addr, lower);
7606 __netdev_upper_mask(mask, cur, lower);
7607 }
7608}
7609
7610static void __netdev_update_addr_mask(struct net_device *dev)
7611{
7612 unsigned char mask[MAX_ADDR_LEN];
7613 struct net_device *cur;
7614 struct list_head *iter;
7615
7616 memset(mask, 0, sizeof(mask));
7617 __netdev_upper_mask(mask, dev, dev);
7618 memcpy(dev->local_addr_mask, mask, dev->addr_len);
7619
7620 netdev_for_each_lower_dev(dev, cur, iter)
7621 __netdev_update_addr_mask(cur);
7622}
7623
7624static void netdev_update_addr_mask(struct net_device *dev)
7625{
7626 rcu_read_lock();
7627 __netdev_update_addr_mask(dev);
7628 rcu_read_unlock();
7629}
7630
7631static int __netdev_upper_dev_link(struct net_device *dev,
7632 struct net_device *upper_dev, bool master,
7633 void *upper_priv, void *upper_info,
7634 struct netlink_ext_ack *extack)
7635{
7636 struct netdev_notifier_changeupper_info changeupper_info = {
7637 .info = {
7638 .dev = dev,
7639 .extack = extack,
7640 },
7641 .upper_dev = upper_dev,
7642 .master = master,
7643 .linking = true,
7644 .upper_info = upper_info,
7645 };
7646 struct net_device *master_dev;
7647 int ret = 0;
7648
7649 ASSERT_RTNL();
7650
7651 if (dev == upper_dev)
7652 return -EBUSY;
7653
7654 /* To prevent loops, check if dev is not upper device to upper_dev. */
7655 if (__netdev_has_upper_dev(upper_dev, dev))
7656 return -EBUSY;
7657
7658 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7659 return -EMLINK;
7660
7661 if (!master) {
7662 if (__netdev_has_upper_dev(dev, upper_dev))
7663 return -EEXIST;
7664 } else {
7665 master_dev = __netdev_master_upper_dev_get(dev);
7666 if (master_dev)
7667 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7668 }
7669
7670 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7671 &changeupper_info.info);
7672 ret = notifier_to_errno(ret);
7673 if (ret)
7674 return ret;
7675
7676 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7677 master);
7678 if (ret)
7679 return ret;
7680
7681 netdev_update_addr_mask(dev);
7682 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7683 &changeupper_info.info);
7684 ret = notifier_to_errno(ret);
7685 if (ret)
7686 goto rollback;
7687
7688 __netdev_update_upper_level(dev, NULL);
7689 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7690
7691 __netdev_update_lower_level(upper_dev, NULL);
7692 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7693 NULL);
7694
7695 return 0;
7696
7697rollback:
7698 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7699
7700 return ret;
7701}
7702
7703/**
7704 * netdev_upper_dev_link - Add a link to the upper device
7705 * @dev: device
7706 * @upper_dev: new upper device
7707 * @extack: netlink extended ack
7708 *
7709 * Adds a link to device which is upper to this one. The caller must hold
7710 * the RTNL lock. On a failure a negative errno code is returned.
7711 * On success the reference counts are adjusted and the function
7712 * returns zero.
7713 */
7714int netdev_upper_dev_link(struct net_device *dev,
7715 struct net_device *upper_dev,
7716 struct netlink_ext_ack *extack)
7717{
7718 return __netdev_upper_dev_link(dev, upper_dev, false,
7719 NULL, NULL, extack);
7720}
7721EXPORT_SYMBOL(netdev_upper_dev_link);
7722
7723/**
7724 * netdev_master_upper_dev_link - Add a master link to the upper device
7725 * @dev: device
7726 * @upper_dev: new upper device
7727 * @upper_priv: upper device private
7728 * @upper_info: upper info to be passed down via notifier
7729 * @extack: netlink extended ack
7730 *
7731 * Adds a link to device which is upper to this one. In this case, only
7732 * one master upper device can be linked, although other non-master devices
7733 * might be linked as well. The caller must hold the RTNL lock.
7734 * On a failure a negative errno code is returned. On success the reference
7735 * counts are adjusted and the function returns zero.
7736 */
7737int netdev_master_upper_dev_link(struct net_device *dev,
7738 struct net_device *upper_dev,
7739 void *upper_priv, void *upper_info,
7740 struct netlink_ext_ack *extack)
7741{
7742 return __netdev_upper_dev_link(dev, upper_dev, true,
7743 upper_priv, upper_info, extack);
7744}
7745EXPORT_SYMBOL(netdev_master_upper_dev_link);
7746
7747/**
7748 * netdev_upper_dev_unlink - Removes a link to upper device
7749 * @dev: device
7750 * @upper_dev: new upper device
7751 *
7752 * Removes a link to device which is upper to this one. The caller must hold
7753 * the RTNL lock.
7754 */
7755void netdev_upper_dev_unlink(struct net_device *dev,
7756 struct net_device *upper_dev)
7757{
7758 struct netdev_notifier_changeupper_info changeupper_info = {
7759 .info = {
7760 .dev = dev,
7761 },
7762 .upper_dev = upper_dev,
7763 .linking = false,
7764 };
7765
7766 ASSERT_RTNL();
7767
7768 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7769
7770 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7771 &changeupper_info.info);
7772
7773 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7774
7775 netdev_update_addr_mask(dev);
7776 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7777 &changeupper_info.info);
7778
7779 __netdev_update_upper_level(dev, NULL);
7780 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7781
7782 __netdev_update_lower_level(upper_dev, NULL);
7783 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7784 NULL);
7785}
7786EXPORT_SYMBOL(netdev_upper_dev_unlink);
7787
7788static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7789 struct net_device *lower_dev,
7790 bool val)
7791{
7792 struct netdev_adjacent *adj;
7793
7794 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7795 if (adj)
7796 adj->ignore = val;
7797
7798 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7799 if (adj)
7800 adj->ignore = val;
7801}
7802
7803static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7804 struct net_device *lower_dev)
7805{
7806 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7807}
7808
7809static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7810 struct net_device *lower_dev)
7811{
7812 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7813}
7814
7815int netdev_adjacent_change_prepare(struct net_device *old_dev,
7816 struct net_device *new_dev,
7817 struct net_device *dev,
7818 struct netlink_ext_ack *extack)
7819{
7820 int err;
7821
7822 if (!new_dev)
7823 return 0;
7824
7825 if (old_dev && new_dev != old_dev)
7826 netdev_adjacent_dev_disable(dev, old_dev);
7827
7828 err = netdev_upper_dev_link(new_dev, dev, extack);
7829 if (err) {
7830 if (old_dev && new_dev != old_dev)
7831 netdev_adjacent_dev_enable(dev, old_dev);
7832 return err;
7833 }
7834
7835 return 0;
7836}
7837EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7838
7839void netdev_adjacent_change_commit(struct net_device *old_dev,
7840 struct net_device *new_dev,
7841 struct net_device *dev)
7842{
7843 if (!new_dev || !old_dev)
7844 return;
7845
7846 if (new_dev == old_dev)
7847 return;
7848
7849 netdev_adjacent_dev_enable(dev, old_dev);
7850 netdev_upper_dev_unlink(old_dev, dev);
7851}
7852EXPORT_SYMBOL(netdev_adjacent_change_commit);
7853
7854void netdev_adjacent_change_abort(struct net_device *old_dev,
7855 struct net_device *new_dev,
7856 struct net_device *dev)
7857{
7858 if (!new_dev)
7859 return;
7860
7861 if (old_dev && new_dev != old_dev)
7862 netdev_adjacent_dev_enable(dev, old_dev);
7863
7864 netdev_upper_dev_unlink(new_dev, dev);
7865}
7866EXPORT_SYMBOL(netdev_adjacent_change_abort);
7867
7868/**
7869 * netdev_bonding_info_change - Dispatch event about slave change
7870 * @dev: device
7871 * @bonding_info: info to dispatch
7872 *
7873 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7874 * The caller must hold the RTNL lock.
7875 */
7876void netdev_bonding_info_change(struct net_device *dev,
7877 struct netdev_bonding_info *bonding_info)
7878{
7879 struct netdev_notifier_bonding_info info = {
7880 .info.dev = dev,
7881 };
7882
7883 memcpy(&info.bonding_info, bonding_info,
7884 sizeof(struct netdev_bonding_info));
7885 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7886 &info.info);
7887}
7888EXPORT_SYMBOL(netdev_bonding_info_change);
7889
7890static void netdev_adjacent_add_links(struct net_device *dev)
7891{
7892 struct netdev_adjacent *iter;
7893
7894 struct net *net = dev_net(dev);
7895
7896 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7897 if (!net_eq(net, dev_net(iter->dev)))
7898 continue;
7899 netdev_adjacent_sysfs_add(iter->dev, dev,
7900 &iter->dev->adj_list.lower);
7901 netdev_adjacent_sysfs_add(dev, iter->dev,
7902 &dev->adj_list.upper);
7903 }
7904
7905 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7906 if (!net_eq(net, dev_net(iter->dev)))
7907 continue;
7908 netdev_adjacent_sysfs_add(iter->dev, dev,
7909 &iter->dev->adj_list.upper);
7910 netdev_adjacent_sysfs_add(dev, iter->dev,
7911 &dev->adj_list.lower);
7912 }
7913}
7914
7915static void netdev_adjacent_del_links(struct net_device *dev)
7916{
7917 struct netdev_adjacent *iter;
7918
7919 struct net *net = dev_net(dev);
7920
7921 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7922 if (!net_eq(net, dev_net(iter->dev)))
7923 continue;
7924 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7925 &iter->dev->adj_list.lower);
7926 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7927 &dev->adj_list.upper);
7928 }
7929
7930 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7931 if (!net_eq(net, dev_net(iter->dev)))
7932 continue;
7933 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7934 &iter->dev->adj_list.upper);
7935 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7936 &dev->adj_list.lower);
7937 }
7938}
7939
7940void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7941{
7942 struct netdev_adjacent *iter;
7943
7944 struct net *net = dev_net(dev);
7945
7946 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7947 if (!net_eq(net, dev_net(iter->dev)))
7948 continue;
7949 netdev_adjacent_sysfs_del(iter->dev, oldname,
7950 &iter->dev->adj_list.lower);
7951 netdev_adjacent_sysfs_add(iter->dev, dev,
7952 &iter->dev->adj_list.lower);
7953 }
7954
7955 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7956 if (!net_eq(net, dev_net(iter->dev)))
7957 continue;
7958 netdev_adjacent_sysfs_del(iter->dev, oldname,
7959 &iter->dev->adj_list.upper);
7960 netdev_adjacent_sysfs_add(iter->dev, dev,
7961 &iter->dev->adj_list.upper);
7962 }
7963}
7964
7965void *netdev_lower_dev_get_private(struct net_device *dev,
7966 struct net_device *lower_dev)
7967{
7968 struct netdev_adjacent *lower;
7969
7970 if (!lower_dev)
7971 return NULL;
7972 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7973 if (!lower)
7974 return NULL;
7975
7976 return lower->private;
7977}
7978EXPORT_SYMBOL(netdev_lower_dev_get_private);
7979
7980
7981/**
7982 * netdev_lower_change - Dispatch event about lower device state change
7983 * @lower_dev: device
7984 * @lower_state_info: state to dispatch
7985 *
7986 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7987 * The caller must hold the RTNL lock.
7988 */
7989void netdev_lower_state_changed(struct net_device *lower_dev,
7990 void *lower_state_info)
7991{
7992 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7993 .info.dev = lower_dev,
7994 };
7995
7996 ASSERT_RTNL();
7997 changelowerstate_info.lower_state_info = lower_state_info;
7998 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7999 &changelowerstate_info.info);
8000}
8001EXPORT_SYMBOL(netdev_lower_state_changed);
8002
8003static void dev_change_rx_flags(struct net_device *dev, int flags)
8004{
8005 const struct net_device_ops *ops = dev->netdev_ops;
8006
8007 if (ops->ndo_change_rx_flags)
8008 ops->ndo_change_rx_flags(dev, flags);
8009}
8010
8011static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8012{
8013 unsigned int old_flags = dev->flags;
8014 kuid_t uid;
8015 kgid_t gid;
8016
8017 ASSERT_RTNL();
8018
8019 dev->flags |= IFF_PROMISC;
8020 dev->promiscuity += inc;
8021 if (dev->promiscuity == 0) {
8022 /*
8023 * Avoid overflow.
8024 * If inc causes overflow, untouch promisc and return error.
8025 */
8026 if (inc < 0)
8027 dev->flags &= ~IFF_PROMISC;
8028 else {
8029 dev->promiscuity -= inc;
8030 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8031 dev->name);
8032 return -EOVERFLOW;
8033 }
8034 }
8035 if (dev->flags != old_flags) {
8036 pr_info("device %s %s promiscuous mode\n",
8037 dev->name,
8038 dev->flags & IFF_PROMISC ? "entered" : "left");
8039 if (audit_enabled) {
8040 current_uid_gid(&uid, &gid);
8041 audit_log(audit_context(), GFP_ATOMIC,
8042 AUDIT_ANOM_PROMISCUOUS,
8043 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8044 dev->name, (dev->flags & IFF_PROMISC),
8045 (old_flags & IFF_PROMISC),
8046 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8047 from_kuid(&init_user_ns, uid),
8048 from_kgid(&init_user_ns, gid),
8049 audit_get_sessionid(current));
8050 }
8051
8052 dev_change_rx_flags(dev, IFF_PROMISC);
8053 }
8054 if (notify)
8055 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8056 return 0;
8057}
8058
8059/**
8060 * dev_set_promiscuity - update promiscuity count on a device
8061 * @dev: device
8062 * @inc: modifier
8063 *
8064 * Add or remove promiscuity from a device. While the count in the device
8065 * remains above zero the interface remains promiscuous. Once it hits zero
8066 * the device reverts back to normal filtering operation. A negative inc
8067 * value is used to drop promiscuity on the device.
8068 * Return 0 if successful or a negative errno code on error.
8069 */
8070int dev_set_promiscuity(struct net_device *dev, int inc)
8071{
8072 unsigned int old_flags = dev->flags;
8073 int err;
8074
8075 err = __dev_set_promiscuity(dev, inc, true);
8076 if (err < 0)
8077 return err;
8078 if (dev->flags != old_flags)
8079 dev_set_rx_mode(dev);
8080 return err;
8081}
8082EXPORT_SYMBOL(dev_set_promiscuity);
8083
8084static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8085{
8086 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8087
8088 ASSERT_RTNL();
8089
8090 dev->flags |= IFF_ALLMULTI;
8091 dev->allmulti += inc;
8092 if (dev->allmulti == 0) {
8093 /*
8094 * Avoid overflow.
8095 * If inc causes overflow, untouch allmulti and return error.
8096 */
8097 if (inc < 0)
8098 dev->flags &= ~IFF_ALLMULTI;
8099 else {
8100 dev->allmulti -= inc;
8101 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8102 dev->name);
8103 return -EOVERFLOW;
8104 }
8105 }
8106 if (dev->flags ^ old_flags) {
8107 dev_change_rx_flags(dev, IFF_ALLMULTI);
8108 dev_set_rx_mode(dev);
8109 if (notify)
8110 __dev_notify_flags(dev, old_flags,
8111 dev->gflags ^ old_gflags);
8112 }
8113 return 0;
8114}
8115
8116/**
8117 * dev_set_allmulti - update allmulti count on a device
8118 * @dev: device
8119 * @inc: modifier
8120 *
8121 * Add or remove reception of all multicast frames to a device. While the
8122 * count in the device remains above zero the interface remains listening
8123 * to all interfaces. Once it hits zero the device reverts back to normal
8124 * filtering operation. A negative @inc value is used to drop the counter
8125 * when releasing a resource needing all multicasts.
8126 * Return 0 if successful or a negative errno code on error.
8127 */
8128
8129int dev_set_allmulti(struct net_device *dev, int inc)
8130{
8131 return __dev_set_allmulti(dev, inc, true);
8132}
8133EXPORT_SYMBOL(dev_set_allmulti);
8134
8135/*
8136 * Upload unicast and multicast address lists to device and
8137 * configure RX filtering. When the device doesn't support unicast
8138 * filtering it is put in promiscuous mode while unicast addresses
8139 * are present.
8140 */
8141void __dev_set_rx_mode(struct net_device *dev)
8142{
8143 const struct net_device_ops *ops = dev->netdev_ops;
8144
8145 /* dev_open will call this function so the list will stay sane. */
8146 if (!(dev->flags&IFF_UP))
8147 return;
8148
8149 if (!netif_device_present(dev))
8150 return;
8151
8152 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8153 /* Unicast addresses changes may only happen under the rtnl,
8154 * therefore calling __dev_set_promiscuity here is safe.
8155 */
8156 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8157 __dev_set_promiscuity(dev, 1, false);
8158 dev->uc_promisc = true;
8159 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8160 __dev_set_promiscuity(dev, -1, false);
8161 dev->uc_promisc = false;
8162 }
8163 }
8164
8165 if (ops->ndo_set_rx_mode)
8166 ops->ndo_set_rx_mode(dev);
8167}
8168
8169void dev_set_rx_mode(struct net_device *dev)
8170{
8171 netif_addr_lock_bh(dev);
8172 __dev_set_rx_mode(dev);
8173 netif_addr_unlock_bh(dev);
8174}
8175
8176/**
8177 * dev_get_flags - get flags reported to userspace
8178 * @dev: device
8179 *
8180 * Get the combination of flag bits exported through APIs to userspace.
8181 */
8182unsigned int dev_get_flags(const struct net_device *dev)
8183{
8184 unsigned int flags;
8185
8186 flags = (dev->flags & ~(IFF_PROMISC |
8187 IFF_ALLMULTI |
8188 IFF_RUNNING |
8189 IFF_LOWER_UP |
8190 IFF_DORMANT)) |
8191 (dev->gflags & (IFF_PROMISC |
8192 IFF_ALLMULTI));
8193
8194 if (netif_running(dev)) {
8195 if (netif_oper_up(dev))
8196 flags |= IFF_RUNNING;
8197 if (netif_carrier_ok(dev))
8198 flags |= IFF_LOWER_UP;
8199 if (netif_dormant(dev))
8200 flags |= IFF_DORMANT;
8201 }
8202
8203 return flags;
8204}
8205EXPORT_SYMBOL(dev_get_flags);
8206
8207int __dev_change_flags(struct net_device *dev, unsigned int flags,
8208 struct netlink_ext_ack *extack)
8209{
8210 unsigned int old_flags = dev->flags;
8211 int ret;
8212
8213 ASSERT_RTNL();
8214
8215 /*
8216 * Set the flags on our device.
8217 */
8218
8219 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8220 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8221 IFF_AUTOMEDIA)) |
8222 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8223 IFF_ALLMULTI));
8224
8225 /*
8226 * Load in the correct multicast list now the flags have changed.
8227 */
8228
8229 if ((old_flags ^ flags) & IFF_MULTICAST)
8230 dev_change_rx_flags(dev, IFF_MULTICAST);
8231
8232 dev_set_rx_mode(dev);
8233
8234 /*
8235 * Have we downed the interface. We handle IFF_UP ourselves
8236 * according to user attempts to set it, rather than blindly
8237 * setting it.
8238 */
8239
8240 ret = 0;
8241 if ((old_flags ^ flags) & IFF_UP) {
8242 if (old_flags & IFF_UP)
8243 __dev_close(dev);
8244 else
8245 ret = __dev_open(dev, extack);
8246 }
8247
8248 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8249 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8250 unsigned int old_flags = dev->flags;
8251
8252 dev->gflags ^= IFF_PROMISC;
8253
8254 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8255 if (dev->flags != old_flags)
8256 dev_set_rx_mode(dev);
8257 }
8258
8259 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8260 * is important. Some (broken) drivers set IFF_PROMISC, when
8261 * IFF_ALLMULTI is requested not asking us and not reporting.
8262 */
8263 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8264 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8265
8266 dev->gflags ^= IFF_ALLMULTI;
8267 __dev_set_allmulti(dev, inc, false);
8268 }
8269
8270 return ret;
8271}
8272
8273void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8274 unsigned int gchanges)
8275{
8276 unsigned int changes = dev->flags ^ old_flags;
8277
8278 if (gchanges)
8279 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8280
8281 if (changes & IFF_UP) {
8282 if (dev->flags & IFF_UP)
8283 call_netdevice_notifiers(NETDEV_UP, dev);
8284 else
8285 call_netdevice_notifiers(NETDEV_DOWN, dev);
8286 }
8287
8288 if (dev->flags & IFF_UP &&
8289 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8290 struct netdev_notifier_change_info change_info = {
8291 .info = {
8292 .dev = dev,
8293 },
8294 .flags_changed = changes,
8295 };
8296
8297 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8298 }
8299}
8300
8301/**
8302 * dev_change_flags - change device settings
8303 * @dev: device
8304 * @flags: device state flags
8305 * @extack: netlink extended ack
8306 *
8307 * Change settings on device based state flags. The flags are
8308 * in the userspace exported format.
8309 */
8310int dev_change_flags(struct net_device *dev, unsigned int flags,
8311 struct netlink_ext_ack *extack)
8312{
8313 int ret;
8314 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8315
8316 ret = __dev_change_flags(dev, flags, extack);
8317 if (ret < 0)
8318 return ret;
8319
8320 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8321 __dev_notify_flags(dev, old_flags, changes);
8322 return ret;
8323}
8324EXPORT_SYMBOL(dev_change_flags);
8325
8326int __dev_set_mtu(struct net_device *dev, int new_mtu)
8327{
8328 const struct net_device_ops *ops = dev->netdev_ops;
8329
8330 if (ops->ndo_change_mtu)
8331 return ops->ndo_change_mtu(dev, new_mtu);
8332
8333 /* Pairs with all the lockless reads of dev->mtu in the stack */
8334 WRITE_ONCE(dev->mtu, new_mtu);
8335 return 0;
8336}
8337EXPORT_SYMBOL(__dev_set_mtu);
8338
8339int dev_validate_mtu(struct net_device *dev, int new_mtu,
8340 struct netlink_ext_ack *extack)
8341{
8342 /* MTU must be positive, and in range */
8343 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8344 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8345 return -EINVAL;
8346 }
8347
8348 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8349 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8350 return -EINVAL;
8351 }
8352 return 0;
8353}
8354
8355/**
8356 * dev_set_mtu_ext - Change maximum transfer unit
8357 * @dev: device
8358 * @new_mtu: new transfer unit
8359 * @extack: netlink extended ack
8360 *
8361 * Change the maximum transfer size of the network device.
8362 */
8363int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8364 struct netlink_ext_ack *extack)
8365{
8366 int err, orig_mtu;
8367
8368 if (new_mtu == dev->mtu)
8369 return 0;
8370
8371 err = dev_validate_mtu(dev, new_mtu, extack);
8372 if (err)
8373 return err;
8374
8375 if (!netif_device_present(dev))
8376 return -ENODEV;
8377
8378 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8379 err = notifier_to_errno(err);
8380 if (err)
8381 return err;
8382
8383 orig_mtu = dev->mtu;
8384 err = __dev_set_mtu(dev, new_mtu);
8385
8386 if (!err) {
8387 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8388 orig_mtu);
8389 err = notifier_to_errno(err);
8390 if (err) {
8391 /* setting mtu back and notifying everyone again,
8392 * so that they have a chance to revert changes.
8393 */
8394 __dev_set_mtu(dev, orig_mtu);
8395 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8396 new_mtu);
8397 }
8398 }
8399 return err;
8400}
8401
8402int dev_set_mtu(struct net_device *dev, int new_mtu)
8403{
8404 struct netlink_ext_ack extack;
8405 int err;
8406
8407 memset(&extack, 0, sizeof(extack));
8408 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8409 if (err && extack._msg)
8410 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8411 return err;
8412}
8413EXPORT_SYMBOL(dev_set_mtu);
8414
8415/**
8416 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8417 * @dev: device
8418 * @new_len: new tx queue length
8419 */
8420int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8421{
8422 unsigned int orig_len = dev->tx_queue_len;
8423 int res;
8424
8425 if (new_len != (unsigned int)new_len)
8426 return -ERANGE;
8427
8428 if (new_len != orig_len) {
8429 dev->tx_queue_len = new_len;
8430 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8431 res = notifier_to_errno(res);
8432 if (res)
8433 goto err_rollback;
8434 res = dev_qdisc_change_tx_queue_len(dev);
8435 if (res)
8436 goto err_rollback;
8437 }
8438
8439 return 0;
8440
8441err_rollback:
8442 netdev_err(dev, "refused to change device tx_queue_len\n");
8443 dev->tx_queue_len = orig_len;
8444 return res;
8445}
8446
8447/**
8448 * dev_set_group - Change group this device belongs to
8449 * @dev: device
8450 * @new_group: group this device should belong to
8451 */
8452void dev_set_group(struct net_device *dev, int new_group)
8453{
8454 dev->group = new_group;
8455}
8456EXPORT_SYMBOL(dev_set_group);
8457
8458/**
8459 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8460 * @dev: device
8461 * @addr: new address
8462 * @extack: netlink extended ack
8463 */
8464int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8465 struct netlink_ext_ack *extack)
8466{
8467 struct netdev_notifier_pre_changeaddr_info info = {
8468 .info.dev = dev,
8469 .info.extack = extack,
8470 .dev_addr = addr,
8471 };
8472 int rc;
8473
8474 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8475 return notifier_to_errno(rc);
8476}
8477EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8478
8479/**
8480 * dev_set_mac_address - Change Media Access Control Address
8481 * @dev: device
8482 * @sa: new address
8483 * @extack: netlink extended ack
8484 *
8485 * Change the hardware (MAC) address of the device
8486 */
8487int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8488 struct netlink_ext_ack *extack)
8489{
8490 const struct net_device_ops *ops = dev->netdev_ops;
8491 int err;
8492
8493 if (!ops->ndo_set_mac_address)
8494 return -EOPNOTSUPP;
8495 if (sa->sa_family != dev->type)
8496 return -EINVAL;
8497 if (!netif_device_present(dev))
8498 return -ENODEV;
8499 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8500 if (err)
8501 return err;
8502 err = ops->ndo_set_mac_address(dev, sa);
8503 if (err)
8504 return err;
8505 dev->addr_assign_type = NET_ADDR_SET;
8506 netdev_update_addr_mask(dev);
8507 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8508 add_device_randomness(dev->dev_addr, dev->addr_len);
8509 return 0;
8510}
8511EXPORT_SYMBOL(dev_set_mac_address);
8512
8513static DECLARE_RWSEM(dev_addr_sem);
8514
8515int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8516 struct netlink_ext_ack *extack)
8517{
8518 int ret;
8519
8520 down_write(&dev_addr_sem);
8521 ret = dev_set_mac_address(dev, sa, extack);
8522 up_write(&dev_addr_sem);
8523 return ret;
8524}
8525EXPORT_SYMBOL(dev_set_mac_address_user);
8526
8527int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8528{
8529 size_t size = sizeof(sa->sa_data);
8530 struct net_device *dev;
8531 int ret = 0;
8532
8533 down_read(&dev_addr_sem);
8534 rcu_read_lock();
8535
8536 dev = dev_get_by_name_rcu(net, dev_name);
8537 if (!dev) {
8538 ret = -ENODEV;
8539 goto unlock;
8540 }
8541 if (!dev->addr_len)
8542 memset(sa->sa_data, 0, size);
8543 else
8544 memcpy(sa->sa_data, dev->dev_addr,
8545 min_t(size_t, size, dev->addr_len));
8546 sa->sa_family = dev->type;
8547
8548unlock:
8549 rcu_read_unlock();
8550 up_read(&dev_addr_sem);
8551 return ret;
8552}
8553EXPORT_SYMBOL(dev_get_mac_address);
8554
8555/**
8556 * dev_change_carrier - Change device carrier
8557 * @dev: device
8558 * @new_carrier: new value
8559 *
8560 * Change device carrier
8561 */
8562int dev_change_carrier(struct net_device *dev, bool new_carrier)
8563{
8564 const struct net_device_ops *ops = dev->netdev_ops;
8565
8566 if (!ops->ndo_change_carrier)
8567 return -EOPNOTSUPP;
8568 if (!netif_device_present(dev))
8569 return -ENODEV;
8570 return ops->ndo_change_carrier(dev, new_carrier);
8571}
8572EXPORT_SYMBOL(dev_change_carrier);
8573
8574/**
8575 * dev_get_phys_port_id - Get device physical port ID
8576 * @dev: device
8577 * @ppid: port ID
8578 *
8579 * Get device physical port ID
8580 */
8581int dev_get_phys_port_id(struct net_device *dev,
8582 struct netdev_phys_item_id *ppid)
8583{
8584 const struct net_device_ops *ops = dev->netdev_ops;
8585
8586 if (!ops->ndo_get_phys_port_id)
8587 return -EOPNOTSUPP;
8588 return ops->ndo_get_phys_port_id(dev, ppid);
8589}
8590EXPORT_SYMBOL(dev_get_phys_port_id);
8591
8592/**
8593 * dev_get_phys_port_name - Get device physical port name
8594 * @dev: device
8595 * @name: port name
8596 * @len: limit of bytes to copy to name
8597 *
8598 * Get device physical port name
8599 */
8600int dev_get_phys_port_name(struct net_device *dev,
8601 char *name, size_t len)
8602{
8603 const struct net_device_ops *ops = dev->netdev_ops;
8604 int err;
8605
8606 if (ops->ndo_get_phys_port_name) {
8607 err = ops->ndo_get_phys_port_name(dev, name, len);
8608 if (err != -EOPNOTSUPP)
8609 return err;
8610 }
8611 return devlink_compat_phys_port_name_get(dev, name, len);
8612}
8613EXPORT_SYMBOL(dev_get_phys_port_name);
8614
8615/**
8616 * dev_get_port_parent_id - Get the device's port parent identifier
8617 * @dev: network device
8618 * @ppid: pointer to a storage for the port's parent identifier
8619 * @recurse: allow/disallow recursion to lower devices
8620 *
8621 * Get the devices's port parent identifier
8622 */
8623int dev_get_port_parent_id(struct net_device *dev,
8624 struct netdev_phys_item_id *ppid,
8625 bool recurse)
8626{
8627 const struct net_device_ops *ops = dev->netdev_ops;
8628 struct netdev_phys_item_id first = { };
8629 struct net_device *lower_dev;
8630 struct list_head *iter;
8631 int err;
8632
8633 if (ops->ndo_get_port_parent_id) {
8634 err = ops->ndo_get_port_parent_id(dev, ppid);
8635 if (err != -EOPNOTSUPP)
8636 return err;
8637 }
8638
8639 err = devlink_compat_switch_id_get(dev, ppid);
8640 if (!err || err != -EOPNOTSUPP)
8641 return err;
8642
8643 if (!recurse)
8644 return -EOPNOTSUPP;
8645
8646 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8647 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8648 if (err)
8649 break;
8650 if (!first.id_len)
8651 first = *ppid;
8652 else if (memcmp(&first, ppid, sizeof(*ppid)))
8653 return -EOPNOTSUPP;
8654 }
8655
8656 return err;
8657}
8658EXPORT_SYMBOL(dev_get_port_parent_id);
8659
8660/**
8661 * netdev_port_same_parent_id - Indicate if two network devices have
8662 * the same port parent identifier
8663 * @a: first network device
8664 * @b: second network device
8665 */
8666bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8667{
8668 struct netdev_phys_item_id a_id = { };
8669 struct netdev_phys_item_id b_id = { };
8670
8671 if (dev_get_port_parent_id(a, &a_id, true) ||
8672 dev_get_port_parent_id(b, &b_id, true))
8673 return false;
8674
8675 return netdev_phys_item_id_same(&a_id, &b_id);
8676}
8677EXPORT_SYMBOL(netdev_port_same_parent_id);
8678
8679/**
8680 * dev_change_proto_down - update protocol port state information
8681 * @dev: device
8682 * @proto_down: new value
8683 *
8684 * This info can be used by switch drivers to set the phys state of the
8685 * port.
8686 */
8687int dev_change_proto_down(struct net_device *dev, bool proto_down)
8688{
8689 const struct net_device_ops *ops = dev->netdev_ops;
8690
8691 if (!ops->ndo_change_proto_down)
8692 return -EOPNOTSUPP;
8693 if (!netif_device_present(dev))
8694 return -ENODEV;
8695 return ops->ndo_change_proto_down(dev, proto_down);
8696}
8697EXPORT_SYMBOL(dev_change_proto_down);
8698
8699/**
8700 * dev_change_proto_down_generic - generic implementation for
8701 * ndo_change_proto_down that sets carrier according to
8702 * proto_down.
8703 *
8704 * @dev: device
8705 * @proto_down: new value
8706 */
8707int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8708{
8709 if (proto_down)
8710 netif_carrier_off(dev);
8711 else
8712 netif_carrier_on(dev);
8713 dev->proto_down = proto_down;
8714 return 0;
8715}
8716EXPORT_SYMBOL(dev_change_proto_down_generic);
8717
8718u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8719 enum bpf_netdev_command cmd)
8720{
8721 struct netdev_bpf xdp;
8722
8723 if (!bpf_op)
8724 return 0;
8725
8726 memset(&xdp, 0, sizeof(xdp));
8727 xdp.command = cmd;
8728
8729 /* Query must always succeed. */
8730 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8731
8732 return xdp.prog_id;
8733}
8734
8735static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8736 struct netlink_ext_ack *extack, u32 flags,
8737 struct bpf_prog *prog)
8738{
8739 struct netdev_bpf xdp;
8740
8741 memset(&xdp, 0, sizeof(xdp));
8742 if (flags & XDP_FLAGS_HW_MODE)
8743 xdp.command = XDP_SETUP_PROG_HW;
8744 else
8745 xdp.command = XDP_SETUP_PROG;
8746 xdp.extack = extack;
8747 xdp.flags = flags;
8748 xdp.prog = prog;
8749
8750 return bpf_op(dev, &xdp);
8751}
8752
8753static void dev_xdp_uninstall(struct net_device *dev)
8754{
8755 struct netdev_bpf xdp;
8756 bpf_op_t ndo_bpf;
8757
8758 /* Remove generic XDP */
8759 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8760
8761 /* Remove from the driver */
8762 ndo_bpf = dev->netdev_ops->ndo_bpf;
8763 if (!ndo_bpf)
8764 return;
8765
8766 memset(&xdp, 0, sizeof(xdp));
8767 xdp.command = XDP_QUERY_PROG;
8768 WARN_ON(ndo_bpf(dev, &xdp));
8769 if (xdp.prog_id)
8770 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8771 NULL));
8772
8773 /* Remove HW offload */
8774 memset(&xdp, 0, sizeof(xdp));
8775 xdp.command = XDP_QUERY_PROG_HW;
8776 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8777 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8778 NULL));
8779}
8780
8781/**
8782 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8783 * @dev: device
8784 * @extack: netlink extended ack
8785 * @fd: new program fd or negative value to clear
8786 * @flags: xdp-related flags
8787 *
8788 * Set or clear a bpf program for a device
8789 */
8790int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8791 int fd, u32 flags)
8792{
8793 const struct net_device_ops *ops = dev->netdev_ops;
8794 enum bpf_netdev_command query;
8795 struct bpf_prog *prog = NULL;
8796 bpf_op_t bpf_op, bpf_chk;
8797 bool offload;
8798 int err;
8799
8800 ASSERT_RTNL();
8801
8802 offload = flags & XDP_FLAGS_HW_MODE;
8803 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8804
8805 bpf_op = bpf_chk = ops->ndo_bpf;
8806 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8807 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8808 return -EOPNOTSUPP;
8809 }
8810 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8811 bpf_op = generic_xdp_install;
8812 if (bpf_op == bpf_chk)
8813 bpf_chk = generic_xdp_install;
8814
8815 if (fd >= 0) {
8816 u32 prog_id;
8817
8818 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8819 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8820 return -EEXIST;
8821 }
8822
8823 prog_id = __dev_xdp_query(dev, bpf_op, query);
8824 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8825 NL_SET_ERR_MSG(extack, "XDP program already attached");
8826 return -EBUSY;
8827 }
8828
8829 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8830 bpf_op == ops->ndo_bpf);
8831 if (IS_ERR(prog))
8832 return PTR_ERR(prog);
8833
8834 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8835 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8836 bpf_prog_put(prog);
8837 return -EINVAL;
8838 }
8839
8840 /* prog->aux->id may be 0 for orphaned device-bound progs */
8841 if (prog->aux->id && prog->aux->id == prog_id) {
8842 bpf_prog_put(prog);
8843 return 0;
8844 }
8845 } else {
8846 if (!__dev_xdp_query(dev, bpf_op, query))
8847 return 0;
8848 }
8849
8850 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8851 if (err < 0 && prog)
8852 bpf_prog_put(prog);
8853
8854 return err;
8855}
8856
8857/**
8858 * dev_new_index - allocate an ifindex
8859 * @net: the applicable net namespace
8860 *
8861 * Returns a suitable unique value for a new device interface
8862 * number. The caller must hold the rtnl semaphore or the
8863 * dev_base_lock to be sure it remains unique.
8864 */
8865static int dev_new_index(struct net *net)
8866{
8867 int ifindex = net->ifindex;
8868
8869 for (;;) {
8870 if (++ifindex <= 0)
8871 ifindex = 1;
8872 if (!__dev_get_by_index(net, ifindex))
8873 return net->ifindex = ifindex;
8874 }
8875}
8876
8877/* Delayed registration/unregisteration */
8878static LIST_HEAD(net_todo_list);
8879DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8880
8881static void net_set_todo(struct net_device *dev)
8882{
8883 list_add_tail(&dev->todo_list, &net_todo_list);
8884 dev_net(dev)->dev_unreg_count++;
8885}
8886
8887static void rollback_registered_many(struct list_head *head)
8888{
8889 struct net_device *dev, *tmp;
8890 LIST_HEAD(close_head);
8891
8892 BUG_ON(dev_boot_phase);
8893 ASSERT_RTNL();
8894
8895 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8896 /* Some devices call without registering
8897 * for initialization unwind. Remove those
8898 * devices and proceed with the remaining.
8899 */
8900 if (dev->reg_state == NETREG_UNINITIALIZED) {
8901 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8902 dev->name, dev);
8903
8904 WARN_ON(1);
8905 list_del(&dev->unreg_list);
8906 continue;
8907 }
8908 dev->dismantle = true;
8909 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8910 }
8911
8912 /* If device is running, close it first. */
8913 list_for_each_entry(dev, head, unreg_list)
8914 list_add_tail(&dev->close_list, &close_head);
8915 dev_close_many(&close_head, true);
8916
8917 list_for_each_entry(dev, head, unreg_list) {
8918 /* And unlink it from device chain. */
8919 unlist_netdevice(dev);
8920
8921 dev->reg_state = NETREG_UNREGISTERING;
8922 }
8923 flush_all_backlogs();
8924
8925 synchronize_net();
8926
8927 list_for_each_entry(dev, head, unreg_list) {
8928 struct sk_buff *skb = NULL;
8929
8930 /* Shutdown queueing discipline. */
8931 dev_shutdown(dev);
8932
8933 dev_xdp_uninstall(dev);
8934
8935 /* Notify protocols, that we are about to destroy
8936 * this device. They should clean all the things.
8937 */
8938 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8939
8940 if (!dev->rtnl_link_ops ||
8941 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8942 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8943 GFP_KERNEL, NULL, 0);
8944
8945 /*
8946 * Flush the unicast and multicast chains
8947 */
8948 dev_uc_flush(dev);
8949 dev_mc_flush(dev);
8950
8951 if (dev->netdev_ops->ndo_uninit)
8952 dev->netdev_ops->ndo_uninit(dev);
8953
8954 if (skb)
8955 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8956
8957 /* Notifier chain MUST detach us all upper devices. */
8958 WARN_ON(netdev_has_any_upper_dev(dev));
8959 WARN_ON(netdev_has_any_lower_dev(dev));
8960
8961 /* Remove entries from kobject tree */
8962 netdev_unregister_kobject(dev);
8963#ifdef CONFIG_XPS
8964 /* Remove XPS queueing entries */
8965 netif_reset_xps_queues_gt(dev, 0);
8966#endif
8967 }
8968
8969 synchronize_net();
8970
8971 list_for_each_entry(dev, head, unreg_list)
8972 dev_put(dev);
8973}
8974
8975static void rollback_registered(struct net_device *dev)
8976{
8977 LIST_HEAD(single);
8978
8979 list_add(&dev->unreg_list, &single);
8980 rollback_registered_many(&single);
8981 list_del(&single);
8982}
8983
8984static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8985 struct net_device *upper, netdev_features_t features)
8986{
8987 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8988 netdev_features_t feature;
8989 int feature_bit;
8990
8991 for_each_netdev_feature(upper_disables, feature_bit) {
8992 feature = __NETIF_F_BIT(feature_bit);
8993 if (!(upper->wanted_features & feature)
8994 && (features & feature)) {
8995 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8996 &feature, upper->name);
8997 features &= ~feature;
8998 }
8999 }
9000
9001 return features;
9002}
9003
9004static void netdev_sync_lower_features(struct net_device *upper,
9005 struct net_device *lower, netdev_features_t features)
9006{
9007 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9008 netdev_features_t feature;
9009 int feature_bit;
9010
9011 for_each_netdev_feature(upper_disables, feature_bit) {
9012 feature = __NETIF_F_BIT(feature_bit);
9013 if (!(features & feature) && (lower->features & feature)) {
9014 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9015 &feature, lower->name);
9016 lower->wanted_features &= ~feature;
9017 __netdev_update_features(lower);
9018
9019 if (unlikely(lower->features & feature))
9020 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9021 &feature, lower->name);
9022 else
9023 netdev_features_change(lower);
9024 }
9025 }
9026}
9027
9028static netdev_features_t netdev_fix_features(struct net_device *dev,
9029 netdev_features_t features)
9030{
9031 /* Fix illegal checksum combinations */
9032 if ((features & NETIF_F_HW_CSUM) &&
9033 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9034 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9035 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9036 }
9037
9038 /* TSO requires that SG is present as well. */
9039 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9040 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9041 features &= ~NETIF_F_ALL_TSO;
9042 }
9043
9044 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9045 !(features & NETIF_F_IP_CSUM)) {
9046 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9047 features &= ~NETIF_F_TSO;
9048 features &= ~NETIF_F_TSO_ECN;
9049 }
9050
9051 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9052 !(features & NETIF_F_IPV6_CSUM)) {
9053 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9054 features &= ~NETIF_F_TSO6;
9055 }
9056
9057 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9058 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9059 features &= ~NETIF_F_TSO_MANGLEID;
9060
9061 /* TSO ECN requires that TSO is present as well. */
9062 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9063 features &= ~NETIF_F_TSO_ECN;
9064
9065 /* Software GSO depends on SG. */
9066 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9067 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9068 features &= ~NETIF_F_GSO;
9069 }
9070
9071 /* GSO partial features require GSO partial be set */
9072 if ((features & dev->gso_partial_features) &&
9073 !(features & NETIF_F_GSO_PARTIAL)) {
9074 netdev_dbg(dev,
9075 "Dropping partially supported GSO features since no GSO partial.\n");
9076 features &= ~dev->gso_partial_features;
9077 }
9078
9079 if (!(features & NETIF_F_RXCSUM)) {
9080 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9081 * successfully merged by hardware must also have the
9082 * checksum verified by hardware. If the user does not
9083 * want to enable RXCSUM, logically, we should disable GRO_HW.
9084 */
9085 if (features & NETIF_F_GRO_HW) {
9086 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9087 features &= ~NETIF_F_GRO_HW;
9088 }
9089 }
9090
9091 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9092 if (features & NETIF_F_RXFCS) {
9093 if (features & NETIF_F_LRO) {
9094 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9095 features &= ~NETIF_F_LRO;
9096 }
9097
9098 if (features & NETIF_F_GRO_HW) {
9099 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9100 features &= ~NETIF_F_GRO_HW;
9101 }
9102 }
9103
9104 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9105 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9106 features &= ~NETIF_F_HW_TLS_RX;
9107 }
9108
9109 return features;
9110}
9111
9112int __netdev_update_features(struct net_device *dev)
9113{
9114 struct net_device *upper, *lower;
9115 netdev_features_t features;
9116 struct list_head *iter;
9117 int err = -1;
9118
9119 ASSERT_RTNL();
9120
9121 features = netdev_get_wanted_features(dev);
9122
9123 if (dev->netdev_ops->ndo_fix_features)
9124 features = dev->netdev_ops->ndo_fix_features(dev, features);
9125
9126 /* driver might be less strict about feature dependencies */
9127 features = netdev_fix_features(dev, features);
9128
9129 /* some features can't be enabled if they're off an an upper device */
9130 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9131 features = netdev_sync_upper_features(dev, upper, features);
9132
9133 if (dev->features == features)
9134 goto sync_lower;
9135
9136 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9137 &dev->features, &features);
9138
9139 if (dev->netdev_ops->ndo_set_features)
9140 err = dev->netdev_ops->ndo_set_features(dev, features);
9141 else
9142 err = 0;
9143
9144 if (unlikely(err < 0)) {
9145 netdev_err(dev,
9146 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9147 err, &features, &dev->features);
9148 /* return non-0 since some features might have changed and
9149 * it's better to fire a spurious notification than miss it
9150 */
9151 return -1;
9152 }
9153
9154sync_lower:
9155 /* some features must be disabled on lower devices when disabled
9156 * on an upper device (think: bonding master or bridge)
9157 */
9158 netdev_for_each_lower_dev(dev, lower, iter)
9159 netdev_sync_lower_features(dev, lower, features);
9160
9161 if (!err) {
9162 netdev_features_t diff = features ^ dev->features;
9163
9164 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9165 /* udp_tunnel_{get,drop}_rx_info both need
9166 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9167 * device, or they won't do anything.
9168 * Thus we need to update dev->features
9169 * *before* calling udp_tunnel_get_rx_info,
9170 * but *after* calling udp_tunnel_drop_rx_info.
9171 */
9172 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9173 dev->features = features;
9174 udp_tunnel_get_rx_info(dev);
9175 } else {
9176 udp_tunnel_drop_rx_info(dev);
9177 }
9178 }
9179
9180 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9181 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9182 dev->features = features;
9183 err |= vlan_get_rx_ctag_filter_info(dev);
9184 } else {
9185 vlan_drop_rx_ctag_filter_info(dev);
9186 }
9187 }
9188
9189 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9190 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9191 dev->features = features;
9192 err |= vlan_get_rx_stag_filter_info(dev);
9193 } else {
9194 vlan_drop_rx_stag_filter_info(dev);
9195 }
9196 }
9197
9198 dev->features = features;
9199 }
9200
9201 return err < 0 ? 0 : 1;
9202}
9203
9204/**
9205 * netdev_update_features - recalculate device features
9206 * @dev: the device to check
9207 *
9208 * Recalculate dev->features set and send notifications if it
9209 * has changed. Should be called after driver or hardware dependent
9210 * conditions might have changed that influence the features.
9211 */
9212void netdev_update_features(struct net_device *dev)
9213{
9214 if (__netdev_update_features(dev))
9215 netdev_features_change(dev);
9216}
9217EXPORT_SYMBOL(netdev_update_features);
9218
9219/**
9220 * netdev_change_features - recalculate device features
9221 * @dev: the device to check
9222 *
9223 * Recalculate dev->features set and send notifications even
9224 * if they have not changed. Should be called instead of
9225 * netdev_update_features() if also dev->vlan_features might
9226 * have changed to allow the changes to be propagated to stacked
9227 * VLAN devices.
9228 */
9229void netdev_change_features(struct net_device *dev)
9230{
9231 __netdev_update_features(dev);
9232 netdev_features_change(dev);
9233}
9234EXPORT_SYMBOL(netdev_change_features);
9235
9236/**
9237 * netif_stacked_transfer_operstate - transfer operstate
9238 * @rootdev: the root or lower level device to transfer state from
9239 * @dev: the device to transfer operstate to
9240 *
9241 * Transfer operational state from root to device. This is normally
9242 * called when a stacking relationship exists between the root
9243 * device and the device(a leaf device).
9244 */
9245void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9246 struct net_device *dev)
9247{
9248 if (rootdev->operstate == IF_OPER_DORMANT)
9249 netif_dormant_on(dev);
9250 else
9251 netif_dormant_off(dev);
9252
9253 if (netif_carrier_ok(rootdev))
9254 netif_carrier_on(dev);
9255 else
9256 netif_carrier_off(dev);
9257}
9258EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9259
9260static int netif_alloc_rx_queues(struct net_device *dev)
9261{
9262 unsigned int i, count = dev->num_rx_queues;
9263 struct netdev_rx_queue *rx;
9264 size_t sz = count * sizeof(*rx);
9265 int err = 0;
9266
9267 BUG_ON(count < 1);
9268
9269 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9270 if (!rx)
9271 return -ENOMEM;
9272
9273 dev->_rx = rx;
9274
9275 for (i = 0; i < count; i++) {
9276 rx[i].dev = dev;
9277
9278 /* XDP RX-queue setup */
9279 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9280 if (err < 0)
9281 goto err_rxq_info;
9282 }
9283 return 0;
9284
9285err_rxq_info:
9286 /* Rollback successful reg's and free other resources */
9287 while (i--)
9288 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9289 kvfree(dev->_rx);
9290 dev->_rx = NULL;
9291 return err;
9292}
9293
9294static void netif_free_rx_queues(struct net_device *dev)
9295{
9296 unsigned int i, count = dev->num_rx_queues;
9297
9298 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9299 if (!dev->_rx)
9300 return;
9301
9302 for (i = 0; i < count; i++)
9303 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9304
9305 kvfree(dev->_rx);
9306}
9307
9308static void netdev_init_one_queue(struct net_device *dev,
9309 struct netdev_queue *queue, void *_unused)
9310{
9311 /* Initialize queue lock */
9312 spin_lock_init(&queue->_xmit_lock);
9313 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9314 queue->xmit_lock_owner = -1;
9315 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9316 queue->dev = dev;
9317#ifdef CONFIG_BQL
9318 dql_init(&queue->dql, HZ);
9319#endif
9320}
9321
9322static void netif_free_tx_queues(struct net_device *dev)
9323{
9324 kvfree(dev->_tx);
9325}
9326
9327static int netif_alloc_netdev_queues(struct net_device *dev)
9328{
9329 unsigned int count = dev->num_tx_queues;
9330 struct netdev_queue *tx;
9331 size_t sz = count * sizeof(*tx);
9332
9333 if (count < 1 || count > 0xffff)
9334 return -EINVAL;
9335
9336 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9337 if (!tx)
9338 return -ENOMEM;
9339
9340 dev->_tx = tx;
9341
9342 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9343 spin_lock_init(&dev->tx_global_lock);
9344
9345 return 0;
9346}
9347
9348void netif_tx_stop_all_queues(struct net_device *dev)
9349{
9350 unsigned int i;
9351
9352 for (i = 0; i < dev->num_tx_queues; i++) {
9353 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9354
9355 netif_tx_stop_queue(txq);
9356 }
9357}
9358EXPORT_SYMBOL(netif_tx_stop_all_queues);
9359
9360static void netdev_register_lockdep_key(struct net_device *dev)
9361{
9362 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9363 lockdep_register_key(&dev->qdisc_running_key);
9364 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9365 lockdep_register_key(&dev->addr_list_lock_key);
9366}
9367
9368static void netdev_unregister_lockdep_key(struct net_device *dev)
9369{
9370 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9371 lockdep_unregister_key(&dev->qdisc_running_key);
9372 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9373 lockdep_unregister_key(&dev->addr_list_lock_key);
9374}
9375
9376void netdev_update_lockdep_key(struct net_device *dev)
9377{
9378 lockdep_unregister_key(&dev->addr_list_lock_key);
9379 lockdep_register_key(&dev->addr_list_lock_key);
9380
9381 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9382}
9383EXPORT_SYMBOL(netdev_update_lockdep_key);
9384
9385/**
9386 * register_netdevice - register a network device
9387 * @dev: device to register
9388 *
9389 * Take a completed network device structure and add it to the kernel
9390 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9391 * chain. 0 is returned on success. A negative errno code is returned
9392 * on a failure to set up the device, or if the name is a duplicate.
9393 *
9394 * Callers must hold the rtnl semaphore. You may want
9395 * register_netdev() instead of this.
9396 *
9397 * BUGS:
9398 * The locking appears insufficient to guarantee two parallel registers
9399 * will not get the same name.
9400 */
9401
9402int register_netdevice(struct net_device *dev)
9403{
9404 int ret;
9405 struct net *net = dev_net(dev);
9406
9407 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9408 NETDEV_FEATURE_COUNT);
9409 BUG_ON(dev_boot_phase);
9410 ASSERT_RTNL();
9411
9412 might_sleep();
9413
9414 /* When net_device's are persistent, this will be fatal. */
9415 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9416 BUG_ON(!net);
9417
9418 spin_lock_init(&dev->addr_list_lock);
9419 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9420
9421 ret = dev_get_valid_name(net, dev, dev->name);
9422 if (ret < 0)
9423 goto out;
9424
9425 /* Init, if this function is available */
9426 if (dev->netdev_ops->ndo_init) {
9427 ret = dev->netdev_ops->ndo_init(dev);
9428 if (ret) {
9429 if (ret > 0)
9430 ret = -EIO;
9431 goto out;
9432 }
9433 }
9434
9435 if (((dev->hw_features | dev->features) &
9436 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9437 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9438 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9439 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9440 ret = -EINVAL;
9441 goto err_uninit;
9442 }
9443
9444 ret = -EBUSY;
9445 if (!dev->ifindex)
9446 dev->ifindex = dev_new_index(net);
9447 else if (__dev_get_by_index(net, dev->ifindex))
9448 goto err_uninit;
9449
9450 /* Transfer changeable features to wanted_features and enable
9451 * software offloads (GSO and GRO).
9452 */
9453 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9454 dev->features |= NETIF_F_SOFT_FEATURES;
9455
9456 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9457 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9458 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9459 }
9460
9461 dev->wanted_features = dev->features & dev->hw_features;
9462
9463 if (!(dev->flags & IFF_LOOPBACK))
9464 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9465
9466 /* If IPv4 TCP segmentation offload is supported we should also
9467 * allow the device to enable segmenting the frame with the option
9468 * of ignoring a static IP ID value. This doesn't enable the
9469 * feature itself but allows the user to enable it later.
9470 */
9471 if (dev->hw_features & NETIF_F_TSO)
9472 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9473 if (dev->vlan_features & NETIF_F_TSO)
9474 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9475 if (dev->mpls_features & NETIF_F_TSO)
9476 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9477 if (dev->hw_enc_features & NETIF_F_TSO)
9478 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9479
9480 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9481 */
9482 dev->vlan_features |= NETIF_F_HIGHDMA;
9483
9484 /* Make NETIF_F_SG inheritable to tunnel devices.
9485 */
9486 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9487
9488 /* Make NETIF_F_SG inheritable to MPLS.
9489 */
9490 dev->mpls_features |= NETIF_F_SG;
9491
9492 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9493 ret = notifier_to_errno(ret);
9494 if (ret)
9495 goto err_uninit;
9496
9497 ret = netdev_register_kobject(dev);
9498 if (ret) {
9499 dev->reg_state = NETREG_UNREGISTERED;
9500 goto err_uninit;
9501 }
9502 dev->reg_state = NETREG_REGISTERED;
9503
9504 __netdev_update_features(dev);
9505
9506 /*
9507 * Default initial state at registry is that the
9508 * device is present.
9509 */
9510
9511 set_bit(__LINK_STATE_PRESENT, &dev->state);
9512
9513 linkwatch_init_dev(dev);
9514
9515 dev_init_scheduler(dev);
9516 dev_hold(dev);
9517 list_netdevice(dev);
9518 add_device_randomness(dev->dev_addr, dev->addr_len);
9519
9520 /* If the device has permanent device address, driver should
9521 * set dev_addr and also addr_assign_type should be set to
9522 * NET_ADDR_PERM (default value).
9523 */
9524 if (dev->addr_assign_type == NET_ADDR_PERM)
9525 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9526
9527 /* Notify protocols, that a new device appeared. */
9528 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9529 ret = notifier_to_errno(ret);
9530 if (ret) {
9531 rollback_registered(dev);
9532 rcu_barrier();
9533
9534 dev->reg_state = NETREG_UNREGISTERED;
9535 /* We should put the kobject that hold in
9536 * netdev_unregister_kobject(), otherwise
9537 * the net device cannot be freed when
9538 * driver calls free_netdev(), because the
9539 * kobject is being hold.
9540 */
9541 kobject_put(&dev->dev.kobj);
9542 }
9543 /*
9544 * Prevent userspace races by waiting until the network
9545 * device is fully setup before sending notifications.
9546 */
9547 if (!dev->rtnl_link_ops ||
9548 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9549 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9550
9551out:
9552 return ret;
9553
9554err_uninit:
9555 if (dev->netdev_ops->ndo_uninit)
9556 dev->netdev_ops->ndo_uninit(dev);
9557 if (dev->priv_destructor)
9558 dev->priv_destructor(dev);
9559 goto out;
9560}
9561EXPORT_SYMBOL(register_netdevice);
9562
9563/**
9564 * init_dummy_netdev - init a dummy network device for NAPI
9565 * @dev: device to init
9566 *
9567 * This takes a network device structure and initialize the minimum
9568 * amount of fields so it can be used to schedule NAPI polls without
9569 * registering a full blown interface. This is to be used by drivers
9570 * that need to tie several hardware interfaces to a single NAPI
9571 * poll scheduler due to HW limitations.
9572 */
9573int init_dummy_netdev(struct net_device *dev)
9574{
9575 /* Clear everything. Note we don't initialize spinlocks
9576 * are they aren't supposed to be taken by any of the
9577 * NAPI code and this dummy netdev is supposed to be
9578 * only ever used for NAPI polls
9579 */
9580 memset(dev, 0, sizeof(struct net_device));
9581
9582 /* make sure we BUG if trying to hit standard
9583 * register/unregister code path
9584 */
9585 dev->reg_state = NETREG_DUMMY;
9586
9587 /* NAPI wants this */
9588 INIT_LIST_HEAD(&dev->napi_list);
9589
9590 /* a dummy interface is started by default */
9591 set_bit(__LINK_STATE_PRESENT, &dev->state);
9592 set_bit(__LINK_STATE_START, &dev->state);
9593
9594 /* napi_busy_loop stats accounting wants this */
9595 dev_net_set(dev, &init_net);
9596
9597 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9598 * because users of this 'device' dont need to change
9599 * its refcount.
9600 */
9601
9602 return 0;
9603}
9604EXPORT_SYMBOL_GPL(init_dummy_netdev);
9605
9606
9607/**
9608 * register_netdev - register a network device
9609 * @dev: device to register
9610 *
9611 * Take a completed network device structure and add it to the kernel
9612 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9613 * chain. 0 is returned on success. A negative errno code is returned
9614 * on a failure to set up the device, or if the name is a duplicate.
9615 *
9616 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9617 * and expands the device name if you passed a format string to
9618 * alloc_netdev.
9619 */
9620int register_netdev(struct net_device *dev)
9621{
9622 int err;
9623
9624 if (rtnl_lock_killable())
9625 return -EINTR;
9626 err = register_netdevice(dev);
9627 rtnl_unlock();
9628 return err;
9629}
9630EXPORT_SYMBOL(register_netdev);
9631
9632int netdev_refcnt_read(const struct net_device *dev)
9633{
9634 int i, refcnt = 0;
9635
9636 for_each_possible_cpu(i)
9637 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9638 return refcnt;
9639}
9640EXPORT_SYMBOL(netdev_refcnt_read);
9641
9642/**
9643 * netdev_wait_allrefs - wait until all references are gone.
9644 * @dev: target net_device
9645 *
9646 * This is called when unregistering network devices.
9647 *
9648 * Any protocol or device that holds a reference should register
9649 * for netdevice notification, and cleanup and put back the
9650 * reference if they receive an UNREGISTER event.
9651 * We can get stuck here if buggy protocols don't correctly
9652 * call dev_put.
9653 */
9654static void netdev_wait_allrefs(struct net_device *dev)
9655{
9656 unsigned long rebroadcast_time, warning_time;
9657 int refcnt;
9658
9659 linkwatch_forget_dev(dev);
9660
9661 rebroadcast_time = warning_time = jiffies;
9662 refcnt = netdev_refcnt_read(dev);
9663
9664 while (refcnt != 0) {
9665 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9666 rtnl_lock();
9667
9668 /* Rebroadcast unregister notification */
9669 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9670
9671 __rtnl_unlock();
9672 rcu_barrier();
9673 rtnl_lock();
9674
9675 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9676 &dev->state)) {
9677 /* We must not have linkwatch events
9678 * pending on unregister. If this
9679 * happens, we simply run the queue
9680 * unscheduled, resulting in a noop
9681 * for this device.
9682 */
9683 linkwatch_run_queue();
9684 }
9685
9686 __rtnl_unlock();
9687
9688 rebroadcast_time = jiffies;
9689 }
9690
9691 msleep(250);
9692
9693 refcnt = netdev_refcnt_read(dev);
9694
9695 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9696 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9697 dev->name, refcnt);
9698 warning_time = jiffies;
9699 }
9700 }
9701}
9702
9703/* The sequence is:
9704 *
9705 * rtnl_lock();
9706 * ...
9707 * register_netdevice(x1);
9708 * register_netdevice(x2);
9709 * ...
9710 * unregister_netdevice(y1);
9711 * unregister_netdevice(y2);
9712 * ...
9713 * rtnl_unlock();
9714 * free_netdev(y1);
9715 * free_netdev(y2);
9716 *
9717 * We are invoked by rtnl_unlock().
9718 * This allows us to deal with problems:
9719 * 1) We can delete sysfs objects which invoke hotplug
9720 * without deadlocking with linkwatch via keventd.
9721 * 2) Since we run with the RTNL semaphore not held, we can sleep
9722 * safely in order to wait for the netdev refcnt to drop to zero.
9723 *
9724 * We must not return until all unregister events added during
9725 * the interval the lock was held have been completed.
9726 */
9727void netdev_run_todo(void)
9728{
9729 struct list_head list;
9730
9731 /* Snapshot list, allow later requests */
9732 list_replace_init(&net_todo_list, &list);
9733
9734 __rtnl_unlock();
9735
9736
9737 /* Wait for rcu callbacks to finish before next phase */
9738 if (!list_empty(&list))
9739 rcu_barrier();
9740
9741 while (!list_empty(&list)) {
9742 struct net_device *dev
9743 = list_first_entry(&list, struct net_device, todo_list);
9744 list_del(&dev->todo_list);
9745
9746 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9747 pr_err("network todo '%s' but state %d\n",
9748 dev->name, dev->reg_state);
9749 dump_stack();
9750 continue;
9751 }
9752
9753 dev->reg_state = NETREG_UNREGISTERED;
9754
9755 netdev_wait_allrefs(dev);
9756
9757 /* paranoia */
9758 BUG_ON(netdev_refcnt_read(dev));
9759 BUG_ON(!list_empty(&dev->ptype_all));
9760 BUG_ON(!list_empty(&dev->ptype_specific));
9761 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9762 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9763
9764 if (dev->priv_destructor)
9765 dev->priv_destructor(dev);
9766 if (dev->needs_free_netdev)
9767 free_netdev(dev);
9768
9769 /* Report a network device has been unregistered */
9770 rtnl_lock();
9771 dev_net(dev)->dev_unreg_count--;
9772 __rtnl_unlock();
9773 wake_up(&netdev_unregistering_wq);
9774
9775 /* Free network device */
9776 kobject_put(&dev->dev.kobj);
9777 }
9778}
9779
9780/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9781 * all the same fields in the same order as net_device_stats, with only
9782 * the type differing, but rtnl_link_stats64 may have additional fields
9783 * at the end for newer counters.
9784 */
9785void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9786 const struct net_device_stats *netdev_stats)
9787{
9788 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
9789 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
9790 u64 *dst = (u64 *)stats64;
9791
9792 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9793 for (i = 0; i < n; i++)
9794 dst[i] = (unsigned long)atomic_long_read(&src[i]);
9795 /* zero out counters that only exist in rtnl_link_stats64 */
9796 memset((char *)stats64 + n * sizeof(u64), 0,
9797 sizeof(*stats64) - n * sizeof(u64));
9798}
9799EXPORT_SYMBOL(netdev_stats_to_stats64);
9800
9801/**
9802 * dev_get_stats - get network device statistics
9803 * @dev: device to get statistics from
9804 * @storage: place to store stats
9805 *
9806 * Get network statistics from device. Return @storage.
9807 * The device driver may provide its own method by setting
9808 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9809 * otherwise the internal statistics structure is used.
9810 */
9811struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9812 struct rtnl_link_stats64 *storage)
9813{
9814 const struct net_device_ops *ops = dev->netdev_ops;
9815
9816 if (ops->ndo_get_stats64) {
9817 memset(storage, 0, sizeof(*storage));
9818 ops->ndo_get_stats64(dev, storage);
9819 } else if (ops->ndo_get_stats) {
9820 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9821 } else {
9822 netdev_stats_to_stats64(storage, &dev->stats);
9823 }
9824 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9825 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9826 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9827 return storage;
9828}
9829EXPORT_SYMBOL(dev_get_stats);
9830
9831struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9832{
9833 struct netdev_queue *queue = dev_ingress_queue(dev);
9834
9835#ifdef CONFIG_NET_CLS_ACT
9836 if (queue)
9837 return queue;
9838 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9839 if (!queue)
9840 return NULL;
9841 netdev_init_one_queue(dev, queue, NULL);
9842 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9843 queue->qdisc_sleeping = &noop_qdisc;
9844 rcu_assign_pointer(dev->ingress_queue, queue);
9845#endif
9846 return queue;
9847}
9848
9849static const struct ethtool_ops default_ethtool_ops;
9850
9851void netdev_set_default_ethtool_ops(struct net_device *dev,
9852 const struct ethtool_ops *ops)
9853{
9854 if (dev->ethtool_ops == &default_ethtool_ops)
9855 dev->ethtool_ops = ops;
9856}
9857EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9858
9859void netdev_freemem(struct net_device *dev)
9860{
9861 char *addr = (char *)dev - dev->padded;
9862
9863 kvfree(addr);
9864}
9865
9866/**
9867 * alloc_netdev_mqs - allocate network device
9868 * @sizeof_priv: size of private data to allocate space for
9869 * @name: device name format string
9870 * @name_assign_type: origin of device name
9871 * @setup: callback to initialize device
9872 * @txqs: the number of TX subqueues to allocate
9873 * @rxqs: the number of RX subqueues to allocate
9874 *
9875 * Allocates a struct net_device with private data area for driver use
9876 * and performs basic initialization. Also allocates subqueue structs
9877 * for each queue on the device.
9878 */
9879struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9880 unsigned char name_assign_type,
9881 void (*setup)(struct net_device *),
9882 unsigned int txqs, unsigned int rxqs)
9883{
9884 struct net_device *dev;
9885 unsigned int alloc_size;
9886 struct net_device *p;
9887
9888 BUG_ON(strlen(name) >= sizeof(dev->name));
9889
9890 if (txqs < 1) {
9891 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9892 return NULL;
9893 }
9894
9895 if (rxqs < 1) {
9896 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9897 return NULL;
9898 }
9899
9900 alloc_size = sizeof(struct net_device);
9901 if (sizeof_priv) {
9902 /* ensure 32-byte alignment of private area */
9903 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9904 alloc_size += sizeof_priv;
9905 }
9906 /* ensure 32-byte alignment of whole construct */
9907 alloc_size += NETDEV_ALIGN - 1;
9908
9909 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9910 if (!p)
9911 return NULL;
9912
9913 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9914 dev->padded = (char *)dev - (char *)p;
9915
9916 dev->pcpu_refcnt = alloc_percpu(int);
9917 if (!dev->pcpu_refcnt)
9918 goto free_dev;
9919
9920 if (dev_addr_init(dev))
9921 goto free_pcpu;
9922
9923 dev_mc_init(dev);
9924 dev_uc_init(dev);
9925
9926 dev_net_set(dev, &init_net);
9927
9928 netdev_register_lockdep_key(dev);
9929
9930 dev->gso_max_size = GSO_MAX_SIZE;
9931 dev->gso_max_segs = GSO_MAX_SEGS;
9932 dev->upper_level = 1;
9933 dev->lower_level = 1;
9934
9935 INIT_LIST_HEAD(&dev->napi_list);
9936 INIT_LIST_HEAD(&dev->unreg_list);
9937 INIT_LIST_HEAD(&dev->close_list);
9938 INIT_LIST_HEAD(&dev->link_watch_list);
9939 INIT_LIST_HEAD(&dev->adj_list.upper);
9940 INIT_LIST_HEAD(&dev->adj_list.lower);
9941 INIT_LIST_HEAD(&dev->ptype_all);
9942 INIT_LIST_HEAD(&dev->ptype_specific);
9943#ifdef CONFIG_NET_SCHED
9944 hash_init(dev->qdisc_hash);
9945#endif
9946 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9947 setup(dev);
9948
9949 if (!dev->tx_queue_len) {
9950 dev->priv_flags |= IFF_NO_QUEUE;
9951 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9952 }
9953
9954 dev->num_tx_queues = txqs;
9955 dev->real_num_tx_queues = txqs;
9956 if (netif_alloc_netdev_queues(dev))
9957 goto free_all;
9958
9959 dev->num_rx_queues = rxqs;
9960 dev->real_num_rx_queues = rxqs;
9961 if (netif_alloc_rx_queues(dev))
9962 goto free_all;
9963
9964 strcpy(dev->name, name);
9965 dev->name_assign_type = name_assign_type;
9966 dev->group = INIT_NETDEV_GROUP;
9967 if (!dev->ethtool_ops)
9968 dev->ethtool_ops = &default_ethtool_ops;
9969
9970 nf_hook_ingress_init(dev);
9971
9972 return dev;
9973
9974free_all:
9975 free_netdev(dev);
9976 return NULL;
9977
9978free_pcpu:
9979 free_percpu(dev->pcpu_refcnt);
9980free_dev:
9981 netdev_freemem(dev);
9982 return NULL;
9983}
9984EXPORT_SYMBOL(alloc_netdev_mqs);
9985
9986/**
9987 * free_netdev - free network device
9988 * @dev: device
9989 *
9990 * This function does the last stage of destroying an allocated device
9991 * interface. The reference to the device object is released. If this
9992 * is the last reference then it will be freed.Must be called in process
9993 * context.
9994 */
9995void free_netdev(struct net_device *dev)
9996{
9997 struct napi_struct *p, *n;
9998
9999 might_sleep();
10000 netif_free_tx_queues(dev);
10001 netif_free_rx_queues(dev);
10002
10003 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10004
10005 /* Flush device addresses */
10006 dev_addr_flush(dev);
10007
10008 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10009 netif_napi_del(p);
10010
10011 free_percpu(dev->pcpu_refcnt);
10012 dev->pcpu_refcnt = NULL;
10013
10014 netdev_unregister_lockdep_key(dev);
10015
10016 /* Compatibility with error handling in drivers */
10017 if (dev->reg_state == NETREG_UNINITIALIZED) {
10018 netdev_freemem(dev);
10019 return;
10020 }
10021
10022 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10023 dev->reg_state = NETREG_RELEASED;
10024
10025 /* will free via device release */
10026 put_device(&dev->dev);
10027}
10028EXPORT_SYMBOL(free_netdev);
10029
10030/**
10031 * synchronize_net - Synchronize with packet receive processing
10032 *
10033 * Wait for packets currently being received to be done.
10034 * Does not block later packets from starting.
10035 */
10036void synchronize_net(void)
10037{
10038 might_sleep();
10039 if (rtnl_is_locked())
10040 synchronize_rcu_expedited();
10041 else
10042 synchronize_rcu();
10043}
10044EXPORT_SYMBOL(synchronize_net);
10045
10046/**
10047 * unregister_netdevice_queue - remove device from the kernel
10048 * @dev: device
10049 * @head: list
10050 *
10051 * This function shuts down a device interface and removes it
10052 * from the kernel tables.
10053 * If head not NULL, device is queued to be unregistered later.
10054 *
10055 * Callers must hold the rtnl semaphore. You may want
10056 * unregister_netdev() instead of this.
10057 */
10058
10059void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10060{
10061 ASSERT_RTNL();
10062
10063 if (head) {
10064 list_move_tail(&dev->unreg_list, head);
10065 } else {
10066 rollback_registered(dev);
10067 /* Finish processing unregister after unlock */
10068 net_set_todo(dev);
10069 }
10070}
10071EXPORT_SYMBOL(unregister_netdevice_queue);
10072
10073/**
10074 * unregister_netdevice_many - unregister many devices
10075 * @head: list of devices
10076 *
10077 * Note: As most callers use a stack allocated list_head,
10078 * we force a list_del() to make sure stack wont be corrupted later.
10079 */
10080void unregister_netdevice_many(struct list_head *head)
10081{
10082 struct net_device *dev;
10083
10084 if (!list_empty(head)) {
10085 rollback_registered_many(head);
10086 list_for_each_entry(dev, head, unreg_list)
10087 net_set_todo(dev);
10088 list_del(head);
10089 }
10090}
10091EXPORT_SYMBOL(unregister_netdevice_many);
10092
10093/**
10094 * unregister_netdev - remove device from the kernel
10095 * @dev: device
10096 *
10097 * This function shuts down a device interface and removes it
10098 * from the kernel tables.
10099 *
10100 * This is just a wrapper for unregister_netdevice that takes
10101 * the rtnl semaphore. In general you want to use this and not
10102 * unregister_netdevice.
10103 */
10104void unregister_netdev(struct net_device *dev)
10105{
10106 rtnl_lock();
10107 unregister_netdevice(dev);
10108 rtnl_unlock();
10109}
10110EXPORT_SYMBOL(unregister_netdev);
10111
10112/**
10113 * dev_change_net_namespace - move device to different nethost namespace
10114 * @dev: device
10115 * @net: network namespace
10116 * @pat: If not NULL name pattern to try if the current device name
10117 * is already taken in the destination network namespace.
10118 *
10119 * This function shuts down a device interface and moves it
10120 * to a new network namespace. On success 0 is returned, on
10121 * a failure a netagive errno code is returned.
10122 *
10123 * Callers must hold the rtnl semaphore.
10124 */
10125
10126int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10127{
10128 int err, new_nsid, new_ifindex;
10129
10130 ASSERT_RTNL();
10131
10132 /* Don't allow namespace local devices to be moved. */
10133 err = -EINVAL;
10134 if (dev->features & NETIF_F_NETNS_LOCAL)
10135 goto out;
10136
10137 /* Ensure the device has been registrered */
10138 if (dev->reg_state != NETREG_REGISTERED)
10139 goto out;
10140
10141 /* Get out if there is nothing todo */
10142 err = 0;
10143 if (net_eq(dev_net(dev), net))
10144 goto out;
10145
10146 /* Pick the destination device name, and ensure
10147 * we can use it in the destination network namespace.
10148 */
10149 err = -EEXIST;
10150 if (__dev_get_by_name(net, dev->name)) {
10151 /* We get here if we can't use the current device name */
10152 if (!pat)
10153 goto out;
10154 err = dev_get_valid_name(net, dev, pat);
10155 if (err < 0)
10156 goto out;
10157 }
10158
10159 /*
10160 * And now a mini version of register_netdevice unregister_netdevice.
10161 */
10162
10163 /* If device is running close it first. */
10164 dev_close(dev);
10165
10166 /* And unlink it from device chain */
10167 unlist_netdevice(dev);
10168
10169 synchronize_net();
10170
10171 /* Shutdown queueing discipline. */
10172 dev_shutdown(dev);
10173
10174 /* Notify protocols, that we are about to destroy
10175 * this device. They should clean all the things.
10176 *
10177 * Note that dev->reg_state stays at NETREG_REGISTERED.
10178 * This is wanted because this way 8021q and macvlan know
10179 * the device is just moving and can keep their slaves up.
10180 */
10181 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10182 rcu_barrier();
10183
10184 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10185 /* If there is an ifindex conflict assign a new one */
10186 if (__dev_get_by_index(net, dev->ifindex))
10187 new_ifindex = dev_new_index(net);
10188 else
10189 new_ifindex = dev->ifindex;
10190
10191 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10192 new_ifindex);
10193
10194 /*
10195 * Flush the unicast and multicast chains
10196 */
10197 dev_uc_flush(dev);
10198 dev_mc_flush(dev);
10199
10200 /* Send a netdev-removed uevent to the old namespace */
10201 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10202 netdev_adjacent_del_links(dev);
10203
10204 /* Actually switch the network namespace */
10205 dev_net_set(dev, net);
10206 dev->ifindex = new_ifindex;
10207
10208 /* Send a netdev-add uevent to the new namespace */
10209 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10210 netdev_adjacent_add_links(dev);
10211
10212 /* Fixup kobjects */
10213 err = device_rename(&dev->dev, dev->name);
10214 WARN_ON(err);
10215
10216 /* Add the device back in the hashes */
10217 list_netdevice(dev);
10218
10219 /* Notify protocols, that a new device appeared. */
10220 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10221
10222 /*
10223 * Prevent userspace races by waiting until the network
10224 * device is fully setup before sending notifications.
10225 */
10226 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10227
10228 synchronize_net();
10229 err = 0;
10230out:
10231 return err;
10232}
10233EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10234
10235static int dev_cpu_dead(unsigned int oldcpu)
10236{
10237 struct sk_buff **list_skb;
10238 struct sk_buff *skb;
10239 unsigned int cpu;
10240 struct softnet_data *sd, *oldsd, *remsd = NULL;
10241
10242 local_irq_disable();
10243 cpu = smp_processor_id();
10244 sd = &per_cpu(softnet_data, cpu);
10245 oldsd = &per_cpu(softnet_data, oldcpu);
10246
10247 /* Find end of our completion_queue. */
10248 list_skb = &sd->completion_queue;
10249 while (*list_skb)
10250 list_skb = &(*list_skb)->next;
10251 /* Append completion queue from offline CPU. */
10252 *list_skb = oldsd->completion_queue;
10253 oldsd->completion_queue = NULL;
10254
10255 /* Append output queue from offline CPU. */
10256 if (oldsd->output_queue) {
10257 *sd->output_queue_tailp = oldsd->output_queue;
10258 sd->output_queue_tailp = oldsd->output_queue_tailp;
10259 oldsd->output_queue = NULL;
10260 oldsd->output_queue_tailp = &oldsd->output_queue;
10261 }
10262 /* Append NAPI poll list from offline CPU, with one exception :
10263 * process_backlog() must be called by cpu owning percpu backlog.
10264 * We properly handle process_queue & input_pkt_queue later.
10265 */
10266 while (!list_empty(&oldsd->poll_list)) {
10267 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10268 struct napi_struct,
10269 poll_list);
10270
10271 list_del_init(&napi->poll_list);
10272 if (napi->poll == process_backlog)
10273 napi->state = 0;
10274 else
10275 ____napi_schedule(sd, napi);
10276 }
10277
10278 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10279 local_irq_enable();
10280
10281#ifdef CONFIG_RPS
10282 remsd = oldsd->rps_ipi_list;
10283 oldsd->rps_ipi_list = NULL;
10284#endif
10285 /* send out pending IPI's on offline CPU */
10286 net_rps_send_ipi(remsd);
10287
10288 /* Process offline CPU's input_pkt_queue */
10289 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10290 netif_rx_ni(skb);
10291 input_queue_head_incr(oldsd);
10292 }
10293 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10294 netif_rx_ni(skb);
10295 input_queue_head_incr(oldsd);
10296 }
10297
10298 return 0;
10299}
10300
10301/**
10302 * netdev_increment_features - increment feature set by one
10303 * @all: current feature set
10304 * @one: new feature set
10305 * @mask: mask feature set
10306 *
10307 * Computes a new feature set after adding a device with feature set
10308 * @one to the master device with current feature set @all. Will not
10309 * enable anything that is off in @mask. Returns the new feature set.
10310 */
10311netdev_features_t netdev_increment_features(netdev_features_t all,
10312 netdev_features_t one, netdev_features_t mask)
10313{
10314 if (mask & NETIF_F_HW_CSUM)
10315 mask |= NETIF_F_CSUM_MASK;
10316 mask |= NETIF_F_VLAN_CHALLENGED;
10317
10318 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10319 all &= one | ~NETIF_F_ALL_FOR_ALL;
10320
10321 /* If one device supports hw checksumming, set for all. */
10322 if (all & NETIF_F_HW_CSUM)
10323 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10324
10325 return all;
10326}
10327EXPORT_SYMBOL(netdev_increment_features);
10328
10329static struct hlist_head * __net_init netdev_create_hash(void)
10330{
10331 int i;
10332 struct hlist_head *hash;
10333
10334 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10335 if (hash != NULL)
10336 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10337 INIT_HLIST_HEAD(&hash[i]);
10338
10339 return hash;
10340}
10341
10342/* Initialize per network namespace state */
10343static int __net_init netdev_init(struct net *net)
10344{
10345 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10346 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10347
10348 if (net != &init_net)
10349 INIT_LIST_HEAD(&net->dev_base_head);
10350
10351 net->dev_name_head = netdev_create_hash();
10352 if (net->dev_name_head == NULL)
10353 goto err_name;
10354
10355 net->dev_index_head = netdev_create_hash();
10356 if (net->dev_index_head == NULL)
10357 goto err_idx;
10358
10359 return 0;
10360
10361err_idx:
10362 kfree(net->dev_name_head);
10363err_name:
10364 return -ENOMEM;
10365}
10366
10367/**
10368 * netdev_drivername - network driver for the device
10369 * @dev: network device
10370 *
10371 * Determine network driver for device.
10372 */
10373const char *netdev_drivername(const struct net_device *dev)
10374{
10375 const struct device_driver *driver;
10376 const struct device *parent;
10377 const char *empty = "";
10378
10379 parent = dev->dev.parent;
10380 if (!parent)
10381 return empty;
10382
10383 driver = parent->driver;
10384 if (driver && driver->name)
10385 return driver->name;
10386 return empty;
10387}
10388
10389static void __netdev_printk(const char *level, const struct net_device *dev,
10390 struct va_format *vaf)
10391{
10392 if (dev && dev->dev.parent) {
10393 dev_printk_emit(level[1] - '0',
10394 dev->dev.parent,
10395 "%s %s %s%s: %pV",
10396 dev_driver_string(dev->dev.parent),
10397 dev_name(dev->dev.parent),
10398 netdev_name(dev), netdev_reg_state(dev),
10399 vaf);
10400 } else if (dev) {
10401 printk("%s%s%s: %pV",
10402 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10403 } else {
10404 printk("%s(NULL net_device): %pV", level, vaf);
10405 }
10406}
10407
10408void netdev_printk(const char *level, const struct net_device *dev,
10409 const char *format, ...)
10410{
10411 struct va_format vaf;
10412 va_list args;
10413
10414 va_start(args, format);
10415
10416 vaf.fmt = format;
10417 vaf.va = &args;
10418
10419 __netdev_printk(level, dev, &vaf);
10420
10421 va_end(args);
10422}
10423EXPORT_SYMBOL(netdev_printk);
10424
10425#define define_netdev_printk_level(func, level) \
10426void func(const struct net_device *dev, const char *fmt, ...) \
10427{ \
10428 struct va_format vaf; \
10429 va_list args; \
10430 \
10431 va_start(args, fmt); \
10432 \
10433 vaf.fmt = fmt; \
10434 vaf.va = &args; \
10435 \
10436 __netdev_printk(level, dev, &vaf); \
10437 \
10438 va_end(args); \
10439} \
10440EXPORT_SYMBOL(func);
10441
10442define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10443define_netdev_printk_level(netdev_alert, KERN_ALERT);
10444define_netdev_printk_level(netdev_crit, KERN_CRIT);
10445define_netdev_printk_level(netdev_err, KERN_ERR);
10446define_netdev_printk_level(netdev_warn, KERN_WARNING);
10447define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10448define_netdev_printk_level(netdev_info, KERN_INFO);
10449
10450static void __net_exit netdev_exit(struct net *net)
10451{
10452 kfree(net->dev_name_head);
10453 kfree(net->dev_index_head);
10454 if (net != &init_net)
10455 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10456}
10457
10458static struct pernet_operations __net_initdata netdev_net_ops = {
10459 .init = netdev_init,
10460 .exit = netdev_exit,
10461};
10462
10463static void __net_exit default_device_exit(struct net *net)
10464{
10465 struct net_device *dev, *aux;
10466 /*
10467 * Push all migratable network devices back to the
10468 * initial network namespace
10469 */
10470 rtnl_lock();
10471 for_each_netdev_safe(net, dev, aux) {
10472 int err;
10473 char fb_name[IFNAMSIZ];
10474
10475 /* Ignore unmoveable devices (i.e. loopback) */
10476 if (dev->features & NETIF_F_NETNS_LOCAL)
10477 continue;
10478
10479 /* Leave virtual devices for the generic cleanup */
10480 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10481 continue;
10482
10483 /* Push remaining network devices to init_net */
10484 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10485 if (__dev_get_by_name(&init_net, fb_name))
10486 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10487 err = dev_change_net_namespace(dev, &init_net, fb_name);
10488 if (err) {
10489 pr_emerg("%s: failed to move %s to init_net: %d\n",
10490 __func__, dev->name, err);
10491 BUG();
10492 }
10493 }
10494 rtnl_unlock();
10495}
10496
10497static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10498{
10499 /* Return with the rtnl_lock held when there are no network
10500 * devices unregistering in any network namespace in net_list.
10501 */
10502 struct net *net;
10503 bool unregistering;
10504 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10505
10506 add_wait_queue(&netdev_unregistering_wq, &wait);
10507 for (;;) {
10508 unregistering = false;
10509 rtnl_lock();
10510 list_for_each_entry(net, net_list, exit_list) {
10511 if (net->dev_unreg_count > 0) {
10512 unregistering = true;
10513 break;
10514 }
10515 }
10516 if (!unregistering)
10517 break;
10518 __rtnl_unlock();
10519
10520 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10521 }
10522 remove_wait_queue(&netdev_unregistering_wq, &wait);
10523}
10524
10525static void __net_exit default_device_exit_batch(struct list_head *net_list)
10526{
10527 /* At exit all network devices most be removed from a network
10528 * namespace. Do this in the reverse order of registration.
10529 * Do this across as many network namespaces as possible to
10530 * improve batching efficiency.
10531 */
10532 struct net_device *dev;
10533 struct net *net;
10534 LIST_HEAD(dev_kill_list);
10535
10536 /* To prevent network device cleanup code from dereferencing
10537 * loopback devices or network devices that have been freed
10538 * wait here for all pending unregistrations to complete,
10539 * before unregistring the loopback device and allowing the
10540 * network namespace be freed.
10541 *
10542 * The netdev todo list containing all network devices
10543 * unregistrations that happen in default_device_exit_batch
10544 * will run in the rtnl_unlock() at the end of
10545 * default_device_exit_batch.
10546 */
10547 rtnl_lock_unregistering(net_list);
10548 list_for_each_entry(net, net_list, exit_list) {
10549 for_each_netdev_reverse(net, dev) {
10550 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10551 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10552 else
10553 unregister_netdevice_queue(dev, &dev_kill_list);
10554 }
10555 }
10556 unregister_netdevice_many(&dev_kill_list);
10557 rtnl_unlock();
10558}
10559
10560static struct pernet_operations __net_initdata default_device_ops = {
10561 .exit = default_device_exit,
10562 .exit_batch = default_device_exit_batch,
10563};
10564
10565/*
10566 * Initialize the DEV module. At boot time this walks the device list and
10567 * unhooks any devices that fail to initialise (normally hardware not
10568 * present) and leaves us with a valid list of present and active devices.
10569 *
10570 */
10571
10572/*
10573 * This is called single threaded during boot, so no need
10574 * to take the rtnl semaphore.
10575 */
10576static int __init net_dev_init(void)
10577{
10578 int i, rc = -ENOMEM;
10579
10580 BUG_ON(!dev_boot_phase);
10581
10582 if (dev_proc_init())
10583 goto out;
10584
10585 if (netdev_kobject_init())
10586 goto out;
10587
10588 INIT_LIST_HEAD(&ptype_all);
10589 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10590 INIT_LIST_HEAD(&ptype_base[i]);
10591
10592 INIT_LIST_HEAD(&offload_base);
10593
10594 if (register_pernet_subsys(&netdev_net_ops))
10595 goto out;
10596
10597 /*
10598 * Initialise the packet receive queues.
10599 */
10600
10601 for_each_possible_cpu(i) {
10602 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10603 struct softnet_data *sd = &per_cpu(softnet_data, i);
10604
10605 INIT_WORK(flush, flush_backlog);
10606
10607 skb_queue_head_init(&sd->input_pkt_queue);
10608 skb_queue_head_init(&sd->process_queue);
10609#ifdef CONFIG_XFRM_OFFLOAD
10610 skb_queue_head_init(&sd->xfrm_backlog);
10611#endif
10612 INIT_LIST_HEAD(&sd->poll_list);
10613 sd->output_queue_tailp = &sd->output_queue;
10614#ifdef CONFIG_RPS
10615 sd->csd.func = rps_trigger_softirq;
10616 sd->csd.info = sd;
10617 sd->cpu = i;
10618#endif
10619
10620 init_gro_hash(&sd->backlog);
10621 sd->backlog.poll = process_backlog;
10622 sd->backlog.weight = weight_p;
10623 }
10624
10625 dev_boot_phase = 0;
10626
10627 /* The loopback device is special if any other network devices
10628 * is present in a network namespace the loopback device must
10629 * be present. Since we now dynamically allocate and free the
10630 * loopback device ensure this invariant is maintained by
10631 * keeping the loopback device as the first device on the
10632 * list of network devices. Ensuring the loopback devices
10633 * is the first device that appears and the last network device
10634 * that disappears.
10635 */
10636 if (register_pernet_device(&loopback_net_ops))
10637 goto out;
10638
10639 if (register_pernet_device(&default_device_ops))
10640 goto out;
10641
10642 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10643 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10644
10645 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10646 NULL, dev_cpu_dead);
10647 WARN_ON(rc < 0);
10648 rc = 0;
10649out:
10650 return rc;
10651}
10652
10653subsys_initcall(net_dev_init);