blob: 1464e273821121ad8bf66d9acee1ce7880f3a2ac [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 *
18 * Fixes:
19 * Alan Cox : Commented a couple of minor bits of surplus code
20 * Alan Cox : Undefining IP_FORWARD doesn't include the code
21 * (just stops a compiler warning).
22 * Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23 * are junked rather than corrupting things.
24 * Alan Cox : Frames to bad broadcast subnets are dumped
25 * We used to process them non broadcast and
26 * boy could that cause havoc.
27 * Alan Cox : ip_forward sets the free flag on the
28 * new frame it queues. Still crap because
29 * it copies the frame but at least it
30 * doesn't eat memory too.
31 * Alan Cox : Generic queue code and memory fixes.
32 * Fred Van Kempen : IP fragment support (borrowed from NET2E)
33 * Gerhard Koerting: Forward fragmented frames correctly.
34 * Gerhard Koerting: Fixes to my fix of the above 8-).
35 * Gerhard Koerting: IP interface addressing fix.
36 * Linus Torvalds : More robustness checks
37 * Alan Cox : Even more checks: Still not as robust as it ought to be
38 * Alan Cox : Save IP header pointer for later
39 * Alan Cox : ip option setting
40 * Alan Cox : Use ip_tos/ip_ttl settings
41 * Alan Cox : Fragmentation bogosity removed
42 * (Thanks to Mark.Bush@prg.ox.ac.uk)
43 * Dmitry Gorodchanin : Send of a raw packet crash fix.
44 * Alan Cox : Silly ip bug when an overlength
45 * fragment turns up. Now frees the
46 * queue.
47 * Linus Torvalds/ : Memory leakage on fragmentation
48 * Alan Cox : handling.
49 * Gerhard Koerting: Forwarding uses IP priority hints
50 * Teemu Rantanen : Fragment problems.
51 * Alan Cox : General cleanup, comments and reformat
52 * Alan Cox : SNMP statistics
53 * Alan Cox : BSD address rule semantics. Also see
54 * UDP as there is a nasty checksum issue
55 * if you do things the wrong way.
56 * Alan Cox : Always defrag, moved IP_FORWARD to the config.in file
57 * Alan Cox : IP options adjust sk->priority.
58 * Pedro Roque : Fix mtu/length error in ip_forward.
59 * Alan Cox : Avoid ip_chk_addr when possible.
60 * Richard Underwood : IP multicasting.
61 * Alan Cox : Cleaned up multicast handlers.
62 * Alan Cox : RAW sockets demultiplex in the BSD style.
63 * Gunther Mayer : Fix the SNMP reporting typo
64 * Alan Cox : Always in group 224.0.0.1
65 * Pauline Middelink : Fast ip_checksum update when forwarding
66 * Masquerading support.
67 * Alan Cox : Multicast loopback error for 224.0.0.1
68 * Alan Cox : IP_MULTICAST_LOOP option.
69 * Alan Cox : Use notifiers.
70 * Bjorn Ekwall : Removed ip_csum (from slhc.c too)
71 * Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!)
72 * Stefan Becker : Send out ICMP HOST REDIRECT
73 * Arnt Gulbrandsen : ip_build_xmit
74 * Alan Cox : Per socket routing cache
75 * Alan Cox : Fixed routing cache, added header cache.
76 * Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it.
77 * Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net.
78 * Alan Cox : Incoming IP option handling.
79 * Alan Cox : Set saddr on raw output frames as per BSD.
80 * Alan Cox : Stopped broadcast source route explosions.
81 * Alan Cox : Can disable source routing
82 * Takeshi Sone : Masquerading didn't work.
83 * Dave Bonn,Alan Cox : Faster IP forwarding whenever possible.
84 * Alan Cox : Memory leaks, tramples, misc debugging.
85 * Alan Cox : Fixed multicast (by popular demand 8))
86 * Alan Cox : Fixed forwarding (by even more popular demand 8))
87 * Alan Cox : Fixed SNMP statistics [I think]
88 * Gerhard Koerting : IP fragmentation forwarding fix
89 * Alan Cox : Device lock against page fault.
90 * Alan Cox : IP_HDRINCL facility.
91 * Werner Almesberger : Zero fragment bug
92 * Alan Cox : RAW IP frame length bug
93 * Alan Cox : Outgoing firewall on build_xmit
94 * A.N.Kuznetsov : IP_OPTIONS support throughout the kernel
95 * Alan Cox : Multicast routing hooks
96 * Jos Vos : Do accounting *before* call_in_firewall
97 * Willy Konynenberg : Transparent proxying support
98 *
99 * To Fix:
100 * IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 * and could be made very efficient with the addition of some virtual memory hacks to permit
102 * the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 * Output fragmentation wants updating along with the buffer management to use a single
104 * interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 * output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 * fragmentation anyway.
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144
145/*
146 * Process Router Attention IP option (RFC 2113)
147 */
148bool ip_call_ra_chain(struct sk_buff *skb)
149{
150 struct ip_ra_chain *ra;
151 u8 protocol = ip_hdr(skb)->protocol;
152 struct sock *last = NULL;
153 struct net_device *dev = skb->dev;
154 struct net *net = dev_net(dev);
155
156 for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 struct sock *sk = ra->sk;
158
159 /* If socket is bound to an interface, only report
160 * the packet if it came from that interface.
161 */
162 if (sk && inet_sk(sk)->inet_num == protocol &&
163 (!sk->sk_bound_dev_if ||
164 sk->sk_bound_dev_if == dev->ifindex)) {
165 if (ip_is_fragment(ip_hdr(skb))) {
166 if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 return true;
168 }
169 if (last) {
170 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 if (skb2)
172 raw_rcv(last, skb2);
173 }
174 last = sk;
175 }
176 }
177
178 if (last) {
179 raw_rcv(last, skb);
180 return true;
181 }
182 return false;
183}
184
185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188{
189 const struct net_protocol *ipprot;
190 int raw, ret;
191
192resubmit:
193 raw = raw_local_deliver(skb, protocol);
194
195 ipprot = rcu_dereference(inet_protos[protocol]);
196 if (ipprot) {
197 if (!ipprot->no_policy) {
198 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 kfree_skb(skb);
200 return;
201 }
202 nf_reset_ct(skb);
203 }
204 ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
205 skb);
206 if (ret < 0) {
207 protocol = -ret;
208 goto resubmit;
209 }
210 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
211 } else {
212 if (!raw) {
213 if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
214 __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
215 icmp_send(skb, ICMP_DEST_UNREACH,
216 ICMP_PROT_UNREACH, 0);
217 }
218 kfree_skb(skb);
219 } else {
220 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 consume_skb(skb);
222 }
223 }
224}
225
226static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
227{
228 __skb_pull(skb, skb_network_header_len(skb));
229
230 rcu_read_lock();
231 ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
232 rcu_read_unlock();
233
234 return 0;
235}
236
237/*
238 * Deliver IP Packets to the higher protocol layers.
239 */
240int ip_local_deliver(struct sk_buff *skb)
241{
242 /*
243 * Reassemble IP fragments.
244 */
245 struct net *net = dev_net(skb->dev);
246
247 if (ip_is_fragment(ip_hdr(skb))) {
248 if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
249 return 0;
250 }
251
252 return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
253 net, NULL, skb, skb->dev, NULL,
254 ip_local_deliver_finish);
255}
256
257static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
258{
259 struct ip_options *opt;
260 const struct iphdr *iph;
261
262 /* It looks as overkill, because not all
263 IP options require packet mangling.
264 But it is the easiest for now, especially taking
265 into account that combination of IP options
266 and running sniffer is extremely rare condition.
267 --ANK (980813)
268 */
269 if (skb_cow(skb, skb_headroom(skb))) {
270 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
271 goto drop;
272 }
273
274 iph = ip_hdr(skb);
275 opt = &(IPCB(skb)->opt);
276 opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
277
278 if (ip_options_compile(dev_net(dev), opt, skb)) {
279 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
280 goto drop;
281 }
282
283 if (unlikely(opt->srr)) {
284 struct in_device *in_dev = __in_dev_get_rcu(dev);
285
286 if (in_dev) {
287 if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
288 if (IN_DEV_LOG_MARTIANS(in_dev))
289 net_info_ratelimited("source route option %pI4 -> %pI4\n",
290 &iph->saddr,
291 &iph->daddr);
292 goto drop;
293 }
294 }
295
296 if (ip_options_rcv_srr(skb, dev))
297 goto drop;
298 }
299
300 return false;
301drop:
302 return true;
303}
304
305int udp_v4_early_demux(struct sk_buff *);
306int tcp_v4_early_demux(struct sk_buff *);
307static int ip_rcv_finish_core(struct net *net, struct sock *sk,
308 struct sk_buff *skb, struct net_device *dev)
309{
310 const struct iphdr *iph = ip_hdr(skb);
311 struct rtable *rt;
312 int err;
313
314 if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
315 !skb_dst(skb) &&
316 !skb->sk &&
317 !ip_is_fragment(iph)) {
318 switch (iph->protocol) {
319 case IPPROTO_TCP:
320 if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
321 tcp_v4_early_demux(skb);
322
323 /* must reload iph, skb->head might have changed */
324 iph = ip_hdr(skb);
325 }
326 break;
327 case IPPROTO_UDP:
328 if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
329 err = udp_v4_early_demux(skb);
330 if (unlikely(err))
331 goto drop_error;
332
333 /* must reload iph, skb->head might have changed */
334 iph = ip_hdr(skb);
335 }
336 break;
337 }
338 }
339
340 /*
341 * Initialise the virtual path cache for the packet. It describes
342 * how the packet travels inside Linux networking.
343 */
344 if (!skb_valid_dst(skb)) {
345 err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
346 iph->tos, dev);
347 if (unlikely(err))
348 goto drop_error;
349 }
350
351#ifdef CONFIG_IP_ROUTE_CLASSID
352 if (unlikely(skb_dst(skb)->tclassid)) {
353 struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
354 u32 idx = skb_dst(skb)->tclassid;
355 st[idx&0xFF].o_packets++;
356 st[idx&0xFF].o_bytes += skb->len;
357 st[(idx>>16)&0xFF].i_packets++;
358 st[(idx>>16)&0xFF].i_bytes += skb->len;
359 }
360#endif
361
362 if (iph->ihl > 5 && ip_rcv_options(skb, dev))
363 goto drop;
364
365 rt = skb_rtable(skb);
366 if (rt->rt_type == RTN_MULTICAST) {
367 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
368 } else if (rt->rt_type == RTN_BROADCAST) {
369 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
370 } else if (skb->pkt_type == PACKET_BROADCAST ||
371 skb->pkt_type == PACKET_MULTICAST) {
372 struct in_device *in_dev = __in_dev_get_rcu(dev);
373
374 /* RFC 1122 3.3.6:
375 *
376 * When a host sends a datagram to a link-layer broadcast
377 * address, the IP destination address MUST be a legal IP
378 * broadcast or IP multicast address.
379 *
380 * A host SHOULD silently discard a datagram that is received
381 * via a link-layer broadcast (see Section 2.4) but does not
382 * specify an IP multicast or broadcast destination address.
383 *
384 * This doesn't explicitly say L2 *broadcast*, but broadcast is
385 * in a way a form of multicast and the most common use case for
386 * this is 802.11 protecting against cross-station spoofing (the
387 * so-called "hole-196" attack) so do it for both.
388 */
389 if (in_dev &&
390 IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
391 goto drop;
392 }
393
394 return NET_RX_SUCCESS;
395
396drop:
397 kfree_skb(skb);
398 return NET_RX_DROP;
399
400drop_error:
401 if (err == -EXDEV)
402 __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
403 goto drop;
404}
405
406static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
407{
408 struct net_device *dev = skb->dev;
409 int ret;
410
411 /* if ingress device is enslaved to an L3 master device pass the
412 * skb to its handler for processing
413 */
414 skb = l3mdev_ip_rcv(skb);
415 if (!skb)
416 return NET_RX_SUCCESS;
417
418 ret = ip_rcv_finish_core(net, sk, skb, dev);
419 if (ret != NET_RX_DROP)
420 ret = dst_input(skb);
421 return ret;
422}
423
424/*
425 * Main IP Receive routine.
426 */
427static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
428{
429 const struct iphdr *iph;
430 u32 len;
431
432 /* When the interface is in promisc. mode, drop all the crap
433 * that it receives, do not try to analyse it.
434 */
435 if (skb->pkt_type == PACKET_OTHERHOST)
436 goto drop;
437
438 __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
439
440 skb = skb_share_check(skb, GFP_ATOMIC);
441 if (!skb) {
442 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
443 goto out;
444 }
445
446 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
447 goto inhdr_error;
448
449 iph = ip_hdr(skb);
450
451 /*
452 * RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
453 *
454 * Is the datagram acceptable?
455 *
456 * 1. Length at least the size of an ip header
457 * 2. Version of 4
458 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums]
459 * 4. Doesn't have a bogus length
460 */
461
462 if (iph->ihl < 5 || iph->version != 4)
463 goto inhdr_error;
464
465 BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
466 BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
467 BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
468 __IP_ADD_STATS(net,
469 IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
470 max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
471
472 if (!pskb_may_pull(skb, iph->ihl*4))
473 goto inhdr_error;
474
475 iph = ip_hdr(skb);
476
477 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
478 goto csum_error;
479
480 len = ntohs(iph->tot_len);
481 if (skb->len < len) {
482 __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
483 goto drop;
484 } else if (len < (iph->ihl*4))
485 goto inhdr_error;
486
487 /* Our transport medium may have padded the buffer out. Now we know it
488 * is IP we can trim to the true length of the frame.
489 * Note this now means skb->len holds ntohs(iph->tot_len).
490 */
491 if (pskb_trim_rcsum(skb, len)) {
492 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
493 goto drop;
494 }
495
496 iph = ip_hdr(skb);
497 skb->transport_header = skb->network_header + iph->ihl*4;
498
499 /* Remove any debris in the socket control block */
500 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
501 IPCB(skb)->iif = skb->skb_iif;
502
503 /* Must drop socket now because of tproxy. */
504 skb_orphan(skb);
505
506 return skb;
507
508csum_error:
509 __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
510inhdr_error:
511 __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
512drop:
513 kfree_skb(skb);
514out:
515 return NULL;
516}
517
518/*
519 * IP receive entry point
520 */
521int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
522 struct net_device *orig_dev)
523{
524 struct net *net = dev_net(dev);
525
526 skb = ip_rcv_core(skb, net);
527 if (skb == NULL)
528 return NET_RX_DROP;
529
530 return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
531 net, NULL, skb, dev, NULL,
532 ip_rcv_finish);
533}
534
535static void ip_sublist_rcv_finish(struct list_head *head)
536{
537 struct sk_buff *skb, *next;
538
539 list_for_each_entry_safe(skb, next, head, list) {
540 skb_list_del_init(skb);
541 dst_input(skb);
542 }
543}
544
545static void ip_list_rcv_finish(struct net *net, struct sock *sk,
546 struct list_head *head)
547{
548 struct dst_entry *curr_dst = NULL;
549 struct sk_buff *skb, *next;
550 struct list_head sublist;
551
552 INIT_LIST_HEAD(&sublist);
553 list_for_each_entry_safe(skb, next, head, list) {
554 struct net_device *dev = skb->dev;
555 struct dst_entry *dst;
556
557 skb_list_del_init(skb);
558 /* if ingress device is enslaved to an L3 master device pass the
559 * skb to its handler for processing
560 */
561 skb = l3mdev_ip_rcv(skb);
562 if (!skb)
563 continue;
564 if (ip_rcv_finish_core(net, sk, skb, dev) == NET_RX_DROP)
565 continue;
566
567 dst = skb_dst(skb);
568 if (curr_dst != dst) {
569 /* dispatch old sublist */
570 if (!list_empty(&sublist))
571 ip_sublist_rcv_finish(&sublist);
572 /* start new sublist */
573 INIT_LIST_HEAD(&sublist);
574 curr_dst = dst;
575 }
576 list_add_tail(&skb->list, &sublist);
577 }
578 /* dispatch final sublist */
579 ip_sublist_rcv_finish(&sublist);
580}
581
582static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
583 struct net *net)
584{
585 NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
586 head, dev, NULL, ip_rcv_finish);
587 ip_list_rcv_finish(net, NULL, head);
588}
589
590/* Receive a list of IP packets */
591void ip_list_rcv(struct list_head *head, struct packet_type *pt,
592 struct net_device *orig_dev)
593{
594 struct net_device *curr_dev = NULL;
595 struct net *curr_net = NULL;
596 struct sk_buff *skb, *next;
597 struct list_head sublist;
598
599 INIT_LIST_HEAD(&sublist);
600 list_for_each_entry_safe(skb, next, head, list) {
601 struct net_device *dev = skb->dev;
602 struct net *net = dev_net(dev);
603
604 skb_list_del_init(skb);
605 skb = ip_rcv_core(skb, net);
606 if (skb == NULL)
607 continue;
608
609 if (curr_dev != dev || curr_net != net) {
610 /* dispatch old sublist */
611 if (!list_empty(&sublist))
612 ip_sublist_rcv(&sublist, curr_dev, curr_net);
613 /* start new sublist */
614 INIT_LIST_HEAD(&sublist);
615 curr_dev = dev;
616 curr_net = net;
617 }
618 list_add_tail(&skb->list, &sublist);
619 }
620 /* dispatch final sublist */
621 ip_sublist_rcv(&sublist, curr_dev, curr_net);
622}