blob: dccb150e539818f240edef43e214a8fc86219e05 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
78#include <linux/errqueue.h>
79#include <trace/events/tcp.h>
80#include <linux/jump_label_ratelimit.h>
81#include <net/busy_poll.h>
82#include <trace/hooks/net.h>
83
84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86#define FLAG_DATA 0x01 /* Incoming frame contained data. */
87#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91#define FLAG_DATA_SACKED 0x20 /* New SACK. */
92#define FLAG_ECE 0x40 /* ECE in this ACK */
93#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103
104#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111
112#define REXMIT_NONE 0 /* no loss recovery to do */
113#define REXMIT_LOST 1 /* retransmit packets marked lost */
114#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115
116#if IS_ENABLED(CONFIG_TLS_DEVICE)
117static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118
119void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 void (*cad)(struct sock *sk, u32 ack_seq))
121{
122 icsk->icsk_clean_acked = cad;
123 static_branch_deferred_inc(&clean_acked_data_enabled);
124}
125EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126
127void clean_acked_data_disable(struct inet_connection_sock *icsk)
128{
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 icsk->icsk_clean_acked = NULL;
131}
132EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133
134void clean_acked_data_flush(void)
135{
136 static_key_deferred_flush(&clean_acked_data_enabled);
137}
138EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139#endif
140
141static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 unsigned int len)
143{
144 static bool __once __read_mostly;
145
146 if (!__once) {
147 struct net_device *dev;
148
149 __once = true;
150
151 rcu_read_lock();
152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 if (!dev || len >= dev->mtu)
154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 dev ? dev->name : "Unknown driver");
156 rcu_read_unlock();
157 }
158}
159
160/* Adapt the MSS value used to make delayed ack decision to the
161 * real world.
162 */
163static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164{
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 unsigned int len;
168
169 icsk->icsk_ack.last_seg_size = 0;
170
171 /* skb->len may jitter because of SACKs, even if peer
172 * sends good full-sized frames.
173 */
174 len = skb_shinfo(skb)->gso_size ? : skb->len;
175 if (len >= icsk->icsk_ack.rcv_mss) {
176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 tcp_sk(sk)->advmss);
178 /* Account for possibly-removed options */
179 if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 MAX_TCP_OPTION_SPACE))
181 tcp_gro_dev_warn(sk, skb, len);
182 /* If the skb has a len of exactly 1*MSS and has the PSH bit
183 * set then it is likely the end of an application write. So
184 * more data may not be arriving soon, and yet the data sender
185 * may be waiting for an ACK if cwnd-bound or using TX zero
186 * copy. So we set ICSK_ACK_PUSHED here so that
187 * tcp_cleanup_rbuf() will send an ACK immediately if the app
188 * reads all of the data and is not ping-pong. If len > MSS
189 * then this logic does not matter (and does not hurt) because
190 * tcp_cleanup_rbuf() will always ACK immediately if the app
191 * reads data and there is more than an MSS of unACKed data.
192 */
193 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
195 } else {
196 /* Otherwise, we make more careful check taking into account,
197 * that SACKs block is variable.
198 *
199 * "len" is invariant segment length, including TCP header.
200 */
201 len += skb->data - skb_transport_header(skb);
202 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
203 /* If PSH is not set, packet should be
204 * full sized, provided peer TCP is not badly broken.
205 * This observation (if it is correct 8)) allows
206 * to handle super-low mtu links fairly.
207 */
208 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
209 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
210 /* Subtract also invariant (if peer is RFC compliant),
211 * tcp header plus fixed timestamp option length.
212 * Resulting "len" is MSS free of SACK jitter.
213 */
214 len -= tcp_sk(sk)->tcp_header_len;
215 icsk->icsk_ack.last_seg_size = len;
216 if (len == lss) {
217 icsk->icsk_ack.rcv_mss = len;
218 return;
219 }
220 }
221 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
222 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
223 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
224 }
225}
226
227static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
228{
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
231
232 if (quickacks == 0)
233 quickacks = 2;
234 quickacks = min(quickacks, max_quickacks);
235 if (quickacks > icsk->icsk_ack.quick)
236 icsk->icsk_ack.quick = quickacks;
237}
238
239static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
240{
241 struct inet_connection_sock *icsk = inet_csk(sk);
242
243 tcp_incr_quickack(sk, max_quickacks);
244 inet_csk_exit_pingpong_mode(sk);
245 icsk->icsk_ack.ato = TCP_ATO_MIN;
246}
247
248/* Send ACKs quickly, if "quick" count is not exhausted
249 * and the session is not interactive.
250 */
251
252static bool tcp_in_quickack_mode(struct sock *sk)
253{
254 const struct inet_connection_sock *icsk = inet_csk(sk);
255 const struct dst_entry *dst = __sk_dst_get(sk);
256
257 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
258 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
259}
260
261static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
262{
263 if (tp->ecn_flags & TCP_ECN_OK)
264 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
265}
266
267static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
268{
269 if (tcp_hdr(skb)->cwr) {
270 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
271
272 /* If the sender is telling us it has entered CWR, then its
273 * cwnd may be very low (even just 1 packet), so we should ACK
274 * immediately.
275 */
276 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
277 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
278 }
279}
280
281static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
282{
283 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
284}
285
286static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
287{
288 struct tcp_sock *tp = tcp_sk(sk);
289
290 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
291 case INET_ECN_NOT_ECT:
292 /* Funny extension: if ECT is not set on a segment,
293 * and we already seen ECT on a previous segment,
294 * it is probably a retransmit.
295 */
296 if (tp->ecn_flags & TCP_ECN_SEEN)
297 tcp_enter_quickack_mode(sk, 2);
298 break;
299 case INET_ECN_CE:
300 if (tcp_ca_needs_ecn(sk))
301 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
302
303 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
304 /* Better not delay acks, sender can have a very low cwnd */
305 tcp_enter_quickack_mode(sk, 2);
306 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
307 }
308 tp->ecn_flags |= TCP_ECN_SEEN;
309 break;
310 default:
311 if (tcp_ca_needs_ecn(sk))
312 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
313 tp->ecn_flags |= TCP_ECN_SEEN;
314 break;
315 }
316}
317
318static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
319{
320 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
321 __tcp_ecn_check_ce(sk, skb);
322}
323
324static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
325{
326 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
327 tp->ecn_flags &= ~TCP_ECN_OK;
328}
329
330static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
331{
332 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
333 tp->ecn_flags &= ~TCP_ECN_OK;
334}
335
336static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
337{
338 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
339 return true;
340 return false;
341}
342
343/* Buffer size and advertised window tuning.
344 *
345 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
346 */
347
348static void tcp_sndbuf_expand(struct sock *sk)
349{
350 const struct tcp_sock *tp = tcp_sk(sk);
351 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
352 int sndmem, per_mss;
353 u32 nr_segs;
354
355 /* Worst case is non GSO/TSO : each frame consumes one skb
356 * and skb->head is kmalloced using power of two area of memory
357 */
358 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
359 MAX_TCP_HEADER +
360 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
361
362 per_mss = roundup_pow_of_two(per_mss) +
363 SKB_DATA_ALIGN(sizeof(struct sk_buff));
364
365 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
366 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
367
368 /* Fast Recovery (RFC 5681 3.2) :
369 * Cubic needs 1.7 factor, rounded to 2 to include
370 * extra cushion (application might react slowly to EPOLLOUT)
371 */
372 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
373 sndmem *= nr_segs * per_mss;
374
375 if (sk->sk_sndbuf < sndmem)
376 WRITE_ONCE(sk->sk_sndbuf,
377 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
378}
379
380/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
381 *
382 * All tcp_full_space() is split to two parts: "network" buffer, allocated
383 * forward and advertised in receiver window (tp->rcv_wnd) and
384 * "application buffer", required to isolate scheduling/application
385 * latencies from network.
386 * window_clamp is maximal advertised window. It can be less than
387 * tcp_full_space(), in this case tcp_full_space() - window_clamp
388 * is reserved for "application" buffer. The less window_clamp is
389 * the smoother our behaviour from viewpoint of network, but the lower
390 * throughput and the higher sensitivity of the connection to losses. 8)
391 *
392 * rcv_ssthresh is more strict window_clamp used at "slow start"
393 * phase to predict further behaviour of this connection.
394 * It is used for two goals:
395 * - to enforce header prediction at sender, even when application
396 * requires some significant "application buffer". It is check #1.
397 * - to prevent pruning of receive queue because of misprediction
398 * of receiver window. Check #2.
399 *
400 * The scheme does not work when sender sends good segments opening
401 * window and then starts to feed us spaghetti. But it should work
402 * in common situations. Otherwise, we have to rely on queue collapsing.
403 */
404
405/* Slow part of check#2. */
406static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
407{
408 struct tcp_sock *tp = tcp_sk(sk);
409 /* Optimize this! */
410 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
411 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
412
413 while (tp->rcv_ssthresh <= window) {
414 if (truesize <= skb->len)
415 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
416
417 truesize >>= 1;
418 window >>= 1;
419 }
420 return 0;
421}
422
423static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
424{
425 struct tcp_sock *tp = tcp_sk(sk);
426 int room;
427
428 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
429
430 /* Check #1 */
431 if (room > 0 && !tcp_under_memory_pressure(sk)) {
432 int incr;
433
434 /* Check #2. Increase window, if skb with such overhead
435 * will fit to rcvbuf in future.
436 */
437 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
438 incr = 2 * tp->advmss;
439 else
440 incr = __tcp_grow_window(sk, skb);
441
442 if (incr) {
443 incr = max_t(int, incr, 2 * skb->len);
444 tp->rcv_ssthresh += min(room, incr);
445 inet_csk(sk)->icsk_ack.quick |= 1;
446 }
447 }
448}
449
450/* 3. Try to fixup all. It is made immediately after connection enters
451 * established state.
452 */
453void tcp_init_buffer_space(struct sock *sk)
454{
455 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
456 struct tcp_sock *tp = tcp_sk(sk);
457 int maxwin;
458
459 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
460 tcp_sndbuf_expand(sk);
461
462 tcp_mstamp_refresh(tp);
463 tp->rcvq_space.time = tp->tcp_mstamp;
464 tp->rcvq_space.seq = tp->copied_seq;
465
466 maxwin = tcp_full_space(sk);
467
468 if (tp->window_clamp >= maxwin) {
469 tp->window_clamp = maxwin;
470
471 if (tcp_app_win && maxwin > 4 * tp->advmss)
472 tp->window_clamp = max(maxwin -
473 (maxwin >> tcp_app_win),
474 4 * tp->advmss);
475 }
476
477 /* Force reservation of one segment. */
478 if (tcp_app_win &&
479 tp->window_clamp > 2 * tp->advmss &&
480 tp->window_clamp + tp->advmss > maxwin)
481 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
482
483 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
484 tp->snd_cwnd_stamp = tcp_jiffies32;
485 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
486 (u32)TCP_INIT_CWND * tp->advmss);
487}
488
489/* 4. Recalculate window clamp after socket hit its memory bounds. */
490static void tcp_clamp_window(struct sock *sk)
491{
492 struct tcp_sock *tp = tcp_sk(sk);
493 struct inet_connection_sock *icsk = inet_csk(sk);
494 struct net *net = sock_net(sk);
495
496 icsk->icsk_ack.quick = 0;
497
498 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
499 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
500 !tcp_under_memory_pressure(sk) &&
501 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
502 WRITE_ONCE(sk->sk_rcvbuf,
503 min(atomic_read(&sk->sk_rmem_alloc),
504 net->ipv4.sysctl_tcp_rmem[2]));
505 }
506 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
507 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
508}
509
510/* Initialize RCV_MSS value.
511 * RCV_MSS is an our guess about MSS used by the peer.
512 * We haven't any direct information about the MSS.
513 * It's better to underestimate the RCV_MSS rather than overestimate.
514 * Overestimations make us ACKing less frequently than needed.
515 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
516 */
517void tcp_initialize_rcv_mss(struct sock *sk)
518{
519 const struct tcp_sock *tp = tcp_sk(sk);
520 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
521
522 hint = min(hint, tp->rcv_wnd / 2);
523 hint = min(hint, TCP_MSS_DEFAULT);
524 hint = max(hint, TCP_MIN_MSS);
525
526 inet_csk(sk)->icsk_ack.rcv_mss = hint;
527}
528EXPORT_SYMBOL(tcp_initialize_rcv_mss);
529
530/* Receiver "autotuning" code.
531 *
532 * The algorithm for RTT estimation w/o timestamps is based on
533 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
534 * <http://public.lanl.gov/radiant/pubs.html#DRS>
535 *
536 * More detail on this code can be found at
537 * <http://staff.psc.edu/jheffner/>,
538 * though this reference is out of date. A new paper
539 * is pending.
540 */
541static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
542{
543 u32 new_sample = tp->rcv_rtt_est.rtt_us;
544 long m = sample;
545
546 if (new_sample != 0) {
547 /* If we sample in larger samples in the non-timestamp
548 * case, we could grossly overestimate the RTT especially
549 * with chatty applications or bulk transfer apps which
550 * are stalled on filesystem I/O.
551 *
552 * Also, since we are only going for a minimum in the
553 * non-timestamp case, we do not smooth things out
554 * else with timestamps disabled convergence takes too
555 * long.
556 */
557 if (!win_dep) {
558 m -= (new_sample >> 3);
559 new_sample += m;
560 } else {
561 m <<= 3;
562 if (m < new_sample)
563 new_sample = m;
564 }
565 } else {
566 /* No previous measure. */
567 new_sample = m << 3;
568 }
569
570 tp->rcv_rtt_est.rtt_us = new_sample;
571}
572
573static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
574{
575 u32 delta_us;
576
577 if (tp->rcv_rtt_est.time == 0)
578 goto new_measure;
579 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
580 return;
581 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
582 if (!delta_us)
583 delta_us = 1;
584 tcp_rcv_rtt_update(tp, delta_us, 1);
585
586new_measure:
587 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
588 tp->rcv_rtt_est.time = tp->tcp_mstamp;
589}
590
591static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
592 const struct sk_buff *skb)
593{
594 struct tcp_sock *tp = tcp_sk(sk);
595
596 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
597 return;
598 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
599
600 if (TCP_SKB_CB(skb)->end_seq -
601 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
602 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
603 u32 delta_us;
604
605 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
606 if (!delta)
607 delta = 1;
608 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
609 tcp_rcv_rtt_update(tp, delta_us, 0);
610 }
611 }
612}
613
614/*
615 * This function should be called every time data is copied to user space.
616 * It calculates the appropriate TCP receive buffer space.
617 */
618void tcp_rcv_space_adjust(struct sock *sk)
619{
620 struct tcp_sock *tp = tcp_sk(sk);
621 u32 copied;
622 int time;
623
624 trace_tcp_rcv_space_adjust(sk);
625
626 tcp_mstamp_refresh(tp);
627 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
628 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
629 return;
630
631 /* Number of bytes copied to user in last RTT */
632 copied = tp->copied_seq - tp->rcvq_space.seq;
633 if (copied <= tp->rcvq_space.space)
634 goto new_measure;
635
636 /* A bit of theory :
637 * copied = bytes received in previous RTT, our base window
638 * To cope with packet losses, we need a 2x factor
639 * To cope with slow start, and sender growing its cwin by 100 %
640 * every RTT, we need a 4x factor, because the ACK we are sending
641 * now is for the next RTT, not the current one :
642 * <prev RTT . ><current RTT .. ><next RTT .... >
643 */
644
645 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
646 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
647 int rcvmem, rcvbuf;
648 u64 rcvwin, grow;
649
650 /* minimal window to cope with packet losses, assuming
651 * steady state. Add some cushion because of small variations.
652 */
653 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
654
655 /* Accommodate for sender rate increase (eg. slow start) */
656 grow = rcvwin * (copied - tp->rcvq_space.space);
657 do_div(grow, tp->rcvq_space.space);
658 rcvwin += (grow << 1);
659
660 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
661 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
662 rcvmem += 128;
663
664 do_div(rcvwin, tp->advmss);
665 rcvbuf = min_t(u64, rcvwin * rcvmem,
666 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
667 if (rcvbuf > sk->sk_rcvbuf) {
668 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
669
670 /* Make the window clamp follow along. */
671 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
672 }
673 }
674 tp->rcvq_space.space = copied;
675
676new_measure:
677 tp->rcvq_space.seq = tp->copied_seq;
678 tp->rcvq_space.time = tp->tcp_mstamp;
679}
680
681/* There is something which you must keep in mind when you analyze the
682 * behavior of the tp->ato delayed ack timeout interval. When a
683 * connection starts up, we want to ack as quickly as possible. The
684 * problem is that "good" TCP's do slow start at the beginning of data
685 * transmission. The means that until we send the first few ACK's the
686 * sender will sit on his end and only queue most of his data, because
687 * he can only send snd_cwnd unacked packets at any given time. For
688 * each ACK we send, he increments snd_cwnd and transmits more of his
689 * queue. -DaveM
690 */
691static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
692{
693 struct tcp_sock *tp = tcp_sk(sk);
694 struct inet_connection_sock *icsk = inet_csk(sk);
695 u32 now;
696
697 inet_csk_schedule_ack(sk);
698
699 tcp_measure_rcv_mss(sk, skb);
700
701 tcp_rcv_rtt_measure(tp);
702
703 now = tcp_jiffies32;
704
705 if (!icsk->icsk_ack.ato) {
706 /* The _first_ data packet received, initialize
707 * delayed ACK engine.
708 */
709 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
710 icsk->icsk_ack.ato = TCP_ATO_MIN;
711 } else {
712 int m = now - icsk->icsk_ack.lrcvtime;
713
714 if (m <= TCP_ATO_MIN / 2) {
715 /* The fastest case is the first. */
716 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
717 } else if (m < icsk->icsk_ack.ato) {
718 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
719 if (icsk->icsk_ack.ato > icsk->icsk_rto)
720 icsk->icsk_ack.ato = icsk->icsk_rto;
721 } else if (m > icsk->icsk_rto) {
722 /* Too long gap. Apparently sender failed to
723 * restart window, so that we send ACKs quickly.
724 */
725 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
726 sk_mem_reclaim(sk);
727 }
728 }
729 icsk->icsk_ack.lrcvtime = now;
730
731 tcp_ecn_check_ce(sk, skb);
732
733 if (skb->len >= 128)
734 tcp_grow_window(sk, skb);
735}
736
737/* Called to compute a smoothed rtt estimate. The data fed to this
738 * routine either comes from timestamps, or from segments that were
739 * known _not_ to have been retransmitted [see Karn/Partridge
740 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
741 * piece by Van Jacobson.
742 * NOTE: the next three routines used to be one big routine.
743 * To save cycles in the RFC 1323 implementation it was better to break
744 * it up into three procedures. -- erics
745 */
746static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
747{
748 struct tcp_sock *tp = tcp_sk(sk);
749 long m = mrtt_us; /* RTT */
750 u32 srtt = tp->srtt_us;
751
752 /* The following amusing code comes from Jacobson's
753 * article in SIGCOMM '88. Note that rtt and mdev
754 * are scaled versions of rtt and mean deviation.
755 * This is designed to be as fast as possible
756 * m stands for "measurement".
757 *
758 * On a 1990 paper the rto value is changed to:
759 * RTO = rtt + 4 * mdev
760 *
761 * Funny. This algorithm seems to be very broken.
762 * These formulae increase RTO, when it should be decreased, increase
763 * too slowly, when it should be increased quickly, decrease too quickly
764 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
765 * does not matter how to _calculate_ it. Seems, it was trap
766 * that VJ failed to avoid. 8)
767 */
768 if (srtt != 0) {
769 m -= (srtt >> 3); /* m is now error in rtt est */
770 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
771 if (m < 0) {
772 m = -m; /* m is now abs(error) */
773 m -= (tp->mdev_us >> 2); /* similar update on mdev */
774 /* This is similar to one of Eifel findings.
775 * Eifel blocks mdev updates when rtt decreases.
776 * This solution is a bit different: we use finer gain
777 * for mdev in this case (alpha*beta).
778 * Like Eifel it also prevents growth of rto,
779 * but also it limits too fast rto decreases,
780 * happening in pure Eifel.
781 */
782 if (m > 0)
783 m >>= 3;
784 } else {
785 m -= (tp->mdev_us >> 2); /* similar update on mdev */
786 }
787 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
788 if (tp->mdev_us > tp->mdev_max_us) {
789 tp->mdev_max_us = tp->mdev_us;
790 if (tp->mdev_max_us > tp->rttvar_us)
791 tp->rttvar_us = tp->mdev_max_us;
792 }
793 if (after(tp->snd_una, tp->rtt_seq)) {
794 if (tp->mdev_max_us < tp->rttvar_us)
795 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
796 tp->rtt_seq = tp->snd_nxt;
797 tp->mdev_max_us = tcp_rto_min_us(sk);
798
799 tcp_bpf_rtt(sk);
800 }
801 } else {
802 /* no previous measure. */
803 srtt = m << 3; /* take the measured time to be rtt */
804 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
805 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
806 tp->mdev_max_us = tp->rttvar_us;
807 tp->rtt_seq = tp->snd_nxt;
808
809 tcp_bpf_rtt(sk);
810 }
811 tp->srtt_us = max(1U, srtt);
812}
813
814static void tcp_update_pacing_rate(struct sock *sk)
815{
816 const struct tcp_sock *tp = tcp_sk(sk);
817 u64 rate;
818
819 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
820 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
821
822 /* current rate is (cwnd * mss) / srtt
823 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
824 * In Congestion Avoidance phase, set it to 120 % the current rate.
825 *
826 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
827 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
828 * end of slow start and should slow down.
829 */
830 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
831 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
832 else
833 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
834
835 rate *= max(tp->snd_cwnd, tp->packets_out);
836
837 if (likely(tp->srtt_us))
838 do_div(rate, tp->srtt_us);
839
840 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
841 * without any lock. We want to make sure compiler wont store
842 * intermediate values in this location.
843 */
844 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
845 sk->sk_max_pacing_rate));
846}
847
848/* Calculate rto without backoff. This is the second half of Van Jacobson's
849 * routine referred to above.
850 */
851static void tcp_set_rto(struct sock *sk)
852{
853 const struct tcp_sock *tp = tcp_sk(sk);
854 /* Old crap is replaced with new one. 8)
855 *
856 * More seriously:
857 * 1. If rtt variance happened to be less 50msec, it is hallucination.
858 * It cannot be less due to utterly erratic ACK generation made
859 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
860 * to do with delayed acks, because at cwnd>2 true delack timeout
861 * is invisible. Actually, Linux-2.4 also generates erratic
862 * ACKs in some circumstances.
863 */
864 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
865
866 /* 2. Fixups made earlier cannot be right.
867 * If we do not estimate RTO correctly without them,
868 * all the algo is pure shit and should be replaced
869 * with correct one. It is exactly, which we pretend to do.
870 */
871
872 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
873 * guarantees that rto is higher.
874 */
875 tcp_bound_rto(sk);
876}
877
878__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
879{
880 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
881
882 if (!cwnd)
883 cwnd = TCP_INIT_CWND;
884 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
885}
886
887/* Take a notice that peer is sending D-SACKs */
888static void tcp_dsack_seen(struct tcp_sock *tp)
889{
890 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
891 tp->rack.dsack_seen = 1;
892 tp->dsack_dups++;
893}
894
895/* It's reordering when higher sequence was delivered (i.e. sacked) before
896 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
897 * distance is approximated in full-mss packet distance ("reordering").
898 */
899static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
900 const int ts)
901{
902 struct tcp_sock *tp = tcp_sk(sk);
903 const u32 mss = tp->mss_cache;
904 u32 fack, metric;
905
906 fack = tcp_highest_sack_seq(tp);
907 if (!before(low_seq, fack))
908 return;
909
910 metric = fack - low_seq;
911 if ((metric > tp->reordering * mss) && mss) {
912#if FASTRETRANS_DEBUG > 1
913 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
914 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
915 tp->reordering,
916 0,
917 tp->sacked_out,
918 tp->undo_marker ? tp->undo_retrans : 0);
919#endif
920 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
921 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
922 }
923
924 /* This exciting event is worth to be remembered. 8) */
925 tp->reord_seen++;
926 NET_INC_STATS(sock_net(sk),
927 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
928}
929
930/* This must be called before lost_out is incremented */
931static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
932{
933 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
934 (tp->retransmit_skb_hint &&
935 before(TCP_SKB_CB(skb)->seq,
936 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
937 tp->retransmit_skb_hint = skb;
938}
939
940/* Sum the number of packets on the wire we have marked as lost.
941 * There are two cases we care about here:
942 * a) Packet hasn't been marked lost (nor retransmitted),
943 * and this is the first loss.
944 * b) Packet has been marked both lost and retransmitted,
945 * and this means we think it was lost again.
946 */
947static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
948{
949 __u8 sacked = TCP_SKB_CB(skb)->sacked;
950
951 if (!(sacked & TCPCB_LOST) ||
952 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
953 tp->lost += tcp_skb_pcount(skb);
954}
955
956static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
957{
958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 tcp_verify_retransmit_hint(tp, skb);
960
961 tp->lost_out += tcp_skb_pcount(skb);
962 tcp_sum_lost(tp, skb);
963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
964 }
965}
966
967void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
968{
969 tcp_verify_retransmit_hint(tp, skb);
970
971 tcp_sum_lost(tp, skb);
972 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
973 tp->lost_out += tcp_skb_pcount(skb);
974 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
975 }
976}
977
978/* This procedure tags the retransmission queue when SACKs arrive.
979 *
980 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
981 * Packets in queue with these bits set are counted in variables
982 * sacked_out, retrans_out and lost_out, correspondingly.
983 *
984 * Valid combinations are:
985 * Tag InFlight Description
986 * 0 1 - orig segment is in flight.
987 * S 0 - nothing flies, orig reached receiver.
988 * L 0 - nothing flies, orig lost by net.
989 * R 2 - both orig and retransmit are in flight.
990 * L|R 1 - orig is lost, retransmit is in flight.
991 * S|R 1 - orig reached receiver, retrans is still in flight.
992 * (L|S|R is logically valid, it could occur when L|R is sacked,
993 * but it is equivalent to plain S and code short-curcuits it to S.
994 * L|S is logically invalid, it would mean -1 packet in flight 8))
995 *
996 * These 6 states form finite state machine, controlled by the following events:
997 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
998 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
999 * 3. Loss detection event of two flavors:
1000 * A. Scoreboard estimator decided the packet is lost.
1001 * A'. Reno "three dupacks" marks head of queue lost.
1002 * B. SACK arrives sacking SND.NXT at the moment, when the
1003 * segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005 *
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1009 *
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1014 *
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 * ever retransmitted -> reordering. Alas, we cannot use it
1017 * when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 * for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1022 *
1023 * SACK block validation.
1024 * ----------------------
1025 *
1026 * SACK block range validation checks that the received SACK block fits to
1027 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028 * Note that SND.UNA is not included to the range though being valid because
1029 * it means that the receiver is rather inconsistent with itself reporting
1030 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031 * perfectly valid, however, in light of RFC2018 which explicitly states
1032 * that "SACK block MUST reflect the newest segment. Even if the newest
1033 * segment is going to be discarded ...", not that it looks very clever
1034 * in case of head skb. Due to potentional receiver driven attacks, we
1035 * choose to avoid immediate execution of a walk in write queue due to
1036 * reneging and defer head skb's loss recovery to standard loss recovery
1037 * procedure that will eventually trigger (nothing forbids us doing this).
1038 *
1039 * Implements also blockage to start_seq wrap-around. Problem lies in the
1040 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041 * there's no guarantee that it will be before snd_nxt (n). The problem
1042 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043 * wrap (s_w):
1044 *
1045 * <- outs wnd -> <- wrapzone ->
1046 * u e n u_w e_w s n_w
1047 * | | | | | | |
1048 * |<------------+------+----- TCP seqno space --------------+---------->|
1049 * ...-- <2^31 ->| |<--------...
1050 * ...---- >2^31 ------>| |<--------...
1051 *
1052 * Current code wouldn't be vulnerable but it's better still to discard such
1053 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056 * equal to the ideal case (infinite seqno space without wrap caused issues).
1057 *
1058 * With D-SACK the lower bound is extended to cover sequence space below
1059 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060 * again, D-SACK block must not to go across snd_una (for the same reason as
1061 * for the normal SACK blocks, explained above). But there all simplicity
1062 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063 * fully below undo_marker they do not affect behavior in anyway and can
1064 * therefore be safely ignored. In rare cases (which are more or less
1065 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066 * fragmentation and packet reordering past skb's retransmission. To consider
1067 * them correctly, the acceptable range must be extended even more though
1068 * the exact amount is rather hard to quantify. However, tp->max_window can
1069 * be used as an exaggerated estimate.
1070 */
1071static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1072 u32 start_seq, u32 end_seq)
1073{
1074 /* Too far in future, or reversed (interpretation is ambiguous) */
1075 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076 return false;
1077
1078 /* Nasty start_seq wrap-around check (see comments above) */
1079 if (!before(start_seq, tp->snd_nxt))
1080 return false;
1081
1082 /* In outstanding window? ...This is valid exit for D-SACKs too.
1083 * start_seq == snd_una is non-sensical (see comments above)
1084 */
1085 if (after(start_seq, tp->snd_una))
1086 return true;
1087
1088 if (!is_dsack || !tp->undo_marker)
1089 return false;
1090
1091 /* ...Then it's D-SACK, and must reside below snd_una completely */
1092 if (after(end_seq, tp->snd_una))
1093 return false;
1094
1095 if (!before(start_seq, tp->undo_marker))
1096 return true;
1097
1098 /* Too old */
1099 if (!after(end_seq, tp->undo_marker))
1100 return false;
1101
1102 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1103 * start_seq < undo_marker and end_seq >= undo_marker.
1104 */
1105 return !before(start_seq, end_seq - tp->max_window);
1106}
1107
1108static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1109 struct tcp_sack_block_wire *sp, int num_sacks,
1110 u32 prior_snd_una)
1111{
1112 struct tcp_sock *tp = tcp_sk(sk);
1113 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1114 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1115 bool dup_sack = false;
1116
1117 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1118 dup_sack = true;
1119 tcp_dsack_seen(tp);
1120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1121 } else if (num_sacks > 1) {
1122 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1123 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1124
1125 if (!after(end_seq_0, end_seq_1) &&
1126 !before(start_seq_0, start_seq_1)) {
1127 dup_sack = true;
1128 tcp_dsack_seen(tp);
1129 NET_INC_STATS(sock_net(sk),
1130 LINUX_MIB_TCPDSACKOFORECV);
1131 }
1132 }
1133
1134 /* D-SACK for already forgotten data... Do dumb counting. */
1135 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1136 !after(end_seq_0, prior_snd_una) &&
1137 after(end_seq_0, tp->undo_marker))
1138 tp->undo_retrans--;
1139
1140 return dup_sack;
1141}
1142
1143struct tcp_sacktag_state {
1144 u32 reord;
1145 /* Timestamps for earliest and latest never-retransmitted segment
1146 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1147 * but congestion control should still get an accurate delay signal.
1148 */
1149 u64 first_sackt;
1150 u64 last_sackt;
1151 struct rate_sample *rate;
1152 int flag;
1153 unsigned int mss_now;
1154};
1155
1156/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1157 * the incoming SACK may not exactly match but we can find smaller MSS
1158 * aligned portion of it that matches. Therefore we might need to fragment
1159 * which may fail and creates some hassle (caller must handle error case
1160 * returns).
1161 *
1162 * FIXME: this could be merged to shift decision code
1163 */
1164static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1165 u32 start_seq, u32 end_seq)
1166{
1167 int err;
1168 bool in_sack;
1169 unsigned int pkt_len;
1170 unsigned int mss;
1171
1172 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1173 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1174
1175 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1176 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1177 mss = tcp_skb_mss(skb);
1178 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1179
1180 if (!in_sack) {
1181 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1182 if (pkt_len < mss)
1183 pkt_len = mss;
1184 } else {
1185 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1186 if (pkt_len < mss)
1187 return -EINVAL;
1188 }
1189
1190 /* Round if necessary so that SACKs cover only full MSSes
1191 * and/or the remaining small portion (if present)
1192 */
1193 if (pkt_len > mss) {
1194 unsigned int new_len = (pkt_len / mss) * mss;
1195 if (!in_sack && new_len < pkt_len)
1196 new_len += mss;
1197 pkt_len = new_len;
1198 }
1199
1200 if (pkt_len >= skb->len && !in_sack)
1201 return 0;
1202
1203 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1204 pkt_len, mss, GFP_ATOMIC);
1205 if (err < 0)
1206 return err;
1207 }
1208
1209 return in_sack;
1210}
1211
1212/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1213static u8 tcp_sacktag_one(struct sock *sk,
1214 struct tcp_sacktag_state *state, u8 sacked,
1215 u32 start_seq, u32 end_seq,
1216 int dup_sack, int pcount,
1217 u64 xmit_time)
1218{
1219 struct tcp_sock *tp = tcp_sk(sk);
1220
1221 /* Account D-SACK for retransmitted packet. */
1222 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1223 if (tp->undo_marker && tp->undo_retrans > 0 &&
1224 after(end_seq, tp->undo_marker))
1225 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1226 if ((sacked & TCPCB_SACKED_ACKED) &&
1227 before(start_seq, state->reord))
1228 state->reord = start_seq;
1229 }
1230
1231 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1232 if (!after(end_seq, tp->snd_una))
1233 return sacked;
1234
1235 if (!(sacked & TCPCB_SACKED_ACKED)) {
1236 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1237
1238 if (sacked & TCPCB_SACKED_RETRANS) {
1239 /* If the segment is not tagged as lost,
1240 * we do not clear RETRANS, believing
1241 * that retransmission is still in flight.
1242 */
1243 if (sacked & TCPCB_LOST) {
1244 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1245 tp->lost_out -= pcount;
1246 tp->retrans_out -= pcount;
1247 }
1248 } else {
1249 if (!(sacked & TCPCB_RETRANS)) {
1250 /* New sack for not retransmitted frame,
1251 * which was in hole. It is reordering.
1252 */
1253 if (before(start_seq,
1254 tcp_highest_sack_seq(tp)) &&
1255 before(start_seq, state->reord))
1256 state->reord = start_seq;
1257
1258 if (!after(end_seq, tp->high_seq))
1259 state->flag |= FLAG_ORIG_SACK_ACKED;
1260 if (state->first_sackt == 0)
1261 state->first_sackt = xmit_time;
1262 state->last_sackt = xmit_time;
1263 }
1264
1265 if (sacked & TCPCB_LOST) {
1266 sacked &= ~TCPCB_LOST;
1267 tp->lost_out -= pcount;
1268 }
1269 }
1270
1271 sacked |= TCPCB_SACKED_ACKED;
1272 state->flag |= FLAG_DATA_SACKED;
1273 tp->sacked_out += pcount;
1274 tp->delivered += pcount; /* Out-of-order packets delivered */
1275
1276 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1277 if (tp->lost_skb_hint &&
1278 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1279 tp->lost_cnt_hint += pcount;
1280 }
1281
1282 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1283 * frames and clear it. undo_retrans is decreased above, L|R frames
1284 * are accounted above as well.
1285 */
1286 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1287 sacked &= ~TCPCB_SACKED_RETRANS;
1288 tp->retrans_out -= pcount;
1289 }
1290
1291 return sacked;
1292}
1293
1294/* Shift newly-SACKed bytes from this skb to the immediately previous
1295 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1296 */
1297static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1298 struct sk_buff *skb,
1299 struct tcp_sacktag_state *state,
1300 unsigned int pcount, int shifted, int mss,
1301 bool dup_sack)
1302{
1303 struct tcp_sock *tp = tcp_sk(sk);
1304 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1305 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1306
1307 BUG_ON(!pcount);
1308
1309 /* Adjust counters and hints for the newly sacked sequence
1310 * range but discard the return value since prev is already
1311 * marked. We must tag the range first because the seq
1312 * advancement below implicitly advances
1313 * tcp_highest_sack_seq() when skb is highest_sack.
1314 */
1315 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1316 start_seq, end_seq, dup_sack, pcount,
1317 tcp_skb_timestamp_us(skb));
1318 tcp_rate_skb_delivered(sk, skb, state->rate);
1319
1320 if (skb == tp->lost_skb_hint)
1321 tp->lost_cnt_hint += pcount;
1322
1323 TCP_SKB_CB(prev)->end_seq += shifted;
1324 TCP_SKB_CB(skb)->seq += shifted;
1325
1326 tcp_skb_pcount_add(prev, pcount);
1327 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1328 tcp_skb_pcount_add(skb, -pcount);
1329
1330 /* When we're adding to gso_segs == 1, gso_size will be zero,
1331 * in theory this shouldn't be necessary but as long as DSACK
1332 * code can come after this skb later on it's better to keep
1333 * setting gso_size to something.
1334 */
1335 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1336 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1337
1338 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1339 if (tcp_skb_pcount(skb) <= 1)
1340 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1341
1342 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1343 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1344
1345 if (skb->len > 0) {
1346 BUG_ON(!tcp_skb_pcount(skb));
1347 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1348 return false;
1349 }
1350
1351 /* Whole SKB was eaten :-) */
1352
1353 if (skb == tp->retransmit_skb_hint)
1354 tp->retransmit_skb_hint = prev;
1355 if (skb == tp->lost_skb_hint) {
1356 tp->lost_skb_hint = prev;
1357 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1358 }
1359
1360 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1361 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1362 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1363 TCP_SKB_CB(prev)->end_seq++;
1364
1365 if (skb == tcp_highest_sack(sk))
1366 tcp_advance_highest_sack(sk, skb);
1367
1368 tcp_skb_collapse_tstamp(prev, skb);
1369 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1370 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1371
1372 tcp_rtx_queue_unlink_and_free(skb, sk);
1373
1374 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1375
1376 return true;
1377}
1378
1379/* I wish gso_size would have a bit more sane initialization than
1380 * something-or-zero which complicates things
1381 */
1382static int tcp_skb_seglen(const struct sk_buff *skb)
1383{
1384 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1385}
1386
1387/* Shifting pages past head area doesn't work */
1388static int skb_can_shift(const struct sk_buff *skb)
1389{
1390 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1391}
1392
1393int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1394 int pcount, int shiftlen)
1395{
1396 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1397 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1398 * to make sure not storing more than 65535 * 8 bytes per skb,
1399 * even if current MSS is bigger.
1400 */
1401 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1402 return 0;
1403 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1404 return 0;
1405 return skb_shift(to, from, shiftlen);
1406}
1407
1408/* Try collapsing SACK blocks spanning across multiple skbs to a single
1409 * skb.
1410 */
1411static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1412 struct tcp_sacktag_state *state,
1413 u32 start_seq, u32 end_seq,
1414 bool dup_sack)
1415{
1416 struct tcp_sock *tp = tcp_sk(sk);
1417 struct sk_buff *prev;
1418 int mss;
1419 int pcount = 0;
1420 int len;
1421 int in_sack;
1422
1423 /* Normally R but no L won't result in plain S */
1424 if (!dup_sack &&
1425 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1426 goto fallback;
1427 if (!skb_can_shift(skb))
1428 goto fallback;
1429 /* This frame is about to be dropped (was ACKed). */
1430 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1431 goto fallback;
1432
1433 /* Can only happen with delayed DSACK + discard craziness */
1434 prev = skb_rb_prev(skb);
1435 if (!prev)
1436 goto fallback;
1437
1438 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1439 goto fallback;
1440
1441 if (!tcp_skb_can_collapse_to(prev))
1442 goto fallback;
1443
1444 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1445 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1446
1447 if (in_sack) {
1448 len = skb->len;
1449 pcount = tcp_skb_pcount(skb);
1450 mss = tcp_skb_seglen(skb);
1451
1452 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1453 * drop this restriction as unnecessary
1454 */
1455 if (mss != tcp_skb_seglen(prev))
1456 goto fallback;
1457 } else {
1458 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1459 goto noop;
1460 /* CHECKME: This is non-MSS split case only?, this will
1461 * cause skipped skbs due to advancing loop btw, original
1462 * has that feature too
1463 */
1464 if (tcp_skb_pcount(skb) <= 1)
1465 goto noop;
1466
1467 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1468 if (!in_sack) {
1469 /* TODO: head merge to next could be attempted here
1470 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1471 * though it might not be worth of the additional hassle
1472 *
1473 * ...we can probably just fallback to what was done
1474 * previously. We could try merging non-SACKed ones
1475 * as well but it probably isn't going to buy off
1476 * because later SACKs might again split them, and
1477 * it would make skb timestamp tracking considerably
1478 * harder problem.
1479 */
1480 goto fallback;
1481 }
1482
1483 len = end_seq - TCP_SKB_CB(skb)->seq;
1484 BUG_ON(len < 0);
1485 BUG_ON(len > skb->len);
1486
1487 /* MSS boundaries should be honoured or else pcount will
1488 * severely break even though it makes things bit trickier.
1489 * Optimize common case to avoid most of the divides
1490 */
1491 mss = tcp_skb_mss(skb);
1492
1493 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1494 * drop this restriction as unnecessary
1495 */
1496 if (mss != tcp_skb_seglen(prev))
1497 goto fallback;
1498
1499 if (len == mss) {
1500 pcount = 1;
1501 } else if (len < mss) {
1502 goto noop;
1503 } else {
1504 pcount = len / mss;
1505 len = pcount * mss;
1506 }
1507 }
1508
1509 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1510 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1511 goto fallback;
1512
1513 if (!tcp_skb_shift(prev, skb, pcount, len))
1514 goto fallback;
1515 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1516 goto out;
1517
1518 /* Hole filled allows collapsing with the next as well, this is very
1519 * useful when hole on every nth skb pattern happens
1520 */
1521 skb = skb_rb_next(prev);
1522 if (!skb)
1523 goto out;
1524
1525 if (!skb_can_shift(skb) ||
1526 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1527 (mss != tcp_skb_seglen(skb)))
1528 goto out;
1529
1530 len = skb->len;
1531 pcount = tcp_skb_pcount(skb);
1532 if (tcp_skb_shift(prev, skb, pcount, len))
1533 tcp_shifted_skb(sk, prev, skb, state, pcount,
1534 len, mss, 0);
1535
1536out:
1537 return prev;
1538
1539noop:
1540 return skb;
1541
1542fallback:
1543 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1544 return NULL;
1545}
1546
1547static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1548 struct tcp_sack_block *next_dup,
1549 struct tcp_sacktag_state *state,
1550 u32 start_seq, u32 end_seq,
1551 bool dup_sack_in)
1552{
1553 struct tcp_sock *tp = tcp_sk(sk);
1554 struct sk_buff *tmp;
1555
1556 skb_rbtree_walk_from(skb) {
1557 int in_sack = 0;
1558 bool dup_sack = dup_sack_in;
1559
1560 /* queue is in-order => we can short-circuit the walk early */
1561 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1562 break;
1563
1564 if (next_dup &&
1565 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1566 in_sack = tcp_match_skb_to_sack(sk, skb,
1567 next_dup->start_seq,
1568 next_dup->end_seq);
1569 if (in_sack > 0)
1570 dup_sack = true;
1571 }
1572
1573 /* skb reference here is a bit tricky to get right, since
1574 * shifting can eat and free both this skb and the next,
1575 * so not even _safe variant of the loop is enough.
1576 */
1577 if (in_sack <= 0) {
1578 tmp = tcp_shift_skb_data(sk, skb, state,
1579 start_seq, end_seq, dup_sack);
1580 if (tmp) {
1581 if (tmp != skb) {
1582 skb = tmp;
1583 continue;
1584 }
1585
1586 in_sack = 0;
1587 } else {
1588 in_sack = tcp_match_skb_to_sack(sk, skb,
1589 start_seq,
1590 end_seq);
1591 }
1592 }
1593
1594 if (unlikely(in_sack < 0))
1595 break;
1596
1597 if (in_sack) {
1598 TCP_SKB_CB(skb)->sacked =
1599 tcp_sacktag_one(sk,
1600 state,
1601 TCP_SKB_CB(skb)->sacked,
1602 TCP_SKB_CB(skb)->seq,
1603 TCP_SKB_CB(skb)->end_seq,
1604 dup_sack,
1605 tcp_skb_pcount(skb),
1606 tcp_skb_timestamp_us(skb));
1607 tcp_rate_skb_delivered(sk, skb, state->rate);
1608 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1609 list_del_init(&skb->tcp_tsorted_anchor);
1610
1611 if (!before(TCP_SKB_CB(skb)->seq,
1612 tcp_highest_sack_seq(tp)))
1613 tcp_advance_highest_sack(sk, skb);
1614 }
1615 }
1616 return skb;
1617}
1618
1619static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1620{
1621 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1622 struct sk_buff *skb;
1623
1624 while (*p) {
1625 parent = *p;
1626 skb = rb_to_skb(parent);
1627 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1628 p = &parent->rb_left;
1629 continue;
1630 }
1631 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1632 p = &parent->rb_right;
1633 continue;
1634 }
1635 return skb;
1636 }
1637 return NULL;
1638}
1639
1640static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1641 u32 skip_to_seq)
1642{
1643 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1644 return skb;
1645
1646 return tcp_sacktag_bsearch(sk, skip_to_seq);
1647}
1648
1649static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1650 struct sock *sk,
1651 struct tcp_sack_block *next_dup,
1652 struct tcp_sacktag_state *state,
1653 u32 skip_to_seq)
1654{
1655 if (!next_dup)
1656 return skb;
1657
1658 if (before(next_dup->start_seq, skip_to_seq)) {
1659 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1660 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1661 next_dup->start_seq, next_dup->end_seq,
1662 1);
1663 }
1664
1665 return skb;
1666}
1667
1668static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1669{
1670 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1671}
1672
1673static int
1674tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1675 u32 prior_snd_una, struct tcp_sacktag_state *state)
1676{
1677 struct tcp_sock *tp = tcp_sk(sk);
1678 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1679 TCP_SKB_CB(ack_skb)->sacked);
1680 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1681 struct tcp_sack_block sp[TCP_NUM_SACKS];
1682 struct tcp_sack_block *cache;
1683 struct sk_buff *skb;
1684 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1685 int used_sacks;
1686 bool found_dup_sack = false;
1687 int i, j;
1688 int first_sack_index;
1689
1690 state->flag = 0;
1691 state->reord = tp->snd_nxt;
1692
1693 if (!tp->sacked_out)
1694 tcp_highest_sack_reset(sk);
1695
1696 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1697 num_sacks, prior_snd_una);
1698 if (found_dup_sack) {
1699 state->flag |= FLAG_DSACKING_ACK;
1700 tp->delivered++; /* A spurious retransmission is delivered */
1701 }
1702
1703 /* Eliminate too old ACKs, but take into
1704 * account more or less fresh ones, they can
1705 * contain valid SACK info.
1706 */
1707 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1708 return 0;
1709
1710 if (!tp->packets_out)
1711 goto out;
1712
1713 used_sacks = 0;
1714 first_sack_index = 0;
1715 for (i = 0; i < num_sacks; i++) {
1716 bool dup_sack = !i && found_dup_sack;
1717
1718 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1719 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1720
1721 if (!tcp_is_sackblock_valid(tp, dup_sack,
1722 sp[used_sacks].start_seq,
1723 sp[used_sacks].end_seq)) {
1724 int mib_idx;
1725
1726 if (dup_sack) {
1727 if (!tp->undo_marker)
1728 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1729 else
1730 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1731 } else {
1732 /* Don't count olds caused by ACK reordering */
1733 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1734 !after(sp[used_sacks].end_seq, tp->snd_una))
1735 continue;
1736 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1737 }
1738
1739 NET_INC_STATS(sock_net(sk), mib_idx);
1740 if (i == 0)
1741 first_sack_index = -1;
1742 continue;
1743 }
1744
1745 /* Ignore very old stuff early */
1746 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1747 if (i == 0)
1748 first_sack_index = -1;
1749 continue;
1750 }
1751
1752 used_sacks++;
1753 }
1754
1755 /* order SACK blocks to allow in order walk of the retrans queue */
1756 for (i = used_sacks - 1; i > 0; i--) {
1757 for (j = 0; j < i; j++) {
1758 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1759 swap(sp[j], sp[j + 1]);
1760
1761 /* Track where the first SACK block goes to */
1762 if (j == first_sack_index)
1763 first_sack_index = j + 1;
1764 }
1765 }
1766 }
1767
1768 state->mss_now = tcp_current_mss(sk);
1769 skb = NULL;
1770 i = 0;
1771
1772 if (!tp->sacked_out) {
1773 /* It's already past, so skip checking against it */
1774 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1775 } else {
1776 cache = tp->recv_sack_cache;
1777 /* Skip empty blocks in at head of the cache */
1778 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1779 !cache->end_seq)
1780 cache++;
1781 }
1782
1783 while (i < used_sacks) {
1784 u32 start_seq = sp[i].start_seq;
1785 u32 end_seq = sp[i].end_seq;
1786 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1787 struct tcp_sack_block *next_dup = NULL;
1788
1789 if (found_dup_sack && ((i + 1) == first_sack_index))
1790 next_dup = &sp[i + 1];
1791
1792 /* Skip too early cached blocks */
1793 while (tcp_sack_cache_ok(tp, cache) &&
1794 !before(start_seq, cache->end_seq))
1795 cache++;
1796
1797 /* Can skip some work by looking recv_sack_cache? */
1798 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1799 after(end_seq, cache->start_seq)) {
1800
1801 /* Head todo? */
1802 if (before(start_seq, cache->start_seq)) {
1803 skb = tcp_sacktag_skip(skb, sk, start_seq);
1804 skb = tcp_sacktag_walk(skb, sk, next_dup,
1805 state,
1806 start_seq,
1807 cache->start_seq,
1808 dup_sack);
1809 }
1810
1811 /* Rest of the block already fully processed? */
1812 if (!after(end_seq, cache->end_seq))
1813 goto advance_sp;
1814
1815 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1816 state,
1817 cache->end_seq);
1818
1819 /* ...tail remains todo... */
1820 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1821 /* ...but better entrypoint exists! */
1822 skb = tcp_highest_sack(sk);
1823 if (!skb)
1824 break;
1825 cache++;
1826 goto walk;
1827 }
1828
1829 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1830 /* Check overlap against next cached too (past this one already) */
1831 cache++;
1832 continue;
1833 }
1834
1835 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1836 skb = tcp_highest_sack(sk);
1837 if (!skb)
1838 break;
1839 }
1840 skb = tcp_sacktag_skip(skb, sk, start_seq);
1841
1842walk:
1843 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1844 start_seq, end_seq, dup_sack);
1845
1846advance_sp:
1847 i++;
1848 }
1849
1850 /* Clear the head of the cache sack blocks so we can skip it next time */
1851 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1852 tp->recv_sack_cache[i].start_seq = 0;
1853 tp->recv_sack_cache[i].end_seq = 0;
1854 }
1855 for (j = 0; j < used_sacks; j++)
1856 tp->recv_sack_cache[i++] = sp[j];
1857
1858 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1859 tcp_check_sack_reordering(sk, state->reord, 0);
1860
1861 tcp_verify_left_out(tp);
1862out:
1863
1864#if FASTRETRANS_DEBUG > 0
1865 WARN_ON((int)tp->sacked_out < 0);
1866 WARN_ON((int)tp->lost_out < 0);
1867 WARN_ON((int)tp->retrans_out < 0);
1868 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1869#endif
1870 return state->flag;
1871}
1872
1873/* Limits sacked_out so that sum with lost_out isn't ever larger than
1874 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1875 */
1876static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1877{
1878 u32 holes;
1879
1880 holes = max(tp->lost_out, 1U);
1881 holes = min(holes, tp->packets_out);
1882
1883 if ((tp->sacked_out + holes) > tp->packets_out) {
1884 tp->sacked_out = tp->packets_out - holes;
1885 return true;
1886 }
1887 return false;
1888}
1889
1890/* If we receive more dupacks than we expected counting segments
1891 * in assumption of absent reordering, interpret this as reordering.
1892 * The only another reason could be bug in receiver TCP.
1893 */
1894static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1895{
1896 struct tcp_sock *tp = tcp_sk(sk);
1897
1898 if (!tcp_limit_reno_sacked(tp))
1899 return;
1900
1901 tp->reordering = min_t(u32, tp->packets_out + addend,
1902 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1903 tp->reord_seen++;
1904 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1905}
1906
1907/* Emulate SACKs for SACKless connection: account for a new dupack. */
1908
1909static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1910{
1911 if (num_dupack) {
1912 struct tcp_sock *tp = tcp_sk(sk);
1913 u32 prior_sacked = tp->sacked_out;
1914 s32 delivered;
1915
1916 tp->sacked_out += num_dupack;
1917 tcp_check_reno_reordering(sk, 0);
1918 delivered = tp->sacked_out - prior_sacked;
1919 if (delivered > 0)
1920 tp->delivered += delivered;
1921 tcp_verify_left_out(tp);
1922 }
1923}
1924
1925/* Account for ACK, ACKing some data in Reno Recovery phase. */
1926
1927static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1928{
1929 struct tcp_sock *tp = tcp_sk(sk);
1930
1931 if (acked > 0) {
1932 /* One ACK acked hole. The rest eat duplicate ACKs. */
1933 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1934 if (acked - 1 >= tp->sacked_out)
1935 tp->sacked_out = 0;
1936 else
1937 tp->sacked_out -= acked - 1;
1938 }
1939 tcp_check_reno_reordering(sk, acked);
1940 tcp_verify_left_out(tp);
1941}
1942
1943static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1944{
1945 tp->sacked_out = 0;
1946}
1947
1948void tcp_clear_retrans(struct tcp_sock *tp)
1949{
1950 tp->retrans_out = 0;
1951 tp->lost_out = 0;
1952 tp->undo_marker = 0;
1953 tp->undo_retrans = -1;
1954 tp->sacked_out = 0;
1955}
1956
1957static inline void tcp_init_undo(struct tcp_sock *tp)
1958{
1959 tp->undo_marker = tp->snd_una;
1960
1961 /* Retransmission still in flight may cause DSACKs later. */
1962 /* First, account for regular retransmits in flight: */
1963 tp->undo_retrans = tp->retrans_out;
1964 /* Next, account for TLP retransmits in flight: */
1965 if (tp->tlp_high_seq && tp->tlp_retrans)
1966 tp->undo_retrans++;
1967 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
1968 if (!tp->undo_retrans)
1969 tp->undo_retrans = -1;
1970}
1971
1972static bool tcp_is_rack(const struct sock *sk)
1973{
1974 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
1975 TCP_RACK_LOSS_DETECTION;
1976}
1977
1978/* If we detect SACK reneging, forget all SACK information
1979 * and reset tags completely, otherwise preserve SACKs. If receiver
1980 * dropped its ofo queue, we will know this due to reneging detection.
1981 */
1982static void tcp_timeout_mark_lost(struct sock *sk)
1983{
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 struct sk_buff *skb, *head;
1986 bool is_reneg; /* is receiver reneging on SACKs? */
1987
1988 head = tcp_rtx_queue_head(sk);
1989 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1990 if (is_reneg) {
1991 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1992 tp->sacked_out = 0;
1993 /* Mark SACK reneging until we recover from this loss event. */
1994 tp->is_sack_reneg = 1;
1995 } else if (tcp_is_reno(tp)) {
1996 tcp_reset_reno_sack(tp);
1997 }
1998
1999 skb = head;
2000 skb_rbtree_walk_from(skb) {
2001 if (is_reneg)
2002 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2003 else if (tcp_is_rack(sk) && skb != head &&
2004 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2005 continue; /* Don't mark recently sent ones lost yet */
2006 tcp_mark_skb_lost(sk, skb);
2007 }
2008 tcp_verify_left_out(tp);
2009 tcp_clear_all_retrans_hints(tp);
2010}
2011
2012/* Enter Loss state. */
2013void tcp_enter_loss(struct sock *sk)
2014{
2015 const struct inet_connection_sock *icsk = inet_csk(sk);
2016 struct tcp_sock *tp = tcp_sk(sk);
2017 struct net *net = sock_net(sk);
2018 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2019 u8 reordering;
2020
2021 tcp_timeout_mark_lost(sk);
2022
2023 /* Reduce ssthresh if it has not yet been made inside this window. */
2024 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2025 !after(tp->high_seq, tp->snd_una) ||
2026 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2027 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2028 tp->prior_cwnd = tp->snd_cwnd;
2029 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2030 tcp_ca_event(sk, CA_EVENT_LOSS);
2031 tcp_init_undo(tp);
2032 }
2033 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2034 tp->snd_cwnd_cnt = 0;
2035 tp->snd_cwnd_stamp = tcp_jiffies32;
2036
2037 /* Timeout in disordered state after receiving substantial DUPACKs
2038 * suggests that the degree of reordering is over-estimated.
2039 */
2040 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2041 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2042 tp->sacked_out >= reordering)
2043 tp->reordering = min_t(unsigned int, tp->reordering,
2044 reordering);
2045
2046 tcp_set_ca_state(sk, TCP_CA_Loss);
2047 tp->high_seq = tp->snd_nxt;
2048 tp->tlp_high_seq = 0;
2049 tcp_ecn_queue_cwr(tp);
2050
2051 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2052 * loss recovery is underway except recurring timeout(s) on
2053 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2054 */
2055 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2056 (new_recovery || icsk->icsk_retransmits) &&
2057 !inet_csk(sk)->icsk_mtup.probe_size;
2058}
2059
2060/* If ACK arrived pointing to a remembered SACK, it means that our
2061 * remembered SACKs do not reflect real state of receiver i.e.
2062 * receiver _host_ is heavily congested (or buggy).
2063 *
2064 * To avoid big spurious retransmission bursts due to transient SACK
2065 * scoreboard oddities that look like reneging, we give the receiver a
2066 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2067 * restore sanity to the SACK scoreboard. If the apparent reneging
2068 * persists until this RTO then we'll clear the SACK scoreboard.
2069 */
2070static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2071{
2072 if (*ack_flag & FLAG_SACK_RENEGING &&
2073 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2074 struct tcp_sock *tp = tcp_sk(sk);
2075 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2076 msecs_to_jiffies(10));
2077
2078 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2079 delay, TCP_RTO_MAX);
2080 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2081 return true;
2082 }
2083 return false;
2084}
2085
2086/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2087 * counter when SACK is enabled (without SACK, sacked_out is used for
2088 * that purpose).
2089 *
2090 * With reordering, holes may still be in flight, so RFC3517 recovery
2091 * uses pure sacked_out (total number of SACKed segments) even though
2092 * it violates the RFC that uses duplicate ACKs, often these are equal
2093 * but when e.g. out-of-window ACKs or packet duplication occurs,
2094 * they differ. Since neither occurs due to loss, TCP should really
2095 * ignore them.
2096 */
2097static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2098{
2099 return tp->sacked_out + 1;
2100}
2101
2102/* Linux NewReno/SACK/ECN state machine.
2103 * --------------------------------------
2104 *
2105 * "Open" Normal state, no dubious events, fast path.
2106 * "Disorder" In all the respects it is "Open",
2107 * but requires a bit more attention. It is entered when
2108 * we see some SACKs or dupacks. It is split of "Open"
2109 * mainly to move some processing from fast path to slow one.
2110 * "CWR" CWND was reduced due to some Congestion Notification event.
2111 * It can be ECN, ICMP source quench, local device congestion.
2112 * "Recovery" CWND was reduced, we are fast-retransmitting.
2113 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2114 *
2115 * tcp_fastretrans_alert() is entered:
2116 * - each incoming ACK, if state is not "Open"
2117 * - when arrived ACK is unusual, namely:
2118 * * SACK
2119 * * Duplicate ACK.
2120 * * ECN ECE.
2121 *
2122 * Counting packets in flight is pretty simple.
2123 *
2124 * in_flight = packets_out - left_out + retrans_out
2125 *
2126 * packets_out is SND.NXT-SND.UNA counted in packets.
2127 *
2128 * retrans_out is number of retransmitted segments.
2129 *
2130 * left_out is number of segments left network, but not ACKed yet.
2131 *
2132 * left_out = sacked_out + lost_out
2133 *
2134 * sacked_out: Packets, which arrived to receiver out of order
2135 * and hence not ACKed. With SACKs this number is simply
2136 * amount of SACKed data. Even without SACKs
2137 * it is easy to give pretty reliable estimate of this number,
2138 * counting duplicate ACKs.
2139 *
2140 * lost_out: Packets lost by network. TCP has no explicit
2141 * "loss notification" feedback from network (for now).
2142 * It means that this number can be only _guessed_.
2143 * Actually, it is the heuristics to predict lossage that
2144 * distinguishes different algorithms.
2145 *
2146 * F.e. after RTO, when all the queue is considered as lost,
2147 * lost_out = packets_out and in_flight = retrans_out.
2148 *
2149 * Essentially, we have now a few algorithms detecting
2150 * lost packets.
2151 *
2152 * If the receiver supports SACK:
2153 *
2154 * RFC6675/3517: It is the conventional algorithm. A packet is
2155 * considered lost if the number of higher sequence packets
2156 * SACKed is greater than or equal the DUPACK thoreshold
2157 * (reordering). This is implemented in tcp_mark_head_lost and
2158 * tcp_update_scoreboard.
2159 *
2160 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2161 * (2017-) that checks timing instead of counting DUPACKs.
2162 * Essentially a packet is considered lost if it's not S/ACKed
2163 * after RTT + reordering_window, where both metrics are
2164 * dynamically measured and adjusted. This is implemented in
2165 * tcp_rack_mark_lost.
2166 *
2167 * If the receiver does not support SACK:
2168 *
2169 * NewReno (RFC6582): in Recovery we assume that one segment
2170 * is lost (classic Reno). While we are in Recovery and
2171 * a partial ACK arrives, we assume that one more packet
2172 * is lost (NewReno). This heuristics are the same in NewReno
2173 * and SACK.
2174 *
2175 * Really tricky (and requiring careful tuning) part of algorithm
2176 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2177 * The first determines the moment _when_ we should reduce CWND and,
2178 * hence, slow down forward transmission. In fact, it determines the moment
2179 * when we decide that hole is caused by loss, rather than by a reorder.
2180 *
2181 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2182 * holes, caused by lost packets.
2183 *
2184 * And the most logically complicated part of algorithm is undo
2185 * heuristics. We detect false retransmits due to both too early
2186 * fast retransmit (reordering) and underestimated RTO, analyzing
2187 * timestamps and D-SACKs. When we detect that some segments were
2188 * retransmitted by mistake and CWND reduction was wrong, we undo
2189 * window reduction and abort recovery phase. This logic is hidden
2190 * inside several functions named tcp_try_undo_<something>.
2191 */
2192
2193/* This function decides, when we should leave Disordered state
2194 * and enter Recovery phase, reducing congestion window.
2195 *
2196 * Main question: may we further continue forward transmission
2197 * with the same cwnd?
2198 */
2199static bool tcp_time_to_recover(struct sock *sk, int flag)
2200{
2201 struct tcp_sock *tp = tcp_sk(sk);
2202
2203 /* Trick#1: The loss is proven. */
2204 if (tp->lost_out)
2205 return true;
2206
2207 /* Not-A-Trick#2 : Classic rule... */
2208 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2209 return true;
2210
2211 return false;
2212}
2213
2214/* Detect loss in event "A" above by marking head of queue up as lost.
2215 * For RFC3517 SACK, a segment is considered lost if it
2216 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2217 * the maximum SACKed segments to pass before reaching this limit.
2218 */
2219static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2220{
2221 struct tcp_sock *tp = tcp_sk(sk);
2222 struct sk_buff *skb;
2223 int cnt;
2224 /* Use SACK to deduce losses of new sequences sent during recovery */
2225 const u32 loss_high = tp->snd_nxt;
2226
2227 WARN_ON(packets > tp->packets_out);
2228 skb = tp->lost_skb_hint;
2229 if (skb) {
2230 /* Head already handled? */
2231 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2232 return;
2233 cnt = tp->lost_cnt_hint;
2234 } else {
2235 skb = tcp_rtx_queue_head(sk);
2236 cnt = 0;
2237 }
2238
2239 skb_rbtree_walk_from(skb) {
2240 /* TODO: do this better */
2241 /* this is not the most efficient way to do this... */
2242 tp->lost_skb_hint = skb;
2243 tp->lost_cnt_hint = cnt;
2244
2245 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2246 break;
2247
2248 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2249 cnt += tcp_skb_pcount(skb);
2250
2251 if (cnt > packets)
2252 break;
2253
2254 tcp_skb_mark_lost(tp, skb);
2255
2256 if (mark_head)
2257 break;
2258 }
2259 tcp_verify_left_out(tp);
2260}
2261
2262/* Account newly detected lost packet(s) */
2263
2264static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2265{
2266 struct tcp_sock *tp = tcp_sk(sk);
2267
2268 if (tcp_is_sack(tp)) {
2269 int sacked_upto = tp->sacked_out - tp->reordering;
2270 if (sacked_upto >= 0)
2271 tcp_mark_head_lost(sk, sacked_upto, 0);
2272 else if (fast_rexmit)
2273 tcp_mark_head_lost(sk, 1, 1);
2274 }
2275}
2276
2277static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2278{
2279 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2280 before(tp->rx_opt.rcv_tsecr, when);
2281}
2282
2283/* skb is spurious retransmitted if the returned timestamp echo
2284 * reply is prior to the skb transmission time
2285 */
2286static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2287 const struct sk_buff *skb)
2288{
2289 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2290 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2291}
2292
2293/* Nothing was retransmitted or returned timestamp is less
2294 * than timestamp of the first retransmission.
2295 */
2296static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2297{
2298 const struct sock *sk = (const struct sock *)tp;
2299
2300 if (tp->retrans_stamp &&
2301 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2302 return true; /* got echoed TS before first retransmission */
2303
2304 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2305 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2306 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2307 * retrans_stamp even if we had retransmitted the SYN.
2308 */
2309 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2310 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2311 return true; /* nothing was retransmitted */
2312
2313 return false;
2314}
2315
2316/* Undo procedures. */
2317
2318/* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2326 *
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2331 */
2332static bool tcp_any_retrans_done(const struct sock *sk)
2333{
2334 const struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb;
2336
2337 if (tp->retrans_out)
2338 return true;
2339
2340 skb = tcp_rtx_queue_head(sk);
2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 return true;
2343
2344 return false;
2345}
2346
2347/* If loss recovery is finished and there are no retransmits out in the
2348 * network, then we clear retrans_stamp so that upon the next loss recovery
2349 * retransmits_timed_out() and timestamp-undo are using the correct value.
2350 */
2351static void tcp_retrans_stamp_cleanup(struct sock *sk)
2352{
2353 if (!tcp_any_retrans_done(sk))
2354 tcp_sk(sk)->retrans_stamp = 0;
2355}
2356
2357static void DBGUNDO(struct sock *sk, const char *msg)
2358{
2359#if FASTRETRANS_DEBUG > 1
2360 struct tcp_sock *tp = tcp_sk(sk);
2361 struct inet_sock *inet = inet_sk(sk);
2362
2363 if (sk->sk_family == AF_INET) {
2364 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2365 msg,
2366 &inet->inet_daddr, ntohs(inet->inet_dport),
2367 tp->snd_cwnd, tcp_left_out(tp),
2368 tp->snd_ssthresh, tp->prior_ssthresh,
2369 tp->packets_out);
2370 }
2371#if IS_ENABLED(CONFIG_IPV6)
2372 else if (sk->sk_family == AF_INET6) {
2373 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2374 msg,
2375 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2376 tp->snd_cwnd, tcp_left_out(tp),
2377 tp->snd_ssthresh, tp->prior_ssthresh,
2378 tp->packets_out);
2379 }
2380#endif
2381#endif
2382}
2383
2384static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2385{
2386 struct tcp_sock *tp = tcp_sk(sk);
2387
2388 if (unmark_loss) {
2389 struct sk_buff *skb;
2390
2391 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2392 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2393 }
2394 tp->lost_out = 0;
2395 tcp_clear_all_retrans_hints(tp);
2396 }
2397
2398 if (tp->prior_ssthresh) {
2399 const struct inet_connection_sock *icsk = inet_csk(sk);
2400
2401 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2402
2403 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2404 tp->snd_ssthresh = tp->prior_ssthresh;
2405 tcp_ecn_withdraw_cwr(tp);
2406 }
2407 }
2408 tp->snd_cwnd_stamp = tcp_jiffies32;
2409 tp->undo_marker = 0;
2410 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2411}
2412
2413static inline bool tcp_may_undo(const struct tcp_sock *tp)
2414{
2415 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2416}
2417
2418static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2419{
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
2422 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2423 /* Hold old state until something *above* high_seq
2424 * is ACKed. For Reno it is MUST to prevent false
2425 * fast retransmits (RFC2582). SACK TCP is safe. */
2426 if (!tcp_any_retrans_done(sk))
2427 tp->retrans_stamp = 0;
2428 return true;
2429 }
2430 return false;
2431}
2432
2433/* People celebrate: "We love our President!" */
2434static bool tcp_try_undo_recovery(struct sock *sk)
2435{
2436 struct tcp_sock *tp = tcp_sk(sk);
2437
2438 if (tcp_may_undo(tp)) {
2439 int mib_idx;
2440
2441 /* Happy end! We did not retransmit anything
2442 * or our original transmission succeeded.
2443 */
2444 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2445 tcp_undo_cwnd_reduction(sk, false);
2446 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2447 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2448 else
2449 mib_idx = LINUX_MIB_TCPFULLUNDO;
2450
2451 NET_INC_STATS(sock_net(sk), mib_idx);
2452 } else if (tp->rack.reo_wnd_persist) {
2453 tp->rack.reo_wnd_persist--;
2454 }
2455 if (tcp_is_non_sack_preventing_reopen(sk))
2456 return true;
2457 tcp_set_ca_state(sk, TCP_CA_Open);
2458 tp->is_sack_reneg = 0;
2459 return false;
2460}
2461
2462/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2463static bool tcp_try_undo_dsack(struct sock *sk)
2464{
2465 struct tcp_sock *tp = tcp_sk(sk);
2466
2467 if (tp->undo_marker && !tp->undo_retrans) {
2468 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2469 tp->rack.reo_wnd_persist + 1);
2470 DBGUNDO(sk, "D-SACK");
2471 tcp_undo_cwnd_reduction(sk, false);
2472 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2473 return true;
2474 }
2475 return false;
2476}
2477
2478/* Undo during loss recovery after partial ACK or using F-RTO. */
2479static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2480{
2481 struct tcp_sock *tp = tcp_sk(sk);
2482
2483 if (frto_undo || tcp_may_undo(tp)) {
2484 tcp_undo_cwnd_reduction(sk, true);
2485
2486 DBGUNDO(sk, "partial loss");
2487 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2488 if (frto_undo)
2489 NET_INC_STATS(sock_net(sk),
2490 LINUX_MIB_TCPSPURIOUSRTOS);
2491 inet_csk(sk)->icsk_retransmits = 0;
2492 if (tcp_is_non_sack_preventing_reopen(sk))
2493 return true;
2494 if (frto_undo || tcp_is_sack(tp)) {
2495 tcp_set_ca_state(sk, TCP_CA_Open);
2496 tp->is_sack_reneg = 0;
2497 }
2498 return true;
2499 }
2500 return false;
2501}
2502
2503/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2504 * It computes the number of packets to send (sndcnt) based on packets newly
2505 * delivered:
2506 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2507 * cwnd reductions across a full RTT.
2508 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2509 * But when the retransmits are acked without further losses, PRR
2510 * slow starts cwnd up to ssthresh to speed up the recovery.
2511 */
2512static void tcp_init_cwnd_reduction(struct sock *sk)
2513{
2514 struct tcp_sock *tp = tcp_sk(sk);
2515
2516 tp->high_seq = tp->snd_nxt;
2517 tp->tlp_high_seq = 0;
2518 tp->snd_cwnd_cnt = 0;
2519 tp->prior_cwnd = tp->snd_cwnd;
2520 tp->prr_delivered = 0;
2521 tp->prr_out = 0;
2522 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2523 tcp_ecn_queue_cwr(tp);
2524}
2525
2526void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2527{
2528 struct tcp_sock *tp = tcp_sk(sk);
2529 int sndcnt = 0;
2530 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2531
2532 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2533 return;
2534
2535 tp->prr_delivered += newly_acked_sacked;
2536 if (delta < 0) {
2537 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2538 tp->prior_cwnd - 1;
2539 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2540 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2541 FLAG_RETRANS_DATA_ACKED) {
2542 sndcnt = min_t(int, delta,
2543 max_t(int, tp->prr_delivered - tp->prr_out,
2544 newly_acked_sacked) + 1);
2545 } else {
2546 sndcnt = min(delta, newly_acked_sacked);
2547 }
2548 /* Force a fast retransmit upon entering fast recovery */
2549 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2550 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2551}
2552
2553static inline void tcp_end_cwnd_reduction(struct sock *sk)
2554{
2555 struct tcp_sock *tp = tcp_sk(sk);
2556
2557 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2558 return;
2559
2560 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2561 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2562 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2563 tp->snd_cwnd = tp->snd_ssthresh;
2564 tp->snd_cwnd_stamp = tcp_jiffies32;
2565 }
2566 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2567}
2568
2569/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2570void tcp_enter_cwr(struct sock *sk)
2571{
2572 struct tcp_sock *tp = tcp_sk(sk);
2573
2574 tp->prior_ssthresh = 0;
2575 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2576 tp->undo_marker = 0;
2577 tcp_init_cwnd_reduction(sk);
2578 tcp_set_ca_state(sk, TCP_CA_CWR);
2579 }
2580}
2581EXPORT_SYMBOL(tcp_enter_cwr);
2582
2583static void tcp_try_keep_open(struct sock *sk)
2584{
2585 struct tcp_sock *tp = tcp_sk(sk);
2586 int state = TCP_CA_Open;
2587
2588 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2589 state = TCP_CA_Disorder;
2590
2591 if (inet_csk(sk)->icsk_ca_state != state) {
2592 tcp_set_ca_state(sk, state);
2593 tp->high_seq = tp->snd_nxt;
2594 }
2595}
2596
2597static void tcp_try_to_open(struct sock *sk, int flag)
2598{
2599 struct tcp_sock *tp = tcp_sk(sk);
2600
2601 tcp_verify_left_out(tp);
2602
2603 if (!tcp_any_retrans_done(sk))
2604 tp->retrans_stamp = 0;
2605
2606 if (flag & FLAG_ECE)
2607 tcp_enter_cwr(sk);
2608
2609 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2610 tcp_try_keep_open(sk);
2611 }
2612}
2613
2614static void tcp_mtup_probe_failed(struct sock *sk)
2615{
2616 struct inet_connection_sock *icsk = inet_csk(sk);
2617
2618 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2619 icsk->icsk_mtup.probe_size = 0;
2620 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2621}
2622
2623static void tcp_mtup_probe_success(struct sock *sk)
2624{
2625 struct tcp_sock *tp = tcp_sk(sk);
2626 struct inet_connection_sock *icsk = inet_csk(sk);
2627 u64 val;
2628
2629 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2630
2631 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2632 do_div(val, icsk->icsk_mtup.probe_size);
2633 WARN_ON_ONCE((u32)val != val);
2634 tp->snd_cwnd = max_t(u32, 1U, val);
2635
2636 tp->snd_cwnd_cnt = 0;
2637 tp->snd_cwnd_stamp = tcp_jiffies32;
2638 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639
2640 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2641 icsk->icsk_mtup.probe_size = 0;
2642 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2643 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2644}
2645
2646/* Do a simple retransmit without using the backoff mechanisms in
2647 * tcp_timer. This is used for path mtu discovery.
2648 * The socket is already locked here.
2649 */
2650void tcp_simple_retransmit(struct sock *sk)
2651{
2652 const struct inet_connection_sock *icsk = inet_csk(sk);
2653 struct tcp_sock *tp = tcp_sk(sk);
2654 struct sk_buff *skb;
2655 unsigned int mss = tcp_current_mss(sk);
2656
2657 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2658 if (tcp_skb_seglen(skb) > mss &&
2659 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2660 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2661 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2662 tp->retrans_out -= tcp_skb_pcount(skb);
2663 }
2664 tcp_skb_mark_lost_uncond_verify(tp, skb);
2665 }
2666 }
2667
2668 tcp_clear_retrans_hints_partial(tp);
2669
2670 if (!tp->lost_out)
2671 return;
2672
2673 if (tcp_is_reno(tp))
2674 tcp_limit_reno_sacked(tp);
2675
2676 tcp_verify_left_out(tp);
2677
2678 /* Don't muck with the congestion window here.
2679 * Reason is that we do not increase amount of _data_
2680 * in network, but units changed and effective
2681 * cwnd/ssthresh really reduced now.
2682 */
2683 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2684 tp->high_seq = tp->snd_nxt;
2685 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2686 tp->prior_ssthresh = 0;
2687 tp->undo_marker = 0;
2688 tcp_set_ca_state(sk, TCP_CA_Loss);
2689 }
2690 tcp_xmit_retransmit_queue(sk);
2691}
2692EXPORT_SYMBOL(tcp_simple_retransmit);
2693
2694void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2695{
2696 struct tcp_sock *tp = tcp_sk(sk);
2697 int mib_idx;
2698
2699 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2700 tcp_retrans_stamp_cleanup(sk);
2701
2702 if (tcp_is_reno(tp))
2703 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2704 else
2705 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2706
2707 NET_INC_STATS(sock_net(sk), mib_idx);
2708
2709 tp->prior_ssthresh = 0;
2710 tcp_init_undo(tp);
2711
2712 if (!tcp_in_cwnd_reduction(sk)) {
2713 if (!ece_ack)
2714 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2715 tcp_init_cwnd_reduction(sk);
2716 }
2717 tcp_set_ca_state(sk, TCP_CA_Recovery);
2718}
2719
2720/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2721 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2722 */
2723static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2724 int *rexmit)
2725{
2726 struct tcp_sock *tp = tcp_sk(sk);
2727 bool recovered = !before(tp->snd_una, tp->high_seq);
2728
2729 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2730 tcp_try_undo_loss(sk, false))
2731 return;
2732
2733 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2734 /* Step 3.b. A timeout is spurious if not all data are
2735 * lost, i.e., never-retransmitted data are (s)acked.
2736 */
2737 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2738 tcp_try_undo_loss(sk, true))
2739 return;
2740
2741 if (after(tp->snd_nxt, tp->high_seq)) {
2742 if (flag & FLAG_DATA_SACKED || num_dupack)
2743 tp->frto = 0; /* Step 3.a. loss was real */
2744 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2745 tp->high_seq = tp->snd_nxt;
2746 /* Step 2.b. Try send new data (but deferred until cwnd
2747 * is updated in tcp_ack()). Otherwise fall back to
2748 * the conventional recovery.
2749 */
2750 if (!tcp_write_queue_empty(sk) &&
2751 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2752 *rexmit = REXMIT_NEW;
2753 return;
2754 }
2755 tp->frto = 0;
2756 }
2757 }
2758
2759 if (recovered) {
2760 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2761 tcp_try_undo_recovery(sk);
2762 return;
2763 }
2764 if (tcp_is_reno(tp)) {
2765 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2766 * delivered. Lower inflight to clock out (re)tranmissions.
2767 */
2768 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2769 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2770 else if (flag & FLAG_SND_UNA_ADVANCED)
2771 tcp_reset_reno_sack(tp);
2772 }
2773 *rexmit = REXMIT_LOST;
2774}
2775
2776static bool tcp_force_fast_retransmit(struct sock *sk)
2777{
2778 struct tcp_sock *tp = tcp_sk(sk);
2779
2780 return after(tcp_highest_sack_seq(tp),
2781 tp->snd_una + tp->reordering * tp->mss_cache);
2782}
2783
2784/* Undo during fast recovery after partial ACK. */
2785static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2786 bool *do_lost)
2787{
2788 struct tcp_sock *tp = tcp_sk(sk);
2789
2790 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2791 /* Plain luck! Hole if filled with delayed
2792 * packet, rather than with a retransmit. Check reordering.
2793 */
2794 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2795
2796 /* We are getting evidence that the reordering degree is higher
2797 * than we realized. If there are no retransmits out then we
2798 * can undo. Otherwise we clock out new packets but do not
2799 * mark more packets lost or retransmit more.
2800 */
2801 if (tp->retrans_out)
2802 return true;
2803
2804 if (!tcp_any_retrans_done(sk))
2805 tp->retrans_stamp = 0;
2806
2807 DBGUNDO(sk, "partial recovery");
2808 tcp_undo_cwnd_reduction(sk, true);
2809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2810 tcp_try_keep_open(sk);
2811 } else {
2812 /* Partial ACK arrived. Force fast retransmit. */
2813 *do_lost = tcp_force_fast_retransmit(sk);
2814 }
2815 return false;
2816}
2817
2818static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2819{
2820 struct tcp_sock *tp = tcp_sk(sk);
2821
2822 if (tcp_rtx_queue_empty(sk))
2823 return;
2824
2825 if (unlikely(tcp_is_reno(tp))) {
2826 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2827 } else if (tcp_is_rack(sk)) {
2828 u32 prior_retrans = tp->retrans_out;
2829
2830 if (tcp_rack_mark_lost(sk))
2831 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2832 if (prior_retrans > tp->retrans_out)
2833 *ack_flag |= FLAG_LOST_RETRANS;
2834 }
2835}
2836
2837/* Process an event, which can update packets-in-flight not trivially.
2838 * Main goal of this function is to calculate new estimate for left_out,
2839 * taking into account both packets sitting in receiver's buffer and
2840 * packets lost by network.
2841 *
2842 * Besides that it updates the congestion state when packet loss or ECN
2843 * is detected. But it does not reduce the cwnd, it is done by the
2844 * congestion control later.
2845 *
2846 * It does _not_ decide what to send, it is made in function
2847 * tcp_xmit_retransmit_queue().
2848 */
2849static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2850 int num_dupack, int *ack_flag, int *rexmit)
2851{
2852 struct inet_connection_sock *icsk = inet_csk(sk);
2853 struct tcp_sock *tp = tcp_sk(sk);
2854 int fast_rexmit = 0, flag = *ack_flag;
2855 bool ece_ack = flag & FLAG_ECE;
2856 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2857 tcp_force_fast_retransmit(sk));
2858
2859 if (!tp->packets_out && tp->sacked_out)
2860 tp->sacked_out = 0;
2861
2862 /* Now state machine starts.
2863 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2864 if (ece_ack)
2865 tp->prior_ssthresh = 0;
2866
2867 /* B. In all the states check for reneging SACKs. */
2868 if (tcp_check_sack_reneging(sk, ack_flag))
2869 return;
2870
2871 /* C. Check consistency of the current state. */
2872 tcp_verify_left_out(tp);
2873
2874 /* D. Check state exit conditions. State can be terminated
2875 * when high_seq is ACKed. */
2876 if (icsk->icsk_ca_state == TCP_CA_Open) {
2877 WARN_ON(tp->retrans_out != 0);
2878 tp->retrans_stamp = 0;
2879 } else if (!before(tp->snd_una, tp->high_seq)) {
2880 switch (icsk->icsk_ca_state) {
2881 case TCP_CA_CWR:
2882 /* CWR is to be held something *above* high_seq
2883 * is ACKed for CWR bit to reach receiver. */
2884 if (tp->snd_una != tp->high_seq) {
2885 tcp_end_cwnd_reduction(sk);
2886 tcp_set_ca_state(sk, TCP_CA_Open);
2887 }
2888 break;
2889
2890 case TCP_CA_Recovery:
2891 if (tcp_is_reno(tp))
2892 tcp_reset_reno_sack(tp);
2893 if (tcp_try_undo_recovery(sk))
2894 return;
2895 tcp_end_cwnd_reduction(sk);
2896 break;
2897 }
2898 }
2899
2900 /* E. Process state. */
2901 switch (icsk->icsk_ca_state) {
2902 case TCP_CA_Recovery:
2903 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2904 if (tcp_is_reno(tp))
2905 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2906 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2907 return;
2908
2909 if (tcp_try_undo_dsack(sk))
2910 tcp_try_to_open(sk, flag);
2911
2912 tcp_identify_packet_loss(sk, ack_flag);
2913 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2914 if (!tcp_time_to_recover(sk, flag))
2915 return;
2916 /* Undo reverts the recovery state. If loss is evident,
2917 * starts a new recovery (e.g. reordering then loss);
2918 */
2919 tcp_enter_recovery(sk, ece_ack);
2920 }
2921 break;
2922 case TCP_CA_Loss:
2923 tcp_process_loss(sk, flag, num_dupack, rexmit);
2924 tcp_identify_packet_loss(sk, ack_flag);
2925 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2926 (*ack_flag & FLAG_LOST_RETRANS)))
2927 return;
2928 /* Change state if cwnd is undone or retransmits are lost */
2929 /* fall through */
2930 default:
2931 if (tcp_is_reno(tp)) {
2932 if (flag & FLAG_SND_UNA_ADVANCED)
2933 tcp_reset_reno_sack(tp);
2934 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2935 }
2936
2937 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2938 tcp_try_undo_dsack(sk);
2939
2940 tcp_identify_packet_loss(sk, ack_flag);
2941 if (!tcp_time_to_recover(sk, flag)) {
2942 tcp_try_to_open(sk, flag);
2943 return;
2944 }
2945
2946 /* MTU probe failure: don't reduce cwnd */
2947 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2948 icsk->icsk_mtup.probe_size &&
2949 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2950 tcp_mtup_probe_failed(sk);
2951 /* Restores the reduction we did in tcp_mtup_probe() */
2952 tp->snd_cwnd++;
2953 tcp_simple_retransmit(sk);
2954 return;
2955 }
2956
2957 /* Otherwise enter Recovery state */
2958 tcp_enter_recovery(sk, ece_ack);
2959 fast_rexmit = 1;
2960 }
2961
2962 if (!tcp_is_rack(sk) && do_lost)
2963 tcp_update_scoreboard(sk, fast_rexmit);
2964 *rexmit = REXMIT_LOST;
2965}
2966
2967static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2968{
2969 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
2970 struct tcp_sock *tp = tcp_sk(sk);
2971
2972 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2973 /* If the remote keeps returning delayed ACKs, eventually
2974 * the min filter would pick it up and overestimate the
2975 * prop. delay when it expires. Skip suspected delayed ACKs.
2976 */
2977 return;
2978 }
2979 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2980 rtt_us ? : jiffies_to_usecs(1));
2981}
2982
2983static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2984 long seq_rtt_us, long sack_rtt_us,
2985 long ca_rtt_us, struct rate_sample *rs)
2986{
2987 const struct tcp_sock *tp = tcp_sk(sk);
2988
2989 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2990 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2991 * Karn's algorithm forbids taking RTT if some retransmitted data
2992 * is acked (RFC6298).
2993 */
2994 if (seq_rtt_us < 0)
2995 seq_rtt_us = sack_rtt_us;
2996
2997 /* RTTM Rule: A TSecr value received in a segment is used to
2998 * update the averaged RTT measurement only if the segment
2999 * acknowledges some new data, i.e., only if it advances the
3000 * left edge of the send window.
3001 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3002 */
3003 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3004 flag & FLAG_ACKED) {
3005 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3006
3007 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3008 if (!delta)
3009 delta = 1;
3010 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3011 ca_rtt_us = seq_rtt_us;
3012 }
3013 }
3014 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3015 if (seq_rtt_us < 0)
3016 return false;
3017
3018 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3019 * always taken together with ACK, SACK, or TS-opts. Any negative
3020 * values will be skipped with the seq_rtt_us < 0 check above.
3021 */
3022 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3023 tcp_rtt_estimator(sk, seq_rtt_us);
3024 tcp_set_rto(sk);
3025
3026 /* RFC6298: only reset backoff on valid RTT measurement. */
3027 inet_csk(sk)->icsk_backoff = 0;
3028 return true;
3029}
3030
3031/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3032void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3033{
3034 struct rate_sample rs;
3035 long rtt_us = -1L;
3036
3037 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3038 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3039
3040 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3041}
3042
3043
3044static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3045{
3046 const struct inet_connection_sock *icsk = inet_csk(sk);
3047
3048 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3049 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3050}
3051
3052/* Restart timer after forward progress on connection.
3053 * RFC2988 recommends to restart timer to now+rto.
3054 */
3055void tcp_rearm_rto(struct sock *sk)
3056{
3057 const struct inet_connection_sock *icsk = inet_csk(sk);
3058 struct tcp_sock *tp = tcp_sk(sk);
3059
3060 /* If the retrans timer is currently being used by Fast Open
3061 * for SYN-ACK retrans purpose, stay put.
3062 */
3063 if (rcu_access_pointer(tp->fastopen_rsk))
3064 return;
3065
3066 if (!tp->packets_out) {
3067 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3068 } else {
3069 u32 rto = inet_csk(sk)->icsk_rto;
3070 /* Offset the time elapsed after installing regular RTO */
3071 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3072 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3073 s64 delta_us = tcp_rto_delta_us(sk);
3074 /* delta_us may not be positive if the socket is locked
3075 * when the retrans timer fires and is rescheduled.
3076 */
3077 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3078 }
3079 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3080 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3081 }
3082}
3083
3084/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3085static void tcp_set_xmit_timer(struct sock *sk)
3086{
3087 if (!tcp_schedule_loss_probe(sk, true))
3088 tcp_rearm_rto(sk);
3089}
3090
3091/* If we get here, the whole TSO packet has not been acked. */
3092static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3093{
3094 struct tcp_sock *tp = tcp_sk(sk);
3095 u32 packets_acked;
3096
3097 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3098
3099 packets_acked = tcp_skb_pcount(skb);
3100 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3101 return 0;
3102 packets_acked -= tcp_skb_pcount(skb);
3103
3104 if (packets_acked) {
3105 BUG_ON(tcp_skb_pcount(skb) == 0);
3106 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3107 }
3108
3109 return packets_acked;
3110}
3111
3112static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3113 u32 prior_snd_una)
3114{
3115 const struct skb_shared_info *shinfo;
3116
3117 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3118 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3119 return;
3120
3121 shinfo = skb_shinfo(skb);
3122 if (!before(shinfo->tskey, prior_snd_una) &&
3123 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3124 tcp_skb_tsorted_save(skb) {
3125 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3126 } tcp_skb_tsorted_restore(skb);
3127 }
3128}
3129
3130/* Remove acknowledged frames from the retransmission queue. If our packet
3131 * is before the ack sequence we can discard it as it's confirmed to have
3132 * arrived at the other end.
3133 */
3134static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3135 u32 prior_snd_una,
3136 struct tcp_sacktag_state *sack, bool ece_ack)
3137{
3138 const struct inet_connection_sock *icsk = inet_csk(sk);
3139 u64 first_ackt, last_ackt;
3140 struct tcp_sock *tp = tcp_sk(sk);
3141 u32 prior_sacked = tp->sacked_out;
3142 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3143 struct sk_buff *skb, *next;
3144 bool fully_acked = true;
3145 long sack_rtt_us = -1L;
3146 long seq_rtt_us = -1L;
3147 long ca_rtt_us = -1L;
3148 u32 pkts_acked = 0;
3149 u32 last_in_flight = 0;
3150 bool rtt_update;
3151 int flag = 0;
3152
3153 first_ackt = 0;
3154
3155 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3156 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3157 const u32 start_seq = scb->seq;
3158 u8 sacked = scb->sacked;
3159 u32 acked_pcount;
3160
3161 tcp_ack_tstamp(sk, skb, prior_snd_una);
3162
3163 /* Determine how many packets and what bytes were acked, tso and else */
3164 if (after(scb->end_seq, tp->snd_una)) {
3165 if (tcp_skb_pcount(skb) == 1 ||
3166 !after(tp->snd_una, scb->seq))
3167 break;
3168
3169 acked_pcount = tcp_tso_acked(sk, skb);
3170 if (!acked_pcount)
3171 break;
3172 fully_acked = false;
3173 } else {
3174 acked_pcount = tcp_skb_pcount(skb);
3175 }
3176
3177 if (unlikely(sacked & TCPCB_RETRANS)) {
3178 if (sacked & TCPCB_SACKED_RETRANS)
3179 tp->retrans_out -= acked_pcount;
3180 flag |= FLAG_RETRANS_DATA_ACKED;
3181 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3182 last_ackt = tcp_skb_timestamp_us(skb);
3183 WARN_ON_ONCE(last_ackt == 0);
3184 if (!first_ackt)
3185 first_ackt = last_ackt;
3186
3187 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3188 if (before(start_seq, reord))
3189 reord = start_seq;
3190 if (!after(scb->end_seq, tp->high_seq))
3191 flag |= FLAG_ORIG_SACK_ACKED;
3192 }
3193
3194 if (sacked & TCPCB_SACKED_ACKED) {
3195 tp->sacked_out -= acked_pcount;
3196 } else if (tcp_is_sack(tp)) {
3197 tp->delivered += acked_pcount;
3198 if (!tcp_skb_spurious_retrans(tp, skb))
3199 tcp_rack_advance(tp, sacked, scb->end_seq,
3200 tcp_skb_timestamp_us(skb));
3201 }
3202 if (sacked & TCPCB_LOST)
3203 tp->lost_out -= acked_pcount;
3204
3205 tp->packets_out -= acked_pcount;
3206 pkts_acked += acked_pcount;
3207 tcp_rate_skb_delivered(sk, skb, sack->rate);
3208
3209 /* Initial outgoing SYN's get put onto the write_queue
3210 * just like anything else we transmit. It is not
3211 * true data, and if we misinform our callers that
3212 * this ACK acks real data, we will erroneously exit
3213 * connection startup slow start one packet too
3214 * quickly. This is severely frowned upon behavior.
3215 */
3216 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3217 flag |= FLAG_DATA_ACKED;
3218 } else {
3219 flag |= FLAG_SYN_ACKED;
3220 tp->retrans_stamp = 0;
3221 }
3222
3223 if (!fully_acked)
3224 break;
3225
3226 next = skb_rb_next(skb);
3227 if (unlikely(skb == tp->retransmit_skb_hint))
3228 tp->retransmit_skb_hint = NULL;
3229 if (unlikely(skb == tp->lost_skb_hint))
3230 tp->lost_skb_hint = NULL;
3231 tcp_highest_sack_replace(sk, skb, next);
3232 tcp_rtx_queue_unlink_and_free(skb, sk);
3233 }
3234
3235 if (!skb)
3236 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3237
3238 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3239 tp->snd_up = tp->snd_una;
3240
3241 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3242 flag |= FLAG_SACK_RENEGING;
3243
3244 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3245 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3246 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3247
3248 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3249 last_in_flight && !prior_sacked && fully_acked &&
3250 sack->rate->prior_delivered + 1 == tp->delivered &&
3251 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3252 /* Conservatively mark a delayed ACK. It's typically
3253 * from a lone runt packet over the round trip to
3254 * a receiver w/o out-of-order or CE events.
3255 */
3256 flag |= FLAG_ACK_MAYBE_DELAYED;
3257 }
3258 }
3259 if (sack->first_sackt) {
3260 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3261 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3262 }
3263 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3264 ca_rtt_us, sack->rate);
3265
3266 if (flag & FLAG_ACKED) {
3267 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3268 if (unlikely(icsk->icsk_mtup.probe_size &&
3269 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3270 tcp_mtup_probe_success(sk);
3271 }
3272
3273 if (tcp_is_reno(tp)) {
3274 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3275
3276 /* If any of the cumulatively ACKed segments was
3277 * retransmitted, non-SACK case cannot confirm that
3278 * progress was due to original transmission due to
3279 * lack of TCPCB_SACKED_ACKED bits even if some of
3280 * the packets may have been never retransmitted.
3281 */
3282 if (flag & FLAG_RETRANS_DATA_ACKED)
3283 flag &= ~FLAG_ORIG_SACK_ACKED;
3284 } else {
3285 int delta;
3286
3287 /* Non-retransmitted hole got filled? That's reordering */
3288 if (before(reord, prior_fack))
3289 tcp_check_sack_reordering(sk, reord, 0);
3290
3291 delta = prior_sacked - tp->sacked_out;
3292 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3293 }
3294 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3295 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3296 tcp_skb_timestamp_us(skb))) {
3297 /* Do not re-arm RTO if the sack RTT is measured from data sent
3298 * after when the head was last (re)transmitted. Otherwise the
3299 * timeout may continue to extend in loss recovery.
3300 */
3301 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3302 }
3303
3304 if (icsk->icsk_ca_ops->pkts_acked) {
3305 struct ack_sample sample = { .pkts_acked = pkts_acked,
3306 .rtt_us = sack->rate->rtt_us,
3307 .in_flight = last_in_flight };
3308
3309 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3310 }
3311
3312#if FASTRETRANS_DEBUG > 0
3313 WARN_ON((int)tp->sacked_out < 0);
3314 WARN_ON((int)tp->lost_out < 0);
3315 WARN_ON((int)tp->retrans_out < 0);
3316 if (!tp->packets_out && tcp_is_sack(tp)) {
3317 icsk = inet_csk(sk);
3318 if (tp->lost_out) {
3319 pr_debug("Leak l=%u %d\n",
3320 tp->lost_out, icsk->icsk_ca_state);
3321 tp->lost_out = 0;
3322 }
3323 if (tp->sacked_out) {
3324 pr_debug("Leak s=%u %d\n",
3325 tp->sacked_out, icsk->icsk_ca_state);
3326 tp->sacked_out = 0;
3327 }
3328 if (tp->retrans_out) {
3329 pr_debug("Leak r=%u %d\n",
3330 tp->retrans_out, icsk->icsk_ca_state);
3331 tp->retrans_out = 0;
3332 }
3333 }
3334#endif
3335 return flag;
3336}
3337
3338static void tcp_ack_probe(struct sock *sk)
3339{
3340 struct inet_connection_sock *icsk = inet_csk(sk);
3341 struct sk_buff *head = tcp_send_head(sk);
3342 const struct tcp_sock *tp = tcp_sk(sk);
3343
3344 /* Was it a usable window open? */
3345 if (!head)
3346 return;
3347 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3348 icsk->icsk_backoff = 0;
3349 icsk->icsk_probes_tstamp = 0;
3350 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3351 /* Socket must be waked up by subsequent tcp_data_snd_check().
3352 * This function is not for random using!
3353 */
3354 } else {
3355 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3356
3357 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3358 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3359 when, TCP_RTO_MAX, NULL);
3360 }
3361}
3362
3363static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3364{
3365 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3366 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3367}
3368
3369/* Decide wheather to run the increase function of congestion control. */
3370static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3371{
3372 /* If reordering is high then always grow cwnd whenever data is
3373 * delivered regardless of its ordering. Otherwise stay conservative
3374 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3375 * new SACK or ECE mark may first advance cwnd here and later reduce
3376 * cwnd in tcp_fastretrans_alert() based on more states.
3377 */
3378 if (tcp_sk(sk)->reordering >
3379 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3380 return flag & FLAG_FORWARD_PROGRESS;
3381
3382 return flag & FLAG_DATA_ACKED;
3383}
3384
3385/* The "ultimate" congestion control function that aims to replace the rigid
3386 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3387 * It's called toward the end of processing an ACK with precise rate
3388 * information. All transmission or retransmission are delayed afterwards.
3389 */
3390static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3391 int flag, const struct rate_sample *rs)
3392{
3393 const struct inet_connection_sock *icsk = inet_csk(sk);
3394
3395 if (icsk->icsk_ca_ops->cong_control) {
3396 icsk->icsk_ca_ops->cong_control(sk, rs);
3397 return;
3398 }
3399
3400 if (tcp_in_cwnd_reduction(sk)) {
3401 /* Reduce cwnd if state mandates */
3402 tcp_cwnd_reduction(sk, acked_sacked, flag);
3403 } else if (tcp_may_raise_cwnd(sk, flag)) {
3404 /* Advance cwnd if state allows */
3405 tcp_cong_avoid(sk, ack, acked_sacked);
3406 }
3407 tcp_update_pacing_rate(sk);
3408}
3409
3410/* Check that window update is acceptable.
3411 * The function assumes that snd_una<=ack<=snd_next.
3412 */
3413static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3414 const u32 ack, const u32 ack_seq,
3415 const u32 nwin)
3416{
3417 return after(ack, tp->snd_una) ||
3418 after(ack_seq, tp->snd_wl1) ||
3419 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3420}
3421
3422/* If we update tp->snd_una, also update tp->bytes_acked */
3423static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3424{
3425 u32 delta = ack - tp->snd_una;
3426
3427 sock_owned_by_me((struct sock *)tp);
3428 tp->bytes_acked += delta;
3429 tp->snd_una = ack;
3430}
3431
3432/* If we update tp->rcv_nxt, also update tp->bytes_received */
3433static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3434{
3435 u32 delta = seq - tp->rcv_nxt;
3436
3437 sock_owned_by_me((struct sock *)tp);
3438 tp->bytes_received += delta;
3439 WRITE_ONCE(tp->rcv_nxt, seq);
3440}
3441
3442/* Update our send window.
3443 *
3444 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3445 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3446 */
3447static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3448 u32 ack_seq)
3449{
3450 struct tcp_sock *tp = tcp_sk(sk);
3451 int flag = 0;
3452 u32 nwin = ntohs(tcp_hdr(skb)->window);
3453
3454 if (likely(!tcp_hdr(skb)->syn))
3455 nwin <<= tp->rx_opt.snd_wscale;
3456
3457 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3458 flag |= FLAG_WIN_UPDATE;
3459 tcp_update_wl(tp, ack_seq);
3460
3461 if (tp->snd_wnd != nwin) {
3462 tp->snd_wnd = nwin;
3463
3464 /* Note, it is the only place, where
3465 * fast path is recovered for sending TCP.
3466 */
3467 tp->pred_flags = 0;
3468 tcp_fast_path_check(sk);
3469
3470 if (!tcp_write_queue_empty(sk))
3471 tcp_slow_start_after_idle_check(sk);
3472
3473 if (nwin > tp->max_window) {
3474 tp->max_window = nwin;
3475 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3476 }
3477 }
3478 }
3479
3480 tcp_snd_una_update(tp, ack);
3481
3482 return flag;
3483}
3484
3485static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3486 u32 *last_oow_ack_time)
3487{
3488 /* Paired with the WRITE_ONCE() in this function. */
3489 u32 val = READ_ONCE(*last_oow_ack_time);
3490
3491 if (val) {
3492 s32 elapsed = (s32)(tcp_jiffies32 - val);
3493
3494 if (0 <= elapsed &&
3495 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3496 NET_INC_STATS(net, mib_idx);
3497 return true; /* rate-limited: don't send yet! */
3498 }
3499 }
3500
3501 /* Paired with the prior READ_ONCE() and with itself,
3502 * as we might be lockless.
3503 */
3504 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3505
3506 return false; /* not rate-limited: go ahead, send dupack now! */
3507}
3508
3509/* Return true if we're currently rate-limiting out-of-window ACKs and
3510 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3511 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3512 * attacks that send repeated SYNs or ACKs for the same connection. To
3513 * do this, we do not send a duplicate SYNACK or ACK if the remote
3514 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3515 */
3516bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3517 int mib_idx, u32 *last_oow_ack_time)
3518{
3519 /* Data packets without SYNs are not likely part of an ACK loop. */
3520 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3521 !tcp_hdr(skb)->syn)
3522 return false;
3523
3524 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3525}
3526
3527/* RFC 5961 7 [ACK Throttling] */
3528static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3529{
3530 /* unprotected vars, we dont care of overwrites */
3531 static u32 challenge_timestamp;
3532 static unsigned int challenge_count;
3533 struct tcp_sock *tp = tcp_sk(sk);
3534 struct net *net = sock_net(sk);
3535 u32 count, now;
3536
3537 /* First check our per-socket dupack rate limit. */
3538 if (__tcp_oow_rate_limited(net,
3539 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3540 &tp->last_oow_ack_time))
3541 return;
3542
3543 /* Then check host-wide RFC 5961 rate limit. */
3544 now = jiffies / HZ;
3545 if (now != READ_ONCE(challenge_timestamp)) {
3546 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3547 u32 half = (ack_limit + 1) >> 1;
3548
3549 WRITE_ONCE(challenge_timestamp, now);
3550 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3551 }
3552 count = READ_ONCE(challenge_count);
3553 if (count > 0) {
3554 WRITE_ONCE(challenge_count, count - 1);
3555 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3556 tcp_send_ack(sk);
3557 }
3558}
3559
3560static void tcp_store_ts_recent(struct tcp_sock *tp)
3561{
3562 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3563 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3564}
3565
3566static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3567{
3568 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3569 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3570 * extra check below makes sure this can only happen
3571 * for pure ACK frames. -DaveM
3572 *
3573 * Not only, also it occurs for expired timestamps.
3574 */
3575
3576 if (tcp_paws_check(&tp->rx_opt, 0))
3577 tcp_store_ts_recent(tp);
3578 }
3579}
3580
3581/* This routine deals with acks during a TLP episode and ends an episode by
3582 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3583 */
3584static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3585{
3586 struct tcp_sock *tp = tcp_sk(sk);
3587
3588 if (before(ack, tp->tlp_high_seq))
3589 return;
3590
3591 if (!tp->tlp_retrans) {
3592 /* TLP of new data has been acknowledged */
3593 tp->tlp_high_seq = 0;
3594 } else if (flag & FLAG_DSACKING_ACK) {
3595 /* This DSACK means original and TLP probe arrived; no loss */
3596 tp->tlp_high_seq = 0;
3597 } else if (after(ack, tp->tlp_high_seq)) {
3598 /* ACK advances: there was a loss, so reduce cwnd. Reset
3599 * tlp_high_seq in tcp_init_cwnd_reduction()
3600 */
3601 tcp_init_cwnd_reduction(sk);
3602 tcp_set_ca_state(sk, TCP_CA_CWR);
3603 tcp_end_cwnd_reduction(sk);
3604 tcp_try_keep_open(sk);
3605 NET_INC_STATS(sock_net(sk),
3606 LINUX_MIB_TCPLOSSPROBERECOVERY);
3607 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3608 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3609 /* Pure dupack: original and TLP probe arrived; no loss */
3610 tp->tlp_high_seq = 0;
3611 }
3612}
3613
3614static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3615{
3616 const struct inet_connection_sock *icsk = inet_csk(sk);
3617
3618 if (icsk->icsk_ca_ops->in_ack_event)
3619 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3620}
3621
3622/* Congestion control has updated the cwnd already. So if we're in
3623 * loss recovery then now we do any new sends (for FRTO) or
3624 * retransmits (for CA_Loss or CA_recovery) that make sense.
3625 */
3626static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3627{
3628 struct tcp_sock *tp = tcp_sk(sk);
3629
3630 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3631 return;
3632
3633 if (unlikely(rexmit == 2)) {
3634 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3635 TCP_NAGLE_OFF);
3636 if (after(tp->snd_nxt, tp->high_seq))
3637 return;
3638 tp->frto = 0;
3639 }
3640 tcp_xmit_retransmit_queue(sk);
3641}
3642
3643/* Returns the number of packets newly acked or sacked by the current ACK */
3644static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3645{
3646 const struct net *net = sock_net(sk);
3647 struct tcp_sock *tp = tcp_sk(sk);
3648 u32 delivered;
3649
3650 delivered = tp->delivered - prior_delivered;
3651 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3652 if (flag & FLAG_ECE) {
3653 tp->delivered_ce += delivered;
3654 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3655 }
3656 return delivered;
3657}
3658
3659/* This routine deals with incoming acks, but not outgoing ones. */
3660static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3661{
3662 struct inet_connection_sock *icsk = inet_csk(sk);
3663 struct tcp_sock *tp = tcp_sk(sk);
3664 struct tcp_sacktag_state sack_state;
3665 struct rate_sample rs = { .prior_delivered = 0 };
3666 u32 prior_snd_una = tp->snd_una;
3667 bool is_sack_reneg = tp->is_sack_reneg;
3668 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3669 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3670 int num_dupack = 0;
3671 int prior_packets = tp->packets_out;
3672 u32 delivered = tp->delivered;
3673 u32 lost = tp->lost;
3674 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3675 u32 prior_fack;
3676
3677 sack_state.first_sackt = 0;
3678 sack_state.rate = &rs;
3679
3680 /* We very likely will need to access rtx queue. */
3681 prefetch(sk->tcp_rtx_queue.rb_node);
3682
3683 /* If the ack is older than previous acks
3684 * then we can probably ignore it.
3685 */
3686 if (before(ack, prior_snd_una)) {
3687 u32 max_window;
3688
3689 /* do not accept ACK for bytes we never sent. */
3690 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3691 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3692 if (before(ack, prior_snd_una - max_window)) {
3693 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3694 tcp_send_challenge_ack(sk, skb);
3695 return -1;
3696 }
3697 goto old_ack;
3698 }
3699
3700 /* If the ack includes data we haven't sent yet, discard
3701 * this segment (RFC793 Section 3.9).
3702 */
3703 if (after(ack, tp->snd_nxt))
3704 return -1;
3705
3706 if (after(ack, prior_snd_una)) {
3707 flag |= FLAG_SND_UNA_ADVANCED;
3708 icsk->icsk_retransmits = 0;
3709
3710#if IS_ENABLED(CONFIG_TLS_DEVICE)
3711 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3712 if (icsk->icsk_clean_acked)
3713 icsk->icsk_clean_acked(sk, ack);
3714#endif
3715 }
3716
3717 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3718 rs.prior_in_flight = tcp_packets_in_flight(tp);
3719
3720 /* ts_recent update must be made after we are sure that the packet
3721 * is in window.
3722 */
3723 if (flag & FLAG_UPDATE_TS_RECENT)
3724 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3725
3726 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3727 FLAG_SND_UNA_ADVANCED) {
3728 /* Window is constant, pure forward advance.
3729 * No more checks are required.
3730 * Note, we use the fact that SND.UNA>=SND.WL2.
3731 */
3732 tcp_update_wl(tp, ack_seq);
3733 tcp_snd_una_update(tp, ack);
3734 flag |= FLAG_WIN_UPDATE;
3735
3736 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3737
3738 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3739 } else {
3740 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3741
3742 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3743 flag |= FLAG_DATA;
3744 else
3745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3746
3747 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3748
3749 if (TCP_SKB_CB(skb)->sacked)
3750 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3751 &sack_state);
3752
3753 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3754 flag |= FLAG_ECE;
3755 ack_ev_flags |= CA_ACK_ECE;
3756 }
3757
3758 if (flag & FLAG_WIN_UPDATE)
3759 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3760
3761 tcp_in_ack_event(sk, ack_ev_flags);
3762 }
3763
3764 /* This is a deviation from RFC3168 since it states that:
3765 * "When the TCP data sender is ready to set the CWR bit after reducing
3766 * the congestion window, it SHOULD set the CWR bit only on the first
3767 * new data packet that it transmits."
3768 * We accept CWR on pure ACKs to be more robust
3769 * with widely-deployed TCP implementations that do this.
3770 */
3771 tcp_ecn_accept_cwr(sk, skb);
3772
3773 /* We passed data and got it acked, remove any soft error
3774 * log. Something worked...
3775 */
3776 sk->sk_err_soft = 0;
3777 icsk->icsk_probes_out = 0;
3778 tp->rcv_tstamp = tcp_jiffies32;
3779 if (!prior_packets)
3780 goto no_queue;
3781
3782 /* See if we can take anything off of the retransmit queue. */
3783 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3784 flag & FLAG_ECE);
3785
3786 tcp_rack_update_reo_wnd(sk, &rs);
3787
3788 if (tp->tlp_high_seq)
3789 tcp_process_tlp_ack(sk, ack, flag);
3790
3791 if (tcp_ack_is_dubious(sk, flag)) {
3792 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3793 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3794 num_dupack = 1;
3795 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3796 if (!(flag & FLAG_DATA))
3797 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3798 }
3799 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3800 &rexmit);
3801 }
3802
3803 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3804 if (flag & FLAG_SET_XMIT_TIMER)
3805 tcp_set_xmit_timer(sk);
3806
3807 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3808 sk_dst_confirm(sk);
3809
3810 delivered = tcp_newly_delivered(sk, delivered, flag);
3811 lost = tp->lost - lost; /* freshly marked lost */
3812 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3813 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3814 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3815 tcp_xmit_recovery(sk, rexmit);
3816 return 1;
3817
3818no_queue:
3819 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3820 if (flag & FLAG_DSACKING_ACK) {
3821 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3822 &rexmit);
3823 tcp_newly_delivered(sk, delivered, flag);
3824 }
3825 /* If this ack opens up a zero window, clear backoff. It was
3826 * being used to time the probes, and is probably far higher than
3827 * it needs to be for normal retransmission.
3828 */
3829 tcp_ack_probe(sk);
3830
3831 if (tp->tlp_high_seq)
3832 tcp_process_tlp_ack(sk, ack, flag);
3833 return 1;
3834
3835old_ack:
3836 /* If data was SACKed, tag it and see if we should send more data.
3837 * If data was DSACKed, see if we can undo a cwnd reduction.
3838 */
3839 if (TCP_SKB_CB(skb)->sacked) {
3840 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3841 &sack_state);
3842 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3843 &rexmit);
3844 tcp_newly_delivered(sk, delivered, flag);
3845 tcp_xmit_recovery(sk, rexmit);
3846 }
3847
3848 return 0;
3849}
3850
3851static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3852 bool syn, struct tcp_fastopen_cookie *foc,
3853 bool exp_opt)
3854{
3855 /* Valid only in SYN or SYN-ACK with an even length. */
3856 if (!foc || !syn || len < 0 || (len & 1))
3857 return;
3858
3859 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3860 len <= TCP_FASTOPEN_COOKIE_MAX)
3861 memcpy(foc->val, cookie, len);
3862 else if (len != 0)
3863 len = -1;
3864 foc->len = len;
3865 foc->exp = exp_opt;
3866}
3867
3868static void smc_parse_options(const struct tcphdr *th,
3869 struct tcp_options_received *opt_rx,
3870 const unsigned char *ptr,
3871 int opsize)
3872{
3873#if IS_ENABLED(CONFIG_SMC)
3874 if (static_branch_unlikely(&tcp_have_smc)) {
3875 if (th->syn && !(opsize & 1) &&
3876 opsize >= TCPOLEN_EXP_SMC_BASE &&
3877 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3878 opt_rx->smc_ok = 1;
3879 }
3880#endif
3881}
3882
3883/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3884 * value on success.
3885 */
3886static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3887{
3888 const unsigned char *ptr = (const unsigned char *)(th + 1);
3889 int length = (th->doff * 4) - sizeof(struct tcphdr);
3890 u16 mss = 0;
3891
3892 while (length > 0) {
3893 int opcode = *ptr++;
3894 int opsize;
3895
3896 switch (opcode) {
3897 case TCPOPT_EOL:
3898 return mss;
3899 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3900 length--;
3901 continue;
3902 default:
3903 if (length < 2)
3904 return mss;
3905 opsize = *ptr++;
3906 if (opsize < 2) /* "silly options" */
3907 return mss;
3908 if (opsize > length)
3909 return mss; /* fail on partial options */
3910 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3911 u16 in_mss = get_unaligned_be16(ptr);
3912
3913 if (in_mss) {
3914 if (user_mss && user_mss < in_mss)
3915 in_mss = user_mss;
3916 mss = in_mss;
3917 }
3918 }
3919 ptr += opsize - 2;
3920 length -= opsize;
3921 }
3922 }
3923 return mss;
3924}
3925
3926/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3927 * But, this can also be called on packets in the established flow when
3928 * the fast version below fails.
3929 */
3930void tcp_parse_options(const struct net *net,
3931 const struct sk_buff *skb,
3932 struct tcp_options_received *opt_rx, int estab,
3933 struct tcp_fastopen_cookie *foc)
3934{
3935 const unsigned char *ptr;
3936 const struct tcphdr *th = tcp_hdr(skb);
3937 int length = (th->doff * 4) - sizeof(struct tcphdr);
3938
3939 ptr = (const unsigned char *)(th + 1);
3940 opt_rx->saw_tstamp = 0;
3941
3942 while (length > 0) {
3943 int opcode = *ptr++;
3944 int opsize;
3945
3946 switch (opcode) {
3947 case TCPOPT_EOL:
3948 return;
3949 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3950 length--;
3951 continue;
3952 default:
3953 if (length < 2)
3954 return;
3955 opsize = *ptr++;
3956 if (opsize < 2) /* "silly options" */
3957 return;
3958 if (opsize > length)
3959 return; /* don't parse partial options */
3960 switch (opcode) {
3961 case TCPOPT_MSS:
3962 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3963 u16 in_mss = get_unaligned_be16(ptr);
3964 if (in_mss) {
3965 if (opt_rx->user_mss &&
3966 opt_rx->user_mss < in_mss)
3967 in_mss = opt_rx->user_mss;
3968 opt_rx->mss_clamp = in_mss;
3969 }
3970 }
3971 break;
3972 case TCPOPT_WINDOW:
3973 if (opsize == TCPOLEN_WINDOW && th->syn &&
3974 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
3975 __u8 snd_wscale = *(__u8 *)ptr;
3976 opt_rx->wscale_ok = 1;
3977 if (snd_wscale > TCP_MAX_WSCALE) {
3978 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3979 __func__,
3980 snd_wscale,
3981 TCP_MAX_WSCALE);
3982 snd_wscale = TCP_MAX_WSCALE;
3983 }
3984 opt_rx->snd_wscale = snd_wscale;
3985 }
3986 break;
3987 case TCPOPT_TIMESTAMP:
3988 if ((opsize == TCPOLEN_TIMESTAMP) &&
3989 ((estab && opt_rx->tstamp_ok) ||
3990 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
3991 opt_rx->saw_tstamp = 1;
3992 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3993 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3994 }
3995 break;
3996 case TCPOPT_SACK_PERM:
3997 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3998 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
3999 opt_rx->sack_ok = TCP_SACK_SEEN;
4000 tcp_sack_reset(opt_rx);
4001 }
4002 break;
4003
4004 case TCPOPT_SACK:
4005 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4006 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4007 opt_rx->sack_ok) {
4008 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4009 }
4010 break;
4011#ifdef CONFIG_TCP_MD5SIG
4012 case TCPOPT_MD5SIG:
4013 /*
4014 * The MD5 Hash has already been
4015 * checked (see tcp_v{4,6}_do_rcv()).
4016 */
4017 break;
4018#endif
4019 case TCPOPT_FASTOPEN:
4020 tcp_parse_fastopen_option(
4021 opsize - TCPOLEN_FASTOPEN_BASE,
4022 ptr, th->syn, foc, false);
4023 break;
4024
4025 case TCPOPT_EXP:
4026 /* Fast Open option shares code 254 using a
4027 * 16 bits magic number.
4028 */
4029 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4030 get_unaligned_be16(ptr) ==
4031 TCPOPT_FASTOPEN_MAGIC)
4032 tcp_parse_fastopen_option(opsize -
4033 TCPOLEN_EXP_FASTOPEN_BASE,
4034 ptr + 2, th->syn, foc, true);
4035 else
4036 smc_parse_options(th, opt_rx, ptr,
4037 opsize);
4038 break;
4039
4040 }
4041 ptr += opsize-2;
4042 length -= opsize;
4043 }
4044 }
4045}
4046EXPORT_SYMBOL(tcp_parse_options);
4047
4048static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4049{
4050 const __be32 *ptr = (const __be32 *)(th + 1);
4051
4052 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4053 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4054 tp->rx_opt.saw_tstamp = 1;
4055 ++ptr;
4056 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4057 ++ptr;
4058 if (*ptr)
4059 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4060 else
4061 tp->rx_opt.rcv_tsecr = 0;
4062 return true;
4063 }
4064 return false;
4065}
4066
4067/* Fast parse options. This hopes to only see timestamps.
4068 * If it is wrong it falls back on tcp_parse_options().
4069 */
4070static bool tcp_fast_parse_options(const struct net *net,
4071 const struct sk_buff *skb,
4072 const struct tcphdr *th, struct tcp_sock *tp)
4073{
4074 /* In the spirit of fast parsing, compare doff directly to constant
4075 * values. Because equality is used, short doff can be ignored here.
4076 */
4077 if (th->doff == (sizeof(*th) / 4)) {
4078 tp->rx_opt.saw_tstamp = 0;
4079 return false;
4080 } else if (tp->rx_opt.tstamp_ok &&
4081 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4082 if (tcp_parse_aligned_timestamp(tp, th))
4083 return true;
4084 }
4085
4086 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4087 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4088 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4089
4090 return true;
4091}
4092
4093#ifdef CONFIG_TCP_MD5SIG
4094/*
4095 * Parse MD5 Signature option
4096 */
4097const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4098{
4099 int length = (th->doff << 2) - sizeof(*th);
4100 const u8 *ptr = (const u8 *)(th + 1);
4101
4102 /* If not enough data remaining, we can short cut */
4103 while (length >= TCPOLEN_MD5SIG) {
4104 int opcode = *ptr++;
4105 int opsize;
4106
4107 switch (opcode) {
4108 case TCPOPT_EOL:
4109 return NULL;
4110 case TCPOPT_NOP:
4111 length--;
4112 continue;
4113 default:
4114 opsize = *ptr++;
4115 if (opsize < 2 || opsize > length)
4116 return NULL;
4117 if (opcode == TCPOPT_MD5SIG)
4118 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4119 }
4120 ptr += opsize - 2;
4121 length -= opsize;
4122 }
4123 return NULL;
4124}
4125EXPORT_SYMBOL(tcp_parse_md5sig_option);
4126#endif
4127
4128/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4129 *
4130 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4131 * it can pass through stack. So, the following predicate verifies that
4132 * this segment is not used for anything but congestion avoidance or
4133 * fast retransmit. Moreover, we even are able to eliminate most of such
4134 * second order effects, if we apply some small "replay" window (~RTO)
4135 * to timestamp space.
4136 *
4137 * All these measures still do not guarantee that we reject wrapped ACKs
4138 * on networks with high bandwidth, when sequence space is recycled fastly,
4139 * but it guarantees that such events will be very rare and do not affect
4140 * connection seriously. This doesn't look nice, but alas, PAWS is really
4141 * buggy extension.
4142 *
4143 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4144 * states that events when retransmit arrives after original data are rare.
4145 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4146 * the biggest problem on large power networks even with minor reordering.
4147 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4148 * up to bandwidth of 18Gigabit/sec. 8) ]
4149 */
4150
4151static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4152{
4153 const struct tcp_sock *tp = tcp_sk(sk);
4154 const struct tcphdr *th = tcp_hdr(skb);
4155 u32 seq = TCP_SKB_CB(skb)->seq;
4156 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4157
4158 return (/* 1. Pure ACK with correct sequence number. */
4159 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4160
4161 /* 2. ... and duplicate ACK. */
4162 ack == tp->snd_una &&
4163
4164 /* 3. ... and does not update window. */
4165 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4166
4167 /* 4. ... and sits in replay window. */
4168 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4169}
4170
4171static inline bool tcp_paws_discard(const struct sock *sk,
4172 const struct sk_buff *skb)
4173{
4174 const struct tcp_sock *tp = tcp_sk(sk);
4175
4176 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4177 !tcp_disordered_ack(sk, skb);
4178}
4179
4180/* Check segment sequence number for validity.
4181 *
4182 * Segment controls are considered valid, if the segment
4183 * fits to the window after truncation to the window. Acceptability
4184 * of data (and SYN, FIN, of course) is checked separately.
4185 * See tcp_data_queue(), for example.
4186 *
4187 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4188 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4189 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4190 * (borrowed from freebsd)
4191 */
4192
4193static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4194{
4195 return !before(end_seq, tp->rcv_wup) &&
4196 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4197}
4198
4199/* When we get a reset we do this. */
4200void tcp_reset(struct sock *sk)
4201{
4202 trace_tcp_receive_reset(sk);
4203
4204 /* We want the right error as BSD sees it (and indeed as we do). */
4205 switch (sk->sk_state) {
4206 case TCP_SYN_SENT:
4207 sk->sk_err = ECONNREFUSED;
4208 break;
4209 case TCP_CLOSE_WAIT:
4210 sk->sk_err = EPIPE;
4211 break;
4212 case TCP_CLOSE:
4213 return;
4214 default:
4215 sk->sk_err = ECONNRESET;
4216 }
4217 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4218 smp_wmb();
4219
4220 tcp_write_queue_purge(sk);
4221 tcp_done(sk);
4222
4223 if (!sock_flag(sk, SOCK_DEAD))
4224 sk->sk_error_report(sk);
4225}
4226
4227/*
4228 * Process the FIN bit. This now behaves as it is supposed to work
4229 * and the FIN takes effect when it is validly part of sequence
4230 * space. Not before when we get holes.
4231 *
4232 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4233 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4234 * TIME-WAIT)
4235 *
4236 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4237 * close and we go into CLOSING (and later onto TIME-WAIT)
4238 *
4239 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4240 */
4241void tcp_fin(struct sock *sk)
4242{
4243 struct tcp_sock *tp = tcp_sk(sk);
4244
4245 inet_csk_schedule_ack(sk);
4246
4247 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4248 sock_set_flag(sk, SOCK_DONE);
4249
4250 switch (sk->sk_state) {
4251 case TCP_SYN_RECV:
4252 case TCP_ESTABLISHED:
4253 /* Move to CLOSE_WAIT */
4254 tcp_set_state(sk, TCP_CLOSE_WAIT);
4255 inet_csk_enter_pingpong_mode(sk);
4256 break;
4257
4258 case TCP_CLOSE_WAIT:
4259 case TCP_CLOSING:
4260 /* Received a retransmission of the FIN, do
4261 * nothing.
4262 */
4263 break;
4264 case TCP_LAST_ACK:
4265 /* RFC793: Remain in the LAST-ACK state. */
4266 break;
4267
4268 case TCP_FIN_WAIT1:
4269 /* This case occurs when a simultaneous close
4270 * happens, we must ack the received FIN and
4271 * enter the CLOSING state.
4272 */
4273 tcp_send_ack(sk);
4274 tcp_set_state(sk, TCP_CLOSING);
4275 break;
4276 case TCP_FIN_WAIT2:
4277 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4278 tcp_send_ack(sk);
4279 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4280 break;
4281 default:
4282 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4283 * cases we should never reach this piece of code.
4284 */
4285 pr_err("%s: Impossible, sk->sk_state=%d\n",
4286 __func__, sk->sk_state);
4287 break;
4288 }
4289
4290 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4291 * Probably, we should reset in this case. For now drop them.
4292 */
4293 skb_rbtree_purge(&tp->out_of_order_queue);
4294 if (tcp_is_sack(tp))
4295 tcp_sack_reset(&tp->rx_opt);
4296 sk_mem_reclaim(sk);
4297
4298 if (!sock_flag(sk, SOCK_DEAD)) {
4299 sk->sk_state_change(sk);
4300
4301 /* Do not send POLL_HUP for half duplex close. */
4302 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4303 sk->sk_state == TCP_CLOSE)
4304 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4305 else
4306 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4307 }
4308}
4309
4310static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4311 u32 end_seq)
4312{
4313 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4314 if (before(seq, sp->start_seq))
4315 sp->start_seq = seq;
4316 if (after(end_seq, sp->end_seq))
4317 sp->end_seq = end_seq;
4318 return true;
4319 }
4320 return false;
4321}
4322
4323static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4324{
4325 struct tcp_sock *tp = tcp_sk(sk);
4326
4327 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4328 int mib_idx;
4329
4330 if (before(seq, tp->rcv_nxt))
4331 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4332 else
4333 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4334
4335 NET_INC_STATS(sock_net(sk), mib_idx);
4336
4337 tp->rx_opt.dsack = 1;
4338 tp->duplicate_sack[0].start_seq = seq;
4339 tp->duplicate_sack[0].end_seq = end_seq;
4340 }
4341}
4342
4343static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4344{
4345 struct tcp_sock *tp = tcp_sk(sk);
4346
4347 if (!tp->rx_opt.dsack)
4348 tcp_dsack_set(sk, seq, end_seq);
4349 else
4350 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4351}
4352
4353static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4354{
4355 /* When the ACK path fails or drops most ACKs, the sender would
4356 * timeout and spuriously retransmit the same segment repeatedly.
4357 * The receiver remembers and reflects via DSACKs. Leverage the
4358 * DSACK state and change the txhash to re-route speculatively.
4359 */
4360 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4361 sk_rethink_txhash(sk);
4362}
4363
4364static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4365{
4366 struct tcp_sock *tp = tcp_sk(sk);
4367
4368 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4369 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4370 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4371 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4372
4373 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4374 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4375
4376 tcp_rcv_spurious_retrans(sk, skb);
4377 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4378 end_seq = tp->rcv_nxt;
4379 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4380 }
4381 }
4382
4383 tcp_send_ack(sk);
4384}
4385
4386/* These routines update the SACK block as out-of-order packets arrive or
4387 * in-order packets close up the sequence space.
4388 */
4389static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4390{
4391 int this_sack;
4392 struct tcp_sack_block *sp = &tp->selective_acks[0];
4393 struct tcp_sack_block *swalk = sp + 1;
4394
4395 /* See if the recent change to the first SACK eats into
4396 * or hits the sequence space of other SACK blocks, if so coalesce.
4397 */
4398 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4399 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4400 int i;
4401
4402 /* Zap SWALK, by moving every further SACK up by one slot.
4403 * Decrease num_sacks.
4404 */
4405 tp->rx_opt.num_sacks--;
4406 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4407 sp[i] = sp[i + 1];
4408 continue;
4409 }
4410 this_sack++, swalk++;
4411 }
4412}
4413
4414static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4415{
4416 struct tcp_sock *tp = tcp_sk(sk);
4417 struct tcp_sack_block *sp = &tp->selective_acks[0];
4418 int cur_sacks = tp->rx_opt.num_sacks;
4419 int this_sack;
4420
4421 if (!cur_sacks)
4422 goto new_sack;
4423
4424 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4425 if (tcp_sack_extend(sp, seq, end_seq)) {
4426 /* Rotate this_sack to the first one. */
4427 for (; this_sack > 0; this_sack--, sp--)
4428 swap(*sp, *(sp - 1));
4429 if (cur_sacks > 1)
4430 tcp_sack_maybe_coalesce(tp);
4431 return;
4432 }
4433 }
4434
4435 /* Could not find an adjacent existing SACK, build a new one,
4436 * put it at the front, and shift everyone else down. We
4437 * always know there is at least one SACK present already here.
4438 *
4439 * If the sack array is full, forget about the last one.
4440 */
4441 if (this_sack >= TCP_NUM_SACKS) {
4442 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4443 tcp_send_ack(sk);
4444 this_sack--;
4445 tp->rx_opt.num_sacks--;
4446 sp--;
4447 }
4448 for (; this_sack > 0; this_sack--, sp--)
4449 *sp = *(sp - 1);
4450
4451new_sack:
4452 /* Build the new head SACK, and we're done. */
4453 sp->start_seq = seq;
4454 sp->end_seq = end_seq;
4455 tp->rx_opt.num_sacks++;
4456}
4457
4458/* RCV.NXT advances, some SACKs should be eaten. */
4459
4460static void tcp_sack_remove(struct tcp_sock *tp)
4461{
4462 struct tcp_sack_block *sp = &tp->selective_acks[0];
4463 int num_sacks = tp->rx_opt.num_sacks;
4464 int this_sack;
4465
4466 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4467 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4468 tp->rx_opt.num_sacks = 0;
4469 return;
4470 }
4471
4472 for (this_sack = 0; this_sack < num_sacks;) {
4473 /* Check if the start of the sack is covered by RCV.NXT. */
4474 if (!before(tp->rcv_nxt, sp->start_seq)) {
4475 int i;
4476
4477 /* RCV.NXT must cover all the block! */
4478 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4479
4480 /* Zap this SACK, by moving forward any other SACKS. */
4481 for (i = this_sack+1; i < num_sacks; i++)
4482 tp->selective_acks[i-1] = tp->selective_acks[i];
4483 num_sacks--;
4484 continue;
4485 }
4486 this_sack++;
4487 sp++;
4488 }
4489 tp->rx_opt.num_sacks = num_sacks;
4490}
4491
4492/**
4493 * tcp_try_coalesce - try to merge skb to prior one
4494 * @sk: socket
4495 * @dest: destination queue
4496 * @to: prior buffer
4497 * @from: buffer to add in queue
4498 * @fragstolen: pointer to boolean
4499 *
4500 * Before queueing skb @from after @to, try to merge them
4501 * to reduce overall memory use and queue lengths, if cost is small.
4502 * Packets in ofo or receive queues can stay a long time.
4503 * Better try to coalesce them right now to avoid future collapses.
4504 * Returns true if caller should free @from instead of queueing it
4505 */
4506static bool tcp_try_coalesce(struct sock *sk,
4507 struct sk_buff *to,
4508 struct sk_buff *from,
4509 bool *fragstolen)
4510{
4511 int delta;
4512
4513 *fragstolen = false;
4514
4515 /* Its possible this segment overlaps with prior segment in queue */
4516 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4517 return false;
4518
4519#ifdef CONFIG_TLS_DEVICE
4520 if (from->decrypted != to->decrypted)
4521 return false;
4522#endif
4523
4524 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4525 return false;
4526
4527 atomic_add(delta, &sk->sk_rmem_alloc);
4528 sk_mem_charge(sk, delta);
4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4530 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4531 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4532 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4533
4534 if (TCP_SKB_CB(from)->has_rxtstamp) {
4535 TCP_SKB_CB(to)->has_rxtstamp = true;
4536 to->tstamp = from->tstamp;
4537 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4538 }
4539
4540 return true;
4541}
4542
4543static bool tcp_ooo_try_coalesce(struct sock *sk,
4544 struct sk_buff *to,
4545 struct sk_buff *from,
4546 bool *fragstolen)
4547{
4548 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4549
4550 /* In case tcp_drop() is called later, update to->gso_segs */
4551 if (res) {
4552 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4553 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4554
4555 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4556 }
4557 return res;
4558}
4559
4560static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4561{
4562 trace_android_vh_kfree_skb(skb);
4563 sk_drops_add(sk, skb);
4564 __kfree_skb(skb);
4565}
4566
4567/* This one checks to see if we can put data from the
4568 * out_of_order queue into the receive_queue.
4569 */
4570static void tcp_ofo_queue(struct sock *sk)
4571{
4572 struct tcp_sock *tp = tcp_sk(sk);
4573 __u32 dsack_high = tp->rcv_nxt;
4574 bool fin, fragstolen, eaten;
4575 struct sk_buff *skb, *tail;
4576 struct rb_node *p;
4577
4578 p = rb_first(&tp->out_of_order_queue);
4579 while (p) {
4580 skb = rb_to_skb(p);
4581 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4582 break;
4583
4584 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4585 __u32 dsack = dsack_high;
4586 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4587 dsack_high = TCP_SKB_CB(skb)->end_seq;
4588 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4589 }
4590 p = rb_next(p);
4591 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4592
4593 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4594 tcp_drop(sk, skb);
4595 continue;
4596 }
4597
4598 tail = skb_peek_tail(&sk->sk_receive_queue);
4599 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4600 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4601 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4602 if (!eaten)
4603 __skb_queue_tail(&sk->sk_receive_queue, skb);
4604 else
4605 kfree_skb_partial(skb, fragstolen);
4606
4607 if (unlikely(fin)) {
4608 tcp_fin(sk);
4609 /* tcp_fin() purges tp->out_of_order_queue,
4610 * so we must end this loop right now.
4611 */
4612 break;
4613 }
4614 }
4615}
4616
4617static bool tcp_prune_ofo_queue(struct sock *sk);
4618static int tcp_prune_queue(struct sock *sk);
4619
4620static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4621 unsigned int size)
4622{
4623 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4624 !sk_rmem_schedule(sk, skb, size)) {
4625
4626 if (tcp_prune_queue(sk) < 0)
4627 return -1;
4628
4629 while (!sk_rmem_schedule(sk, skb, size)) {
4630 if (!tcp_prune_ofo_queue(sk))
4631 return -1;
4632 }
4633 }
4634 return 0;
4635}
4636
4637static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4638{
4639 struct tcp_sock *tp = tcp_sk(sk);
4640 struct rb_node **p, *parent;
4641 struct sk_buff *skb1;
4642 u32 seq, end_seq;
4643 bool fragstolen;
4644
4645 tcp_ecn_check_ce(sk, skb);
4646
4647 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4649 sk->sk_data_ready(sk);
4650 tcp_drop(sk, skb);
4651 return;
4652 }
4653
4654 /* Disable header prediction. */
4655 tp->pred_flags = 0;
4656 inet_csk_schedule_ack(sk);
4657
4658 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4660 seq = TCP_SKB_CB(skb)->seq;
4661 end_seq = TCP_SKB_CB(skb)->end_seq;
4662
4663 p = &tp->out_of_order_queue.rb_node;
4664 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4665 /* Initial out of order segment, build 1 SACK. */
4666 if (tcp_is_sack(tp)) {
4667 tp->rx_opt.num_sacks = 1;
4668 tp->selective_acks[0].start_seq = seq;
4669 tp->selective_acks[0].end_seq = end_seq;
4670 }
4671 rb_link_node(&skb->rbnode, NULL, p);
4672 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4673 tp->ooo_last_skb = skb;
4674 goto end;
4675 }
4676
4677 /* In the typical case, we are adding an skb to the end of the list.
4678 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4679 */
4680 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4681 skb, &fragstolen)) {
4682coalesce_done:
4683 /* For non sack flows, do not grow window to force DUPACK
4684 * and trigger fast retransmit.
4685 */
4686 if (tcp_is_sack(tp))
4687 tcp_grow_window(sk, skb);
4688 kfree_skb_partial(skb, fragstolen);
4689 skb = NULL;
4690 goto add_sack;
4691 }
4692 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4693 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4694 parent = &tp->ooo_last_skb->rbnode;
4695 p = &parent->rb_right;
4696 goto insert;
4697 }
4698
4699 /* Find place to insert this segment. Handle overlaps on the way. */
4700 parent = NULL;
4701 while (*p) {
4702 parent = *p;
4703 skb1 = rb_to_skb(parent);
4704 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4705 p = &parent->rb_left;
4706 continue;
4707 }
4708 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4709 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4710 /* All the bits are present. Drop. */
4711 NET_INC_STATS(sock_net(sk),
4712 LINUX_MIB_TCPOFOMERGE);
4713 tcp_drop(sk, skb);
4714 skb = NULL;
4715 tcp_dsack_set(sk, seq, end_seq);
4716 goto add_sack;
4717 }
4718 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4719 /* Partial overlap. */
4720 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4721 } else {
4722 /* skb's seq == skb1's seq and skb covers skb1.
4723 * Replace skb1 with skb.
4724 */
4725 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4726 &tp->out_of_order_queue);
4727 tcp_dsack_extend(sk,
4728 TCP_SKB_CB(skb1)->seq,
4729 TCP_SKB_CB(skb1)->end_seq);
4730 NET_INC_STATS(sock_net(sk),
4731 LINUX_MIB_TCPOFOMERGE);
4732 tcp_drop(sk, skb1);
4733 goto merge_right;
4734 }
4735 } else if (tcp_ooo_try_coalesce(sk, skb1,
4736 skb, &fragstolen)) {
4737 goto coalesce_done;
4738 }
4739 p = &parent->rb_right;
4740 }
4741insert:
4742 /* Insert segment into RB tree. */
4743 rb_link_node(&skb->rbnode, parent, p);
4744 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4745
4746merge_right:
4747 /* Remove other segments covered by skb. */
4748 while ((skb1 = skb_rb_next(skb)) != NULL) {
4749 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4750 break;
4751 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4752 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4753 end_seq);
4754 break;
4755 }
4756 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4757 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4758 TCP_SKB_CB(skb1)->end_seq);
4759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4760 tcp_drop(sk, skb1);
4761 }
4762 /* If there is no skb after us, we are the last_skb ! */
4763 if (!skb1)
4764 tp->ooo_last_skb = skb;
4765
4766add_sack:
4767 if (tcp_is_sack(tp))
4768 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4769end:
4770 if (skb) {
4771 /* For non sack flows, do not grow window to force DUPACK
4772 * and trigger fast retransmit.
4773 */
4774 if (tcp_is_sack(tp))
4775 tcp_grow_window(sk, skb);
4776 skb_condense(skb);
4777 skb_set_owner_r(skb, sk);
4778 }
4779}
4780
4781static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4782 bool *fragstolen)
4783{
4784 int eaten;
4785 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4786
4787 eaten = (tail &&
4788 tcp_try_coalesce(sk, tail,
4789 skb, fragstolen)) ? 1 : 0;
4790 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4791 if (!eaten) {
4792 __skb_queue_tail(&sk->sk_receive_queue, skb);
4793 skb_set_owner_r(skb, sk);
4794 }
4795 return eaten;
4796}
4797
4798int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4799{
4800 struct sk_buff *skb;
4801 int err = -ENOMEM;
4802 int data_len = 0;
4803 bool fragstolen;
4804
4805 if (size == 0)
4806 return 0;
4807
4808 if (size > PAGE_SIZE) {
4809 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4810
4811 data_len = npages << PAGE_SHIFT;
4812 size = data_len + (size & ~PAGE_MASK);
4813 }
4814 skb = alloc_skb_with_frags(size - data_len, data_len,
4815 PAGE_ALLOC_COSTLY_ORDER,
4816 &err, sk->sk_allocation);
4817 if (!skb)
4818 goto err;
4819
4820 skb_put(skb, size - data_len);
4821 skb->data_len = data_len;
4822 skb->len = size;
4823
4824 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4825 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4826 goto err_free;
4827 }
4828
4829 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4830 if (err)
4831 goto err_free;
4832
4833 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4834 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4835 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4836
4837 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4838 WARN_ON_ONCE(fragstolen); /* should not happen */
4839 __kfree_skb(skb);
4840 }
4841 return size;
4842
4843err_free:
4844 kfree_skb(skb);
4845err:
4846 return err;
4847
4848}
4849
4850void tcp_data_ready(struct sock *sk)
4851{
4852 const struct tcp_sock *tp = tcp_sk(sk);
4853 int avail = tp->rcv_nxt - tp->copied_seq;
4854
4855 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4856 !sock_flag(sk, SOCK_DONE) &&
4857 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4858 return;
4859
4860 sk->sk_data_ready(sk);
4861}
4862
4863static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4864{
4865 struct tcp_sock *tp = tcp_sk(sk);
4866 bool fragstolen;
4867 int eaten;
4868
4869 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4870 __kfree_skb(skb);
4871 return;
4872 }
4873 skb_dst_drop(skb);
4874 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4875
4876 tp->rx_opt.dsack = 0;
4877
4878 /* Queue data for delivery to the user.
4879 * Packets in sequence go to the receive queue.
4880 * Out of sequence packets to the out_of_order_queue.
4881 */
4882 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4883 if (tcp_receive_window(tp) == 0) {
4884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4885 goto out_of_window;
4886 }
4887
4888 /* Ok. In sequence. In window. */
4889queue_and_out:
4890 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4891 sk_forced_mem_schedule(sk, skb->truesize);
4892 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4894 sk->sk_data_ready(sk);
4895 goto drop;
4896 }
4897
4898 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4899 if (skb->len)
4900 tcp_event_data_recv(sk, skb);
4901 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4902 tcp_fin(sk);
4903
4904 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4905 tcp_ofo_queue(sk);
4906
4907 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4908 * gap in queue is filled.
4909 */
4910 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4911 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4912 }
4913
4914 if (tp->rx_opt.num_sacks)
4915 tcp_sack_remove(tp);
4916
4917 tcp_fast_path_check(sk);
4918
4919 if (eaten > 0)
4920 kfree_skb_partial(skb, fragstolen);
4921 if (!sock_flag(sk, SOCK_DEAD))
4922 tcp_data_ready(sk);
4923 return;
4924 }
4925
4926 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4927 tcp_rcv_spurious_retrans(sk, skb);
4928 /* A retransmit, 2nd most common case. Force an immediate ack. */
4929 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4930 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4931
4932out_of_window:
4933 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4934 inet_csk_schedule_ack(sk);
4935drop:
4936 tcp_drop(sk, skb);
4937 return;
4938 }
4939
4940 /* Out of window. F.e. zero window probe. */
4941 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4942 goto out_of_window;
4943
4944 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4945 /* Partial packet, seq < rcv_next < end_seq */
4946 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4947
4948 /* If window is closed, drop tail of packet. But after
4949 * remembering D-SACK for its head made in previous line.
4950 */
4951 if (!tcp_receive_window(tp)) {
4952 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4953 goto out_of_window;
4954 }
4955 goto queue_and_out;
4956 }
4957
4958 tcp_data_queue_ofo(sk, skb);
4959}
4960
4961static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4962{
4963 if (list)
4964 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4965
4966 return skb_rb_next(skb);
4967}
4968
4969static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4970 struct sk_buff_head *list,
4971 struct rb_root *root)
4972{
4973 struct sk_buff *next = tcp_skb_next(skb, list);
4974
4975 if (list)
4976 __skb_unlink(skb, list);
4977 else
4978 rb_erase(&skb->rbnode, root);
4979
4980 __kfree_skb(skb);
4981 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4982
4983 return next;
4984}
4985
4986/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4987void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4988{
4989 struct rb_node **p = &root->rb_node;
4990 struct rb_node *parent = NULL;
4991 struct sk_buff *skb1;
4992
4993 while (*p) {
4994 parent = *p;
4995 skb1 = rb_to_skb(parent);
4996 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4997 p = &parent->rb_left;
4998 else
4999 p = &parent->rb_right;
5000 }
5001 rb_link_node(&skb->rbnode, parent, p);
5002 rb_insert_color(&skb->rbnode, root);
5003}
5004
5005/* Collapse contiguous sequence of skbs head..tail with
5006 * sequence numbers start..end.
5007 *
5008 * If tail is NULL, this means until the end of the queue.
5009 *
5010 * Segments with FIN/SYN are not collapsed (only because this
5011 * simplifies code)
5012 */
5013static void
5014tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5015 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5016{
5017 struct sk_buff *skb = head, *n;
5018 struct sk_buff_head tmp;
5019 bool end_of_skbs;
5020
5021 /* First, check that queue is collapsible and find
5022 * the point where collapsing can be useful.
5023 */
5024restart:
5025 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5026 n = tcp_skb_next(skb, list);
5027
5028 /* No new bits? It is possible on ofo queue. */
5029 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5030 skb = tcp_collapse_one(sk, skb, list, root);
5031 if (!skb)
5032 break;
5033 goto restart;
5034 }
5035
5036 /* The first skb to collapse is:
5037 * - not SYN/FIN and
5038 * - bloated or contains data before "start" or
5039 * overlaps to the next one.
5040 */
5041 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5042 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5043 before(TCP_SKB_CB(skb)->seq, start))) {
5044 end_of_skbs = false;
5045 break;
5046 }
5047
5048 if (n && n != tail &&
5049 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5050 end_of_skbs = false;
5051 break;
5052 }
5053
5054 /* Decided to skip this, advance start seq. */
5055 start = TCP_SKB_CB(skb)->end_seq;
5056 }
5057 if (end_of_skbs ||
5058 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5059 return;
5060
5061 __skb_queue_head_init(&tmp);
5062
5063 while (before(start, end)) {
5064 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5065 struct sk_buff *nskb;
5066
5067 nskb = alloc_skb(copy, GFP_ATOMIC);
5068 if (!nskb)
5069 break;
5070
5071 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5072#ifdef CONFIG_TLS_DEVICE
5073 nskb->decrypted = skb->decrypted;
5074#endif
5075 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5076 if (list)
5077 __skb_queue_before(list, skb, nskb);
5078 else
5079 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5080 skb_set_owner_r(nskb, sk);
5081
5082 /* Copy data, releasing collapsed skbs. */
5083 while (copy > 0) {
5084 int offset = start - TCP_SKB_CB(skb)->seq;
5085 int size = TCP_SKB_CB(skb)->end_seq - start;
5086
5087 BUG_ON(offset < 0);
5088 if (size > 0) {
5089 size = min(copy, size);
5090 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5091 BUG();
5092 TCP_SKB_CB(nskb)->end_seq += size;
5093 copy -= size;
5094 start += size;
5095 }
5096 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5097 skb = tcp_collapse_one(sk, skb, list, root);
5098 if (!skb ||
5099 skb == tail ||
5100 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5101 goto end;
5102#ifdef CONFIG_TLS_DEVICE
5103 if (skb->decrypted != nskb->decrypted)
5104 goto end;
5105#endif
5106 }
5107 }
5108 }
5109end:
5110 skb_queue_walk_safe(&tmp, skb, n)
5111 tcp_rbtree_insert(root, skb);
5112}
5113
5114/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5115 * and tcp_collapse() them until all the queue is collapsed.
5116 */
5117static void tcp_collapse_ofo_queue(struct sock *sk)
5118{
5119 struct tcp_sock *tp = tcp_sk(sk);
5120 u32 range_truesize, sum_tiny = 0;
5121 struct sk_buff *skb, *head;
5122 u32 start, end;
5123
5124 skb = skb_rb_first(&tp->out_of_order_queue);
5125new_range:
5126 if (!skb) {
5127 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5128 return;
5129 }
5130 start = TCP_SKB_CB(skb)->seq;
5131 end = TCP_SKB_CB(skb)->end_seq;
5132 range_truesize = skb->truesize;
5133
5134 for (head = skb;;) {
5135 skb = skb_rb_next(skb);
5136
5137 /* Range is terminated when we see a gap or when
5138 * we are at the queue end.
5139 */
5140 if (!skb ||
5141 after(TCP_SKB_CB(skb)->seq, end) ||
5142 before(TCP_SKB_CB(skb)->end_seq, start)) {
5143 /* Do not attempt collapsing tiny skbs */
5144 if (range_truesize != head->truesize ||
5145 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5146 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5147 head, skb, start, end);
5148 } else {
5149 sum_tiny += range_truesize;
5150 if (sum_tiny > sk->sk_rcvbuf >> 3)
5151 return;
5152 }
5153 goto new_range;
5154 }
5155
5156 range_truesize += skb->truesize;
5157 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5158 start = TCP_SKB_CB(skb)->seq;
5159 if (after(TCP_SKB_CB(skb)->end_seq, end))
5160 end = TCP_SKB_CB(skb)->end_seq;
5161 }
5162}
5163
5164/*
5165 * Clean the out-of-order queue to make room.
5166 * We drop high sequences packets to :
5167 * 1) Let a chance for holes to be filled.
5168 * 2) not add too big latencies if thousands of packets sit there.
5169 * (But if application shrinks SO_RCVBUF, we could still end up
5170 * freeing whole queue here)
5171 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5172 *
5173 * Return true if queue has shrunk.
5174 */
5175static bool tcp_prune_ofo_queue(struct sock *sk)
5176{
5177 struct tcp_sock *tp = tcp_sk(sk);
5178 struct rb_node *node, *prev;
5179 int goal;
5180
5181 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5182 return false;
5183
5184 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5185 goal = sk->sk_rcvbuf >> 3;
5186 node = &tp->ooo_last_skb->rbnode;
5187 do {
5188 prev = rb_prev(node);
5189 rb_erase(node, &tp->out_of_order_queue);
5190 goal -= rb_to_skb(node)->truesize;
5191 tcp_drop(sk, rb_to_skb(node));
5192 if (!prev || goal <= 0) {
5193 sk_mem_reclaim(sk);
5194 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5195 !tcp_under_memory_pressure(sk))
5196 break;
5197 goal = sk->sk_rcvbuf >> 3;
5198 }
5199 node = prev;
5200 } while (node);
5201 tp->ooo_last_skb = rb_to_skb(prev);
5202
5203 /* Reset SACK state. A conforming SACK implementation will
5204 * do the same at a timeout based retransmit. When a connection
5205 * is in a sad state like this, we care only about integrity
5206 * of the connection not performance.
5207 */
5208 if (tp->rx_opt.sack_ok)
5209 tcp_sack_reset(&tp->rx_opt);
5210 return true;
5211}
5212
5213/* Reduce allocated memory if we can, trying to get
5214 * the socket within its memory limits again.
5215 *
5216 * Return less than zero if we should start dropping frames
5217 * until the socket owning process reads some of the data
5218 * to stabilize the situation.
5219 */
5220static int tcp_prune_queue(struct sock *sk)
5221{
5222 struct tcp_sock *tp = tcp_sk(sk);
5223
5224 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5225
5226 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5227 tcp_clamp_window(sk);
5228 else if (tcp_under_memory_pressure(sk))
5229 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5230
5231 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5232 return 0;
5233
5234 tcp_collapse_ofo_queue(sk);
5235 if (!skb_queue_empty(&sk->sk_receive_queue))
5236 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5237 skb_peek(&sk->sk_receive_queue),
5238 NULL,
5239 tp->copied_seq, tp->rcv_nxt);
5240 sk_mem_reclaim(sk);
5241
5242 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5243 return 0;
5244
5245 /* Collapsing did not help, destructive actions follow.
5246 * This must not ever occur. */
5247
5248 tcp_prune_ofo_queue(sk);
5249
5250 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5251 return 0;
5252
5253 /* If we are really being abused, tell the caller to silently
5254 * drop receive data on the floor. It will get retransmitted
5255 * and hopefully then we'll have sufficient space.
5256 */
5257 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5258
5259 /* Massive buffer overcommit. */
5260 tp->pred_flags = 0;
5261 return -1;
5262}
5263
5264static bool tcp_should_expand_sndbuf(const struct sock *sk)
5265{
5266 const struct tcp_sock *tp = tcp_sk(sk);
5267
5268 /* If the user specified a specific send buffer setting, do
5269 * not modify it.
5270 */
5271 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5272 return false;
5273
5274 /* If we are under global TCP memory pressure, do not expand. */
5275 if (tcp_under_memory_pressure(sk))
5276 return false;
5277
5278 /* If we are under soft global TCP memory pressure, do not expand. */
5279 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5280 return false;
5281
5282 /* If we filled the congestion window, do not expand. */
5283 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5284 return false;
5285
5286 return true;
5287}
5288
5289/* When incoming ACK allowed to free some skb from write_queue,
5290 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5291 * on the exit from tcp input handler.
5292 *
5293 * PROBLEM: sndbuf expansion does not work well with largesend.
5294 */
5295static void tcp_new_space(struct sock *sk)
5296{
5297 struct tcp_sock *tp = tcp_sk(sk);
5298
5299 if (tcp_should_expand_sndbuf(sk)) {
5300 tcp_sndbuf_expand(sk);
5301 tp->snd_cwnd_stamp = tcp_jiffies32;
5302 }
5303
5304 sk->sk_write_space(sk);
5305}
5306
5307/* Caller made space either from:
5308 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5309 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5310 *
5311 * We might be able to generate EPOLLOUT to the application if:
5312 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5313 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5314 * small enough that tcp_stream_memory_free() decides it
5315 * is time to generate EPOLLOUT.
5316 */
5317void tcp_check_space(struct sock *sk)
5318{
5319 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5320 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5321 /* pairs with tcp_poll() */
5322 smp_mb();
5323 if (sk->sk_socket &&
5324 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5325 tcp_new_space(sk);
5326 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5327 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5328 }
5329 }
5330}
5331
5332static inline void tcp_data_snd_check(struct sock *sk)
5333{
5334 tcp_push_pending_frames(sk);
5335 tcp_check_space(sk);
5336}
5337
5338/*
5339 * Check if sending an ack is needed.
5340 */
5341static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5342{
5343 struct tcp_sock *tp = tcp_sk(sk);
5344 unsigned long rtt, delay;
5345
5346 /* More than one full frame received... */
5347 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5348 /* ... and right edge of window advances far enough.
5349 * (tcp_recvmsg() will send ACK otherwise).
5350 * If application uses SO_RCVLOWAT, we want send ack now if
5351 * we have not received enough bytes to satisfy the condition.
5352 */
5353 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5354 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5355 /* We ACK each frame or... */
5356 tcp_in_quickack_mode(sk) ||
5357 /* Protocol state mandates a one-time immediate ACK */
5358 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5359send_now:
5360 tcp_send_ack(sk);
5361 return;
5362 }
5363
5364 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5365 tcp_send_delayed_ack(sk);
5366 return;
5367 }
5368
5369 if (!tcp_is_sack(tp) ||
5370 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5371 goto send_now;
5372
5373 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5374 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5375 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5376 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5377 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5378 tp->compressed_ack = 0;
5379 }
5380
5381 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5382 goto send_now;
5383
5384 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5385 return;
5386
5387 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5388
5389 rtt = tp->rcv_rtt_est.rtt_us;
5390 if (tp->srtt_us && tp->srtt_us < rtt)
5391 rtt = tp->srtt_us;
5392
5393 delay = min_t(unsigned long,
5394 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5395 rtt * (NSEC_PER_USEC >> 3)/20);
5396 sock_hold(sk);
5397 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5398 HRTIMER_MODE_REL_PINNED_SOFT);
5399}
5400
5401static inline void tcp_ack_snd_check(struct sock *sk)
5402{
5403 if (!inet_csk_ack_scheduled(sk)) {
5404 /* We sent a data segment already. */
5405 return;
5406 }
5407 __tcp_ack_snd_check(sk, 1);
5408}
5409
5410/*
5411 * This routine is only called when we have urgent data
5412 * signaled. Its the 'slow' part of tcp_urg. It could be
5413 * moved inline now as tcp_urg is only called from one
5414 * place. We handle URGent data wrong. We have to - as
5415 * BSD still doesn't use the correction from RFC961.
5416 * For 1003.1g we should support a new option TCP_STDURG to permit
5417 * either form (or just set the sysctl tcp_stdurg).
5418 */
5419
5420static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5421{
5422 struct tcp_sock *tp = tcp_sk(sk);
5423 u32 ptr = ntohs(th->urg_ptr);
5424
5425 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5426 ptr--;
5427 ptr += ntohl(th->seq);
5428
5429 /* Ignore urgent data that we've already seen and read. */
5430 if (after(tp->copied_seq, ptr))
5431 return;
5432
5433 /* Do not replay urg ptr.
5434 *
5435 * NOTE: interesting situation not covered by specs.
5436 * Misbehaving sender may send urg ptr, pointing to segment,
5437 * which we already have in ofo queue. We are not able to fetch
5438 * such data and will stay in TCP_URG_NOTYET until will be eaten
5439 * by recvmsg(). Seems, we are not obliged to handle such wicked
5440 * situations. But it is worth to think about possibility of some
5441 * DoSes using some hypothetical application level deadlock.
5442 */
5443 if (before(ptr, tp->rcv_nxt))
5444 return;
5445
5446 /* Do we already have a newer (or duplicate) urgent pointer? */
5447 if (tp->urg_data && !after(ptr, tp->urg_seq))
5448 return;
5449
5450 /* Tell the world about our new urgent pointer. */
5451 sk_send_sigurg(sk);
5452
5453 /* We may be adding urgent data when the last byte read was
5454 * urgent. To do this requires some care. We cannot just ignore
5455 * tp->copied_seq since we would read the last urgent byte again
5456 * as data, nor can we alter copied_seq until this data arrives
5457 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5458 *
5459 * NOTE. Double Dutch. Rendering to plain English: author of comment
5460 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5461 * and expect that both A and B disappear from stream. This is _wrong_.
5462 * Though this happens in BSD with high probability, this is occasional.
5463 * Any application relying on this is buggy. Note also, that fix "works"
5464 * only in this artificial test. Insert some normal data between A and B and we will
5465 * decline of BSD again. Verdict: it is better to remove to trap
5466 * buggy users.
5467 */
5468 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5469 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5470 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5471 tp->copied_seq++;
5472 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5473 __skb_unlink(skb, &sk->sk_receive_queue);
5474 __kfree_skb(skb);
5475 }
5476 }
5477
5478 tp->urg_data = TCP_URG_NOTYET;
5479 WRITE_ONCE(tp->urg_seq, ptr);
5480
5481 /* Disable header prediction. */
5482 tp->pred_flags = 0;
5483}
5484
5485/* This is the 'fast' part of urgent handling. */
5486static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5487{
5488 struct tcp_sock *tp = tcp_sk(sk);
5489
5490 /* Check if we get a new urgent pointer - normally not. */
5491 if (th->urg)
5492 tcp_check_urg(sk, th);
5493
5494 /* Do we wait for any urgent data? - normally not... */
5495 if (tp->urg_data == TCP_URG_NOTYET) {
5496 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5497 th->syn;
5498
5499 /* Is the urgent pointer pointing into this packet? */
5500 if (ptr < skb->len) {
5501 u8 tmp;
5502 if (skb_copy_bits(skb, ptr, &tmp, 1))
5503 BUG();
5504 tp->urg_data = TCP_URG_VALID | tmp;
5505 if (!sock_flag(sk, SOCK_DEAD))
5506 sk->sk_data_ready(sk);
5507 }
5508 }
5509}
5510
5511/* Accept RST for rcv_nxt - 1 after a FIN.
5512 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5513 * FIN is sent followed by a RST packet. The RST is sent with the same
5514 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5515 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5516 * ACKs on the closed socket. In addition middleboxes can drop either the
5517 * challenge ACK or a subsequent RST.
5518 */
5519static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5520{
5521 struct tcp_sock *tp = tcp_sk(sk);
5522
5523 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5524 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5525 TCPF_CLOSING));
5526}
5527
5528/* Does PAWS and seqno based validation of an incoming segment, flags will
5529 * play significant role here.
5530 */
5531static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5532 const struct tcphdr *th, int syn_inerr)
5533{
5534 struct tcp_sock *tp = tcp_sk(sk);
5535 bool rst_seq_match = false;
5536
5537 /* RFC1323: H1. Apply PAWS check first. */
5538 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5539 tp->rx_opt.saw_tstamp &&
5540 tcp_paws_discard(sk, skb)) {
5541 if (!th->rst) {
5542 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5543 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5544 LINUX_MIB_TCPACKSKIPPEDPAWS,
5545 &tp->last_oow_ack_time))
5546 tcp_send_dupack(sk, skb);
5547 goto discard;
5548 }
5549 /* Reset is accepted even if it did not pass PAWS. */
5550 }
5551
5552 /* Step 1: check sequence number */
5553 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5554 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5555 * (RST) segments are validated by checking their SEQ-fields."
5556 * And page 69: "If an incoming segment is not acceptable,
5557 * an acknowledgment should be sent in reply (unless the RST
5558 * bit is set, if so drop the segment and return)".
5559 */
5560 if (!th->rst) {
5561 if (th->syn)
5562 goto syn_challenge;
5563 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5564 LINUX_MIB_TCPACKSKIPPEDSEQ,
5565 &tp->last_oow_ack_time))
5566 tcp_send_dupack(sk, skb);
5567 } else if (tcp_reset_check(sk, skb)) {
5568 tcp_reset(sk);
5569 }
5570 goto discard;
5571 }
5572
5573 /* Step 2: check RST bit */
5574 if (th->rst) {
5575 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5576 * FIN and SACK too if available):
5577 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5578 * the right-most SACK block,
5579 * then
5580 * RESET the connection
5581 * else
5582 * Send a challenge ACK
5583 */
5584 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5585 tcp_reset_check(sk, skb)) {
5586 rst_seq_match = true;
5587 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5588 struct tcp_sack_block *sp = &tp->selective_acks[0];
5589 int max_sack = sp[0].end_seq;
5590 int this_sack;
5591
5592 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5593 ++this_sack) {
5594 max_sack = after(sp[this_sack].end_seq,
5595 max_sack) ?
5596 sp[this_sack].end_seq : max_sack;
5597 }
5598
5599 if (TCP_SKB_CB(skb)->seq == max_sack)
5600 rst_seq_match = true;
5601 }
5602
5603 if (rst_seq_match)
5604 tcp_reset(sk);
5605 else {
5606 /* Disable TFO if RST is out-of-order
5607 * and no data has been received
5608 * for current active TFO socket
5609 */
5610 if (tp->syn_fastopen && !tp->data_segs_in &&
5611 sk->sk_state == TCP_ESTABLISHED)
5612 tcp_fastopen_active_disable(sk);
5613 tcp_send_challenge_ack(sk, skb);
5614 }
5615 goto discard;
5616 }
5617
5618 /* step 3: check security and precedence [ignored] */
5619
5620 /* step 4: Check for a SYN
5621 * RFC 5961 4.2 : Send a challenge ack
5622 */
5623 if (th->syn) {
5624syn_challenge:
5625 if (syn_inerr)
5626 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5627 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5628 tcp_send_challenge_ack(sk, skb);
5629 goto discard;
5630 }
5631
5632 return true;
5633
5634discard:
5635 tcp_drop(sk, skb);
5636 return false;
5637}
5638
5639/*
5640 * TCP receive function for the ESTABLISHED state.
5641 *
5642 * It is split into a fast path and a slow path. The fast path is
5643 * disabled when:
5644 * - A zero window was announced from us - zero window probing
5645 * is only handled properly in the slow path.
5646 * - Out of order segments arrived.
5647 * - Urgent data is expected.
5648 * - There is no buffer space left
5649 * - Unexpected TCP flags/window values/header lengths are received
5650 * (detected by checking the TCP header against pred_flags)
5651 * - Data is sent in both directions. Fast path only supports pure senders
5652 * or pure receivers (this means either the sequence number or the ack
5653 * value must stay constant)
5654 * - Unexpected TCP option.
5655 *
5656 * When these conditions are not satisfied it drops into a standard
5657 * receive procedure patterned after RFC793 to handle all cases.
5658 * The first three cases are guaranteed by proper pred_flags setting,
5659 * the rest is checked inline. Fast processing is turned on in
5660 * tcp_data_queue when everything is OK.
5661 */
5662void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5663{
5664 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5665 struct tcp_sock *tp = tcp_sk(sk);
5666 unsigned int len = skb->len;
5667
5668 /* TCP congestion window tracking */
5669 trace_tcp_probe(sk, skb);
5670
5671 tcp_mstamp_refresh(tp);
5672 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5673 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5674 /*
5675 * Header prediction.
5676 * The code loosely follows the one in the famous
5677 * "30 instruction TCP receive" Van Jacobson mail.
5678 *
5679 * Van's trick is to deposit buffers into socket queue
5680 * on a device interrupt, to call tcp_recv function
5681 * on the receive process context and checksum and copy
5682 * the buffer to user space. smart...
5683 *
5684 * Our current scheme is not silly either but we take the
5685 * extra cost of the net_bh soft interrupt processing...
5686 * We do checksum and copy also but from device to kernel.
5687 */
5688
5689 tp->rx_opt.saw_tstamp = 0;
5690
5691 /* pred_flags is 0xS?10 << 16 + snd_wnd
5692 * if header_prediction is to be made
5693 * 'S' will always be tp->tcp_header_len >> 2
5694 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5695 * turn it off (when there are holes in the receive
5696 * space for instance)
5697 * PSH flag is ignored.
5698 */
5699
5700 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5701 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5702 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5703 int tcp_header_len = tp->tcp_header_len;
5704
5705 /* Timestamp header prediction: tcp_header_len
5706 * is automatically equal to th->doff*4 due to pred_flags
5707 * match.
5708 */
5709
5710 /* Check timestamp */
5711 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5712 /* No? Slow path! */
5713 if (!tcp_parse_aligned_timestamp(tp, th))
5714 goto slow_path;
5715
5716 /* If PAWS failed, check it more carefully in slow path */
5717 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5718 goto slow_path;
5719
5720 /* DO NOT update ts_recent here, if checksum fails
5721 * and timestamp was corrupted part, it will result
5722 * in a hung connection since we will drop all
5723 * future packets due to the PAWS test.
5724 */
5725 }
5726
5727 if (len <= tcp_header_len) {
5728 /* Bulk data transfer: sender */
5729 if (len == tcp_header_len) {
5730 /* Predicted packet is in window by definition.
5731 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5732 * Hence, check seq<=rcv_wup reduces to:
5733 */
5734 if (tcp_header_len ==
5735 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5736 tp->rcv_nxt == tp->rcv_wup)
5737 tcp_store_ts_recent(tp);
5738
5739 /* We know that such packets are checksummed
5740 * on entry.
5741 */
5742 tcp_ack(sk, skb, 0);
5743 __kfree_skb(skb);
5744 tcp_data_snd_check(sk);
5745 /* When receiving pure ack in fast path, update
5746 * last ts ecr directly instead of calling
5747 * tcp_rcv_rtt_measure_ts()
5748 */
5749 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5750 return;
5751 } else { /* Header too small */
5752 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5753 goto discard;
5754 }
5755 } else {
5756 int eaten = 0;
5757 bool fragstolen = false;
5758
5759 if (tcp_checksum_complete(skb))
5760 goto csum_error;
5761
5762 if ((int)skb->truesize > sk->sk_forward_alloc)
5763 goto step5;
5764
5765 /* Predicted packet is in window by definition.
5766 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5767 * Hence, check seq<=rcv_wup reduces to:
5768 */
5769 if (tcp_header_len ==
5770 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5771 tp->rcv_nxt == tp->rcv_wup)
5772 tcp_store_ts_recent(tp);
5773
5774 tcp_rcv_rtt_measure_ts(sk, skb);
5775
5776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5777
5778 /* Bulk data transfer: receiver */
5779 __skb_pull(skb, tcp_header_len);
5780 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5781
5782 tcp_event_data_recv(sk, skb);
5783
5784 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5785 /* Well, only one small jumplet in fast path... */
5786 tcp_ack(sk, skb, FLAG_DATA);
5787 tcp_data_snd_check(sk);
5788 if (!inet_csk_ack_scheduled(sk))
5789 goto no_ack;
5790 } else {
5791 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5792 }
5793
5794 __tcp_ack_snd_check(sk, 0);
5795no_ack:
5796 if (eaten)
5797 kfree_skb_partial(skb, fragstolen);
5798 tcp_data_ready(sk);
5799 return;
5800 }
5801 }
5802
5803slow_path:
5804 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5805 goto csum_error;
5806
5807 if (!th->ack && !th->rst && !th->syn)
5808 goto discard;
5809
5810 /*
5811 * Standard slow path.
5812 */
5813
5814 if (!tcp_validate_incoming(sk, skb, th, 1))
5815 return;
5816
5817step5:
5818 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5819 goto discard;
5820
5821 tcp_rcv_rtt_measure_ts(sk, skb);
5822
5823 /* Process urgent data. */
5824 tcp_urg(sk, skb, th);
5825
5826 /* step 7: process the segment text */
5827 tcp_data_queue(sk, skb);
5828
5829 tcp_data_snd_check(sk);
5830 tcp_ack_snd_check(sk);
5831 return;
5832
5833csum_error:
5834 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5835 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5836
5837discard:
5838 tcp_drop(sk, skb);
5839}
5840EXPORT_SYMBOL(tcp_rcv_established);
5841
5842void tcp_init_transfer(struct sock *sk, int bpf_op)
5843{
5844 struct inet_connection_sock *icsk = inet_csk(sk);
5845 struct tcp_sock *tp = tcp_sk(sk);
5846
5847 tcp_mtup_init(sk);
5848 icsk->icsk_af_ops->rebuild_header(sk);
5849 tcp_init_metrics(sk);
5850
5851 /* Initialize the congestion window to start the transfer.
5852 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5853 * retransmitted. In light of RFC6298 more aggressive 1sec
5854 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5855 * retransmission has occurred.
5856 */
5857 if (tp->total_retrans > 1 && tp->undo_marker)
5858 tp->snd_cwnd = 1;
5859 else
5860 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5861 tp->snd_cwnd_stamp = tcp_jiffies32;
5862
5863 tcp_call_bpf(sk, bpf_op, 0, NULL);
5864 tcp_init_congestion_control(sk);
5865 tcp_init_buffer_space(sk);
5866}
5867
5868void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5869{
5870 struct tcp_sock *tp = tcp_sk(sk);
5871 struct inet_connection_sock *icsk = inet_csk(sk);
5872
5873 tcp_set_state(sk, TCP_ESTABLISHED);
5874 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5875
5876 if (skb) {
5877 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5878 security_inet_conn_established(sk, skb);
5879 sk_mark_napi_id(sk, skb);
5880 }
5881
5882 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5883
5884 /* Prevent spurious tcp_cwnd_restart() on first data
5885 * packet.
5886 */
5887 tp->lsndtime = tcp_jiffies32;
5888
5889 if (sock_flag(sk, SOCK_KEEPOPEN))
5890 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5891
5892 if (!tp->rx_opt.snd_wscale)
5893 __tcp_fast_path_on(tp, tp->snd_wnd);
5894 else
5895 tp->pred_flags = 0;
5896}
5897
5898static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5899 struct tcp_fastopen_cookie *cookie)
5900{
5901 struct tcp_sock *tp = tcp_sk(sk);
5902 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5903 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5904 bool syn_drop = false;
5905
5906 if (mss == tp->rx_opt.user_mss) {
5907 struct tcp_options_received opt;
5908
5909 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5910 tcp_clear_options(&opt);
5911 opt.user_mss = opt.mss_clamp = 0;
5912 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5913 mss = opt.mss_clamp;
5914 }
5915
5916 if (!tp->syn_fastopen) {
5917 /* Ignore an unsolicited cookie */
5918 cookie->len = -1;
5919 } else if (tp->total_retrans) {
5920 /* SYN timed out and the SYN-ACK neither has a cookie nor
5921 * acknowledges data. Presumably the remote received only
5922 * the retransmitted (regular) SYNs: either the original
5923 * SYN-data or the corresponding SYN-ACK was dropped.
5924 */
5925 syn_drop = (cookie->len < 0 && data);
5926 } else if (cookie->len < 0 && !tp->syn_data) {
5927 /* We requested a cookie but didn't get it. If we did not use
5928 * the (old) exp opt format then try so next time (try_exp=1).
5929 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5930 */
5931 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5932 }
5933
5934 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5935
5936 if (data) { /* Retransmit unacked data in SYN */
5937 if (tp->total_retrans)
5938 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5939 else
5940 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5941 skb_rbtree_walk_from(data) {
5942 if (__tcp_retransmit_skb(sk, data, 1))
5943 break;
5944 }
5945 tcp_rearm_rto(sk);
5946 NET_INC_STATS(sock_net(sk),
5947 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5948 return true;
5949 }
5950 tp->syn_data_acked = tp->syn_data;
5951 if (tp->syn_data_acked) {
5952 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5953 /* SYN-data is counted as two separate packets in tcp_ack() */
5954 if (tp->delivered > 1)
5955 --tp->delivered;
5956 }
5957
5958 tcp_fastopen_add_skb(sk, synack);
5959
5960 return false;
5961}
5962
5963static void smc_check_reset_syn(struct tcp_sock *tp)
5964{
5965#if IS_ENABLED(CONFIG_SMC)
5966 if (static_branch_unlikely(&tcp_have_smc)) {
5967 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5968 tp->syn_smc = 0;
5969 }
5970#endif
5971}
5972
5973static void tcp_try_undo_spurious_syn(struct sock *sk)
5974{
5975 struct tcp_sock *tp = tcp_sk(sk);
5976 u32 syn_stamp;
5977
5978 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5979 * spurious if the ACK's timestamp option echo value matches the
5980 * original SYN timestamp.
5981 */
5982 syn_stamp = tp->retrans_stamp;
5983 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5984 syn_stamp == tp->rx_opt.rcv_tsecr)
5985 tp->undo_marker = 0;
5986}
5987
5988static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5989 const struct tcphdr *th)
5990{
5991 struct inet_connection_sock *icsk = inet_csk(sk);
5992 struct tcp_sock *tp = tcp_sk(sk);
5993 struct tcp_fastopen_cookie foc = { .len = -1 };
5994 int saved_clamp = tp->rx_opt.mss_clamp;
5995 bool fastopen_fail;
5996
5997 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5998 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5999 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6000
6001 if (th->ack) {
6002 /* rfc793:
6003 * "If the state is SYN-SENT then
6004 * first check the ACK bit
6005 * If the ACK bit is set
6006 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6007 * a reset (unless the RST bit is set, if so drop
6008 * the segment and return)"
6009 */
6010 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6011 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
6012 goto reset_and_undo;
6013
6014 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6015 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6016 tcp_time_stamp(tp))) {
6017 NET_INC_STATS(sock_net(sk),
6018 LINUX_MIB_PAWSACTIVEREJECTED);
6019 goto reset_and_undo;
6020 }
6021
6022 /* Now ACK is acceptable.
6023 *
6024 * "If the RST bit is set
6025 * If the ACK was acceptable then signal the user "error:
6026 * connection reset", drop the segment, enter CLOSED state,
6027 * delete TCB, and return."
6028 */
6029
6030 if (th->rst) {
6031 tcp_reset(sk);
6032 goto discard;
6033 }
6034
6035 /* rfc793:
6036 * "fifth, if neither of the SYN or RST bits is set then
6037 * drop the segment and return."
6038 *
6039 * See note below!
6040 * --ANK(990513)
6041 */
6042 if (!th->syn)
6043 goto discard_and_undo;
6044
6045 /* rfc793:
6046 * "If the SYN bit is on ...
6047 * are acceptable then ...
6048 * (our SYN has been ACKed), change the connection
6049 * state to ESTABLISHED..."
6050 */
6051
6052 tcp_ecn_rcv_synack(tp, th);
6053
6054 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6055 tcp_try_undo_spurious_syn(sk);
6056 tcp_ack(sk, skb, FLAG_SLOWPATH);
6057
6058 /* Ok.. it's good. Set up sequence numbers and
6059 * move to established.
6060 */
6061 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6062 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6063
6064 /* RFC1323: The window in SYN & SYN/ACK segments is
6065 * never scaled.
6066 */
6067 tp->snd_wnd = ntohs(th->window);
6068
6069 if (!tp->rx_opt.wscale_ok) {
6070 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6071 tp->window_clamp = min(tp->window_clamp, 65535U);
6072 }
6073
6074 if (tp->rx_opt.saw_tstamp) {
6075 tp->rx_opt.tstamp_ok = 1;
6076 tp->tcp_header_len =
6077 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6078 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6079 tcp_store_ts_recent(tp);
6080 } else {
6081 tp->tcp_header_len = sizeof(struct tcphdr);
6082 }
6083
6084 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6085 tcp_initialize_rcv_mss(sk);
6086
6087 /* Remember, tcp_poll() does not lock socket!
6088 * Change state from SYN-SENT only after copied_seq
6089 * is initialized. */
6090 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6091
6092 smc_check_reset_syn(tp);
6093
6094 smp_mb();
6095
6096 tcp_finish_connect(sk, skb);
6097
6098 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6099 tcp_rcv_fastopen_synack(sk, skb, &foc);
6100
6101 if (!sock_flag(sk, SOCK_DEAD)) {
6102 sk->sk_state_change(sk);
6103 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6104 }
6105 if (fastopen_fail)
6106 return -1;
6107 if (sk->sk_write_pending ||
6108 icsk->icsk_accept_queue.rskq_defer_accept ||
6109 inet_csk_in_pingpong_mode(sk)) {
6110 /* Save one ACK. Data will be ready after
6111 * several ticks, if write_pending is set.
6112 *
6113 * It may be deleted, but with this feature tcpdumps
6114 * look so _wonderfully_ clever, that I was not able
6115 * to stand against the temptation 8) --ANK
6116 */
6117 inet_csk_schedule_ack(sk);
6118 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6119 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6120 TCP_DELACK_MAX, TCP_RTO_MAX);
6121
6122discard:
6123 tcp_drop(sk, skb);
6124 return 0;
6125 } else {
6126 tcp_send_ack(sk);
6127 }
6128 return -1;
6129 }
6130
6131 /* No ACK in the segment */
6132
6133 if (th->rst) {
6134 /* rfc793:
6135 * "If the RST bit is set
6136 *
6137 * Otherwise (no ACK) drop the segment and return."
6138 */
6139
6140 goto discard_and_undo;
6141 }
6142
6143 /* PAWS check. */
6144 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6145 tcp_paws_reject(&tp->rx_opt, 0))
6146 goto discard_and_undo;
6147
6148 if (th->syn) {
6149 /* We see SYN without ACK. It is attempt of
6150 * simultaneous connect with crossed SYNs.
6151 * Particularly, it can be connect to self.
6152 */
6153 tcp_set_state(sk, TCP_SYN_RECV);
6154
6155 if (tp->rx_opt.saw_tstamp) {
6156 tp->rx_opt.tstamp_ok = 1;
6157 tcp_store_ts_recent(tp);
6158 tp->tcp_header_len =
6159 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6160 } else {
6161 tp->tcp_header_len = sizeof(struct tcphdr);
6162 }
6163
6164 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6165 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6166 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6167
6168 /* RFC1323: The window in SYN & SYN/ACK segments is
6169 * never scaled.
6170 */
6171 tp->snd_wnd = ntohs(th->window);
6172 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6173 tp->max_window = tp->snd_wnd;
6174
6175 tcp_ecn_rcv_syn(tp, th);
6176
6177 tcp_mtup_init(sk);
6178 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6179 tcp_initialize_rcv_mss(sk);
6180
6181 tcp_send_synack(sk);
6182#if 0
6183 /* Note, we could accept data and URG from this segment.
6184 * There are no obstacles to make this (except that we must
6185 * either change tcp_recvmsg() to prevent it from returning data
6186 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6187 *
6188 * However, if we ignore data in ACKless segments sometimes,
6189 * we have no reasons to accept it sometimes.
6190 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6191 * is not flawless. So, discard packet for sanity.
6192 * Uncomment this return to process the data.
6193 */
6194 return -1;
6195#else
6196 goto discard;
6197#endif
6198 }
6199 /* "fifth, if neither of the SYN or RST bits is set then
6200 * drop the segment and return."
6201 */
6202
6203discard_and_undo:
6204 tcp_clear_options(&tp->rx_opt);
6205 tp->rx_opt.mss_clamp = saved_clamp;
6206 goto discard;
6207
6208reset_and_undo:
6209 tcp_clear_options(&tp->rx_opt);
6210 tp->rx_opt.mss_clamp = saved_clamp;
6211 return 1;
6212}
6213
6214static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6215{
6216 struct tcp_sock *tp = tcp_sk(sk);
6217 struct request_sock *req;
6218
6219 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6220 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6221 */
6222 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6223 tcp_try_undo_recovery(sk);
6224
6225 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6226 tp->retrans_stamp = 0;
6227 inet_csk(sk)->icsk_retransmits = 0;
6228
6229 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6230 * we no longer need req so release it.
6231 */
6232 req = rcu_dereference_protected(tp->fastopen_rsk,
6233 lockdep_sock_is_held(sk));
6234 reqsk_fastopen_remove(sk, req, false);
6235
6236 /* Re-arm the timer because data may have been sent out.
6237 * This is similar to the regular data transmission case
6238 * when new data has just been ack'ed.
6239 *
6240 * (TFO) - we could try to be more aggressive and
6241 * retransmitting any data sooner based on when they
6242 * are sent out.
6243 */
6244 tcp_rearm_rto(sk);
6245}
6246
6247/*
6248 * This function implements the receiving procedure of RFC 793 for
6249 * all states except ESTABLISHED and TIME_WAIT.
6250 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6251 * address independent.
6252 */
6253
6254int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6255{
6256 struct tcp_sock *tp = tcp_sk(sk);
6257 struct inet_connection_sock *icsk = inet_csk(sk);
6258 const struct tcphdr *th = tcp_hdr(skb);
6259 struct request_sock *req;
6260 int queued = 0;
6261 bool acceptable;
6262
6263 switch (sk->sk_state) {
6264 case TCP_CLOSE:
6265 goto discard;
6266
6267 case TCP_LISTEN:
6268 if (th->ack)
6269 return 1;
6270
6271 if (th->rst)
6272 goto discard;
6273
6274 if (th->syn) {
6275 if (th->fin)
6276 goto discard;
6277 /* It is possible that we process SYN packets from backlog,
6278 * so we need to make sure to disable BH and RCU right there.
6279 */
6280 rcu_read_lock();
6281 local_bh_disable();
6282 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6283 local_bh_enable();
6284 rcu_read_unlock();
6285
6286 if (!acceptable)
6287 return 1;
6288 consume_skb(skb);
6289 return 0;
6290 }
6291 goto discard;
6292
6293 case TCP_SYN_SENT:
6294 tp->rx_opt.saw_tstamp = 0;
6295 tcp_mstamp_refresh(tp);
6296 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6297 if (queued >= 0)
6298 return queued;
6299
6300 /* Do step6 onward by hand. */
6301 tcp_urg(sk, skb, th);
6302 __kfree_skb(skb);
6303 tcp_data_snd_check(sk);
6304 return 0;
6305 }
6306
6307 tcp_mstamp_refresh(tp);
6308 tp->rx_opt.saw_tstamp = 0;
6309 req = rcu_dereference_protected(tp->fastopen_rsk,
6310 lockdep_sock_is_held(sk));
6311 if (req) {
6312 bool req_stolen;
6313
6314 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6315 sk->sk_state != TCP_FIN_WAIT1);
6316
6317 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6318 goto discard;
6319 }
6320
6321 if (!th->ack && !th->rst && !th->syn)
6322 goto discard;
6323
6324 if (!tcp_validate_incoming(sk, skb, th, 0))
6325 return 0;
6326
6327 /* step 5: check the ACK field */
6328 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6329 FLAG_UPDATE_TS_RECENT |
6330 FLAG_NO_CHALLENGE_ACK) > 0;
6331
6332 if (!acceptable) {
6333 if (sk->sk_state == TCP_SYN_RECV)
6334 return 1; /* send one RST */
6335 tcp_send_challenge_ack(sk, skb);
6336 goto discard;
6337 }
6338 switch (sk->sk_state) {
6339 case TCP_SYN_RECV:
6340 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6341 if (!tp->srtt_us)
6342 tcp_synack_rtt_meas(sk, req);
6343
6344 if (req) {
6345 tcp_rcv_synrecv_state_fastopen(sk);
6346 } else {
6347 tcp_try_undo_spurious_syn(sk);
6348 tp->retrans_stamp = 0;
6349 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6350 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6351 }
6352 smp_mb();
6353 tcp_set_state(sk, TCP_ESTABLISHED);
6354 sk->sk_state_change(sk);
6355
6356 /* Note, that this wakeup is only for marginal crossed SYN case.
6357 * Passively open sockets are not waked up, because
6358 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6359 */
6360 if (sk->sk_socket)
6361 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6362
6363 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6364 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6365 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6366
6367 if (tp->rx_opt.tstamp_ok)
6368 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6369
6370 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6371 tcp_update_pacing_rate(sk);
6372
6373 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6374 tp->lsndtime = tcp_jiffies32;
6375
6376 tcp_initialize_rcv_mss(sk);
6377 tcp_fast_path_on(tp);
6378 if (sk->sk_shutdown & SEND_SHUTDOWN)
6379 tcp_shutdown(sk, SEND_SHUTDOWN);
6380 break;
6381
6382 case TCP_FIN_WAIT1: {
6383 int tmo;
6384
6385 if (req)
6386 tcp_rcv_synrecv_state_fastopen(sk);
6387
6388 if (tp->snd_una != tp->write_seq)
6389 break;
6390
6391 tcp_set_state(sk, TCP_FIN_WAIT2);
6392 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6393
6394 sk_dst_confirm(sk);
6395
6396 if (!sock_flag(sk, SOCK_DEAD)) {
6397 /* Wake up lingering close() */
6398 sk->sk_state_change(sk);
6399 break;
6400 }
6401
6402 if (tp->linger2 < 0) {
6403 tcp_done(sk);
6404 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6405 return 1;
6406 }
6407 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6408 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6409 /* Receive out of order FIN after close() */
6410 if (tp->syn_fastopen && th->fin)
6411 tcp_fastopen_active_disable(sk);
6412 tcp_done(sk);
6413 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6414 return 1;
6415 }
6416
6417 tmo = tcp_fin_time(sk);
6418 if (tmo > TCP_TIMEWAIT_LEN) {
6419 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6420 } else if (th->fin || sock_owned_by_user(sk)) {
6421 /* Bad case. We could lose such FIN otherwise.
6422 * It is not a big problem, but it looks confusing
6423 * and not so rare event. We still can lose it now,
6424 * if it spins in bh_lock_sock(), but it is really
6425 * marginal case.
6426 */
6427 inet_csk_reset_keepalive_timer(sk, tmo);
6428 } else {
6429 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6430 goto discard;
6431 }
6432 break;
6433 }
6434
6435 case TCP_CLOSING:
6436 if (tp->snd_una == tp->write_seq) {
6437 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6438 goto discard;
6439 }
6440 break;
6441
6442 case TCP_LAST_ACK:
6443 if (tp->snd_una == tp->write_seq) {
6444 tcp_update_metrics(sk);
6445 tcp_done(sk);
6446 goto discard;
6447 }
6448 break;
6449 }
6450
6451 /* step 6: check the URG bit */
6452 tcp_urg(sk, skb, th);
6453
6454 /* step 7: process the segment text */
6455 switch (sk->sk_state) {
6456 case TCP_CLOSE_WAIT:
6457 case TCP_CLOSING:
6458 case TCP_LAST_ACK:
6459 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6460 break;
6461 /* fall through */
6462 case TCP_FIN_WAIT1:
6463 case TCP_FIN_WAIT2:
6464 /* RFC 793 says to queue data in these states,
6465 * RFC 1122 says we MUST send a reset.
6466 * BSD 4.4 also does reset.
6467 */
6468 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6469 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6470 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6471 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6472 tcp_reset(sk);
6473 return 1;
6474 }
6475 }
6476 /* Fall through */
6477 case TCP_ESTABLISHED:
6478 tcp_data_queue(sk, skb);
6479 queued = 1;
6480 break;
6481 }
6482
6483 /* tcp_data could move socket to TIME-WAIT */
6484 if (sk->sk_state != TCP_CLOSE) {
6485 tcp_data_snd_check(sk);
6486 tcp_ack_snd_check(sk);
6487 }
6488
6489 if (!queued) {
6490discard:
6491 tcp_drop(sk, skb);
6492 }
6493 return 0;
6494}
6495EXPORT_SYMBOL(tcp_rcv_state_process);
6496
6497static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6498{
6499 struct inet_request_sock *ireq = inet_rsk(req);
6500
6501 if (family == AF_INET)
6502 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6503 &ireq->ir_rmt_addr, port);
6504#if IS_ENABLED(CONFIG_IPV6)
6505 else if (family == AF_INET6)
6506 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6507 &ireq->ir_v6_rmt_addr, port);
6508#endif
6509}
6510
6511/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6512 *
6513 * If we receive a SYN packet with these bits set, it means a
6514 * network is playing bad games with TOS bits. In order to
6515 * avoid possible false congestion notifications, we disable
6516 * TCP ECN negotiation.
6517 *
6518 * Exception: tcp_ca wants ECN. This is required for DCTCP
6519 * congestion control: Linux DCTCP asserts ECT on all packets,
6520 * including SYN, which is most optimal solution; however,
6521 * others, such as FreeBSD do not.
6522 *
6523 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6524 * set, indicating the use of a future TCP extension (such as AccECN). See
6525 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6526 * extensions.
6527 */
6528static void tcp_ecn_create_request(struct request_sock *req,
6529 const struct sk_buff *skb,
6530 const struct sock *listen_sk,
6531 const struct dst_entry *dst)
6532{
6533 const struct tcphdr *th = tcp_hdr(skb);
6534 const struct net *net = sock_net(listen_sk);
6535 bool th_ecn = th->ece && th->cwr;
6536 bool ect, ecn_ok;
6537 u32 ecn_ok_dst;
6538
6539 if (!th_ecn)
6540 return;
6541
6542 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6543 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6544 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6545
6546 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6547 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6548 tcp_bpf_ca_needs_ecn((struct sock *)req))
6549 inet_rsk(req)->ecn_ok = 1;
6550}
6551
6552static void tcp_openreq_init(struct request_sock *req,
6553 const struct tcp_options_received *rx_opt,
6554 struct sk_buff *skb, const struct sock *sk)
6555{
6556 struct inet_request_sock *ireq = inet_rsk(req);
6557
6558 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6559 req->cookie_ts = 0;
6560 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6561 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6562 tcp_rsk(req)->snt_synack = 0;
6563 tcp_rsk(req)->last_oow_ack_time = 0;
6564 req->mss = rx_opt->mss_clamp;
6565 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6566 ireq->tstamp_ok = rx_opt->tstamp_ok;
6567 ireq->sack_ok = rx_opt->sack_ok;
6568 ireq->snd_wscale = rx_opt->snd_wscale;
6569 ireq->wscale_ok = rx_opt->wscale_ok;
6570 ireq->acked = 0;
6571 ireq->ecn_ok = 0;
6572 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6573 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6574 ireq->ir_mark = inet_request_mark(sk, skb);
6575#if IS_ENABLED(CONFIG_SMC)
6576 ireq->smc_ok = rx_opt->smc_ok;
6577#endif
6578}
6579
6580struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6581 struct sock *sk_listener,
6582 bool attach_listener)
6583{
6584 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6585 attach_listener);
6586
6587 if (req) {
6588 struct inet_request_sock *ireq = inet_rsk(req);
6589
6590 ireq->ireq_opt = NULL;
6591#if IS_ENABLED(CONFIG_IPV6)
6592 ireq->pktopts = NULL;
6593#endif
6594 atomic64_set(&ireq->ir_cookie, 0);
6595 ireq->ireq_state = TCP_NEW_SYN_RECV;
6596 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6597 ireq->ireq_family = sk_listener->sk_family;
6598 }
6599
6600 return req;
6601}
6602EXPORT_SYMBOL(inet_reqsk_alloc);
6603
6604/*
6605 * Return true if a syncookie should be sent
6606 */
6607static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6608{
6609 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6610 const char *msg = "Dropping request";
6611 struct net *net = sock_net(sk);
6612 bool want_cookie = false;
6613 u8 syncookies;
6614
6615 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6616
6617#ifdef CONFIG_SYN_COOKIES
6618 if (syncookies) {
6619 msg = "Sending cookies";
6620 want_cookie = true;
6621 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6622 } else
6623#endif
6624 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6625
6626 if (!queue->synflood_warned && syncookies != 2 &&
6627 xchg(&queue->synflood_warned, 1) == 0)
6628 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6629 proto, sk->sk_num, msg);
6630
6631 return want_cookie;
6632}
6633
6634static void tcp_reqsk_record_syn(const struct sock *sk,
6635 struct request_sock *req,
6636 const struct sk_buff *skb)
6637{
6638 if (tcp_sk(sk)->save_syn) {
6639 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6640 u32 *copy;
6641
6642 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6643 if (copy) {
6644 copy[0] = len;
6645 memcpy(&copy[1], skb_network_header(skb), len);
6646 req->saved_syn = copy;
6647 }
6648 }
6649}
6650
6651/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6652 * used for SYN cookie generation.
6653 */
6654u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6655 const struct tcp_request_sock_ops *af_ops,
6656 struct sock *sk, struct tcphdr *th)
6657{
6658 struct tcp_sock *tp = tcp_sk(sk);
6659 u16 mss;
6660
6661 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6662 !inet_csk_reqsk_queue_is_full(sk))
6663 return 0;
6664
6665 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6666 return 0;
6667
6668 if (sk_acceptq_is_full(sk)) {
6669 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6670 return 0;
6671 }
6672
6673 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6674 if (!mss)
6675 mss = af_ops->mss_clamp;
6676
6677 return mss;
6678}
6679EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6680
6681int tcp_conn_request(struct request_sock_ops *rsk_ops,
6682 const struct tcp_request_sock_ops *af_ops,
6683 struct sock *sk, struct sk_buff *skb)
6684{
6685 struct tcp_fastopen_cookie foc = { .len = -1 };
6686 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6687 struct tcp_options_received tmp_opt;
6688 struct tcp_sock *tp = tcp_sk(sk);
6689 struct net *net = sock_net(sk);
6690 struct sock *fastopen_sk = NULL;
6691 struct request_sock *req;
6692 bool want_cookie = false;
6693 struct dst_entry *dst;
6694 struct flowi fl;
6695 u8 syncookies;
6696
6697 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6698
6699 /* TW buckets are converted to open requests without
6700 * limitations, they conserve resources and peer is
6701 * evidently real one.
6702 */
6703 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6704 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6705 if (!want_cookie)
6706 goto drop;
6707 }
6708
6709 if (sk_acceptq_is_full(sk)) {
6710 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6711 goto drop;
6712 }
6713
6714 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6715 if (!req)
6716 goto drop;
6717
6718 tcp_rsk(req)->af_specific = af_ops;
6719 tcp_rsk(req)->ts_off = 0;
6720
6721 tcp_clear_options(&tmp_opt);
6722 tmp_opt.mss_clamp = af_ops->mss_clamp;
6723 tmp_opt.user_mss = tp->rx_opt.user_mss;
6724 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6725 want_cookie ? NULL : &foc);
6726
6727 if (want_cookie && !tmp_opt.saw_tstamp)
6728 tcp_clear_options(&tmp_opt);
6729
6730 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6731 tmp_opt.smc_ok = 0;
6732
6733 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6734 tcp_openreq_init(req, &tmp_opt, skb, sk);
6735 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6736
6737 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6738 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6739
6740 af_ops->init_req(req, sk, skb);
6741
6742 if (security_inet_conn_request(sk, skb, req))
6743 goto drop_and_free;
6744
6745 if (tmp_opt.tstamp_ok)
6746 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6747
6748 dst = af_ops->route_req(sk, &fl, req);
6749 if (!dst)
6750 goto drop_and_free;
6751
6752 if (!want_cookie && !isn) {
6753 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6754
6755 /* Kill the following clause, if you dislike this way. */
6756 if (!syncookies &&
6757 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6758 (max_syn_backlog >> 2)) &&
6759 !tcp_peer_is_proven(req, dst)) {
6760 /* Without syncookies last quarter of
6761 * backlog is filled with destinations,
6762 * proven to be alive.
6763 * It means that we continue to communicate
6764 * to destinations, already remembered
6765 * to the moment of synflood.
6766 */
6767 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6768 rsk_ops->family);
6769 goto drop_and_release;
6770 }
6771
6772 isn = af_ops->init_seq(skb);
6773 }
6774
6775 tcp_ecn_create_request(req, skb, sk, dst);
6776
6777 if (want_cookie) {
6778 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6779 req->cookie_ts = tmp_opt.tstamp_ok;
6780 if (!tmp_opt.tstamp_ok)
6781 inet_rsk(req)->ecn_ok = 0;
6782 }
6783
6784 tcp_rsk(req)->snt_isn = isn;
6785 tcp_rsk(req)->txhash = net_tx_rndhash();
6786 tcp_openreq_init_rwin(req, sk, dst);
6787 sk_rx_queue_set(req_to_sk(req), skb);
6788 if (!want_cookie) {
6789 tcp_reqsk_record_syn(sk, req, skb);
6790 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6791 }
6792 if (fastopen_sk) {
6793 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6794 &foc, TCP_SYNACK_FASTOPEN);
6795 /* Add the child socket directly into the accept queue */
6796 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6797 reqsk_fastopen_remove(fastopen_sk, req, false);
6798 bh_unlock_sock(fastopen_sk);
6799 sock_put(fastopen_sk);
6800 goto drop_and_free;
6801 }
6802 sk->sk_data_ready(sk);
6803 bh_unlock_sock(fastopen_sk);
6804 sock_put(fastopen_sk);
6805 } else {
6806 tcp_rsk(req)->tfo_listener = false;
6807 if (!want_cookie)
6808 inet_csk_reqsk_queue_hash_add(sk, req,
6809 tcp_timeout_init((struct sock *)req));
6810 af_ops->send_synack(sk, dst, &fl, req, &foc,
6811 !want_cookie ? TCP_SYNACK_NORMAL :
6812 TCP_SYNACK_COOKIE);
6813 if (want_cookie) {
6814 reqsk_free(req);
6815 return 0;
6816 }
6817 }
6818 reqsk_put(req);
6819 return 0;
6820
6821drop_and_release:
6822 dst_release(dst);
6823drop_and_free:
6824 __reqsk_free(req);
6825drop:
6826 tcp_listendrop(sk);
6827 return 0;
6828}
6829EXPORT_SYMBOL(tcp_conn_request);