b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright 2002-2005, Instant802 Networks, Inc. |
| 4 | * Copyright 2005-2006, Devicescape Software, Inc. |
| 5 | * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| 6 | * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> |
| 7 | * Copyright 2013-2014 Intel Mobile Communications GmbH |
| 8 | * Copyright 2015-2017 Intel Deutschland GmbH |
| 9 | * Copyright 2018-2020 Intel Corporation |
| 10 | */ |
| 11 | |
| 12 | #include <linux/if_ether.h> |
| 13 | #include <linux/etherdevice.h> |
| 14 | #include <linux/list.h> |
| 15 | #include <linux/rcupdate.h> |
| 16 | #include <linux/rtnetlink.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/export.h> |
| 19 | #include <net/mac80211.h> |
| 20 | #include <crypto/algapi.h> |
| 21 | #include <asm/unaligned.h> |
| 22 | #include "ieee80211_i.h" |
| 23 | #include "driver-ops.h" |
| 24 | #include "debugfs_key.h" |
| 25 | #include "aes_ccm.h" |
| 26 | #include "aes_cmac.h" |
| 27 | #include "aes_gmac.h" |
| 28 | #include "aes_gcm.h" |
| 29 | |
| 30 | |
| 31 | /** |
| 32 | * DOC: Key handling basics |
| 33 | * |
| 34 | * Key handling in mac80211 is done based on per-interface (sub_if_data) |
| 35 | * keys and per-station keys. Since each station belongs to an interface, |
| 36 | * each station key also belongs to that interface. |
| 37 | * |
| 38 | * Hardware acceleration is done on a best-effort basis for algorithms |
| 39 | * that are implemented in software, for each key the hardware is asked |
| 40 | * to enable that key for offloading but if it cannot do that the key is |
| 41 | * simply kept for software encryption (unless it is for an algorithm |
| 42 | * that isn't implemented in software). |
| 43 | * There is currently no way of knowing whether a key is handled in SW |
| 44 | * or HW except by looking into debugfs. |
| 45 | * |
| 46 | * All key management is internally protected by a mutex. Within all |
| 47 | * other parts of mac80211, key references are, just as STA structure |
| 48 | * references, protected by RCU. Note, however, that some things are |
| 49 | * unprotected, namely the key->sta dereferences within the hardware |
| 50 | * acceleration functions. This means that sta_info_destroy() must |
| 51 | * remove the key which waits for an RCU grace period. |
| 52 | */ |
| 53 | |
| 54 | static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| 55 | |
| 56 | static void assert_key_lock(struct ieee80211_local *local) |
| 57 | { |
| 58 | lockdep_assert_held(&local->key_mtx); |
| 59 | } |
| 60 | |
| 61 | static void |
| 62 | update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) |
| 63 | { |
| 64 | struct ieee80211_sub_if_data *vlan; |
| 65 | |
| 66 | if (sdata->vif.type != NL80211_IFTYPE_AP) |
| 67 | return; |
| 68 | |
| 69 | /* crypto_tx_tailroom_needed_cnt is protected by this */ |
| 70 | assert_key_lock(sdata->local); |
| 71 | |
| 72 | rcu_read_lock(); |
| 73 | |
| 74 | list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list) |
| 75 | vlan->crypto_tx_tailroom_needed_cnt += delta; |
| 76 | |
| 77 | rcu_read_unlock(); |
| 78 | } |
| 79 | |
| 80 | static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) |
| 81 | { |
| 82 | /* |
| 83 | * When this count is zero, SKB resizing for allocating tailroom |
| 84 | * for IV or MMIC is skipped. But, this check has created two race |
| 85 | * cases in xmit path while transiting from zero count to one: |
| 86 | * |
| 87 | * 1. SKB resize was skipped because no key was added but just before |
| 88 | * the xmit key is added and SW encryption kicks off. |
| 89 | * |
| 90 | * 2. SKB resize was skipped because all the keys were hw planted but |
| 91 | * just before xmit one of the key is deleted and SW encryption kicks |
| 92 | * off. |
| 93 | * |
| 94 | * In both the above case SW encryption will find not enough space for |
| 95 | * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) |
| 96 | * |
| 97 | * Solution has been explained at |
| 98 | * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net |
| 99 | */ |
| 100 | |
| 101 | assert_key_lock(sdata->local); |
| 102 | |
| 103 | update_vlan_tailroom_need_count(sdata, 1); |
| 104 | |
| 105 | if (!sdata->crypto_tx_tailroom_needed_cnt++) { |
| 106 | /* |
| 107 | * Flush all XMIT packets currently using HW encryption or no |
| 108 | * encryption at all if the count transition is from 0 -> 1. |
| 109 | */ |
| 110 | synchronize_net(); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata, |
| 115 | int delta) |
| 116 | { |
| 117 | assert_key_lock(sdata->local); |
| 118 | |
| 119 | WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta); |
| 120 | |
| 121 | update_vlan_tailroom_need_count(sdata, -delta); |
| 122 | sdata->crypto_tx_tailroom_needed_cnt -= delta; |
| 123 | } |
| 124 | |
| 125 | static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) |
| 126 | { |
| 127 | struct ieee80211_sub_if_data *sdata = key->sdata; |
| 128 | struct sta_info *sta; |
| 129 | int ret = -EOPNOTSUPP; |
| 130 | |
| 131 | might_sleep(); |
| 132 | |
| 133 | if (key->flags & KEY_FLAG_TAINTED) { |
| 134 | /* If we get here, it's during resume and the key is |
| 135 | * tainted so shouldn't be used/programmed any more. |
| 136 | * However, its flags may still indicate that it was |
| 137 | * programmed into the device (since we're in resume) |
| 138 | * so clear that flag now to avoid trying to remove |
| 139 | * it again later. |
| 140 | */ |
| 141 | if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && |
| 142 | !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| 143 | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| 144 | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| 145 | increment_tailroom_need_count(sdata); |
| 146 | |
| 147 | key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; |
| 148 | return -EINVAL; |
| 149 | } |
| 150 | |
| 151 | if (!key->local->ops->set_key) |
| 152 | goto out_unsupported; |
| 153 | |
| 154 | assert_key_lock(key->local); |
| 155 | |
| 156 | sta = key->sta; |
| 157 | |
| 158 | /* |
| 159 | * If this is a per-STA GTK, check if it |
| 160 | * is supported; if not, return. |
| 161 | */ |
| 162 | if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && |
| 163 | !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK)) |
| 164 | goto out_unsupported; |
| 165 | |
| 166 | if (sta && !sta->uploaded) |
| 167 | goto out_unsupported; |
| 168 | |
| 169 | if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| 170 | /* |
| 171 | * The driver doesn't know anything about VLAN interfaces. |
| 172 | * Hence, don't send GTKs for VLAN interfaces to the driver. |
| 173 | */ |
| 174 | if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { |
| 175 | ret = 1; |
| 176 | goto out_unsupported; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | ret = drv_set_key(key->local, SET_KEY, sdata, |
| 181 | sta ? &sta->sta : NULL, &key->conf); |
| 182 | |
| 183 | if (!ret) { |
| 184 | key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; |
| 185 | |
| 186 | if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| 187 | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| 188 | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| 189 | decrease_tailroom_need_count(sdata, 1); |
| 190 | |
| 191 | WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && |
| 192 | (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); |
| 193 | |
| 194 | WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) && |
| 195 | (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)); |
| 196 | |
| 197 | return 0; |
| 198 | } |
| 199 | |
| 200 | if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) |
| 201 | sdata_err(sdata, |
| 202 | "failed to set key (%d, %pM) to hardware (%d)\n", |
| 203 | key->conf.keyidx, |
| 204 | sta ? sta->sta.addr : bcast_addr, ret); |
| 205 | |
| 206 | out_unsupported: |
| 207 | switch (key->conf.cipher) { |
| 208 | case WLAN_CIPHER_SUITE_WEP40: |
| 209 | case WLAN_CIPHER_SUITE_WEP104: |
| 210 | case WLAN_CIPHER_SUITE_TKIP: |
| 211 | case WLAN_CIPHER_SUITE_CCMP: |
| 212 | case WLAN_CIPHER_SUITE_CCMP_256: |
| 213 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 214 | case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| 215 | case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| 216 | case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| 217 | case WLAN_CIPHER_SUITE_GCMP: |
| 218 | case WLAN_CIPHER_SUITE_GCMP_256: |
| 219 | /* all of these we can do in software - if driver can */ |
| 220 | if (ret == 1) |
| 221 | return 0; |
| 222 | if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) |
| 223 | return -EINVAL; |
| 224 | return 0; |
| 225 | default: |
| 226 | return -EINVAL; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) |
| 231 | { |
| 232 | struct ieee80211_sub_if_data *sdata; |
| 233 | struct sta_info *sta; |
| 234 | int ret; |
| 235 | |
| 236 | might_sleep(); |
| 237 | |
| 238 | if (!key || !key->local->ops->set_key) |
| 239 | return; |
| 240 | |
| 241 | assert_key_lock(key->local); |
| 242 | |
| 243 | if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| 244 | return; |
| 245 | |
| 246 | sta = key->sta; |
| 247 | sdata = key->sdata; |
| 248 | |
| 249 | if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| 250 | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| 251 | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| 252 | increment_tailroom_need_count(sdata); |
| 253 | |
| 254 | key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; |
| 255 | ret = drv_set_key(key->local, DISABLE_KEY, sdata, |
| 256 | sta ? &sta->sta : NULL, &key->conf); |
| 257 | |
| 258 | if (ret) |
| 259 | sdata_err(sdata, |
| 260 | "failed to remove key (%d, %pM) from hardware (%d)\n", |
| 261 | key->conf.keyidx, |
| 262 | sta ? sta->sta.addr : bcast_addr, ret); |
| 263 | } |
| 264 | |
| 265 | static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force) |
| 266 | { |
| 267 | struct sta_info *sta = key->sta; |
| 268 | struct ieee80211_local *local = key->local; |
| 269 | |
| 270 | assert_key_lock(local); |
| 271 | |
| 272 | set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION); |
| 273 | |
| 274 | sta->ptk_idx = key->conf.keyidx; |
| 275 | |
| 276 | if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) |
| 277 | clear_sta_flag(sta, WLAN_STA_BLOCK_BA); |
| 278 | ieee80211_check_fast_xmit(sta); |
| 279 | |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | int ieee80211_set_tx_key(struct ieee80211_key *key) |
| 284 | { |
| 285 | return _ieee80211_set_tx_key(key, false); |
| 286 | } |
| 287 | |
| 288 | static void ieee80211_pairwise_rekey(struct ieee80211_key *old, |
| 289 | struct ieee80211_key *new) |
| 290 | { |
| 291 | struct ieee80211_local *local = new->local; |
| 292 | struct sta_info *sta = new->sta; |
| 293 | int i; |
| 294 | |
| 295 | assert_key_lock(local); |
| 296 | |
| 297 | if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) { |
| 298 | /* Extended Key ID key install, initial one or rekey */ |
| 299 | |
| 300 | if (sta->ptk_idx != INVALID_PTK_KEYIDX && |
| 301 | !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) { |
| 302 | /* Aggregation Sessions with Extended Key ID must not |
| 303 | * mix MPDUs with different keyIDs within one A-MPDU. |
| 304 | * Tear down running Tx aggregation sessions and block |
| 305 | * new Rx/Tx aggregation requests during rekey to |
| 306 | * ensure there are no A-MPDUs when the driver is not |
| 307 | * supporting A-MPDU key borders. (Blocking Tx only |
| 308 | * would be sufficient but WLAN_STA_BLOCK_BA gets the |
| 309 | * job done for the few ms we need it.) |
| 310 | */ |
| 311 | set_sta_flag(sta, WLAN_STA_BLOCK_BA); |
| 312 | mutex_lock(&sta->ampdu_mlme.mtx); |
| 313 | for (i = 0; i < IEEE80211_NUM_TIDS; i++) |
| 314 | ___ieee80211_stop_tx_ba_session(sta, i, |
| 315 | AGG_STOP_LOCAL_REQUEST); |
| 316 | mutex_unlock(&sta->ampdu_mlme.mtx); |
| 317 | } |
| 318 | } else if (old) { |
| 319 | /* Rekey without Extended Key ID. |
| 320 | * Aggregation sessions are OK when running on SW crypto. |
| 321 | * A broken remote STA may cause issues not observed with HW |
| 322 | * crypto, though. |
| 323 | */ |
| 324 | if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| 325 | return; |
| 326 | |
| 327 | /* Stop Tx till we are on the new key */ |
| 328 | old->flags |= KEY_FLAG_TAINTED; |
| 329 | ieee80211_clear_fast_xmit(sta); |
| 330 | if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { |
| 331 | set_sta_flag(sta, WLAN_STA_BLOCK_BA); |
| 332 | ieee80211_sta_tear_down_BA_sessions(sta, |
| 333 | AGG_STOP_LOCAL_REQUEST); |
| 334 | } |
| 335 | if (!wiphy_ext_feature_isset(local->hw.wiphy, |
| 336 | NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) { |
| 337 | pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.", |
| 338 | sta->sta.addr); |
| 339 | /* Flushing the driver queues *may* help prevent |
| 340 | * the clear text leaks and freezes. |
| 341 | */ |
| 342 | ieee80211_flush_queues(local, old->sdata, false); |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, |
| 348 | int idx, bool uni, bool multi) |
| 349 | { |
| 350 | struct ieee80211_key *key = NULL; |
| 351 | |
| 352 | assert_key_lock(sdata->local); |
| 353 | |
| 354 | if (idx >= 0 && idx < NUM_DEFAULT_KEYS) |
| 355 | key = key_mtx_dereference(sdata->local, sdata->keys[idx]); |
| 356 | |
| 357 | if (uni) { |
| 358 | rcu_assign_pointer(sdata->default_unicast_key, key); |
| 359 | ieee80211_check_fast_xmit_iface(sdata); |
| 360 | if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) |
| 361 | drv_set_default_unicast_key(sdata->local, sdata, idx); |
| 362 | } |
| 363 | |
| 364 | if (multi) |
| 365 | rcu_assign_pointer(sdata->default_multicast_key, key); |
| 366 | |
| 367 | ieee80211_debugfs_key_update_default(sdata); |
| 368 | } |
| 369 | |
| 370 | void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, |
| 371 | bool uni, bool multi) |
| 372 | { |
| 373 | mutex_lock(&sdata->local->key_mtx); |
| 374 | __ieee80211_set_default_key(sdata, idx, uni, multi); |
| 375 | mutex_unlock(&sdata->local->key_mtx); |
| 376 | } |
| 377 | |
| 378 | static void |
| 379 | __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) |
| 380 | { |
| 381 | struct ieee80211_key *key = NULL; |
| 382 | |
| 383 | assert_key_lock(sdata->local); |
| 384 | |
| 385 | if (idx >= NUM_DEFAULT_KEYS && |
| 386 | idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) |
| 387 | key = key_mtx_dereference(sdata->local, sdata->keys[idx]); |
| 388 | |
| 389 | rcu_assign_pointer(sdata->default_mgmt_key, key); |
| 390 | |
| 391 | ieee80211_debugfs_key_update_default(sdata); |
| 392 | } |
| 393 | |
| 394 | void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, |
| 395 | int idx) |
| 396 | { |
| 397 | mutex_lock(&sdata->local->key_mtx); |
| 398 | __ieee80211_set_default_mgmt_key(sdata, idx); |
| 399 | mutex_unlock(&sdata->local->key_mtx); |
| 400 | } |
| 401 | |
| 402 | static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, |
| 403 | struct sta_info *sta, |
| 404 | bool pairwise, |
| 405 | struct ieee80211_key *old, |
| 406 | struct ieee80211_key *new) |
| 407 | { |
| 408 | int idx; |
| 409 | int ret = 0; |
| 410 | bool defunikey, defmultikey, defmgmtkey; |
| 411 | |
| 412 | /* caller must provide at least one old/new */ |
| 413 | if (WARN_ON(!new && !old)) |
| 414 | return 0; |
| 415 | |
| 416 | if (new) |
| 417 | list_add_tail_rcu(&new->list, &sdata->key_list); |
| 418 | |
| 419 | WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); |
| 420 | |
| 421 | if (new && sta && pairwise) { |
| 422 | /* Unicast rekey needs special handling. With Extended Key ID |
| 423 | * old is still NULL for the first rekey. |
| 424 | */ |
| 425 | ieee80211_pairwise_rekey(old, new); |
| 426 | } |
| 427 | |
| 428 | if (old) { |
| 429 | idx = old->conf.keyidx; |
| 430 | |
| 431 | if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { |
| 432 | ieee80211_key_disable_hw_accel(old); |
| 433 | |
| 434 | if (new) |
| 435 | ret = ieee80211_key_enable_hw_accel(new); |
| 436 | } |
| 437 | } else { |
| 438 | /* new must be provided in case old is not */ |
| 439 | idx = new->conf.keyidx; |
| 440 | if (!new->local->wowlan) |
| 441 | ret = ieee80211_key_enable_hw_accel(new); |
| 442 | } |
| 443 | |
| 444 | if (ret) |
| 445 | return ret; |
| 446 | |
| 447 | if (sta) { |
| 448 | if (pairwise) { |
| 449 | rcu_assign_pointer(sta->ptk[idx], new); |
| 450 | if (new && |
| 451 | !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) |
| 452 | _ieee80211_set_tx_key(new, true); |
| 453 | } else { |
| 454 | rcu_assign_pointer(sta->gtk[idx], new); |
| 455 | } |
| 456 | /* Only needed for transition from no key -> key. |
| 457 | * Still triggers unnecessary when using Extended Key ID |
| 458 | * and installing the second key ID the first time. |
| 459 | */ |
| 460 | if (new && !old) |
| 461 | ieee80211_check_fast_rx(sta); |
| 462 | } else { |
| 463 | defunikey = old && |
| 464 | old == key_mtx_dereference(sdata->local, |
| 465 | sdata->default_unicast_key); |
| 466 | defmultikey = old && |
| 467 | old == key_mtx_dereference(sdata->local, |
| 468 | sdata->default_multicast_key); |
| 469 | defmgmtkey = old && |
| 470 | old == key_mtx_dereference(sdata->local, |
| 471 | sdata->default_mgmt_key); |
| 472 | |
| 473 | if (defunikey && !new) |
| 474 | __ieee80211_set_default_key(sdata, -1, true, false); |
| 475 | if (defmultikey && !new) |
| 476 | __ieee80211_set_default_key(sdata, -1, false, true); |
| 477 | if (defmgmtkey && !new) |
| 478 | __ieee80211_set_default_mgmt_key(sdata, -1); |
| 479 | |
| 480 | rcu_assign_pointer(sdata->keys[idx], new); |
| 481 | if (defunikey && new) |
| 482 | __ieee80211_set_default_key(sdata, new->conf.keyidx, |
| 483 | true, false); |
| 484 | if (defmultikey && new) |
| 485 | __ieee80211_set_default_key(sdata, new->conf.keyidx, |
| 486 | false, true); |
| 487 | if (defmgmtkey && new) |
| 488 | __ieee80211_set_default_mgmt_key(sdata, |
| 489 | new->conf.keyidx); |
| 490 | } |
| 491 | |
| 492 | if (old) |
| 493 | list_del_rcu(&old->list); |
| 494 | |
| 495 | return 0; |
| 496 | } |
| 497 | |
| 498 | struct ieee80211_key * |
| 499 | ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, |
| 500 | const u8 *key_data, |
| 501 | size_t seq_len, const u8 *seq, |
| 502 | const struct ieee80211_cipher_scheme *cs) |
| 503 | { |
| 504 | struct ieee80211_key *key; |
| 505 | int i, j, err; |
| 506 | |
| 507 | if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)) |
| 508 | return ERR_PTR(-EINVAL); |
| 509 | |
| 510 | key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); |
| 511 | if (!key) |
| 512 | return ERR_PTR(-ENOMEM); |
| 513 | |
| 514 | /* |
| 515 | * Default to software encryption; we'll later upload the |
| 516 | * key to the hardware if possible. |
| 517 | */ |
| 518 | key->conf.flags = 0; |
| 519 | key->flags = 0; |
| 520 | |
| 521 | key->conf.cipher = cipher; |
| 522 | key->conf.keyidx = idx; |
| 523 | key->conf.keylen = key_len; |
| 524 | switch (cipher) { |
| 525 | case WLAN_CIPHER_SUITE_WEP40: |
| 526 | case WLAN_CIPHER_SUITE_WEP104: |
| 527 | key->conf.iv_len = IEEE80211_WEP_IV_LEN; |
| 528 | key->conf.icv_len = IEEE80211_WEP_ICV_LEN; |
| 529 | break; |
| 530 | case WLAN_CIPHER_SUITE_TKIP: |
| 531 | key->conf.iv_len = IEEE80211_TKIP_IV_LEN; |
| 532 | key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; |
| 533 | if (seq) { |
| 534 | for (i = 0; i < IEEE80211_NUM_TIDS; i++) { |
| 535 | key->u.tkip.rx[i].iv32 = |
| 536 | get_unaligned_le32(&seq[2]); |
| 537 | key->u.tkip.rx[i].iv16 = |
| 538 | get_unaligned_le16(seq); |
| 539 | } |
| 540 | } |
| 541 | spin_lock_init(&key->u.tkip.txlock); |
| 542 | break; |
| 543 | case WLAN_CIPHER_SUITE_CCMP: |
| 544 | key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; |
| 545 | key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; |
| 546 | if (seq) { |
| 547 | for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) |
| 548 | for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) |
| 549 | key->u.ccmp.rx_pn[i][j] = |
| 550 | seq[IEEE80211_CCMP_PN_LEN - j - 1]; |
| 551 | } |
| 552 | /* |
| 553 | * Initialize AES key state here as an optimization so that |
| 554 | * it does not need to be initialized for every packet. |
| 555 | */ |
| 556 | key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( |
| 557 | key_data, key_len, IEEE80211_CCMP_MIC_LEN); |
| 558 | if (IS_ERR(key->u.ccmp.tfm)) { |
| 559 | err = PTR_ERR(key->u.ccmp.tfm); |
| 560 | kfree(key); |
| 561 | return ERR_PTR(err); |
| 562 | } |
| 563 | break; |
| 564 | case WLAN_CIPHER_SUITE_CCMP_256: |
| 565 | key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; |
| 566 | key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; |
| 567 | for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) |
| 568 | for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) |
| 569 | key->u.ccmp.rx_pn[i][j] = |
| 570 | seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; |
| 571 | /* Initialize AES key state here as an optimization so that |
| 572 | * it does not need to be initialized for every packet. |
| 573 | */ |
| 574 | key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( |
| 575 | key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); |
| 576 | if (IS_ERR(key->u.ccmp.tfm)) { |
| 577 | err = PTR_ERR(key->u.ccmp.tfm); |
| 578 | kfree(key); |
| 579 | return ERR_PTR(err); |
| 580 | } |
| 581 | break; |
| 582 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 583 | case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| 584 | key->conf.iv_len = 0; |
| 585 | if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) |
| 586 | key->conf.icv_len = sizeof(struct ieee80211_mmie); |
| 587 | else |
| 588 | key->conf.icv_len = sizeof(struct ieee80211_mmie_16); |
| 589 | if (seq) |
| 590 | for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) |
| 591 | key->u.aes_cmac.rx_pn[j] = |
| 592 | seq[IEEE80211_CMAC_PN_LEN - j - 1]; |
| 593 | /* |
| 594 | * Initialize AES key state here as an optimization so that |
| 595 | * it does not need to be initialized for every packet. |
| 596 | */ |
| 597 | key->u.aes_cmac.tfm = |
| 598 | ieee80211_aes_cmac_key_setup(key_data, key_len); |
| 599 | if (IS_ERR(key->u.aes_cmac.tfm)) { |
| 600 | err = PTR_ERR(key->u.aes_cmac.tfm); |
| 601 | kfree(key); |
| 602 | return ERR_PTR(err); |
| 603 | } |
| 604 | break; |
| 605 | case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| 606 | case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| 607 | key->conf.iv_len = 0; |
| 608 | key->conf.icv_len = sizeof(struct ieee80211_mmie_16); |
| 609 | if (seq) |
| 610 | for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++) |
| 611 | key->u.aes_gmac.rx_pn[j] = |
| 612 | seq[IEEE80211_GMAC_PN_LEN - j - 1]; |
| 613 | /* Initialize AES key state here as an optimization so that |
| 614 | * it does not need to be initialized for every packet. |
| 615 | */ |
| 616 | key->u.aes_gmac.tfm = |
| 617 | ieee80211_aes_gmac_key_setup(key_data, key_len); |
| 618 | if (IS_ERR(key->u.aes_gmac.tfm)) { |
| 619 | err = PTR_ERR(key->u.aes_gmac.tfm); |
| 620 | kfree(key); |
| 621 | return ERR_PTR(err); |
| 622 | } |
| 623 | break; |
| 624 | case WLAN_CIPHER_SUITE_GCMP: |
| 625 | case WLAN_CIPHER_SUITE_GCMP_256: |
| 626 | key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; |
| 627 | key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; |
| 628 | for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) |
| 629 | for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) |
| 630 | key->u.gcmp.rx_pn[i][j] = |
| 631 | seq[IEEE80211_GCMP_PN_LEN - j - 1]; |
| 632 | /* Initialize AES key state here as an optimization so that |
| 633 | * it does not need to be initialized for every packet. |
| 634 | */ |
| 635 | key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, |
| 636 | key_len); |
| 637 | if (IS_ERR(key->u.gcmp.tfm)) { |
| 638 | err = PTR_ERR(key->u.gcmp.tfm); |
| 639 | kfree(key); |
| 640 | return ERR_PTR(err); |
| 641 | } |
| 642 | break; |
| 643 | default: |
| 644 | if (cs) { |
| 645 | if (seq_len && seq_len != cs->pn_len) { |
| 646 | kfree(key); |
| 647 | return ERR_PTR(-EINVAL); |
| 648 | } |
| 649 | |
| 650 | key->conf.iv_len = cs->hdr_len; |
| 651 | key->conf.icv_len = cs->mic_len; |
| 652 | for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) |
| 653 | for (j = 0; j < seq_len; j++) |
| 654 | key->u.gen.rx_pn[i][j] = |
| 655 | seq[seq_len - j - 1]; |
| 656 | key->flags |= KEY_FLAG_CIPHER_SCHEME; |
| 657 | } |
| 658 | } |
| 659 | memcpy(key->conf.key, key_data, key_len); |
| 660 | INIT_LIST_HEAD(&key->list); |
| 661 | |
| 662 | return key; |
| 663 | } |
| 664 | |
| 665 | static void ieee80211_key_free_common(struct ieee80211_key *key) |
| 666 | { |
| 667 | switch (key->conf.cipher) { |
| 668 | case WLAN_CIPHER_SUITE_CCMP: |
| 669 | case WLAN_CIPHER_SUITE_CCMP_256: |
| 670 | ieee80211_aes_key_free(key->u.ccmp.tfm); |
| 671 | break; |
| 672 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 673 | case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| 674 | ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); |
| 675 | break; |
| 676 | case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| 677 | case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| 678 | ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm); |
| 679 | break; |
| 680 | case WLAN_CIPHER_SUITE_GCMP: |
| 681 | case WLAN_CIPHER_SUITE_GCMP_256: |
| 682 | ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); |
| 683 | break; |
| 684 | } |
| 685 | kzfree(key); |
| 686 | } |
| 687 | |
| 688 | static void __ieee80211_key_destroy(struct ieee80211_key *key, |
| 689 | bool delay_tailroom) |
| 690 | { |
| 691 | if (key->local) { |
| 692 | struct ieee80211_sub_if_data *sdata = key->sdata; |
| 693 | |
| 694 | ieee80211_debugfs_key_remove(key); |
| 695 | |
| 696 | if (delay_tailroom) { |
| 697 | /* see ieee80211_delayed_tailroom_dec */ |
| 698 | sdata->crypto_tx_tailroom_pending_dec++; |
| 699 | schedule_delayed_work(&sdata->dec_tailroom_needed_wk, |
| 700 | HZ/2); |
| 701 | } else { |
| 702 | decrease_tailroom_need_count(sdata, 1); |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | ieee80211_key_free_common(key); |
| 707 | } |
| 708 | |
| 709 | static void ieee80211_key_destroy(struct ieee80211_key *key, |
| 710 | bool delay_tailroom) |
| 711 | { |
| 712 | if (!key) |
| 713 | return; |
| 714 | |
| 715 | /* |
| 716 | * Synchronize so the TX path and rcu key iterators |
| 717 | * can no longer be using this key before we free/remove it. |
| 718 | */ |
| 719 | synchronize_net(); |
| 720 | |
| 721 | __ieee80211_key_destroy(key, delay_tailroom); |
| 722 | } |
| 723 | |
| 724 | void ieee80211_key_free_unused(struct ieee80211_key *key) |
| 725 | { |
| 726 | WARN_ON(key->sdata || key->local); |
| 727 | ieee80211_key_free_common(key); |
| 728 | } |
| 729 | |
| 730 | static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata, |
| 731 | struct ieee80211_key *old, |
| 732 | struct ieee80211_key *new) |
| 733 | { |
| 734 | u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP]; |
| 735 | u8 *tk_old, *tk_new; |
| 736 | |
| 737 | if (!old || new->conf.keylen != old->conf.keylen) |
| 738 | return false; |
| 739 | |
| 740 | tk_old = old->conf.key; |
| 741 | tk_new = new->conf.key; |
| 742 | |
| 743 | /* |
| 744 | * In station mode, don't compare the TX MIC key, as it's never used |
| 745 | * and offloaded rekeying may not care to send it to the host. This |
| 746 | * is the case in iwlwifi, for example. |
| 747 | */ |
| 748 | if (sdata->vif.type == NL80211_IFTYPE_STATION && |
| 749 | new->conf.cipher == WLAN_CIPHER_SUITE_TKIP && |
| 750 | new->conf.keylen == WLAN_KEY_LEN_TKIP && |
| 751 | !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { |
| 752 | memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP); |
| 753 | memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP); |
| 754 | memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); |
| 755 | memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); |
| 756 | tk_old = tkip_old; |
| 757 | tk_new = tkip_new; |
| 758 | } |
| 759 | |
| 760 | return !crypto_memneq(tk_old, tk_new, new->conf.keylen); |
| 761 | } |
| 762 | |
| 763 | int ieee80211_key_link(struct ieee80211_key *key, |
| 764 | struct ieee80211_sub_if_data *sdata, |
| 765 | struct sta_info *sta) |
| 766 | { |
| 767 | static atomic_t key_color = ATOMIC_INIT(0); |
| 768 | struct ieee80211_key *old_key; |
| 769 | int idx = key->conf.keyidx; |
| 770 | bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; |
| 771 | /* |
| 772 | * We want to delay tailroom updates only for station - in that |
| 773 | * case it helps roaming speed, but in other cases it hurts and |
| 774 | * can cause warnings to appear. |
| 775 | */ |
| 776 | bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION; |
| 777 | int ret = -EOPNOTSUPP; |
| 778 | |
| 779 | mutex_lock(&sdata->local->key_mtx); |
| 780 | |
| 781 | if (sta && pairwise) { |
| 782 | struct ieee80211_key *alt_key; |
| 783 | |
| 784 | old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); |
| 785 | alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]); |
| 786 | |
| 787 | /* The rekey code assumes that the old and new key are using |
| 788 | * the same cipher. Enforce the assumption for pairwise keys. |
| 789 | */ |
| 790 | if ((alt_key && alt_key->conf.cipher != key->conf.cipher) || |
| 791 | (old_key && old_key->conf.cipher != key->conf.cipher)) |
| 792 | goto out; |
| 793 | } else if (sta) { |
| 794 | old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); |
| 795 | } else { |
| 796 | old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); |
| 797 | } |
| 798 | |
| 799 | /* Non-pairwise keys must also not switch the cipher on rekey */ |
| 800 | if (!pairwise) { |
| 801 | if (old_key && old_key->conf.cipher != key->conf.cipher) |
| 802 | goto out; |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | * Silently accept key re-installation without really installing the |
| 807 | * new version of the key to avoid nonce reuse or replay issues. |
| 808 | */ |
| 809 | if (ieee80211_key_identical(sdata, old_key, key)) { |
| 810 | ieee80211_key_free_unused(key); |
| 811 | ret = -EALREADY; |
| 812 | goto out; |
| 813 | } |
| 814 | |
| 815 | key->local = sdata->local; |
| 816 | key->sdata = sdata; |
| 817 | key->sta = sta; |
| 818 | |
| 819 | /* |
| 820 | * Assign a unique ID to every key so we can easily prevent mixed |
| 821 | * key and fragment cache attacks. |
| 822 | */ |
| 823 | key->color = atomic_inc_return(&key_color); |
| 824 | |
| 825 | increment_tailroom_need_count(sdata); |
| 826 | |
| 827 | ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key); |
| 828 | |
| 829 | if (!ret) { |
| 830 | ieee80211_debugfs_key_add(key); |
| 831 | ieee80211_key_destroy(old_key, delay_tailroom); |
| 832 | } else { |
| 833 | ieee80211_key_free(key, delay_tailroom); |
| 834 | } |
| 835 | |
| 836 | out: |
| 837 | mutex_unlock(&sdata->local->key_mtx); |
| 838 | |
| 839 | return ret; |
| 840 | } |
| 841 | |
| 842 | void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) |
| 843 | { |
| 844 | if (!key) |
| 845 | return; |
| 846 | |
| 847 | /* |
| 848 | * Replace key with nothingness if it was ever used. |
| 849 | */ |
| 850 | if (key->sdata) |
| 851 | ieee80211_key_replace(key->sdata, key->sta, |
| 852 | key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| 853 | key, NULL); |
| 854 | ieee80211_key_destroy(key, delay_tailroom); |
| 855 | } |
| 856 | |
| 857 | void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata) |
| 858 | { |
| 859 | struct ieee80211_key *key; |
| 860 | struct ieee80211_sub_if_data *vlan; |
| 861 | |
| 862 | ASSERT_RTNL(); |
| 863 | |
| 864 | mutex_lock(&sdata->local->key_mtx); |
| 865 | |
| 866 | sdata->crypto_tx_tailroom_needed_cnt = 0; |
| 867 | sdata->crypto_tx_tailroom_pending_dec = 0; |
| 868 | |
| 869 | if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| 870 | list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { |
| 871 | vlan->crypto_tx_tailroom_needed_cnt = 0; |
| 872 | vlan->crypto_tx_tailroom_pending_dec = 0; |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | if (ieee80211_sdata_running(sdata)) { |
| 877 | list_for_each_entry(key, &sdata->key_list, list) { |
| 878 | increment_tailroom_need_count(sdata); |
| 879 | ieee80211_key_enable_hw_accel(key); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | mutex_unlock(&sdata->local->key_mtx); |
| 884 | } |
| 885 | |
| 886 | static void |
| 887 | ieee80211_key_iter(struct ieee80211_hw *hw, |
| 888 | struct ieee80211_vif *vif, |
| 889 | struct ieee80211_key *key, |
| 890 | void (*iter)(struct ieee80211_hw *hw, |
| 891 | struct ieee80211_vif *vif, |
| 892 | struct ieee80211_sta *sta, |
| 893 | struct ieee80211_key_conf *key, |
| 894 | void *data), |
| 895 | void *iter_data) |
| 896 | { |
| 897 | /* skip keys of station in removal process */ |
| 898 | if (key->sta && key->sta->removed) |
| 899 | return; |
| 900 | if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| 901 | return; |
| 902 | iter(hw, vif, key->sta ? &key->sta->sta : NULL, |
| 903 | &key->conf, iter_data); |
| 904 | } |
| 905 | |
| 906 | void ieee80211_iter_keys(struct ieee80211_hw *hw, |
| 907 | struct ieee80211_vif *vif, |
| 908 | void (*iter)(struct ieee80211_hw *hw, |
| 909 | struct ieee80211_vif *vif, |
| 910 | struct ieee80211_sta *sta, |
| 911 | struct ieee80211_key_conf *key, |
| 912 | void *data), |
| 913 | void *iter_data) |
| 914 | { |
| 915 | struct ieee80211_local *local = hw_to_local(hw); |
| 916 | struct ieee80211_key *key, *tmp; |
| 917 | struct ieee80211_sub_if_data *sdata; |
| 918 | |
| 919 | ASSERT_RTNL(); |
| 920 | |
| 921 | mutex_lock(&local->key_mtx); |
| 922 | if (vif) { |
| 923 | sdata = vif_to_sdata(vif); |
| 924 | list_for_each_entry_safe(key, tmp, &sdata->key_list, list) |
| 925 | ieee80211_key_iter(hw, vif, key, iter, iter_data); |
| 926 | } else { |
| 927 | list_for_each_entry(sdata, &local->interfaces, list) |
| 928 | list_for_each_entry_safe(key, tmp, |
| 929 | &sdata->key_list, list) |
| 930 | ieee80211_key_iter(hw, &sdata->vif, key, |
| 931 | iter, iter_data); |
| 932 | } |
| 933 | mutex_unlock(&local->key_mtx); |
| 934 | } |
| 935 | EXPORT_SYMBOL(ieee80211_iter_keys); |
| 936 | |
| 937 | static void |
| 938 | _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, |
| 939 | struct ieee80211_sub_if_data *sdata, |
| 940 | void (*iter)(struct ieee80211_hw *hw, |
| 941 | struct ieee80211_vif *vif, |
| 942 | struct ieee80211_sta *sta, |
| 943 | struct ieee80211_key_conf *key, |
| 944 | void *data), |
| 945 | void *iter_data) |
| 946 | { |
| 947 | struct ieee80211_key *key; |
| 948 | |
| 949 | list_for_each_entry_rcu(key, &sdata->key_list, list) |
| 950 | ieee80211_key_iter(hw, &sdata->vif, key, iter, iter_data); |
| 951 | } |
| 952 | |
| 953 | void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, |
| 954 | struct ieee80211_vif *vif, |
| 955 | void (*iter)(struct ieee80211_hw *hw, |
| 956 | struct ieee80211_vif *vif, |
| 957 | struct ieee80211_sta *sta, |
| 958 | struct ieee80211_key_conf *key, |
| 959 | void *data), |
| 960 | void *iter_data) |
| 961 | { |
| 962 | struct ieee80211_local *local = hw_to_local(hw); |
| 963 | struct ieee80211_sub_if_data *sdata; |
| 964 | |
| 965 | if (vif) { |
| 966 | sdata = vif_to_sdata(vif); |
| 967 | _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); |
| 968 | } else { |
| 969 | list_for_each_entry_rcu(sdata, &local->interfaces, list) |
| 970 | _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); |
| 971 | } |
| 972 | } |
| 973 | EXPORT_SYMBOL(ieee80211_iter_keys_rcu); |
| 974 | |
| 975 | static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, |
| 976 | struct list_head *keys) |
| 977 | { |
| 978 | struct ieee80211_key *key, *tmp; |
| 979 | |
| 980 | decrease_tailroom_need_count(sdata, |
| 981 | sdata->crypto_tx_tailroom_pending_dec); |
| 982 | sdata->crypto_tx_tailroom_pending_dec = 0; |
| 983 | |
| 984 | ieee80211_debugfs_key_remove_mgmt_default(sdata); |
| 985 | |
| 986 | list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { |
| 987 | ieee80211_key_replace(key->sdata, key->sta, |
| 988 | key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| 989 | key, NULL); |
| 990 | list_add_tail(&key->list, keys); |
| 991 | } |
| 992 | |
| 993 | ieee80211_debugfs_key_update_default(sdata); |
| 994 | } |
| 995 | |
| 996 | void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, |
| 997 | bool force_synchronize) |
| 998 | { |
| 999 | struct ieee80211_local *local = sdata->local; |
| 1000 | struct ieee80211_sub_if_data *vlan; |
| 1001 | struct ieee80211_sub_if_data *master; |
| 1002 | struct ieee80211_key *key, *tmp; |
| 1003 | LIST_HEAD(keys); |
| 1004 | |
| 1005 | cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); |
| 1006 | |
| 1007 | mutex_lock(&local->key_mtx); |
| 1008 | |
| 1009 | ieee80211_free_keys_iface(sdata, &keys); |
| 1010 | |
| 1011 | if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| 1012 | list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) |
| 1013 | ieee80211_free_keys_iface(vlan, &keys); |
| 1014 | } |
| 1015 | |
| 1016 | if (!list_empty(&keys) || force_synchronize) |
| 1017 | synchronize_net(); |
| 1018 | list_for_each_entry_safe(key, tmp, &keys, list) |
| 1019 | __ieee80211_key_destroy(key, false); |
| 1020 | |
| 1021 | if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| 1022 | if (sdata->bss) { |
| 1023 | master = container_of(sdata->bss, |
| 1024 | struct ieee80211_sub_if_data, |
| 1025 | u.ap); |
| 1026 | |
| 1027 | WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt != |
| 1028 | master->crypto_tx_tailroom_needed_cnt); |
| 1029 | } |
| 1030 | } else { |
| 1031 | WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || |
| 1032 | sdata->crypto_tx_tailroom_pending_dec); |
| 1033 | } |
| 1034 | |
| 1035 | if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| 1036 | list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) |
| 1037 | WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || |
| 1038 | vlan->crypto_tx_tailroom_pending_dec); |
| 1039 | } |
| 1040 | |
| 1041 | mutex_unlock(&local->key_mtx); |
| 1042 | } |
| 1043 | |
| 1044 | void ieee80211_free_sta_keys(struct ieee80211_local *local, |
| 1045 | struct sta_info *sta) |
| 1046 | { |
| 1047 | struct ieee80211_key *key; |
| 1048 | int i; |
| 1049 | |
| 1050 | mutex_lock(&local->key_mtx); |
| 1051 | for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) { |
| 1052 | key = key_mtx_dereference(local, sta->gtk[i]); |
| 1053 | if (!key) |
| 1054 | continue; |
| 1055 | ieee80211_key_replace(key->sdata, key->sta, |
| 1056 | key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| 1057 | key, NULL); |
| 1058 | __ieee80211_key_destroy(key, key->sdata->vif.type == |
| 1059 | NL80211_IFTYPE_STATION); |
| 1060 | } |
| 1061 | |
| 1062 | for (i = 0; i < NUM_DEFAULT_KEYS; i++) { |
| 1063 | key = key_mtx_dereference(local, sta->ptk[i]); |
| 1064 | if (!key) |
| 1065 | continue; |
| 1066 | ieee80211_key_replace(key->sdata, key->sta, |
| 1067 | key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| 1068 | key, NULL); |
| 1069 | __ieee80211_key_destroy(key, key->sdata->vif.type == |
| 1070 | NL80211_IFTYPE_STATION); |
| 1071 | } |
| 1072 | |
| 1073 | mutex_unlock(&local->key_mtx); |
| 1074 | } |
| 1075 | |
| 1076 | void ieee80211_delayed_tailroom_dec(struct work_struct *wk) |
| 1077 | { |
| 1078 | struct ieee80211_sub_if_data *sdata; |
| 1079 | |
| 1080 | sdata = container_of(wk, struct ieee80211_sub_if_data, |
| 1081 | dec_tailroom_needed_wk.work); |
| 1082 | |
| 1083 | /* |
| 1084 | * The reason for the delayed tailroom needed decrementing is to |
| 1085 | * make roaming faster: during roaming, all keys are first deleted |
| 1086 | * and then new keys are installed. The first new key causes the |
| 1087 | * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes |
| 1088 | * the cost of synchronize_net() (which can be slow). Avoid this |
| 1089 | * by deferring the crypto_tx_tailroom_needed_cnt decrementing on |
| 1090 | * key removal for a while, so if we roam the value is larger than |
| 1091 | * zero and no 0->1 transition happens. |
| 1092 | * |
| 1093 | * The cost is that if the AP switching was from an AP with keys |
| 1094 | * to one without, we still allocate tailroom while it would no |
| 1095 | * longer be needed. However, in the typical (fast) roaming case |
| 1096 | * within an ESS this usually won't happen. |
| 1097 | */ |
| 1098 | |
| 1099 | mutex_lock(&sdata->local->key_mtx); |
| 1100 | decrease_tailroom_need_count(sdata, |
| 1101 | sdata->crypto_tx_tailroom_pending_dec); |
| 1102 | sdata->crypto_tx_tailroom_pending_dec = 0; |
| 1103 | mutex_unlock(&sdata->local->key_mtx); |
| 1104 | } |
| 1105 | |
| 1106 | void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, |
| 1107 | const u8 *replay_ctr, gfp_t gfp) |
| 1108 | { |
| 1109 | struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); |
| 1110 | |
| 1111 | trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); |
| 1112 | |
| 1113 | cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); |
| 1114 | } |
| 1115 | EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); |
| 1116 | |
| 1117 | void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, |
| 1118 | int tid, struct ieee80211_key_seq *seq) |
| 1119 | { |
| 1120 | struct ieee80211_key *key; |
| 1121 | const u8 *pn; |
| 1122 | |
| 1123 | key = container_of(keyconf, struct ieee80211_key, conf); |
| 1124 | |
| 1125 | switch (key->conf.cipher) { |
| 1126 | case WLAN_CIPHER_SUITE_TKIP: |
| 1127 | if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) |
| 1128 | return; |
| 1129 | seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; |
| 1130 | seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; |
| 1131 | break; |
| 1132 | case WLAN_CIPHER_SUITE_CCMP: |
| 1133 | case WLAN_CIPHER_SUITE_CCMP_256: |
| 1134 | if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| 1135 | return; |
| 1136 | if (tid < 0) |
| 1137 | pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; |
| 1138 | else |
| 1139 | pn = key->u.ccmp.rx_pn[tid]; |
| 1140 | memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); |
| 1141 | break; |
| 1142 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 1143 | case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| 1144 | if (WARN_ON(tid != 0)) |
| 1145 | return; |
| 1146 | pn = key->u.aes_cmac.rx_pn; |
| 1147 | memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); |
| 1148 | break; |
| 1149 | case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| 1150 | case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| 1151 | if (WARN_ON(tid != 0)) |
| 1152 | return; |
| 1153 | pn = key->u.aes_gmac.rx_pn; |
| 1154 | memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN); |
| 1155 | break; |
| 1156 | case WLAN_CIPHER_SUITE_GCMP: |
| 1157 | case WLAN_CIPHER_SUITE_GCMP_256: |
| 1158 | if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| 1159 | return; |
| 1160 | if (tid < 0) |
| 1161 | pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; |
| 1162 | else |
| 1163 | pn = key->u.gcmp.rx_pn[tid]; |
| 1164 | memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); |
| 1165 | break; |
| 1166 | } |
| 1167 | } |
| 1168 | EXPORT_SYMBOL(ieee80211_get_key_rx_seq); |
| 1169 | |
| 1170 | void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, |
| 1171 | int tid, struct ieee80211_key_seq *seq) |
| 1172 | { |
| 1173 | struct ieee80211_key *key; |
| 1174 | u8 *pn; |
| 1175 | |
| 1176 | key = container_of(keyconf, struct ieee80211_key, conf); |
| 1177 | |
| 1178 | switch (key->conf.cipher) { |
| 1179 | case WLAN_CIPHER_SUITE_TKIP: |
| 1180 | if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) |
| 1181 | return; |
| 1182 | key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; |
| 1183 | key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; |
| 1184 | break; |
| 1185 | case WLAN_CIPHER_SUITE_CCMP: |
| 1186 | case WLAN_CIPHER_SUITE_CCMP_256: |
| 1187 | if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| 1188 | return; |
| 1189 | if (tid < 0) |
| 1190 | pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; |
| 1191 | else |
| 1192 | pn = key->u.ccmp.rx_pn[tid]; |
| 1193 | memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); |
| 1194 | break; |
| 1195 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 1196 | case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| 1197 | if (WARN_ON(tid != 0)) |
| 1198 | return; |
| 1199 | pn = key->u.aes_cmac.rx_pn; |
| 1200 | memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); |
| 1201 | break; |
| 1202 | case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| 1203 | case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| 1204 | if (WARN_ON(tid != 0)) |
| 1205 | return; |
| 1206 | pn = key->u.aes_gmac.rx_pn; |
| 1207 | memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN); |
| 1208 | break; |
| 1209 | case WLAN_CIPHER_SUITE_GCMP: |
| 1210 | case WLAN_CIPHER_SUITE_GCMP_256: |
| 1211 | if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| 1212 | return; |
| 1213 | if (tid < 0) |
| 1214 | pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; |
| 1215 | else |
| 1216 | pn = key->u.gcmp.rx_pn[tid]; |
| 1217 | memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); |
| 1218 | break; |
| 1219 | default: |
| 1220 | WARN_ON(1); |
| 1221 | break; |
| 1222 | } |
| 1223 | } |
| 1224 | EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); |
| 1225 | |
| 1226 | void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) |
| 1227 | { |
| 1228 | struct ieee80211_key *key; |
| 1229 | |
| 1230 | key = container_of(keyconf, struct ieee80211_key, conf); |
| 1231 | |
| 1232 | assert_key_lock(key->local); |
| 1233 | |
| 1234 | /* |
| 1235 | * if key was uploaded, we assume the driver will/has remove(d) |
| 1236 | * it, so adjust bookkeeping accordingly |
| 1237 | */ |
| 1238 | if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { |
| 1239 | key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; |
| 1240 | |
| 1241 | if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| 1242 | IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| 1243 | IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| 1244 | increment_tailroom_need_count(key->sdata); |
| 1245 | } |
| 1246 | |
| 1247 | ieee80211_key_free(key, false); |
| 1248 | } |
| 1249 | EXPORT_SYMBOL_GPL(ieee80211_remove_key); |
| 1250 | |
| 1251 | struct ieee80211_key_conf * |
| 1252 | ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, |
| 1253 | struct ieee80211_key_conf *keyconf) |
| 1254 | { |
| 1255 | struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); |
| 1256 | struct ieee80211_local *local = sdata->local; |
| 1257 | struct ieee80211_key *key; |
| 1258 | int err; |
| 1259 | |
| 1260 | if (WARN_ON(!local->wowlan)) |
| 1261 | return ERR_PTR(-EINVAL); |
| 1262 | |
| 1263 | if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) |
| 1264 | return ERR_PTR(-EINVAL); |
| 1265 | |
| 1266 | key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, |
| 1267 | keyconf->keylen, keyconf->key, |
| 1268 | 0, NULL, NULL); |
| 1269 | if (IS_ERR(key)) |
| 1270 | return ERR_CAST(key); |
| 1271 | |
| 1272 | if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) |
| 1273 | key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; |
| 1274 | |
| 1275 | err = ieee80211_key_link(key, sdata, NULL); |
| 1276 | if (err) |
| 1277 | return ERR_PTR(err); |
| 1278 | |
| 1279 | return &key->conf; |
| 1280 | } |
| 1281 | EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); |