blob: 48522c688c3e68a8b92d2f322d1568760c2a14ef [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015 Nicira, Inc.
4 */
5
6#include <linux/module.h>
7#include <linux/openvswitch.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/sctp.h>
11#include <linux/static_key.h>
12#include <net/ip.h>
13#include <net/genetlink.h>
14#include <net/netfilter/nf_conntrack_core.h>
15#include <net/netfilter/nf_conntrack_count.h>
16#include <net/netfilter/nf_conntrack_helper.h>
17#include <net/netfilter/nf_conntrack_labels.h>
18#include <net/netfilter/nf_conntrack_seqadj.h>
19#include <net/netfilter/nf_conntrack_timeout.h>
20#include <net/netfilter/nf_conntrack_zones.h>
21#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22#include <net/ipv6_frag.h>
23
24#if IS_ENABLED(CONFIG_NF_NAT)
25#include <net/netfilter/nf_nat.h>
26#endif
27
28#include "datapath.h"
29#include "conntrack.h"
30#include "flow.h"
31#include "flow_netlink.h"
32
33struct ovs_ct_len_tbl {
34 int maxlen;
35 int minlen;
36};
37
38/* Metadata mark for masked write to conntrack mark */
39struct md_mark {
40 u32 value;
41 u32 mask;
42};
43
44/* Metadata label for masked write to conntrack label. */
45struct md_labels {
46 struct ovs_key_ct_labels value;
47 struct ovs_key_ct_labels mask;
48};
49
50enum ovs_ct_nat {
51 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
52 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54};
55
56/* Conntrack action context for execution. */
57struct ovs_conntrack_info {
58 struct nf_conntrack_helper *helper;
59 struct nf_conntrack_zone zone;
60 struct nf_conn *ct;
61 u8 commit : 1;
62 u8 nat : 3; /* enum ovs_ct_nat */
63 u8 force : 1;
64 u8 have_eventmask : 1;
65 u16 family;
66 u32 eventmask; /* Mask of 1 << IPCT_*. */
67 struct md_mark mark;
68 struct md_labels labels;
69 char timeout[CTNL_TIMEOUT_NAME_MAX];
70 struct nf_ct_timeout *nf_ct_timeout;
71#if IS_ENABLED(CONFIG_NF_NAT)
72 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
73#endif
74};
75
76#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77#define OVS_CT_LIMIT_UNLIMITED 0
78#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79#define CT_LIMIT_HASH_BUCKETS 512
80static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81
82struct ovs_ct_limit {
83 /* Elements in ovs_ct_limit_info->limits hash table */
84 struct hlist_node hlist_node;
85 struct rcu_head rcu;
86 u16 zone;
87 u32 limit;
88};
89
90struct ovs_ct_limit_info {
91 u32 default_limit;
92 struct hlist_head *limits;
93 struct nf_conncount_data *data;
94};
95
96static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98};
99#endif
100
101static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102
103static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104
105static u16 key_to_nfproto(const struct sw_flow_key *key)
106{
107 switch (ntohs(key->eth.type)) {
108 case ETH_P_IP:
109 return NFPROTO_IPV4;
110 case ETH_P_IPV6:
111 return NFPROTO_IPV6;
112 default:
113 return NFPROTO_UNSPEC;
114 }
115}
116
117/* Map SKB connection state into the values used by flow definition. */
118static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119{
120 u8 ct_state = OVS_CS_F_TRACKED;
121
122 switch (ctinfo) {
123 case IP_CT_ESTABLISHED_REPLY:
124 case IP_CT_RELATED_REPLY:
125 ct_state |= OVS_CS_F_REPLY_DIR;
126 break;
127 default:
128 break;
129 }
130
131 switch (ctinfo) {
132 case IP_CT_ESTABLISHED:
133 case IP_CT_ESTABLISHED_REPLY:
134 ct_state |= OVS_CS_F_ESTABLISHED;
135 break;
136 case IP_CT_RELATED:
137 case IP_CT_RELATED_REPLY:
138 ct_state |= OVS_CS_F_RELATED;
139 break;
140 case IP_CT_NEW:
141 ct_state |= OVS_CS_F_NEW;
142 break;
143 default:
144 break;
145 }
146
147 return ct_state;
148}
149
150static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151{
152#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 return ct ? ct->mark : 0;
154#else
155 return 0;
156#endif
157}
158
159/* Guard against conntrack labels max size shrinking below 128 bits. */
160#if NF_CT_LABELS_MAX_SIZE < 16
161#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162#endif
163
164static void ovs_ct_get_labels(const struct nf_conn *ct,
165 struct ovs_key_ct_labels *labels)
166{
167 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168
169 if (cl)
170 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 else
172 memset(labels, 0, OVS_CT_LABELS_LEN);
173}
174
175static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 const struct nf_conntrack_tuple *orig,
177 u8 icmp_proto)
178{
179 key->ct_orig_proto = orig->dst.protonum;
180 if (orig->dst.protonum == icmp_proto) {
181 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 } else {
184 key->ct.orig_tp.src = orig->src.u.all;
185 key->ct.orig_tp.dst = orig->dst.u.all;
186 }
187}
188
189static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 const struct nf_conntrack_zone *zone,
191 const struct nf_conn *ct)
192{
193 key->ct_state = state;
194 key->ct_zone = zone->id;
195 key->ct.mark = ovs_ct_get_mark(ct);
196 ovs_ct_get_labels(ct, &key->ct.labels);
197
198 if (ct) {
199 const struct nf_conntrack_tuple *orig;
200
201 /* Use the master if we have one. */
202 if (ct->master)
203 ct = ct->master;
204 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205
206 /* IP version must match with the master connection. */
207 if (key->eth.type == htons(ETH_P_IP) &&
208 nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 key->ipv4.ct_orig.src = orig->src.u3.ip;
210 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 return;
213 } else if (key->eth.type == htons(ETH_P_IPV6) &&
214 !sw_flow_key_is_nd(key) &&
215 nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 key->ipv6.ct_orig.src = orig->src.u3.in6;
217 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 return;
220 }
221 }
222 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 * original direction key fields.
224 */
225 key->ct_orig_proto = 0;
226}
227
228/* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
229 * previously sent the packet to conntrack via the ct action. If
230 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231 * initialized from the connection status.
232 */
233static void ovs_ct_update_key(const struct sk_buff *skb,
234 const struct ovs_conntrack_info *info,
235 struct sw_flow_key *key, bool post_ct,
236 bool keep_nat_flags)
237{
238 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 enum ip_conntrack_info ctinfo;
240 struct nf_conn *ct;
241 u8 state = 0;
242
243 ct = nf_ct_get(skb, &ctinfo);
244 if (ct) {
245 state = ovs_ct_get_state(ctinfo);
246 /* All unconfirmed entries are NEW connections. */
247 if (!nf_ct_is_confirmed(ct))
248 state |= OVS_CS_F_NEW;
249 /* OVS persists the related flag for the duration of the
250 * connection.
251 */
252 if (ct->master)
253 state |= OVS_CS_F_RELATED;
254 if (keep_nat_flags) {
255 state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 } else {
257 if (ct->status & IPS_SRC_NAT)
258 state |= OVS_CS_F_SRC_NAT;
259 if (ct->status & IPS_DST_NAT)
260 state |= OVS_CS_F_DST_NAT;
261 }
262 zone = nf_ct_zone(ct);
263 } else if (post_ct) {
264 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 if (info)
266 zone = &info->zone;
267 }
268 __ovs_ct_update_key(key, state, zone, ct);
269}
270
271/* This is called to initialize CT key fields possibly coming in from the local
272 * stack.
273 */
274void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275{
276 ovs_ct_update_key(skb, NULL, key, false, false);
277}
278
279int ovs_ct_put_key(const struct sw_flow_key *swkey,
280 const struct sw_flow_key *output, struct sk_buff *skb)
281{
282 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
283 return -EMSGSIZE;
284
285 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
286 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
287 return -EMSGSIZE;
288
289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
290 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
291 return -EMSGSIZE;
292
293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
294 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
295 &output->ct.labels))
296 return -EMSGSIZE;
297
298 if (swkey->ct_orig_proto) {
299 if (swkey->eth.type == htons(ETH_P_IP)) {
300 struct ovs_key_ct_tuple_ipv4 orig;
301
302 memset(&orig, 0, sizeof(orig));
303 orig.ipv4_src = output->ipv4.ct_orig.src;
304 orig.ipv4_dst = output->ipv4.ct_orig.dst;
305 orig.src_port = output->ct.orig_tp.src;
306 orig.dst_port = output->ct.orig_tp.dst;
307 orig.ipv4_proto = output->ct_orig_proto;
308
309 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
310 sizeof(orig), &orig))
311 return -EMSGSIZE;
312 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
313 struct ovs_key_ct_tuple_ipv6 orig;
314
315 memset(&orig, 0, sizeof(orig));
316 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
317 sizeof(orig.ipv6_src));
318 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
319 sizeof(orig.ipv6_dst));
320 orig.src_port = output->ct.orig_tp.src;
321 orig.dst_port = output->ct.orig_tp.dst;
322 orig.ipv6_proto = output->ct_orig_proto;
323
324 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
325 sizeof(orig), &orig))
326 return -EMSGSIZE;
327 }
328 }
329
330 return 0;
331}
332
333static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
334 u32 ct_mark, u32 mask)
335{
336#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
337 u32 new_mark;
338
339 new_mark = ct_mark | (ct->mark & ~(mask));
340 if (ct->mark != new_mark) {
341 ct->mark = new_mark;
342 if (nf_ct_is_confirmed(ct))
343 nf_conntrack_event_cache(IPCT_MARK, ct);
344 key->ct.mark = new_mark;
345 }
346
347 return 0;
348#else
349 return -ENOTSUPP;
350#endif
351}
352
353static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
354{
355 struct nf_conn_labels *cl;
356
357 cl = nf_ct_labels_find(ct);
358 if (!cl) {
359 nf_ct_labels_ext_add(ct);
360 cl = nf_ct_labels_find(ct);
361 }
362
363 return cl;
364}
365
366/* Initialize labels for a new, yet to be committed conntrack entry. Note that
367 * since the new connection is not yet confirmed, and thus no-one else has
368 * access to it's labels, we simply write them over.
369 */
370static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
371 const struct ovs_key_ct_labels *labels,
372 const struct ovs_key_ct_labels *mask)
373{
374 struct nf_conn_labels *cl, *master_cl;
375 bool have_mask = labels_nonzero(mask);
376
377 /* Inherit master's labels to the related connection? */
378 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
379
380 if (!master_cl && !have_mask)
381 return 0; /* Nothing to do. */
382
383 cl = ovs_ct_get_conn_labels(ct);
384 if (!cl)
385 return -ENOSPC;
386
387 /* Inherit the master's labels, if any. */
388 if (master_cl)
389 *cl = *master_cl;
390
391 if (have_mask) {
392 u32 *dst = (u32 *)cl->bits;
393 int i;
394
395 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
396 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
397 (labels->ct_labels_32[i]
398 & mask->ct_labels_32[i]);
399 }
400
401 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 * IPCT_LABEL bit is set in the event cache.
403 */
404 nf_conntrack_event_cache(IPCT_LABEL, ct);
405
406 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
407
408 return 0;
409}
410
411static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
412 const struct ovs_key_ct_labels *labels,
413 const struct ovs_key_ct_labels *mask)
414{
415 struct nf_conn_labels *cl;
416 int err;
417
418 cl = ovs_ct_get_conn_labels(ct);
419 if (!cl)
420 return -ENOSPC;
421
422 err = nf_connlabels_replace(ct, labels->ct_labels_32,
423 mask->ct_labels_32,
424 OVS_CT_LABELS_LEN_32);
425 if (err)
426 return err;
427
428 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
429
430 return 0;
431}
432
433/* 'skb' should already be pulled to nh_ofs. */
434static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
435{
436 const struct nf_conntrack_helper *helper;
437 const struct nf_conn_help *help;
438 enum ip_conntrack_info ctinfo;
439 unsigned int protoff;
440 struct nf_conn *ct;
441 int err;
442
443 ct = nf_ct_get(skb, &ctinfo);
444 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
445 return NF_ACCEPT;
446
447 help = nfct_help(ct);
448 if (!help)
449 return NF_ACCEPT;
450
451 helper = rcu_dereference(help->helper);
452 if (!helper)
453 return NF_ACCEPT;
454
455 switch (proto) {
456 case NFPROTO_IPV4:
457 protoff = ip_hdrlen(skb);
458 break;
459 case NFPROTO_IPV6: {
460 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
461 __be16 frag_off;
462 int ofs;
463
464 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
465 &frag_off);
466 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
467 pr_debug("proto header not found\n");
468 return NF_ACCEPT;
469 }
470 protoff = ofs;
471 break;
472 }
473 default:
474 WARN_ONCE(1, "helper invoked on non-IP family!");
475 return NF_DROP;
476 }
477
478 err = helper->help(skb, protoff, ct, ctinfo);
479 if (err != NF_ACCEPT)
480 return err;
481
482 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
483 * FTP with NAT) adusting the TCP payload size when mangling IP
484 * addresses and/or port numbers in the text-based control connection.
485 */
486 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
487 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
488 return NF_DROP;
489 return NF_ACCEPT;
490}
491
492/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493 * value if 'skb' is freed.
494 */
495static int handle_fragments(struct net *net, struct sw_flow_key *key,
496 u16 zone, struct sk_buff *skb)
497{
498 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
499 int err;
500
501 if (key->eth.type == htons(ETH_P_IP)) {
502 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
503
504 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
505 err = ip_defrag(net, skb, user);
506 if (err)
507 return err;
508
509 ovs_cb.mru = IPCB(skb)->frag_max_size;
510#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 } else if (key->eth.type == htons(ETH_P_IPV6)) {
512 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
513
514 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
515 err = nf_ct_frag6_gather(net, skb, user);
516 if (err) {
517 if (err != -EINPROGRESS)
518 kfree_skb(skb);
519 return err;
520 }
521
522 key->ip.proto = ipv6_hdr(skb)->nexthdr;
523 ovs_cb.mru = IP6CB(skb)->frag_max_size;
524#endif
525 } else {
526 kfree_skb(skb);
527 return -EPFNOSUPPORT;
528 }
529
530 /* The key extracted from the fragment that completed this datagram
531 * likely didn't have an L4 header, so regenerate it.
532 */
533 ovs_flow_key_update_l3l4(skb, key);
534
535 key->ip.frag = OVS_FRAG_TYPE_NONE;
536 skb_clear_hash(skb);
537 skb->ignore_df = 1;
538 *OVS_CB(skb) = ovs_cb;
539
540 return 0;
541}
542
543static struct nf_conntrack_expect *
544ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 u16 proto, const struct sk_buff *skb)
546{
547 struct nf_conntrack_tuple tuple;
548 struct nf_conntrack_expect *exp;
549
550 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 return NULL;
552
553 exp = __nf_ct_expect_find(net, zone, &tuple);
554 if (exp) {
555 struct nf_conntrack_tuple_hash *h;
556
557 /* Delete existing conntrack entry, if it clashes with the
558 * expectation. This can happen since conntrack ALGs do not
559 * check for clashes between (new) expectations and existing
560 * conntrack entries. nf_conntrack_in() will check the
561 * expectations only if a conntrack entry can not be found,
562 * which can lead to OVS finding the expectation (here) in the
563 * init direction, but which will not be removed by the
564 * nf_conntrack_in() call, if a matching conntrack entry is
565 * found instead. In this case all init direction packets
566 * would be reported as new related packets, while reply
567 * direction packets would be reported as un-related
568 * established packets.
569 */
570 h = nf_conntrack_find_get(net, zone, &tuple);
571 if (h) {
572 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573
574 nf_ct_delete(ct, 0, 0);
575 nf_conntrack_put(&ct->ct_general);
576 }
577 }
578
579 return exp;
580}
581
582/* This replicates logic from nf_conntrack_core.c that is not exported. */
583static enum ip_conntrack_info
584ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585{
586 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587
588 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 return IP_CT_ESTABLISHED_REPLY;
590 /* Once we've had two way comms, always ESTABLISHED. */
591 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 return IP_CT_ESTABLISHED;
593 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 return IP_CT_RELATED;
595 return IP_CT_NEW;
596}
597
598/* Find an existing connection which this packet belongs to without
599 * re-attributing statistics or modifying the connection state. This allows an
600 * skb->_nfct lost due to an upcall to be recovered during actions execution.
601 *
602 * Must be called with rcu_read_lock.
603 *
604 * On success, populates skb->_nfct and returns the connection. Returns NULL
605 * if there is no existing entry.
606 */
607static struct nf_conn *
608ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 u8 l3num, struct sk_buff *skb, bool natted)
610{
611 struct nf_conntrack_tuple tuple;
612 struct nf_conntrack_tuple_hash *h;
613 struct nf_conn *ct;
614
615 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 net, &tuple)) {
617 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 return NULL;
619 }
620
621 /* Must invert the tuple if skb has been transformed by NAT. */
622 if (natted) {
623 struct nf_conntrack_tuple inverse;
624
625 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
626 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 return NULL;
628 }
629 tuple = inverse;
630 }
631
632 /* look for tuple match */
633 h = nf_conntrack_find_get(net, zone, &tuple);
634 if (!h)
635 return NULL; /* Not found. */
636
637 ct = nf_ct_tuplehash_to_ctrack(h);
638
639 /* Inverted packet tuple matches the reverse direction conntrack tuple,
640 * select the other tuplehash to get the right 'ctinfo' bits for this
641 * packet.
642 */
643 if (natted)
644 h = &ct->tuplehash[!h->tuple.dst.dir];
645
646 nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 return ct;
648}
649
650static
651struct nf_conn *ovs_ct_executed(struct net *net,
652 const struct sw_flow_key *key,
653 const struct ovs_conntrack_info *info,
654 struct sk_buff *skb,
655 bool *ct_executed)
656{
657 struct nf_conn *ct = NULL;
658
659 /* If no ct, check if we have evidence that an existing conntrack entry
660 * might be found for this skb. This happens when we lose a skb->_nfct
661 * due to an upcall, or if the direction is being forced. If the
662 * connection was not confirmed, it is not cached and needs to be run
663 * through conntrack again.
664 */
665 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 !(key->ct_state & OVS_CS_F_INVALID) &&
667 (key->ct_zone == info->zone.id);
668
669 if (*ct_executed || (!key->ct_state && info->force)) {
670 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 !!(key->ct_state &
672 OVS_CS_F_NAT_MASK));
673 }
674
675 return ct;
676}
677
678/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679static bool skb_nfct_cached(struct net *net,
680 const struct sw_flow_key *key,
681 const struct ovs_conntrack_info *info,
682 struct sk_buff *skb)
683{
684 enum ip_conntrack_info ctinfo;
685 struct nf_conn *ct;
686 bool ct_executed = true;
687
688 ct = nf_ct_get(skb, &ctinfo);
689 if (!ct)
690 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691
692 if (ct)
693 nf_ct_get(skb, &ctinfo);
694 else
695 return false;
696
697 if (!net_eq(net, read_pnet(&ct->ct_net)))
698 return false;
699 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 return false;
701 if (info->helper) {
702 struct nf_conn_help *help;
703
704 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 if (help && rcu_access_pointer(help->helper) != info->helper)
706 return false;
707 }
708 if (info->nf_ct_timeout) {
709 struct nf_conn_timeout *timeout_ext;
710
711 timeout_ext = nf_ct_timeout_find(ct);
712 if (!timeout_ext || info->nf_ct_timeout !=
713 rcu_dereference(timeout_ext->timeout))
714 return false;
715 }
716 /* Force conntrack entry direction to the current packet? */
717 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
718 /* Delete the conntrack entry if confirmed, else just release
719 * the reference.
720 */
721 if (nf_ct_is_confirmed(ct))
722 nf_ct_delete(ct, 0, 0);
723
724 nf_conntrack_put(&ct->ct_general);
725 nf_ct_set(skb, NULL, 0);
726 return false;
727 }
728
729 return ct_executed;
730}
731
732#if IS_ENABLED(CONFIG_NF_NAT)
733static void ovs_nat_update_key(struct sw_flow_key *key,
734 const struct sk_buff *skb,
735 enum nf_nat_manip_type maniptype)
736{
737 if (maniptype == NF_NAT_MANIP_SRC) {
738 __be16 src;
739
740 key->ct_state |= OVS_CS_F_SRC_NAT;
741 if (key->eth.type == htons(ETH_P_IP))
742 key->ipv4.addr.src = ip_hdr(skb)->saddr;
743 else if (key->eth.type == htons(ETH_P_IPV6))
744 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
745 sizeof(key->ipv6.addr.src));
746 else
747 return;
748
749 if (key->ip.proto == IPPROTO_UDP)
750 src = udp_hdr(skb)->source;
751 else if (key->ip.proto == IPPROTO_TCP)
752 src = tcp_hdr(skb)->source;
753 else if (key->ip.proto == IPPROTO_SCTP)
754 src = sctp_hdr(skb)->source;
755 else
756 return;
757
758 key->tp.src = src;
759 } else {
760 __be16 dst;
761
762 key->ct_state |= OVS_CS_F_DST_NAT;
763 if (key->eth.type == htons(ETH_P_IP))
764 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
765 else if (key->eth.type == htons(ETH_P_IPV6))
766 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
767 sizeof(key->ipv6.addr.dst));
768 else
769 return;
770
771 if (key->ip.proto == IPPROTO_UDP)
772 dst = udp_hdr(skb)->dest;
773 else if (key->ip.proto == IPPROTO_TCP)
774 dst = tcp_hdr(skb)->dest;
775 else if (key->ip.proto == IPPROTO_SCTP)
776 dst = sctp_hdr(skb)->dest;
777 else
778 return;
779
780 key->tp.dst = dst;
781 }
782}
783
784/* Modelled after nf_nat_ipv[46]_fn().
785 * range is only used for new, uninitialized NAT state.
786 * Returns either NF_ACCEPT or NF_DROP.
787 */
788static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
789 enum ip_conntrack_info ctinfo,
790 const struct nf_nat_range2 *range,
791 enum nf_nat_manip_type maniptype, struct sw_flow_key *key)
792{
793 int hooknum, nh_off, err = NF_ACCEPT;
794
795 nh_off = skb_network_offset(skb);
796 skb_pull_rcsum(skb, nh_off);
797
798 /* See HOOK2MANIP(). */
799 if (maniptype == NF_NAT_MANIP_SRC)
800 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
801 else
802 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
803
804 switch (ctinfo) {
805 case IP_CT_RELATED:
806 case IP_CT_RELATED_REPLY:
807 if (IS_ENABLED(CONFIG_NF_NAT) &&
808 skb->protocol == htons(ETH_P_IP) &&
809 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
810 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
811 hooknum))
812 err = NF_DROP;
813 goto push;
814 } else if (IS_ENABLED(CONFIG_IPV6) &&
815 skb->protocol == htons(ETH_P_IPV6)) {
816 __be16 frag_off;
817 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
818 int hdrlen = ipv6_skip_exthdr(skb,
819 sizeof(struct ipv6hdr),
820 &nexthdr, &frag_off);
821
822 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
823 if (!nf_nat_icmpv6_reply_translation(skb, ct,
824 ctinfo,
825 hooknum,
826 hdrlen))
827 err = NF_DROP;
828 goto push;
829 }
830 }
831 /* Non-ICMP, fall thru to initialize if needed. */
832 /* fall through */
833 case IP_CT_NEW:
834 /* Seen it before? This can happen for loopback, retrans,
835 * or local packets.
836 */
837 if (!nf_nat_initialized(ct, maniptype)) {
838 /* Initialize according to the NAT action. */
839 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
840 /* Action is set up to establish a new
841 * mapping.
842 */
843 ? nf_nat_setup_info(ct, range, maniptype)
844 : nf_nat_alloc_null_binding(ct, hooknum);
845 if (err != NF_ACCEPT)
846 goto push;
847 }
848 break;
849
850 case IP_CT_ESTABLISHED:
851 case IP_CT_ESTABLISHED_REPLY:
852 break;
853
854 default:
855 err = NF_DROP;
856 goto push;
857 }
858
859 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
860push:
861 skb_push(skb, nh_off);
862 skb_postpush_rcsum(skb, skb->data, nh_off);
863
864 /* Update the flow key if NAT successful. */
865 if (err == NF_ACCEPT)
866 ovs_nat_update_key(key, skb, maniptype);
867
868 return err;
869}
870
871/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
872static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
873 const struct ovs_conntrack_info *info,
874 struct sk_buff *skb, struct nf_conn *ct,
875 enum ip_conntrack_info ctinfo)
876{
877 enum nf_nat_manip_type maniptype;
878 int err;
879
880 /* Add NAT extension if not confirmed yet. */
881 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
882 return NF_ACCEPT; /* Can't NAT. */
883
884 /* Determine NAT type.
885 * Check if the NAT type can be deduced from the tracked connection.
886 * Make sure new expected connections (IP_CT_RELATED) are NATted only
887 * when committing.
888 */
889 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
890 ct->status & IPS_NAT_MASK &&
891 (ctinfo != IP_CT_RELATED || info->commit)) {
892 /* NAT an established or related connection like before. */
893 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
894 /* This is the REPLY direction for a connection
895 * for which NAT was applied in the forward
896 * direction. Do the reverse NAT.
897 */
898 maniptype = ct->status & IPS_SRC_NAT
899 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
900 else
901 maniptype = ct->status & IPS_SRC_NAT
902 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
903 } else if (info->nat & OVS_CT_SRC_NAT) {
904 maniptype = NF_NAT_MANIP_SRC;
905 } else if (info->nat & OVS_CT_DST_NAT) {
906 maniptype = NF_NAT_MANIP_DST;
907 } else {
908 return NF_ACCEPT; /* Connection is not NATed. */
909 }
910 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype, key);
911
912 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
913 if (ct->status & IPS_SRC_NAT) {
914 if (maniptype == NF_NAT_MANIP_SRC)
915 maniptype = NF_NAT_MANIP_DST;
916 else
917 maniptype = NF_NAT_MANIP_SRC;
918
919 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
920 maniptype, key);
921 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
922 err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
923 NF_NAT_MANIP_SRC, key);
924 }
925 }
926
927 return err;
928}
929#else /* !CONFIG_NF_NAT */
930static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
931 const struct ovs_conntrack_info *info,
932 struct sk_buff *skb, struct nf_conn *ct,
933 enum ip_conntrack_info ctinfo)
934{
935 return NF_ACCEPT;
936}
937#endif
938
939/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
940 * not done already. Update key with new CT state after passing the packet
941 * through conntrack.
942 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
943 * set to NULL and 0 will be returned.
944 */
945static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
946 const struct ovs_conntrack_info *info,
947 struct sk_buff *skb)
948{
949 /* If we are recirculating packets to match on conntrack fields and
950 * committing with a separate conntrack action, then we don't need to
951 * actually run the packet through conntrack twice unless it's for a
952 * different zone.
953 */
954 bool cached = skb_nfct_cached(net, key, info, skb);
955 enum ip_conntrack_info ctinfo;
956 struct nf_conn *ct;
957
958 if (!cached) {
959 struct nf_hook_state state = {
960 .hook = NF_INET_PRE_ROUTING,
961 .pf = info->family,
962 .net = net,
963 };
964 struct nf_conn *tmpl = info->ct;
965 int err;
966
967 /* Associate skb with specified zone. */
968 if (tmpl) {
969 if (skb_nfct(skb))
970 nf_conntrack_put(skb_nfct(skb));
971 nf_conntrack_get(&tmpl->ct_general);
972 nf_ct_set(skb, tmpl, IP_CT_NEW);
973 }
974
975 err = nf_conntrack_in(skb, &state);
976 if (err != NF_ACCEPT)
977 return -ENOENT;
978
979 /* Clear CT state NAT flags to mark that we have not yet done
980 * NAT after the nf_conntrack_in() call. We can actually clear
981 * the whole state, as it will be re-initialized below.
982 */
983 key->ct_state = 0;
984
985 /* Update the key, but keep the NAT flags. */
986 ovs_ct_update_key(skb, info, key, true, true);
987 }
988
989 ct = nf_ct_get(skb, &ctinfo);
990 if (ct) {
991 /* Packets starting a new connection must be NATted before the
992 * helper, so that the helper knows about the NAT. We enforce
993 * this by delaying both NAT and helper calls for unconfirmed
994 * connections until the committing CT action. For later
995 * packets NAT and Helper may be called in either order.
996 *
997 * NAT will be done only if the CT action has NAT, and only
998 * once per packet (per zone), as guarded by the NAT bits in
999 * the key->ct_state.
1000 */
1001 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1002 (nf_ct_is_confirmed(ct) || info->commit) &&
1003 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1004 return -EINVAL;
1005 }
1006
1007 /* Userspace may decide to perform a ct lookup without a helper
1008 * specified followed by a (recirculate and) commit with one.
1009 * Therefore, for unconfirmed connections which we will commit,
1010 * we need to attach the helper here.
1011 */
1012 if (!nf_ct_is_confirmed(ct) && info->commit &&
1013 info->helper && !nfct_help(ct)) {
1014 int err = __nf_ct_try_assign_helper(ct, info->ct,
1015 GFP_ATOMIC);
1016 if (err)
1017 return err;
1018
1019 /* helper installed, add seqadj if NAT is required */
1020 if (info->nat && !nfct_seqadj(ct)) {
1021 if (!nfct_seqadj_ext_add(ct))
1022 return -EINVAL;
1023 }
1024 }
1025
1026 /* Call the helper only if:
1027 * - nf_conntrack_in() was executed above ("!cached") for a
1028 * confirmed connection, or
1029 * - When committing an unconfirmed connection.
1030 */
1031 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1032 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1033 return -EINVAL;
1034 }
1035 }
1036
1037 return 0;
1038}
1039
1040/* Lookup connection and read fields into key. */
1041static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1042 const struct ovs_conntrack_info *info,
1043 struct sk_buff *skb)
1044{
1045 struct nf_conntrack_expect *exp;
1046
1047 /* If we pass an expected packet through nf_conntrack_in() the
1048 * expectation is typically removed, but the packet could still be
1049 * lost in upcall processing. To prevent this from happening we
1050 * perform an explicit expectation lookup. Expected connections are
1051 * always new, and will be passed through conntrack only when they are
1052 * committed, as it is OK to remove the expectation at that time.
1053 */
1054 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1055 if (exp) {
1056 u8 state;
1057
1058 /* NOTE: New connections are NATted and Helped only when
1059 * committed, so we are not calling into NAT here.
1060 */
1061 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1062 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1063 } else {
1064 struct nf_conn *ct;
1065 int err;
1066
1067 err = __ovs_ct_lookup(net, key, info, skb);
1068 if (err)
1069 return err;
1070
1071 ct = (struct nf_conn *)skb_nfct(skb);
1072 if (ct)
1073 nf_ct_deliver_cached_events(ct);
1074 }
1075
1076 return 0;
1077}
1078
1079static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1080{
1081 size_t i;
1082
1083 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1084 if (labels->ct_labels_32[i])
1085 return true;
1086
1087 return false;
1088}
1089
1090#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1091static struct hlist_head *ct_limit_hash_bucket(
1092 const struct ovs_ct_limit_info *info, u16 zone)
1093{
1094 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1095}
1096
1097/* Call with ovs_mutex */
1098static void ct_limit_set(const struct ovs_ct_limit_info *info,
1099 struct ovs_ct_limit *new_ct_limit)
1100{
1101 struct ovs_ct_limit *ct_limit;
1102 struct hlist_head *head;
1103
1104 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1105 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1106 if (ct_limit->zone == new_ct_limit->zone) {
1107 hlist_replace_rcu(&ct_limit->hlist_node,
1108 &new_ct_limit->hlist_node);
1109 kfree_rcu(ct_limit, rcu);
1110 return;
1111 }
1112 }
1113
1114 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1115}
1116
1117/* Call with ovs_mutex */
1118static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1119{
1120 struct ovs_ct_limit *ct_limit;
1121 struct hlist_head *head;
1122 struct hlist_node *n;
1123
1124 head = ct_limit_hash_bucket(info, zone);
1125 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1126 if (ct_limit->zone == zone) {
1127 hlist_del_rcu(&ct_limit->hlist_node);
1128 kfree_rcu(ct_limit, rcu);
1129 return;
1130 }
1131 }
1132}
1133
1134/* Call with RCU read lock */
1135static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1136{
1137 struct ovs_ct_limit *ct_limit;
1138 struct hlist_head *head;
1139
1140 head = ct_limit_hash_bucket(info, zone);
1141 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1142 if (ct_limit->zone == zone)
1143 return ct_limit->limit;
1144 }
1145
1146 return info->default_limit;
1147}
1148
1149static int ovs_ct_check_limit(struct net *net,
1150 const struct ovs_conntrack_info *info,
1151 const struct nf_conntrack_tuple *tuple)
1152{
1153 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1154 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1155 u32 per_zone_limit, connections;
1156 u32 conncount_key;
1157
1158 conncount_key = info->zone.id;
1159
1160 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1161 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1162 return 0;
1163
1164 connections = nf_conncount_count(net, ct_limit_info->data,
1165 &conncount_key, tuple, &info->zone);
1166 if (connections > per_zone_limit)
1167 return -ENOMEM;
1168
1169 return 0;
1170}
1171#endif
1172
1173/* Lookup connection and confirm if unconfirmed. */
1174static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1175 const struct ovs_conntrack_info *info,
1176 struct sk_buff *skb)
1177{
1178 enum ip_conntrack_info ctinfo;
1179 struct nf_conn *ct;
1180 int err;
1181
1182 err = __ovs_ct_lookup(net, key, info, skb);
1183 if (err)
1184 return err;
1185
1186 /* The connection could be invalid, in which case this is a no-op.*/
1187 ct = nf_ct_get(skb, &ctinfo);
1188 if (!ct)
1189 return 0;
1190
1191#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1192 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1193 if (!nf_ct_is_confirmed(ct)) {
1194 err = ovs_ct_check_limit(net, info,
1195 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1196 if (err) {
1197 net_warn_ratelimited("openvswitch: zone: %u "
1198 "exceeds conntrack limit\n",
1199 info->zone.id);
1200 return err;
1201 }
1202 }
1203 }
1204#endif
1205
1206 /* Set the conntrack event mask if given. NEW and DELETE events have
1207 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1208 * typically would receive many kinds of updates. Setting the event
1209 * mask allows those events to be filtered. The set event mask will
1210 * remain in effect for the lifetime of the connection unless changed
1211 * by a further CT action with both the commit flag and the eventmask
1212 * option. */
1213 if (info->have_eventmask) {
1214 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1215
1216 if (cache)
1217 cache->ctmask = info->eventmask;
1218 }
1219
1220 /* Apply changes before confirming the connection so that the initial
1221 * conntrack NEW netlink event carries the values given in the CT
1222 * action.
1223 */
1224 if (info->mark.mask) {
1225 err = ovs_ct_set_mark(ct, key, info->mark.value,
1226 info->mark.mask);
1227 if (err)
1228 return err;
1229 }
1230 if (!nf_ct_is_confirmed(ct)) {
1231 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1232 &info->labels.mask);
1233 if (err)
1234 return err;
1235 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1236 labels_nonzero(&info->labels.mask)) {
1237 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1238 &info->labels.mask);
1239 if (err)
1240 return err;
1241 }
1242 /* This will take care of sending queued events even if the connection
1243 * is already confirmed.
1244 */
1245 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1246 return -EINVAL;
1247
1248 return 0;
1249}
1250
1251/* Trim the skb to the length specified by the IP/IPv6 header,
1252 * removing any trailing lower-layer padding. This prepares the skb
1253 * for higher-layer processing that assumes skb->len excludes padding
1254 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1255 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1256 */
1257static int ovs_skb_network_trim(struct sk_buff *skb)
1258{
1259 unsigned int len;
1260 int err;
1261
1262 switch (skb->protocol) {
1263 case htons(ETH_P_IP):
1264 len = ntohs(ip_hdr(skb)->tot_len);
1265 break;
1266 case htons(ETH_P_IPV6):
1267 len = sizeof(struct ipv6hdr)
1268 + ntohs(ipv6_hdr(skb)->payload_len);
1269 break;
1270 default:
1271 len = skb->len;
1272 }
1273
1274 err = pskb_trim_rcsum(skb, len);
1275 if (err)
1276 kfree_skb(skb);
1277
1278 return err;
1279}
1280
1281/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1282 * value if 'skb' is freed.
1283 */
1284int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1285 struct sw_flow_key *key,
1286 const struct ovs_conntrack_info *info)
1287{
1288 int nh_ofs;
1289 int err;
1290
1291 /* The conntrack module expects to be working at L3. */
1292 nh_ofs = skb_network_offset(skb);
1293 skb_pull_rcsum(skb, nh_ofs);
1294
1295 err = ovs_skb_network_trim(skb);
1296 if (err)
1297 return err;
1298
1299 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1300 err = handle_fragments(net, key, info->zone.id, skb);
1301 if (err)
1302 return err;
1303 }
1304
1305 if (info->commit)
1306 err = ovs_ct_commit(net, key, info, skb);
1307 else
1308 err = ovs_ct_lookup(net, key, info, skb);
1309
1310 skb_push(skb, nh_ofs);
1311 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1312 if (err)
1313 kfree_skb(skb);
1314 return err;
1315}
1316
1317int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1318{
1319 if (skb_nfct(skb)) {
1320 nf_conntrack_put(skb_nfct(skb));
1321 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1322 if (key)
1323 ovs_ct_fill_key(skb, key);
1324 }
1325
1326 return 0;
1327}
1328
1329static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1330 const struct sw_flow_key *key, bool log)
1331{
1332 struct nf_conntrack_helper *helper;
1333 struct nf_conn_help *help;
1334 int ret = 0;
1335
1336 helper = nf_conntrack_helper_try_module_get(name, info->family,
1337 key->ip.proto);
1338 if (!helper) {
1339 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1340 return -EINVAL;
1341 }
1342
1343 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1344 if (!help) {
1345 nf_conntrack_helper_put(helper);
1346 return -ENOMEM;
1347 }
1348
1349#if IS_ENABLED(CONFIG_NF_NAT)
1350 if (info->nat) {
1351 ret = nf_nat_helper_try_module_get(name, info->family,
1352 key->ip.proto);
1353 if (ret) {
1354 nf_conntrack_helper_put(helper);
1355 OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1356 name, ret);
1357 return ret;
1358 }
1359 }
1360#endif
1361 rcu_assign_pointer(help->helper, helper);
1362 info->helper = helper;
1363 return ret;
1364}
1365
1366#if IS_ENABLED(CONFIG_NF_NAT)
1367static int parse_nat(const struct nlattr *attr,
1368 struct ovs_conntrack_info *info, bool log)
1369{
1370 struct nlattr *a;
1371 int rem;
1372 bool have_ip_max = false;
1373 bool have_proto_max = false;
1374 bool ip_vers = (info->family == NFPROTO_IPV6);
1375
1376 nla_for_each_nested(a, attr, rem) {
1377 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1378 [OVS_NAT_ATTR_SRC] = {0, 0},
1379 [OVS_NAT_ATTR_DST] = {0, 0},
1380 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1381 sizeof(struct in6_addr)},
1382 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1383 sizeof(struct in6_addr)},
1384 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1385 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1386 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1387 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1388 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1389 };
1390 int type = nla_type(a);
1391
1392 if (type > OVS_NAT_ATTR_MAX) {
1393 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1394 type, OVS_NAT_ATTR_MAX);
1395 return -EINVAL;
1396 }
1397
1398 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1399 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1400 type, nla_len(a),
1401 ovs_nat_attr_lens[type][ip_vers]);
1402 return -EINVAL;
1403 }
1404
1405 switch (type) {
1406 case OVS_NAT_ATTR_SRC:
1407 case OVS_NAT_ATTR_DST:
1408 if (info->nat) {
1409 OVS_NLERR(log, "Only one type of NAT may be specified");
1410 return -ERANGE;
1411 }
1412 info->nat |= OVS_CT_NAT;
1413 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1414 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1415 break;
1416
1417 case OVS_NAT_ATTR_IP_MIN:
1418 nla_memcpy(&info->range.min_addr, a,
1419 sizeof(info->range.min_addr));
1420 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1421 break;
1422
1423 case OVS_NAT_ATTR_IP_MAX:
1424 have_ip_max = true;
1425 nla_memcpy(&info->range.max_addr, a,
1426 sizeof(info->range.max_addr));
1427 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1428 break;
1429
1430 case OVS_NAT_ATTR_PROTO_MIN:
1431 info->range.min_proto.all = htons(nla_get_u16(a));
1432 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1433 break;
1434
1435 case OVS_NAT_ATTR_PROTO_MAX:
1436 have_proto_max = true;
1437 info->range.max_proto.all = htons(nla_get_u16(a));
1438 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1439 break;
1440
1441 case OVS_NAT_ATTR_PERSISTENT:
1442 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1443 break;
1444
1445 case OVS_NAT_ATTR_PROTO_HASH:
1446 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1447 break;
1448
1449 case OVS_NAT_ATTR_PROTO_RANDOM:
1450 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1451 break;
1452
1453 default:
1454 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1455 return -EINVAL;
1456 }
1457 }
1458
1459 if (rem > 0) {
1460 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1461 return -EINVAL;
1462 }
1463 if (!info->nat) {
1464 /* Do not allow flags if no type is given. */
1465 if (info->range.flags) {
1466 OVS_NLERR(log,
1467 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1468 );
1469 return -EINVAL;
1470 }
1471 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1472 } else if (!info->commit) {
1473 OVS_NLERR(log,
1474 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1475 );
1476 return -EINVAL;
1477 }
1478 /* Allow missing IP_MAX. */
1479 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1480 memcpy(&info->range.max_addr, &info->range.min_addr,
1481 sizeof(info->range.max_addr));
1482 }
1483 /* Allow missing PROTO_MAX. */
1484 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1485 !have_proto_max) {
1486 info->range.max_proto.all = info->range.min_proto.all;
1487 }
1488 return 0;
1489}
1490#endif
1491
1492static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1493 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1494 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1495 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1496 .maxlen = sizeof(u16) },
1497 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1498 .maxlen = sizeof(struct md_mark) },
1499 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1500 .maxlen = sizeof(struct md_labels) },
1501 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1502 .maxlen = NF_CT_HELPER_NAME_LEN },
1503#if IS_ENABLED(CONFIG_NF_NAT)
1504 /* NAT length is checked when parsing the nested attributes. */
1505 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1506#endif
1507 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1508 .maxlen = sizeof(u32) },
1509 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1510 .maxlen = CTNL_TIMEOUT_NAME_MAX },
1511};
1512
1513static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1514 const char **helper, bool log)
1515{
1516 struct nlattr *a;
1517 int rem;
1518
1519 nla_for_each_nested(a, attr, rem) {
1520 int type = nla_type(a);
1521 int maxlen;
1522 int minlen;
1523
1524 if (type > OVS_CT_ATTR_MAX) {
1525 OVS_NLERR(log,
1526 "Unknown conntrack attr (type=%d, max=%d)",
1527 type, OVS_CT_ATTR_MAX);
1528 return -EINVAL;
1529 }
1530
1531 maxlen = ovs_ct_attr_lens[type].maxlen;
1532 minlen = ovs_ct_attr_lens[type].minlen;
1533 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1534 OVS_NLERR(log,
1535 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1536 type, nla_len(a), maxlen);
1537 return -EINVAL;
1538 }
1539
1540 switch (type) {
1541 case OVS_CT_ATTR_FORCE_COMMIT:
1542 info->force = true;
1543 /* fall through. */
1544 case OVS_CT_ATTR_COMMIT:
1545 info->commit = true;
1546 break;
1547#ifdef CONFIG_NF_CONNTRACK_ZONES
1548 case OVS_CT_ATTR_ZONE:
1549 info->zone.id = nla_get_u16(a);
1550 break;
1551#endif
1552#ifdef CONFIG_NF_CONNTRACK_MARK
1553 case OVS_CT_ATTR_MARK: {
1554 struct md_mark *mark = nla_data(a);
1555
1556 if (!mark->mask) {
1557 OVS_NLERR(log, "ct_mark mask cannot be 0");
1558 return -EINVAL;
1559 }
1560 info->mark = *mark;
1561 break;
1562 }
1563#endif
1564#ifdef CONFIG_NF_CONNTRACK_LABELS
1565 case OVS_CT_ATTR_LABELS: {
1566 struct md_labels *labels = nla_data(a);
1567
1568 if (!labels_nonzero(&labels->mask)) {
1569 OVS_NLERR(log, "ct_labels mask cannot be 0");
1570 return -EINVAL;
1571 }
1572 info->labels = *labels;
1573 break;
1574 }
1575#endif
1576 case OVS_CT_ATTR_HELPER:
1577 *helper = nla_data(a);
1578 if (!memchr(*helper, '\0', nla_len(a))) {
1579 OVS_NLERR(log, "Invalid conntrack helper");
1580 return -EINVAL;
1581 }
1582 break;
1583#if IS_ENABLED(CONFIG_NF_NAT)
1584 case OVS_CT_ATTR_NAT: {
1585 int err = parse_nat(a, info, log);
1586
1587 if (err)
1588 return err;
1589 break;
1590 }
1591#endif
1592 case OVS_CT_ATTR_EVENTMASK:
1593 info->have_eventmask = true;
1594 info->eventmask = nla_get_u32(a);
1595 break;
1596#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1597 case OVS_CT_ATTR_TIMEOUT:
1598 memcpy(info->timeout, nla_data(a), nla_len(a));
1599 if (!memchr(info->timeout, '\0', nla_len(a))) {
1600 OVS_NLERR(log, "Invalid conntrack timeout");
1601 return -EINVAL;
1602 }
1603 break;
1604#endif
1605
1606 default:
1607 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1608 type);
1609 return -EINVAL;
1610 }
1611 }
1612
1613#ifdef CONFIG_NF_CONNTRACK_MARK
1614 if (!info->commit && info->mark.mask) {
1615 OVS_NLERR(log,
1616 "Setting conntrack mark requires 'commit' flag.");
1617 return -EINVAL;
1618 }
1619#endif
1620#ifdef CONFIG_NF_CONNTRACK_LABELS
1621 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1622 OVS_NLERR(log,
1623 "Setting conntrack labels requires 'commit' flag.");
1624 return -EINVAL;
1625 }
1626#endif
1627 if (rem > 0) {
1628 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1629 return -EINVAL;
1630 }
1631
1632 return 0;
1633}
1634
1635bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1636{
1637 if (attr == OVS_KEY_ATTR_CT_STATE)
1638 return true;
1639 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1640 attr == OVS_KEY_ATTR_CT_ZONE)
1641 return true;
1642 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1643 attr == OVS_KEY_ATTR_CT_MARK)
1644 return true;
1645 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1646 attr == OVS_KEY_ATTR_CT_LABELS) {
1647 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1648
1649 return ovs_net->xt_label;
1650 }
1651
1652 return false;
1653}
1654
1655int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1656 const struct sw_flow_key *key,
1657 struct sw_flow_actions **sfa, bool log)
1658{
1659 struct ovs_conntrack_info ct_info;
1660 const char *helper = NULL;
1661 u16 family;
1662 int err;
1663
1664 family = key_to_nfproto(key);
1665 if (family == NFPROTO_UNSPEC) {
1666 OVS_NLERR(log, "ct family unspecified");
1667 return -EINVAL;
1668 }
1669
1670 memset(&ct_info, 0, sizeof(ct_info));
1671 ct_info.family = family;
1672
1673 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1674 NF_CT_DEFAULT_ZONE_DIR, 0);
1675
1676 err = parse_ct(attr, &ct_info, &helper, log);
1677 if (err)
1678 return err;
1679
1680 /* Set up template for tracking connections in specific zones. */
1681 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1682 if (!ct_info.ct) {
1683 OVS_NLERR(log, "Failed to allocate conntrack template");
1684 return -ENOMEM;
1685 }
1686
1687 if (ct_info.timeout[0]) {
1688 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1689 ct_info.timeout))
1690 OVS_NLERR(log,
1691 "Failed to associated timeout policy '%s'",
1692 ct_info.timeout);
1693 else
1694 ct_info.nf_ct_timeout = rcu_dereference(
1695 nf_ct_timeout_find(ct_info.ct)->timeout);
1696
1697 }
1698
1699 if (helper) {
1700 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1701 if (err)
1702 goto err_free_ct;
1703 }
1704
1705 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1706 sizeof(ct_info), log);
1707 if (err)
1708 goto err_free_ct;
1709
1710 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1711 nf_conntrack_get(&ct_info.ct->ct_general);
1712 return 0;
1713err_free_ct:
1714 __ovs_ct_free_action(&ct_info);
1715 return err;
1716}
1717
1718#if IS_ENABLED(CONFIG_NF_NAT)
1719static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1720 struct sk_buff *skb)
1721{
1722 struct nlattr *start;
1723
1724 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1725 if (!start)
1726 return false;
1727
1728 if (info->nat & OVS_CT_SRC_NAT) {
1729 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1730 return false;
1731 } else if (info->nat & OVS_CT_DST_NAT) {
1732 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1733 return false;
1734 } else {
1735 goto out;
1736 }
1737
1738 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1739 if (IS_ENABLED(CONFIG_NF_NAT) &&
1740 info->family == NFPROTO_IPV4) {
1741 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1742 info->range.min_addr.ip) ||
1743 (info->range.max_addr.ip
1744 != info->range.min_addr.ip &&
1745 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1746 info->range.max_addr.ip))))
1747 return false;
1748 } else if (IS_ENABLED(CONFIG_IPV6) &&
1749 info->family == NFPROTO_IPV6) {
1750 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1751 &info->range.min_addr.in6) ||
1752 (memcmp(&info->range.max_addr.in6,
1753 &info->range.min_addr.in6,
1754 sizeof(info->range.max_addr.in6)) &&
1755 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1756 &info->range.max_addr.in6))))
1757 return false;
1758 } else {
1759 return false;
1760 }
1761 }
1762 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1763 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1764 ntohs(info->range.min_proto.all)) ||
1765 (info->range.max_proto.all != info->range.min_proto.all &&
1766 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1767 ntohs(info->range.max_proto.all)))))
1768 return false;
1769
1770 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1771 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1772 return false;
1773 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1774 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1775 return false;
1776 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1777 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1778 return false;
1779out:
1780 nla_nest_end(skb, start);
1781
1782 return true;
1783}
1784#endif
1785
1786int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1787 struct sk_buff *skb)
1788{
1789 struct nlattr *start;
1790
1791 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1792 if (!start)
1793 return -EMSGSIZE;
1794
1795 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1796 ? OVS_CT_ATTR_FORCE_COMMIT
1797 : OVS_CT_ATTR_COMMIT))
1798 return -EMSGSIZE;
1799 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1800 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1801 return -EMSGSIZE;
1802 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1803 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1804 &ct_info->mark))
1805 return -EMSGSIZE;
1806 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1807 labels_nonzero(&ct_info->labels.mask) &&
1808 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1809 &ct_info->labels))
1810 return -EMSGSIZE;
1811 if (ct_info->helper) {
1812 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1813 ct_info->helper->name))
1814 return -EMSGSIZE;
1815 }
1816 if (ct_info->have_eventmask &&
1817 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1818 return -EMSGSIZE;
1819 if (ct_info->timeout[0]) {
1820 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1821 return -EMSGSIZE;
1822 }
1823
1824#if IS_ENABLED(CONFIG_NF_NAT)
1825 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1826 return -EMSGSIZE;
1827#endif
1828 nla_nest_end(skb, start);
1829
1830 return 0;
1831}
1832
1833void ovs_ct_free_action(const struct nlattr *a)
1834{
1835 struct ovs_conntrack_info *ct_info = nla_data(a);
1836
1837 __ovs_ct_free_action(ct_info);
1838}
1839
1840static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1841{
1842 if (ct_info->helper) {
1843#if IS_ENABLED(CONFIG_NF_NAT)
1844 if (ct_info->nat)
1845 nf_nat_helper_put(ct_info->helper);
1846#endif
1847 nf_conntrack_helper_put(ct_info->helper);
1848 }
1849 if (ct_info->ct) {
1850 if (ct_info->timeout[0])
1851 nf_ct_destroy_timeout(ct_info->ct);
1852 nf_ct_tmpl_free(ct_info->ct);
1853 }
1854}
1855
1856#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1857static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1858{
1859 int i, err;
1860
1861 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1862 GFP_KERNEL);
1863 if (!ovs_net->ct_limit_info)
1864 return -ENOMEM;
1865
1866 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1867 ovs_net->ct_limit_info->limits =
1868 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1869 GFP_KERNEL);
1870 if (!ovs_net->ct_limit_info->limits) {
1871 kfree(ovs_net->ct_limit_info);
1872 return -ENOMEM;
1873 }
1874
1875 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1876 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1877
1878 ovs_net->ct_limit_info->data =
1879 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1880
1881 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1882 err = PTR_ERR(ovs_net->ct_limit_info->data);
1883 kfree(ovs_net->ct_limit_info->limits);
1884 kfree(ovs_net->ct_limit_info);
1885 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1886 return err;
1887 }
1888 return 0;
1889}
1890
1891static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1892{
1893 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1894 int i;
1895
1896 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1897 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1898 struct hlist_head *head = &info->limits[i];
1899 struct ovs_ct_limit *ct_limit;
1900 struct hlist_node *next;
1901
1902 hlist_for_each_entry_safe(ct_limit, next, head, hlist_node)
1903 kfree_rcu(ct_limit, rcu);
1904 }
1905 kfree(ovs_net->ct_limit_info->limits);
1906 kfree(ovs_net->ct_limit_info);
1907}
1908
1909static struct sk_buff *
1910ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1911 struct ovs_header **ovs_reply_header)
1912{
1913 struct ovs_header *ovs_header = info->userhdr;
1914 struct sk_buff *skb;
1915
1916 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1917 if (!skb)
1918 return ERR_PTR(-ENOMEM);
1919
1920 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1921 info->snd_seq,
1922 &dp_ct_limit_genl_family, 0, cmd);
1923
1924 if (!*ovs_reply_header) {
1925 nlmsg_free(skb);
1926 return ERR_PTR(-EMSGSIZE);
1927 }
1928 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1929
1930 return skb;
1931}
1932
1933static bool check_zone_id(int zone_id, u16 *pzone)
1934{
1935 if (zone_id >= 0 && zone_id <= 65535) {
1936 *pzone = (u16)zone_id;
1937 return true;
1938 }
1939 return false;
1940}
1941
1942static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1943 struct ovs_ct_limit_info *info)
1944{
1945 struct ovs_zone_limit *zone_limit;
1946 int rem;
1947 u16 zone;
1948
1949 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1950 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1951
1952 while (rem >= sizeof(*zone_limit)) {
1953 if (unlikely(zone_limit->zone_id ==
1954 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1955 ovs_lock();
1956 info->default_limit = zone_limit->limit;
1957 ovs_unlock();
1958 } else if (unlikely(!check_zone_id(
1959 zone_limit->zone_id, &zone))) {
1960 OVS_NLERR(true, "zone id is out of range");
1961 } else {
1962 struct ovs_ct_limit *ct_limit;
1963
1964 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1965 if (!ct_limit)
1966 return -ENOMEM;
1967
1968 ct_limit->zone = zone;
1969 ct_limit->limit = zone_limit->limit;
1970
1971 ovs_lock();
1972 ct_limit_set(info, ct_limit);
1973 ovs_unlock();
1974 }
1975 rem -= NLA_ALIGN(sizeof(*zone_limit));
1976 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1977 NLA_ALIGN(sizeof(*zone_limit)));
1978 }
1979
1980 if (rem)
1981 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1982
1983 return 0;
1984}
1985
1986static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1987 struct ovs_ct_limit_info *info)
1988{
1989 struct ovs_zone_limit *zone_limit;
1990 int rem;
1991 u16 zone;
1992
1993 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1994 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1995
1996 while (rem >= sizeof(*zone_limit)) {
1997 if (unlikely(zone_limit->zone_id ==
1998 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1999 ovs_lock();
2000 info->default_limit = OVS_CT_LIMIT_DEFAULT;
2001 ovs_unlock();
2002 } else if (unlikely(!check_zone_id(
2003 zone_limit->zone_id, &zone))) {
2004 OVS_NLERR(true, "zone id is out of range");
2005 } else {
2006 ovs_lock();
2007 ct_limit_del(info, zone);
2008 ovs_unlock();
2009 }
2010 rem -= NLA_ALIGN(sizeof(*zone_limit));
2011 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2012 NLA_ALIGN(sizeof(*zone_limit)));
2013 }
2014
2015 if (rem)
2016 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2017
2018 return 0;
2019}
2020
2021static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2022 struct sk_buff *reply)
2023{
2024 struct ovs_zone_limit zone_limit = {
2025 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
2026 .limit = info->default_limit,
2027 };
2028
2029 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2030}
2031
2032static int __ovs_ct_limit_get_zone_limit(struct net *net,
2033 struct nf_conncount_data *data,
2034 u16 zone_id, u32 limit,
2035 struct sk_buff *reply)
2036{
2037 struct nf_conntrack_zone ct_zone;
2038 struct ovs_zone_limit zone_limit;
2039 u32 conncount_key = zone_id;
2040
2041 zone_limit.zone_id = zone_id;
2042 zone_limit.limit = limit;
2043 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2044
2045 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2046 &ct_zone);
2047 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2048}
2049
2050static int ovs_ct_limit_get_zone_limit(struct net *net,
2051 struct nlattr *nla_zone_limit,
2052 struct ovs_ct_limit_info *info,
2053 struct sk_buff *reply)
2054{
2055 struct ovs_zone_limit *zone_limit;
2056 int rem, err;
2057 u32 limit;
2058 u16 zone;
2059
2060 rem = NLA_ALIGN(nla_len(nla_zone_limit));
2061 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2062
2063 while (rem >= sizeof(*zone_limit)) {
2064 if (unlikely(zone_limit->zone_id ==
2065 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2066 err = ovs_ct_limit_get_default_limit(info, reply);
2067 if (err)
2068 return err;
2069 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2070 &zone))) {
2071 OVS_NLERR(true, "zone id is out of range");
2072 } else {
2073 rcu_read_lock();
2074 limit = ct_limit_get(info, zone);
2075 rcu_read_unlock();
2076
2077 err = __ovs_ct_limit_get_zone_limit(
2078 net, info->data, zone, limit, reply);
2079 if (err)
2080 return err;
2081 }
2082 rem -= NLA_ALIGN(sizeof(*zone_limit));
2083 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2084 NLA_ALIGN(sizeof(*zone_limit)));
2085 }
2086
2087 if (rem)
2088 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2089
2090 return 0;
2091}
2092
2093static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2094 struct ovs_ct_limit_info *info,
2095 struct sk_buff *reply)
2096{
2097 struct ovs_ct_limit *ct_limit;
2098 struct hlist_head *head;
2099 int i, err = 0;
2100
2101 err = ovs_ct_limit_get_default_limit(info, reply);
2102 if (err)
2103 return err;
2104
2105 rcu_read_lock();
2106 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2107 head = &info->limits[i];
2108 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2109 err = __ovs_ct_limit_get_zone_limit(net, info->data,
2110 ct_limit->zone, ct_limit->limit, reply);
2111 if (err)
2112 goto exit_err;
2113 }
2114 }
2115
2116exit_err:
2117 rcu_read_unlock();
2118 return err;
2119}
2120
2121static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2122{
2123 struct nlattr **a = info->attrs;
2124 struct sk_buff *reply;
2125 struct ovs_header *ovs_reply_header;
2126 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2127 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2128 int err;
2129
2130 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2131 &ovs_reply_header);
2132 if (IS_ERR(reply))
2133 return PTR_ERR(reply);
2134
2135 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2136 err = -EINVAL;
2137 goto exit_err;
2138 }
2139
2140 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2141 ct_limit_info);
2142 if (err)
2143 goto exit_err;
2144
2145 static_branch_enable(&ovs_ct_limit_enabled);
2146
2147 genlmsg_end(reply, ovs_reply_header);
2148 return genlmsg_reply(reply, info);
2149
2150exit_err:
2151 nlmsg_free(reply);
2152 return err;
2153}
2154
2155static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2156{
2157 struct nlattr **a = info->attrs;
2158 struct sk_buff *reply;
2159 struct ovs_header *ovs_reply_header;
2160 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2161 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2162 int err;
2163
2164 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2165 &ovs_reply_header);
2166 if (IS_ERR(reply))
2167 return PTR_ERR(reply);
2168
2169 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2170 err = -EINVAL;
2171 goto exit_err;
2172 }
2173
2174 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2175 ct_limit_info);
2176 if (err)
2177 goto exit_err;
2178
2179 genlmsg_end(reply, ovs_reply_header);
2180 return genlmsg_reply(reply, info);
2181
2182exit_err:
2183 nlmsg_free(reply);
2184 return err;
2185}
2186
2187static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2188{
2189 struct nlattr **a = info->attrs;
2190 struct nlattr *nla_reply;
2191 struct sk_buff *reply;
2192 struct ovs_header *ovs_reply_header;
2193 struct net *net = sock_net(skb->sk);
2194 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2195 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2196 int err;
2197
2198 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2199 &ovs_reply_header);
2200 if (IS_ERR(reply))
2201 return PTR_ERR(reply);
2202
2203 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2204 if (!nla_reply) {
2205 err = -EMSGSIZE;
2206 goto exit_err;
2207 }
2208
2209 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2210 err = ovs_ct_limit_get_zone_limit(
2211 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2212 reply);
2213 if (err)
2214 goto exit_err;
2215 } else {
2216 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2217 reply);
2218 if (err)
2219 goto exit_err;
2220 }
2221
2222 nla_nest_end(reply, nla_reply);
2223 genlmsg_end(reply, ovs_reply_header);
2224 return genlmsg_reply(reply, info);
2225
2226exit_err:
2227 nlmsg_free(reply);
2228 return err;
2229}
2230
2231static struct genl_ops ct_limit_genl_ops[] = {
2232 { .cmd = OVS_CT_LIMIT_CMD_SET,
2233 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2234 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2235 * privilege. */
2236 .doit = ovs_ct_limit_cmd_set,
2237 },
2238 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2239 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2240 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2241 * privilege. */
2242 .doit = ovs_ct_limit_cmd_del,
2243 },
2244 { .cmd = OVS_CT_LIMIT_CMD_GET,
2245 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2246 .flags = 0, /* OK for unprivileged users. */
2247 .doit = ovs_ct_limit_cmd_get,
2248 },
2249};
2250
2251static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2252 .name = OVS_CT_LIMIT_MCGROUP,
2253};
2254
2255struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2256 .hdrsize = sizeof(struct ovs_header),
2257 .name = OVS_CT_LIMIT_FAMILY,
2258 .version = OVS_CT_LIMIT_VERSION,
2259 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2260 .policy = ct_limit_policy,
2261 .netnsok = true,
2262 .parallel_ops = true,
2263 .ops = ct_limit_genl_ops,
2264 .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2265 .mcgrps = &ovs_ct_limit_multicast_group,
2266 .n_mcgrps = 1,
2267 .module = THIS_MODULE,
2268};
2269#endif
2270
2271int ovs_ct_init(struct net *net)
2272{
2273 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2274 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2275
2276 if (nf_connlabels_get(net, n_bits - 1)) {
2277 ovs_net->xt_label = false;
2278 OVS_NLERR(true, "Failed to set connlabel length");
2279 } else {
2280 ovs_net->xt_label = true;
2281 }
2282
2283#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2284 return ovs_ct_limit_init(net, ovs_net);
2285#else
2286 return 0;
2287#endif
2288}
2289
2290void ovs_ct_exit(struct net *net)
2291{
2292 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2293
2294#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2295 ovs_ct_limit_exit(net, ovs_net);
2296#endif
2297
2298 if (ovs_net->xt_label)
2299 nf_connlabels_put(net);
2300}