blob: 8e4a82b0dffc861535c6fab65b9f20d110ea81b2 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include <linux/uaccess.h>
7#include <linux/netdevice.h>
8#include <linux/etherdevice.h>
9#include <linux/if_ether.h>
10#include <linux/if_vlan.h>
11#include <net/llc_pdu.h>
12#include <linux/kernel.h>
13#include <linux/jhash.h>
14#include <linux/jiffies.h>
15#include <linux/llc.h>
16#include <linux/module.h>
17#include <linux/in.h>
18#include <linux/rcupdate.h>
19#include <linux/cpumask.h>
20#include <linux/if_arp.h>
21#include <linux/ip.h>
22#include <linux/ipv6.h>
23#include <linux/mpls.h>
24#include <linux/sctp.h>
25#include <linux/smp.h>
26#include <linux/tcp.h>
27#include <linux/udp.h>
28#include <linux/icmp.h>
29#include <linux/icmpv6.h>
30#include <linux/rculist.h>
31#include <net/ip.h>
32#include <net/ip_tunnels.h>
33#include <net/ipv6.h>
34#include <net/mpls.h>
35#include <net/ndisc.h>
36#include <net/nsh.h>
37
38#include "conntrack.h"
39#include "datapath.h"
40#include "flow.h"
41#include "flow_netlink.h"
42#include "vport.h"
43
44u64 ovs_flow_used_time(unsigned long flow_jiffies)
45{
46 struct timespec64 cur_ts;
47 u64 cur_ms, idle_ms;
48
49 ktime_get_ts64(&cur_ts);
50 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
51 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
52 cur_ts.tv_nsec / NSEC_PER_MSEC;
53
54 return cur_ms - idle_ms;
55}
56
57#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
58
59void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
60 const struct sk_buff *skb)
61{
62 struct sw_flow_stats *stats;
63 unsigned int cpu = smp_processor_id();
64 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
65
66 stats = rcu_dereference(flow->stats[cpu]);
67
68 /* Check if already have CPU-specific stats. */
69 if (likely(stats)) {
70 spin_lock(&stats->lock);
71 /* Mark if we write on the pre-allocated stats. */
72 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
73 flow->stats_last_writer = cpu;
74 } else {
75 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
76 spin_lock(&stats->lock);
77
78 /* If the current CPU is the only writer on the
79 * pre-allocated stats keep using them.
80 */
81 if (unlikely(flow->stats_last_writer != cpu)) {
82 /* A previous locker may have already allocated the
83 * stats, so we need to check again. If CPU-specific
84 * stats were already allocated, we update the pre-
85 * allocated stats as we have already locked them.
86 */
87 if (likely(flow->stats_last_writer != -1) &&
88 likely(!rcu_access_pointer(flow->stats[cpu]))) {
89 /* Try to allocate CPU-specific stats. */
90 struct sw_flow_stats *new_stats;
91
92 new_stats =
93 kmem_cache_alloc_node(flow_stats_cache,
94 GFP_NOWAIT |
95 __GFP_THISNODE |
96 __GFP_NOWARN |
97 __GFP_NOMEMALLOC,
98 numa_node_id());
99 if (likely(new_stats)) {
100 new_stats->used = jiffies;
101 new_stats->packet_count = 1;
102 new_stats->byte_count = len;
103 new_stats->tcp_flags = tcp_flags;
104 spin_lock_init(&new_stats->lock);
105
106 rcu_assign_pointer(flow->stats[cpu],
107 new_stats);
108 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
109 goto unlock;
110 }
111 }
112 flow->stats_last_writer = cpu;
113 }
114 }
115
116 stats->used = jiffies;
117 stats->packet_count++;
118 stats->byte_count += len;
119 stats->tcp_flags |= tcp_flags;
120unlock:
121 spin_unlock(&stats->lock);
122}
123
124/* Must be called with rcu_read_lock or ovs_mutex. */
125void ovs_flow_stats_get(const struct sw_flow *flow,
126 struct ovs_flow_stats *ovs_stats,
127 unsigned long *used, __be16 *tcp_flags)
128{
129 int cpu;
130
131 *used = 0;
132 *tcp_flags = 0;
133 memset(ovs_stats, 0, sizeof(*ovs_stats));
134
135 /* We open code this to make sure cpu 0 is always considered */
136 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
137 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
138
139 if (stats) {
140 /* Local CPU may write on non-local stats, so we must
141 * block bottom-halves here.
142 */
143 spin_lock_bh(&stats->lock);
144 if (!*used || time_after(stats->used, *used))
145 *used = stats->used;
146 *tcp_flags |= stats->tcp_flags;
147 ovs_stats->n_packets += stats->packet_count;
148 ovs_stats->n_bytes += stats->byte_count;
149 spin_unlock_bh(&stats->lock);
150 }
151 }
152}
153
154/* Called with ovs_mutex. */
155void ovs_flow_stats_clear(struct sw_flow *flow)
156{
157 int cpu;
158
159 /* We open code this to make sure cpu 0 is always considered */
160 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
161 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
162
163 if (stats) {
164 spin_lock_bh(&stats->lock);
165 stats->used = 0;
166 stats->packet_count = 0;
167 stats->byte_count = 0;
168 stats->tcp_flags = 0;
169 spin_unlock_bh(&stats->lock);
170 }
171 }
172}
173
174static int check_header(struct sk_buff *skb, int len)
175{
176 if (unlikely(skb->len < len))
177 return -EINVAL;
178 if (unlikely(!pskb_may_pull(skb, len)))
179 return -ENOMEM;
180 return 0;
181}
182
183static bool arphdr_ok(struct sk_buff *skb)
184{
185 return pskb_may_pull(skb, skb_network_offset(skb) +
186 sizeof(struct arp_eth_header));
187}
188
189static int check_iphdr(struct sk_buff *skb)
190{
191 unsigned int nh_ofs = skb_network_offset(skb);
192 unsigned int ip_len;
193 int err;
194
195 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
196 if (unlikely(err))
197 return err;
198
199 ip_len = ip_hdrlen(skb);
200 if (unlikely(ip_len < sizeof(struct iphdr) ||
201 skb->len < nh_ofs + ip_len))
202 return -EINVAL;
203
204 skb_set_transport_header(skb, nh_ofs + ip_len);
205 return 0;
206}
207
208static bool tcphdr_ok(struct sk_buff *skb)
209{
210 int th_ofs = skb_transport_offset(skb);
211 int tcp_len;
212
213 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
214 return false;
215
216 tcp_len = tcp_hdrlen(skb);
217 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
218 skb->len < th_ofs + tcp_len))
219 return false;
220
221 return true;
222}
223
224static bool udphdr_ok(struct sk_buff *skb)
225{
226 return pskb_may_pull(skb, skb_transport_offset(skb) +
227 sizeof(struct udphdr));
228}
229
230static bool sctphdr_ok(struct sk_buff *skb)
231{
232 return pskb_may_pull(skb, skb_transport_offset(skb) +
233 sizeof(struct sctphdr));
234}
235
236static bool icmphdr_ok(struct sk_buff *skb)
237{
238 return pskb_may_pull(skb, skb_transport_offset(skb) +
239 sizeof(struct icmphdr));
240}
241
242static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
243{
244 unsigned short frag_off;
245 unsigned int payload_ofs = 0;
246 unsigned int nh_ofs = skb_network_offset(skb);
247 unsigned int nh_len;
248 struct ipv6hdr *nh;
249 int err, nexthdr, flags = 0;
250
251 err = check_header(skb, nh_ofs + sizeof(*nh));
252 if (unlikely(err))
253 return err;
254
255 nh = ipv6_hdr(skb);
256
257 key->ip.proto = NEXTHDR_NONE;
258 key->ip.tos = ipv6_get_dsfield(nh);
259 key->ip.ttl = nh->hop_limit;
260 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
261 key->ipv6.addr.src = nh->saddr;
262 key->ipv6.addr.dst = nh->daddr;
263
264 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
265 if (flags & IP6_FH_F_FRAG) {
266 if (frag_off) {
267 key->ip.frag = OVS_FRAG_TYPE_LATER;
268 key->ip.proto = NEXTHDR_FRAGMENT;
269 return 0;
270 }
271 key->ip.frag = OVS_FRAG_TYPE_FIRST;
272 } else {
273 key->ip.frag = OVS_FRAG_TYPE_NONE;
274 }
275
276 /* Delayed handling of error in ipv6_find_hdr() as it
277 * always sets flags and frag_off to a valid value which may be
278 * used to set key->ip.frag above.
279 */
280 if (unlikely(nexthdr < 0))
281 return -EPROTO;
282
283 nh_len = payload_ofs - nh_ofs;
284 skb_set_transport_header(skb, nh_ofs + nh_len);
285 key->ip.proto = nexthdr;
286 return nh_len;
287}
288
289static bool icmp6hdr_ok(struct sk_buff *skb)
290{
291 return pskb_may_pull(skb, skb_transport_offset(skb) +
292 sizeof(struct icmp6hdr));
293}
294
295/**
296 * Parse vlan tag from vlan header.
297 * Returns ERROR on memory error.
298 * Returns 0 if it encounters a non-vlan or incomplete packet.
299 * Returns 1 after successfully parsing vlan tag.
300 */
301static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
302 bool untag_vlan)
303{
304 struct vlan_head *vh = (struct vlan_head *)skb->data;
305
306 if (likely(!eth_type_vlan(vh->tpid)))
307 return 0;
308
309 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
310 return 0;
311
312 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
313 sizeof(__be16))))
314 return -ENOMEM;
315
316 vh = (struct vlan_head *)skb->data;
317 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
318 key_vh->tpid = vh->tpid;
319
320 if (unlikely(untag_vlan)) {
321 int offset = skb->data - skb_mac_header(skb);
322 u16 tci;
323 int err;
324
325 __skb_push(skb, offset);
326 err = __skb_vlan_pop(skb, &tci);
327 __skb_pull(skb, offset);
328 if (err)
329 return err;
330 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
331 } else {
332 __skb_pull(skb, sizeof(struct vlan_head));
333 }
334 return 1;
335}
336
337static void clear_vlan(struct sw_flow_key *key)
338{
339 key->eth.vlan.tci = 0;
340 key->eth.vlan.tpid = 0;
341 key->eth.cvlan.tci = 0;
342 key->eth.cvlan.tpid = 0;
343}
344
345static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
346{
347 int res;
348
349 if (skb_vlan_tag_present(skb)) {
350 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
351 key->eth.vlan.tpid = skb->vlan_proto;
352 } else {
353 /* Parse outer vlan tag in the non-accelerated case. */
354 res = parse_vlan_tag(skb, &key->eth.vlan, true);
355 if (res <= 0)
356 return res;
357 }
358
359 /* Parse inner vlan tag. */
360 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
361 if (res <= 0)
362 return res;
363
364 return 0;
365}
366
367static __be16 parse_ethertype(struct sk_buff *skb)
368{
369 struct llc_snap_hdr {
370 u8 dsap; /* Always 0xAA */
371 u8 ssap; /* Always 0xAA */
372 u8 ctrl;
373 u8 oui[3];
374 __be16 ethertype;
375 };
376 struct llc_snap_hdr *llc;
377 __be16 proto;
378
379 proto = *(__be16 *) skb->data;
380 __skb_pull(skb, sizeof(__be16));
381
382 if (eth_proto_is_802_3(proto))
383 return proto;
384
385 if (skb->len < sizeof(struct llc_snap_hdr))
386 return htons(ETH_P_802_2);
387
388 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
389 return htons(0);
390
391 llc = (struct llc_snap_hdr *) skb->data;
392 if (llc->dsap != LLC_SAP_SNAP ||
393 llc->ssap != LLC_SAP_SNAP ||
394 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
395 return htons(ETH_P_802_2);
396
397 __skb_pull(skb, sizeof(struct llc_snap_hdr));
398
399 if (eth_proto_is_802_3(llc->ethertype))
400 return llc->ethertype;
401
402 return htons(ETH_P_802_2);
403}
404
405static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
406 int nh_len)
407{
408 struct icmp6hdr *icmp = icmp6_hdr(skb);
409
410 /* The ICMPv6 type and code fields use the 16-bit transport port
411 * fields, so we need to store them in 16-bit network byte order.
412 */
413 key->tp.src = htons(icmp->icmp6_type);
414 key->tp.dst = htons(icmp->icmp6_code);
415
416 if (icmp->icmp6_code == 0 &&
417 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
418 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
419 int icmp_len = skb->len - skb_transport_offset(skb);
420 struct nd_msg *nd;
421 int offset;
422
423 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
424
425 /* In order to process neighbor discovery options, we need the
426 * entire packet.
427 */
428 if (unlikely(icmp_len < sizeof(*nd)))
429 return 0;
430
431 if (unlikely(skb_linearize(skb)))
432 return -ENOMEM;
433
434 nd = (struct nd_msg *)skb_transport_header(skb);
435 key->ipv6.nd.target = nd->target;
436
437 icmp_len -= sizeof(*nd);
438 offset = 0;
439 while (icmp_len >= 8) {
440 struct nd_opt_hdr *nd_opt =
441 (struct nd_opt_hdr *)(nd->opt + offset);
442 int opt_len = nd_opt->nd_opt_len * 8;
443
444 if (unlikely(!opt_len || opt_len > icmp_len))
445 return 0;
446
447 /* Store the link layer address if the appropriate
448 * option is provided. It is considered an error if
449 * the same link layer option is specified twice.
450 */
451 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
452 && opt_len == 8) {
453 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
454 goto invalid;
455 ether_addr_copy(key->ipv6.nd.sll,
456 &nd->opt[offset+sizeof(*nd_opt)]);
457 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
458 && opt_len == 8) {
459 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
460 goto invalid;
461 ether_addr_copy(key->ipv6.nd.tll,
462 &nd->opt[offset+sizeof(*nd_opt)]);
463 }
464
465 icmp_len -= opt_len;
466 offset += opt_len;
467 }
468 }
469
470 return 0;
471
472invalid:
473 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
474 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
475 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
476
477 return 0;
478}
479
480static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
481{
482 struct nshhdr *nh;
483 unsigned int nh_ofs = skb_network_offset(skb);
484 u8 version, length;
485 int err;
486
487 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
488 if (unlikely(err))
489 return err;
490
491 nh = nsh_hdr(skb);
492 version = nsh_get_ver(nh);
493 length = nsh_hdr_len(nh);
494
495 if (version != 0)
496 return -EINVAL;
497
498 err = check_header(skb, nh_ofs + length);
499 if (unlikely(err))
500 return err;
501
502 nh = nsh_hdr(skb);
503 key->nsh.base.flags = nsh_get_flags(nh);
504 key->nsh.base.ttl = nsh_get_ttl(nh);
505 key->nsh.base.mdtype = nh->mdtype;
506 key->nsh.base.np = nh->np;
507 key->nsh.base.path_hdr = nh->path_hdr;
508 switch (key->nsh.base.mdtype) {
509 case NSH_M_TYPE1:
510 if (length != NSH_M_TYPE1_LEN)
511 return -EINVAL;
512 memcpy(key->nsh.context, nh->md1.context,
513 sizeof(nh->md1));
514 break;
515 case NSH_M_TYPE2:
516 memset(key->nsh.context, 0,
517 sizeof(nh->md1));
518 break;
519 default:
520 return -EINVAL;
521 }
522
523 return 0;
524}
525
526/**
527 * key_extract_l3l4 - extracts L3/L4 header information.
528 * @skb: sk_buff that contains the frame, with skb->data pointing to the
529 * L3 header
530 * @key: output flow key
531 *
532 */
533static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
534{
535 int error;
536
537 /* Network layer. */
538 if (key->eth.type == htons(ETH_P_IP)) {
539 struct iphdr *nh;
540 __be16 offset;
541
542 error = check_iphdr(skb);
543 if (unlikely(error)) {
544 memset(&key->ip, 0, sizeof(key->ip));
545 memset(&key->ipv4, 0, sizeof(key->ipv4));
546 if (error == -EINVAL) {
547 skb->transport_header = skb->network_header;
548 error = 0;
549 }
550 return error;
551 }
552
553 nh = ip_hdr(skb);
554 key->ipv4.addr.src = nh->saddr;
555 key->ipv4.addr.dst = nh->daddr;
556
557 key->ip.proto = nh->protocol;
558 key->ip.tos = nh->tos;
559 key->ip.ttl = nh->ttl;
560
561 offset = nh->frag_off & htons(IP_OFFSET);
562 if (offset) {
563 key->ip.frag = OVS_FRAG_TYPE_LATER;
564 memset(&key->tp, 0, sizeof(key->tp));
565 return 0;
566 }
567 if (nh->frag_off & htons(IP_MF) ||
568 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
569 key->ip.frag = OVS_FRAG_TYPE_FIRST;
570 else
571 key->ip.frag = OVS_FRAG_TYPE_NONE;
572
573 /* Transport layer. */
574 if (key->ip.proto == IPPROTO_TCP) {
575 if (tcphdr_ok(skb)) {
576 struct tcphdr *tcp = tcp_hdr(skb);
577 key->tp.src = tcp->source;
578 key->tp.dst = tcp->dest;
579 key->tp.flags = TCP_FLAGS_BE16(tcp);
580 } else {
581 memset(&key->tp, 0, sizeof(key->tp));
582 }
583
584 } else if (key->ip.proto == IPPROTO_UDP) {
585 if (udphdr_ok(skb)) {
586 struct udphdr *udp = udp_hdr(skb);
587 key->tp.src = udp->source;
588 key->tp.dst = udp->dest;
589 } else {
590 memset(&key->tp, 0, sizeof(key->tp));
591 }
592 } else if (key->ip.proto == IPPROTO_SCTP) {
593 if (sctphdr_ok(skb)) {
594 struct sctphdr *sctp = sctp_hdr(skb);
595 key->tp.src = sctp->source;
596 key->tp.dst = sctp->dest;
597 } else {
598 memset(&key->tp, 0, sizeof(key->tp));
599 }
600 } else if (key->ip.proto == IPPROTO_ICMP) {
601 if (icmphdr_ok(skb)) {
602 struct icmphdr *icmp = icmp_hdr(skb);
603 /* The ICMP type and code fields use the 16-bit
604 * transport port fields, so we need to store
605 * them in 16-bit network byte order. */
606 key->tp.src = htons(icmp->type);
607 key->tp.dst = htons(icmp->code);
608 } else {
609 memset(&key->tp, 0, sizeof(key->tp));
610 }
611 }
612
613 } else if (key->eth.type == htons(ETH_P_ARP) ||
614 key->eth.type == htons(ETH_P_RARP)) {
615 struct arp_eth_header *arp;
616 bool arp_available = arphdr_ok(skb);
617
618 arp = (struct arp_eth_header *)skb_network_header(skb);
619
620 if (arp_available &&
621 arp->ar_hrd == htons(ARPHRD_ETHER) &&
622 arp->ar_pro == htons(ETH_P_IP) &&
623 arp->ar_hln == ETH_ALEN &&
624 arp->ar_pln == 4) {
625
626 /* We only match on the lower 8 bits of the opcode. */
627 if (ntohs(arp->ar_op) <= 0xff)
628 key->ip.proto = ntohs(arp->ar_op);
629 else
630 key->ip.proto = 0;
631
632 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
633 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
634 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
635 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
636 } else {
637 memset(&key->ip, 0, sizeof(key->ip));
638 memset(&key->ipv4, 0, sizeof(key->ipv4));
639 }
640 } else if (eth_p_mpls(key->eth.type)) {
641 size_t stack_len = MPLS_HLEN;
642
643 skb_set_inner_network_header(skb, skb->mac_len);
644 while (1) {
645 __be32 lse;
646
647 error = check_header(skb, skb->mac_len + stack_len);
648 if (unlikely(error))
649 return 0;
650
651 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
652
653 if (stack_len == MPLS_HLEN)
654 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
655
656 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
657 if (lse & htonl(MPLS_LS_S_MASK))
658 break;
659
660 stack_len += MPLS_HLEN;
661 }
662 } else if (key->eth.type == htons(ETH_P_IPV6)) {
663 int nh_len; /* IPv6 Header + Extensions */
664
665 nh_len = parse_ipv6hdr(skb, key);
666 if (unlikely(nh_len < 0)) {
667 switch (nh_len) {
668 case -EINVAL:
669 memset(&key->ip, 0, sizeof(key->ip));
670 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
671 /* fall-through */
672 case -EPROTO:
673 skb->transport_header = skb->network_header;
674 error = 0;
675 break;
676 default:
677 error = nh_len;
678 }
679 return error;
680 }
681
682 if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
683 memset(&key->tp, 0, sizeof(key->tp));
684 return 0;
685 }
686 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
687 key->ip.frag = OVS_FRAG_TYPE_FIRST;
688
689 /* Transport layer. */
690 if (key->ip.proto == NEXTHDR_TCP) {
691 if (tcphdr_ok(skb)) {
692 struct tcphdr *tcp = tcp_hdr(skb);
693 key->tp.src = tcp->source;
694 key->tp.dst = tcp->dest;
695 key->tp.flags = TCP_FLAGS_BE16(tcp);
696 } else {
697 memset(&key->tp, 0, sizeof(key->tp));
698 }
699 } else if (key->ip.proto == NEXTHDR_UDP) {
700 if (udphdr_ok(skb)) {
701 struct udphdr *udp = udp_hdr(skb);
702 key->tp.src = udp->source;
703 key->tp.dst = udp->dest;
704 } else {
705 memset(&key->tp, 0, sizeof(key->tp));
706 }
707 } else if (key->ip.proto == NEXTHDR_SCTP) {
708 if (sctphdr_ok(skb)) {
709 struct sctphdr *sctp = sctp_hdr(skb);
710 key->tp.src = sctp->source;
711 key->tp.dst = sctp->dest;
712 } else {
713 memset(&key->tp, 0, sizeof(key->tp));
714 }
715 } else if (key->ip.proto == NEXTHDR_ICMP) {
716 if (icmp6hdr_ok(skb)) {
717 error = parse_icmpv6(skb, key, nh_len);
718 if (error)
719 return error;
720 } else {
721 memset(&key->tp, 0, sizeof(key->tp));
722 }
723 }
724 } else if (key->eth.type == htons(ETH_P_NSH)) {
725 error = parse_nsh(skb, key);
726 if (error)
727 return error;
728 }
729 return 0;
730}
731
732/**
733 * key_extract - extracts a flow key from an Ethernet frame.
734 * @skb: sk_buff that contains the frame, with skb->data pointing to the
735 * Ethernet header
736 * @key: output flow key
737 *
738 * The caller must ensure that skb->len >= ETH_HLEN.
739 *
740 * Returns 0 if successful, otherwise a negative errno value.
741 *
742 * Initializes @skb header fields as follows:
743 *
744 * - skb->mac_header: the L2 header.
745 *
746 * - skb->network_header: just past the L2 header, or just past the
747 * VLAN header, to the first byte of the L2 payload.
748 *
749 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
750 * on output, then just past the IP header, if one is present and
751 * of a correct length, otherwise the same as skb->network_header.
752 * For other key->eth.type values it is left untouched.
753 *
754 * - skb->protocol: the type of the data starting at skb->network_header.
755 * Equals to key->eth.type.
756 */
757static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
758{
759 struct ethhdr *eth;
760
761 /* Flags are always used as part of stats */
762 key->tp.flags = 0;
763
764 skb_reset_mac_header(skb);
765
766 /* Link layer. */
767 clear_vlan(key);
768 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
769 if (unlikely(eth_type_vlan(skb->protocol)))
770 return -EINVAL;
771
772 skb_reset_network_header(skb);
773 key->eth.type = skb->protocol;
774 } else {
775 eth = eth_hdr(skb);
776 ether_addr_copy(key->eth.src, eth->h_source);
777 ether_addr_copy(key->eth.dst, eth->h_dest);
778
779 __skb_pull(skb, 2 * ETH_ALEN);
780 /* We are going to push all headers that we pull, so no need to
781 * update skb->csum here.
782 */
783
784 if (unlikely(parse_vlan(skb, key)))
785 return -ENOMEM;
786
787 key->eth.type = parse_ethertype(skb);
788 if (unlikely(key->eth.type == htons(0)))
789 return -ENOMEM;
790
791 /* Multiple tagged packets need to retain TPID to satisfy
792 * skb_vlan_pop(), which will later shift the ethertype into
793 * skb->protocol.
794 */
795 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
796 skb->protocol = key->eth.cvlan.tpid;
797 else
798 skb->protocol = key->eth.type;
799
800 skb_reset_network_header(skb);
801 __skb_push(skb, skb->data - skb_mac_header(skb));
802 }
803
804 skb_reset_mac_len(skb);
805
806 /* Fill out L3/L4 key info, if any */
807 return key_extract_l3l4(skb, key);
808}
809
810/* In the case of conntrack fragment handling it expects L3 headers,
811 * add a helper.
812 */
813int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
814{
815 return key_extract_l3l4(skb, key);
816}
817
818int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
819{
820 int res;
821
822 res = key_extract(skb, key);
823 if (!res)
824 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
825
826 return res;
827}
828
829static int key_extract_mac_proto(struct sk_buff *skb)
830{
831 switch (skb->dev->type) {
832 case ARPHRD_ETHER:
833 return MAC_PROTO_ETHERNET;
834 case ARPHRD_NONE:
835 if (skb->protocol == htons(ETH_P_TEB))
836 return MAC_PROTO_ETHERNET;
837 return MAC_PROTO_NONE;
838 }
839 WARN_ON_ONCE(1);
840 return -EINVAL;
841}
842
843int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
844 struct sk_buff *skb, struct sw_flow_key *key)
845{
846#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
847 struct tc_skb_ext *tc_ext;
848#endif
849 int res, err;
850
851 /* Extract metadata from packet. */
852 if (tun_info) {
853 key->tun_proto = ip_tunnel_info_af(tun_info);
854 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
855
856 if (tun_info->options_len) {
857 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
858 8)) - 1
859 > sizeof(key->tun_opts));
860
861 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
862 tun_info);
863 key->tun_opts_len = tun_info->options_len;
864 } else {
865 key->tun_opts_len = 0;
866 }
867 } else {
868 key->tun_proto = 0;
869 key->tun_opts_len = 0;
870 memset(&key->tun_key, 0, sizeof(key->tun_key));
871 }
872
873 key->phy.priority = skb->priority;
874 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
875 key->phy.skb_mark = skb->mark;
876 key->ovs_flow_hash = 0;
877 res = key_extract_mac_proto(skb);
878 if (res < 0)
879 return res;
880 key->mac_proto = res;
881
882#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
883 if (static_branch_unlikely(&tc_recirc_sharing_support)) {
884 tc_ext = skb_ext_find(skb, TC_SKB_EXT);
885 key->recirc_id = tc_ext ? tc_ext->chain : 0;
886 } else {
887 key->recirc_id = 0;
888 }
889#else
890 key->recirc_id = 0;
891#endif
892
893 err = key_extract(skb, key);
894 if (!err)
895 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
896 return err;
897}
898
899int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
900 struct sk_buff *skb,
901 struct sw_flow_key *key, bool log)
902{
903 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
904 u64 attrs = 0;
905 int err;
906
907 err = parse_flow_nlattrs(attr, a, &attrs, log);
908 if (err)
909 return -EINVAL;
910
911 /* Extract metadata from netlink attributes. */
912 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
913 if (err)
914 return err;
915
916 /* key_extract assumes that skb->protocol is set-up for
917 * layer 3 packets which is the case for other callers,
918 * in particular packets received from the network stack.
919 * Here the correct value can be set from the metadata
920 * extracted above.
921 * For L2 packet key eth type would be zero. skb protocol
922 * would be set to correct value later during key-extact.
923 */
924
925 skb->protocol = key->eth.type;
926 err = key_extract(skb, key);
927 if (err)
928 return err;
929
930 /* Check that we have conntrack original direction tuple metadata only
931 * for packets for which it makes sense. Otherwise the key may be
932 * corrupted due to overlapping key fields.
933 */
934 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
935 key->eth.type != htons(ETH_P_IP))
936 return -EINVAL;
937 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
938 (key->eth.type != htons(ETH_P_IPV6) ||
939 sw_flow_key_is_nd(key)))
940 return -EINVAL;
941
942 return 0;
943}