blob: df83c59cde7fe362e4b35016b32ed2ee73c82f96 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13#include <linux/module.h>
14
15#include <linux/sched.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/mempool.h>
19#include <linux/smp.h>
20#include <linux/spinlock.h>
21#include <linux/mutex.h>
22#include <linux/freezer.h>
23#include <linux/sched/mm.h>
24
25#include <linux/sunrpc/clnt.h>
26#include <linux/sunrpc/metrics.h>
27
28#include "sunrpc.h"
29
30#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31#define RPCDBG_FACILITY RPCDBG_SCHED
32#endif
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/sunrpc.h>
36
37/*
38 * RPC slabs and memory pools
39 */
40#define RPC_BUFFER_MAXSIZE (2048)
41#define RPC_BUFFER_POOLSIZE (8)
42#define RPC_TASK_POOLSIZE (8)
43static struct kmem_cache *rpc_task_slabp __read_mostly;
44static struct kmem_cache *rpc_buffer_slabp __read_mostly;
45static mempool_t *rpc_task_mempool __read_mostly;
46static mempool_t *rpc_buffer_mempool __read_mostly;
47
48static void rpc_async_schedule(struct work_struct *);
49static void rpc_release_task(struct rpc_task *task);
50static void __rpc_queue_timer_fn(struct work_struct *);
51
52/*
53 * RPC tasks sit here while waiting for conditions to improve.
54 */
55static struct rpc_wait_queue delay_queue;
56
57/*
58 * rpciod-related stuff
59 */
60struct workqueue_struct *rpciod_workqueue __read_mostly;
61struct workqueue_struct *xprtiod_workqueue __read_mostly;
62EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64unsigned long
65rpc_task_timeout(const struct rpc_task *task)
66{
67 unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69 if (timeout != 0) {
70 unsigned long now = jiffies;
71 if (time_before(now, timeout))
72 return timeout - now;
73 }
74 return 0;
75}
76EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78/*
79 * Disable the timer for a given RPC task. Should be called with
80 * queue->lock and bh_disabled in order to avoid races within
81 * rpc_run_timer().
82 */
83static void
84__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85{
86 if (list_empty(&task->u.tk_wait.timer_list))
87 return;
88 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 task->tk_timeout = 0;
90 list_del(&task->u.tk_wait.timer_list);
91 if (list_empty(&queue->timer_list.list))
92 cancel_delayed_work(&queue->timer_list.dwork);
93}
94
95static void
96rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97{
98 unsigned long now = jiffies;
99 queue->timer_list.expires = expires;
100 if (time_before_eq(expires, now))
101 expires = 0;
102 else
103 expires -= now;
104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105}
106
107/*
108 * Set up a timer for the current task.
109 */
110static void
111__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 unsigned long timeout)
113{
114 dprintk("RPC: %5u setting alarm for %u ms\n",
115 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117 task->tk_timeout = timeout;
118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 rpc_set_queue_timer(queue, timeout);
120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121}
122
123static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124{
125 if (queue->priority != priority) {
126 queue->priority = priority;
127 queue->nr = 1U << priority;
128 }
129}
130
131static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132{
133 rpc_set_waitqueue_priority(queue, queue->maxpriority);
134}
135
136/*
137 * Add a request to a queue list
138 */
139static void
140__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141{
142 struct rpc_task *t;
143
144 list_for_each_entry(t, q, u.tk_wait.list) {
145 if (t->tk_owner == task->tk_owner) {
146 list_add_tail(&task->u.tk_wait.links,
147 &t->u.tk_wait.links);
148 /* Cache the queue head in task->u.tk_wait.list */
149 task->u.tk_wait.list.next = q;
150 task->u.tk_wait.list.prev = NULL;
151 return;
152 }
153 }
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 list_add_tail(&task->u.tk_wait.list, q);
156}
157
158/*
159 * Remove request from a queue list
160 */
161static void
162__rpc_list_dequeue_task(struct rpc_task *task)
163{
164 struct list_head *q;
165 struct rpc_task *t;
166
167 if (task->u.tk_wait.list.prev == NULL) {
168 list_del(&task->u.tk_wait.links);
169 return;
170 }
171 if (!list_empty(&task->u.tk_wait.links)) {
172 t = list_first_entry(&task->u.tk_wait.links,
173 struct rpc_task,
174 u.tk_wait.links);
175 /* Assume __rpc_list_enqueue_task() cached the queue head */
176 q = t->u.tk_wait.list.next;
177 list_add_tail(&t->u.tk_wait.list, q);
178 list_del(&task->u.tk_wait.links);
179 }
180 list_del(&task->u.tk_wait.list);
181}
182
183/*
184 * Add new request to a priority queue.
185 */
186static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 struct rpc_task *task,
188 unsigned char queue_priority)
189{
190 if (unlikely(queue_priority > queue->maxpriority))
191 queue_priority = queue->maxpriority;
192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193}
194
195/*
196 * Add new request to wait queue.
197 *
198 * Swapper tasks always get inserted at the head of the queue.
199 * This should avoid many nasty memory deadlocks and hopefully
200 * improve overall performance.
201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202 */
203static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 struct rpc_task *task,
205 unsigned char queue_priority)
206{
207 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
208 if (RPC_IS_PRIORITY(queue))
209 __rpc_add_wait_queue_priority(queue, task, queue_priority);
210 else if (RPC_IS_SWAPPER(task))
211 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
212 else
213 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214 task->tk_waitqueue = queue;
215 queue->qlen++;
216 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
217 smp_wmb();
218 rpc_set_queued(task);
219
220 dprintk("RPC: %5u added to queue %p \"%s\"\n",
221 task->tk_pid, queue, rpc_qname(queue));
222}
223
224/*
225 * Remove request from a priority queue.
226 */
227static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
228{
229 __rpc_list_dequeue_task(task);
230}
231
232/*
233 * Remove request from queue.
234 * Note: must be called with spin lock held.
235 */
236static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
237{
238 __rpc_disable_timer(queue, task);
239 if (RPC_IS_PRIORITY(queue))
240 __rpc_remove_wait_queue_priority(task);
241 else
242 list_del(&task->u.tk_wait.list);
243 queue->qlen--;
244 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
245 task->tk_pid, queue, rpc_qname(queue));
246}
247
248static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
249{
250 int i;
251
252 spin_lock_init(&queue->lock);
253 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
254 INIT_LIST_HEAD(&queue->tasks[i]);
255 queue->maxpriority = nr_queues - 1;
256 rpc_reset_waitqueue_priority(queue);
257 queue->qlen = 0;
258 queue->timer_list.expires = 0;
259 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
260 INIT_LIST_HEAD(&queue->timer_list.list);
261 rpc_assign_waitqueue_name(queue, qname);
262}
263
264void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265{
266 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
267}
268EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
269
270void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
271{
272 __rpc_init_priority_wait_queue(queue, qname, 1);
273}
274EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
275
276void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
277{
278 cancel_delayed_work_sync(&queue->timer_list.dwork);
279}
280EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
281
282static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
283{
284 freezable_schedule_unsafe();
285 if (signal_pending_state(mode, current))
286 return -ERESTARTSYS;
287 return 0;
288}
289
290#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
291static void rpc_task_set_debuginfo(struct rpc_task *task)
292{
293 static atomic_t rpc_pid;
294
295 task->tk_pid = atomic_inc_return(&rpc_pid);
296}
297#else
298static inline void rpc_task_set_debuginfo(struct rpc_task *task)
299{
300}
301#endif
302
303static void rpc_set_active(struct rpc_task *task)
304{
305 rpc_task_set_debuginfo(task);
306 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307 trace_rpc_task_begin(task, NULL);
308}
309
310/*
311 * Mark an RPC call as having completed by clearing the 'active' bit
312 * and then waking up all tasks that were sleeping.
313 */
314static int rpc_complete_task(struct rpc_task *task)
315{
316 void *m = &task->tk_runstate;
317 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
318 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
319 unsigned long flags;
320 int ret;
321
322 trace_rpc_task_complete(task, NULL);
323
324 spin_lock_irqsave(&wq->lock, flags);
325 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
326 ret = atomic_dec_and_test(&task->tk_count);
327 if (waitqueue_active(wq))
328 __wake_up_locked_key(wq, TASK_NORMAL, &k);
329 spin_unlock_irqrestore(&wq->lock, flags);
330 return ret;
331}
332
333/*
334 * Allow callers to wait for completion of an RPC call
335 *
336 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
337 * to enforce taking of the wq->lock and hence avoid races with
338 * rpc_complete_task().
339 */
340int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
341{
342 if (action == NULL)
343 action = rpc_wait_bit_killable;
344 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
345 action, TASK_KILLABLE);
346}
347EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
348
349/*
350 * Make an RPC task runnable.
351 *
352 * Note: If the task is ASYNC, and is being made runnable after sitting on an
353 * rpc_wait_queue, this must be called with the queue spinlock held to protect
354 * the wait queue operation.
355 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
356 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
357 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
358 * the RPC_TASK_RUNNING flag.
359 */
360static void rpc_make_runnable(struct workqueue_struct *wq,
361 struct rpc_task *task)
362{
363 bool need_wakeup = !rpc_test_and_set_running(task);
364
365 rpc_clear_queued(task);
366 if (!need_wakeup)
367 return;
368 if (RPC_IS_ASYNC(task)) {
369 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
370 queue_work(wq, &task->u.tk_work);
371 } else {
372 smp_mb__after_atomic();
373 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
374 }
375}
376
377/*
378 * Prepare for sleeping on a wait queue.
379 * By always appending tasks to the list we ensure FIFO behavior.
380 * NB: An RPC task will only receive interrupt-driven events as long
381 * as it's on a wait queue.
382 */
383static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
384 struct rpc_task *task,
385 unsigned char queue_priority)
386{
387 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
388 task->tk_pid, rpc_qname(q), jiffies);
389
390 trace_rpc_task_sleep(task, q);
391
392 __rpc_add_wait_queue(q, task, queue_priority);
393
394}
395
396static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
397 struct rpc_task *task,
398 unsigned char queue_priority)
399{
400 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
401 return;
402 __rpc_do_sleep_on_priority(q, task, queue_priority);
403}
404
405static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
406 struct rpc_task *task, unsigned long timeout,
407 unsigned char queue_priority)
408{
409 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
410 return;
411 if (time_is_after_jiffies(timeout)) {
412 __rpc_do_sleep_on_priority(q, task, queue_priority);
413 __rpc_add_timer(q, task, timeout);
414 } else
415 task->tk_status = -ETIMEDOUT;
416}
417
418static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
419{
420 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
421 task->tk_callback = action;
422}
423
424static bool rpc_sleep_check_activated(struct rpc_task *task)
425{
426 /* We shouldn't ever put an inactive task to sleep */
427 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
428 task->tk_status = -EIO;
429 rpc_put_task_async(task);
430 return false;
431 }
432 return true;
433}
434
435void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
436 rpc_action action, unsigned long timeout)
437{
438 if (!rpc_sleep_check_activated(task))
439 return;
440
441 rpc_set_tk_callback(task, action);
442
443 /*
444 * Protect the queue operations.
445 */
446 spin_lock(&q->lock);
447 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
448 spin_unlock(&q->lock);
449}
450EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
451
452void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
453 rpc_action action)
454{
455 if (!rpc_sleep_check_activated(task))
456 return;
457
458 rpc_set_tk_callback(task, action);
459
460 WARN_ON_ONCE(task->tk_timeout != 0);
461 /*
462 * Protect the queue operations.
463 */
464 spin_lock(&q->lock);
465 __rpc_sleep_on_priority(q, task, task->tk_priority);
466 spin_unlock(&q->lock);
467}
468EXPORT_SYMBOL_GPL(rpc_sleep_on);
469
470void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
471 struct rpc_task *task, unsigned long timeout, int priority)
472{
473 if (!rpc_sleep_check_activated(task))
474 return;
475
476 priority -= RPC_PRIORITY_LOW;
477 /*
478 * Protect the queue operations.
479 */
480 spin_lock(&q->lock);
481 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
482 spin_unlock(&q->lock);
483}
484EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
485
486void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
487 int priority)
488{
489 if (!rpc_sleep_check_activated(task))
490 return;
491
492 WARN_ON_ONCE(task->tk_timeout != 0);
493 priority -= RPC_PRIORITY_LOW;
494 /*
495 * Protect the queue operations.
496 */
497 spin_lock(&q->lock);
498 __rpc_sleep_on_priority(q, task, priority);
499 spin_unlock(&q->lock);
500}
501EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
502
503/**
504 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
505 * @wq: workqueue on which to run task
506 * @queue: wait queue
507 * @task: task to be woken up
508 *
509 * Caller must hold queue->lock, and have cleared the task queued flag.
510 */
511static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
512 struct rpc_wait_queue *queue,
513 struct rpc_task *task)
514{
515 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
516 task->tk_pid, jiffies);
517
518 /* Has the task been executed yet? If not, we cannot wake it up! */
519 if (!RPC_IS_ACTIVATED(task)) {
520 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
521 return;
522 }
523
524 trace_rpc_task_wakeup(task, queue);
525
526 __rpc_remove_wait_queue(queue, task);
527
528 rpc_make_runnable(wq, task);
529
530 dprintk("RPC: __rpc_wake_up_task done\n");
531}
532
533/*
534 * Wake up a queued task while the queue lock is being held
535 */
536static struct rpc_task *
537rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
538 struct rpc_wait_queue *queue, struct rpc_task *task,
539 bool (*action)(struct rpc_task *, void *), void *data)
540{
541 if (RPC_IS_QUEUED(task)) {
542 smp_rmb();
543 if (task->tk_waitqueue == queue) {
544 if (action == NULL || action(task, data)) {
545 __rpc_do_wake_up_task_on_wq(wq, queue, task);
546 return task;
547 }
548 }
549 }
550 return NULL;
551}
552
553/*
554 * Wake up a queued task while the queue lock is being held
555 */
556static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
557 struct rpc_task *task)
558{
559 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
560 task, NULL, NULL);
561}
562
563/*
564 * Wake up a task on a specific queue
565 */
566void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
567{
568 if (!RPC_IS_QUEUED(task))
569 return;
570 spin_lock(&queue->lock);
571 rpc_wake_up_task_queue_locked(queue, task);
572 spin_unlock(&queue->lock);
573}
574EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
575
576static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
577{
578 task->tk_status = *(int *)status;
579 return true;
580}
581
582static void
583rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
584 struct rpc_task *task, int status)
585{
586 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
587 task, rpc_task_action_set_status, &status);
588}
589
590/**
591 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
592 * @queue: pointer to rpc_wait_queue
593 * @task: pointer to rpc_task
594 * @status: integer error value
595 *
596 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
597 * set to the value of @status.
598 */
599void
600rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
601 struct rpc_task *task, int status)
602{
603 if (!RPC_IS_QUEUED(task))
604 return;
605 spin_lock(&queue->lock);
606 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
607 spin_unlock(&queue->lock);
608}
609
610/*
611 * Wake up the next task on a priority queue.
612 */
613static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
614{
615 struct list_head *q;
616 struct rpc_task *task;
617
618 /*
619 * Service the privileged queue.
620 */
621 q = &queue->tasks[RPC_NR_PRIORITY - 1];
622 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
623 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
624 goto out;
625 }
626
627 /*
628 * Service a batch of tasks from a single owner.
629 */
630 q = &queue->tasks[queue->priority];
631 if (!list_empty(q) && queue->nr) {
632 queue->nr--;
633 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
634 goto out;
635 }
636
637 /*
638 * Service the next queue.
639 */
640 do {
641 if (q == &queue->tasks[0])
642 q = &queue->tasks[queue->maxpriority];
643 else
644 q = q - 1;
645 if (!list_empty(q)) {
646 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
647 goto new_queue;
648 }
649 } while (q != &queue->tasks[queue->priority]);
650
651 rpc_reset_waitqueue_priority(queue);
652 return NULL;
653
654new_queue:
655 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
656out:
657 return task;
658}
659
660static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
661{
662 if (RPC_IS_PRIORITY(queue))
663 return __rpc_find_next_queued_priority(queue);
664 if (!list_empty(&queue->tasks[0]))
665 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
666 return NULL;
667}
668
669/*
670 * Wake up the first task on the wait queue.
671 */
672struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
673 struct rpc_wait_queue *queue,
674 bool (*func)(struct rpc_task *, void *), void *data)
675{
676 struct rpc_task *task = NULL;
677
678 dprintk("RPC: wake_up_first(%p \"%s\")\n",
679 queue, rpc_qname(queue));
680 spin_lock(&queue->lock);
681 task = __rpc_find_next_queued(queue);
682 if (task != NULL)
683 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
684 task, func, data);
685 spin_unlock(&queue->lock);
686
687 return task;
688}
689
690/*
691 * Wake up the first task on the wait queue.
692 */
693struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
694 bool (*func)(struct rpc_task *, void *), void *data)
695{
696 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
697}
698EXPORT_SYMBOL_GPL(rpc_wake_up_first);
699
700static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
701{
702 return true;
703}
704
705/*
706 * Wake up the next task on the wait queue.
707*/
708struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
709{
710 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
711}
712EXPORT_SYMBOL_GPL(rpc_wake_up_next);
713
714/**
715 * rpc_wake_up_locked - wake up all rpc_tasks
716 * @queue: rpc_wait_queue on which the tasks are sleeping
717 *
718 */
719static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
720{
721 struct rpc_task *task;
722
723 for (;;) {
724 task = __rpc_find_next_queued(queue);
725 if (task == NULL)
726 break;
727 rpc_wake_up_task_queue_locked(queue, task);
728 }
729}
730
731/**
732 * rpc_wake_up - wake up all rpc_tasks
733 * @queue: rpc_wait_queue on which the tasks are sleeping
734 *
735 * Grabs queue->lock
736 */
737void rpc_wake_up(struct rpc_wait_queue *queue)
738{
739 spin_lock(&queue->lock);
740 rpc_wake_up_locked(queue);
741 spin_unlock(&queue->lock);
742}
743EXPORT_SYMBOL_GPL(rpc_wake_up);
744
745/**
746 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
747 * @queue: rpc_wait_queue on which the tasks are sleeping
748 * @status: status value to set
749 */
750static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
751{
752 struct rpc_task *task;
753
754 for (;;) {
755 task = __rpc_find_next_queued(queue);
756 if (task == NULL)
757 break;
758 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
759 }
760}
761
762/**
763 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
764 * @queue: rpc_wait_queue on which the tasks are sleeping
765 * @status: status value to set
766 *
767 * Grabs queue->lock
768 */
769void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
770{
771 spin_lock(&queue->lock);
772 rpc_wake_up_status_locked(queue, status);
773 spin_unlock(&queue->lock);
774}
775EXPORT_SYMBOL_GPL(rpc_wake_up_status);
776
777static void __rpc_queue_timer_fn(struct work_struct *work)
778{
779 struct rpc_wait_queue *queue = container_of(work,
780 struct rpc_wait_queue,
781 timer_list.dwork.work);
782 struct rpc_task *task, *n;
783 unsigned long expires, now, timeo;
784
785 spin_lock(&queue->lock);
786 expires = now = jiffies;
787 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
788 timeo = task->tk_timeout;
789 if (time_after_eq(now, timeo)) {
790 dprintk("RPC: %5u timeout\n", task->tk_pid);
791 task->tk_status = -ETIMEDOUT;
792 rpc_wake_up_task_queue_locked(queue, task);
793 continue;
794 }
795 if (expires == now || time_after(expires, timeo))
796 expires = timeo;
797 }
798 if (!list_empty(&queue->timer_list.list))
799 rpc_set_queue_timer(queue, expires);
800 spin_unlock(&queue->lock);
801}
802
803static void __rpc_atrun(struct rpc_task *task)
804{
805 if (task->tk_status == -ETIMEDOUT)
806 task->tk_status = 0;
807}
808
809/*
810 * Run a task at a later time
811 */
812void rpc_delay(struct rpc_task *task, unsigned long delay)
813{
814 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
815}
816EXPORT_SYMBOL_GPL(rpc_delay);
817
818/*
819 * Helper to call task->tk_ops->rpc_call_prepare
820 */
821void rpc_prepare_task(struct rpc_task *task)
822{
823 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
824}
825
826static void
827rpc_init_task_statistics(struct rpc_task *task)
828{
829 /* Initialize retry counters */
830 task->tk_garb_retry = 2;
831 task->tk_cred_retry = 2;
832
833 /* starting timestamp */
834 task->tk_start = ktime_get();
835}
836
837static void
838rpc_reset_task_statistics(struct rpc_task *task)
839{
840 task->tk_timeouts = 0;
841 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
842 rpc_init_task_statistics(task);
843}
844
845/*
846 * Helper that calls task->tk_ops->rpc_call_done if it exists
847 */
848void rpc_exit_task(struct rpc_task *task)
849{
850 trace_rpc_task_end(task, task->tk_action);
851 task->tk_action = NULL;
852 if (task->tk_ops->rpc_count_stats)
853 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
854 else if (task->tk_client)
855 rpc_count_iostats(task, task->tk_client->cl_metrics);
856 if (task->tk_ops->rpc_call_done != NULL) {
857 task->tk_ops->rpc_call_done(task, task->tk_calldata);
858 if (task->tk_action != NULL) {
859 /* Always release the RPC slot and buffer memory */
860 xprt_release(task);
861 rpc_reset_task_statistics(task);
862 }
863 }
864}
865
866void rpc_signal_task(struct rpc_task *task)
867{
868 struct rpc_wait_queue *queue;
869
870 if (!RPC_IS_ACTIVATED(task))
871 return;
872 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
873 smp_mb__after_atomic();
874 queue = READ_ONCE(task->tk_waitqueue);
875 if (queue)
876 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
877}
878
879void rpc_exit(struct rpc_task *task, int status)
880{
881 task->tk_status = status;
882 task->tk_action = rpc_exit_task;
883 rpc_wake_up_queued_task(task->tk_waitqueue, task);
884}
885EXPORT_SYMBOL_GPL(rpc_exit);
886
887void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
888{
889 if (ops->rpc_release != NULL)
890 ops->rpc_release(calldata);
891}
892
893/*
894 * This is the RPC `scheduler' (or rather, the finite state machine).
895 */
896static void __rpc_execute(struct rpc_task *task)
897{
898 struct rpc_wait_queue *queue;
899 int task_is_async = RPC_IS_ASYNC(task);
900 int status = 0;
901
902 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
903 task->tk_pid, task->tk_flags);
904
905 WARN_ON_ONCE(RPC_IS_QUEUED(task));
906 if (RPC_IS_QUEUED(task))
907 return;
908
909 for (;;) {
910 void (*do_action)(struct rpc_task *);
911
912 /*
913 * Perform the next FSM step or a pending callback.
914 *
915 * tk_action may be NULL if the task has been killed.
916 * In particular, note that rpc_killall_tasks may
917 * do this at any time, so beware when dereferencing.
918 */
919 do_action = task->tk_action;
920 if (task->tk_callback) {
921 do_action = task->tk_callback;
922 task->tk_callback = NULL;
923 }
924 if (!do_action)
925 break;
926 trace_rpc_task_run_action(task, do_action);
927 do_action(task);
928
929 /*
930 * Lockless check for whether task is sleeping or not.
931 */
932 if (!RPC_IS_QUEUED(task))
933 continue;
934
935 /*
936 * Signalled tasks should exit rather than sleep.
937 */
938 if (RPC_SIGNALLED(task)) {
939 task->tk_rpc_status = -ERESTARTSYS;
940 rpc_exit(task, -ERESTARTSYS);
941 }
942
943 /*
944 * The queue->lock protects against races with
945 * rpc_make_runnable().
946 *
947 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
948 * rpc_task, rpc_make_runnable() can assign it to a
949 * different workqueue. We therefore cannot assume that the
950 * rpc_task pointer may still be dereferenced.
951 */
952 queue = task->tk_waitqueue;
953 spin_lock(&queue->lock);
954 if (!RPC_IS_QUEUED(task)) {
955 spin_unlock(&queue->lock);
956 continue;
957 }
958 rpc_clear_running(task);
959 spin_unlock(&queue->lock);
960 if (task_is_async)
961 return;
962
963 /* sync task: sleep here */
964 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
965 status = out_of_line_wait_on_bit(&task->tk_runstate,
966 RPC_TASK_QUEUED, rpc_wait_bit_killable,
967 TASK_KILLABLE);
968 if (status < 0) {
969 /*
970 * When a sync task receives a signal, it exits with
971 * -ERESTARTSYS. In order to catch any callbacks that
972 * clean up after sleeping on some queue, we don't
973 * break the loop here, but go around once more.
974 */
975 dprintk("RPC: %5u got signal\n", task->tk_pid);
976 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
977 task->tk_rpc_status = -ERESTARTSYS;
978 rpc_exit(task, -ERESTARTSYS);
979 }
980 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
981 }
982
983 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
984 task->tk_status);
985 /* Release all resources associated with the task */
986 rpc_release_task(task);
987}
988
989/*
990 * User-visible entry point to the scheduler.
991 *
992 * This may be called recursively if e.g. an async NFS task updates
993 * the attributes and finds that dirty pages must be flushed.
994 * NOTE: Upon exit of this function the task is guaranteed to be
995 * released. In particular note that tk_release() will have
996 * been called, so your task memory may have been freed.
997 */
998void rpc_execute(struct rpc_task *task)
999{
1000 bool is_async = RPC_IS_ASYNC(task);
1001
1002 rpc_set_active(task);
1003 rpc_make_runnable(rpciod_workqueue, task);
1004 if (!is_async) {
1005 unsigned int pflags = memalloc_nofs_save();
1006 __rpc_execute(task);
1007 memalloc_nofs_restore(pflags);
1008 }
1009}
1010
1011static void rpc_async_schedule(struct work_struct *work)
1012{
1013 unsigned int pflags = memalloc_nofs_save();
1014
1015 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1016 memalloc_nofs_restore(pflags);
1017}
1018
1019/**
1020 * rpc_malloc - allocate RPC buffer resources
1021 * @task: RPC task
1022 *
1023 * A single memory region is allocated, which is split between the
1024 * RPC call and RPC reply that this task is being used for. When
1025 * this RPC is retired, the memory is released by calling rpc_free.
1026 *
1027 * To prevent rpciod from hanging, this allocator never sleeps,
1028 * returning -ENOMEM and suppressing warning if the request cannot
1029 * be serviced immediately. The caller can arrange to sleep in a
1030 * way that is safe for rpciod.
1031 *
1032 * Most requests are 'small' (under 2KiB) and can be serviced from a
1033 * mempool, ensuring that NFS reads and writes can always proceed,
1034 * and that there is good locality of reference for these buffers.
1035 */
1036int rpc_malloc(struct rpc_task *task)
1037{
1038 struct rpc_rqst *rqst = task->tk_rqstp;
1039 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1040 struct rpc_buffer *buf;
1041 gfp_t gfp = GFP_NOFS;
1042
1043 if (RPC_IS_ASYNC(task))
1044 gfp = GFP_NOWAIT | __GFP_NOWARN;
1045 if (RPC_IS_SWAPPER(task))
1046 gfp |= __GFP_MEMALLOC;
1047
1048 size += sizeof(struct rpc_buffer);
1049 if (size <= RPC_BUFFER_MAXSIZE)
1050 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1051 else
1052 buf = kmalloc(size, gfp);
1053
1054 if (!buf)
1055 return -ENOMEM;
1056
1057 buf->len = size;
1058 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1059 task->tk_pid, size, buf);
1060 rqst->rq_buffer = buf->data;
1061 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1062 return 0;
1063}
1064EXPORT_SYMBOL_GPL(rpc_malloc);
1065
1066/**
1067 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1068 * @task: RPC task
1069 *
1070 */
1071void rpc_free(struct rpc_task *task)
1072{
1073 void *buffer = task->tk_rqstp->rq_buffer;
1074 size_t size;
1075 struct rpc_buffer *buf;
1076
1077 buf = container_of(buffer, struct rpc_buffer, data);
1078 size = buf->len;
1079
1080 dprintk("RPC: freeing buffer of size %zu at %p\n",
1081 size, buf);
1082
1083 if (size <= RPC_BUFFER_MAXSIZE)
1084 mempool_free(buf, rpc_buffer_mempool);
1085 else
1086 kfree(buf);
1087}
1088EXPORT_SYMBOL_GPL(rpc_free);
1089
1090/*
1091 * Creation and deletion of RPC task structures
1092 */
1093static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1094{
1095 memset(task, 0, sizeof(*task));
1096 atomic_set(&task->tk_count, 1);
1097 task->tk_flags = task_setup_data->flags;
1098 task->tk_ops = task_setup_data->callback_ops;
1099 task->tk_calldata = task_setup_data->callback_data;
1100 INIT_LIST_HEAD(&task->tk_task);
1101
1102 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1103 task->tk_owner = current->tgid;
1104
1105 /* Initialize workqueue for async tasks */
1106 task->tk_workqueue = task_setup_data->workqueue;
1107
1108 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1109 xprt_get(task_setup_data->rpc_xprt));
1110
1111 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1112
1113 if (task->tk_ops->rpc_call_prepare != NULL)
1114 task->tk_action = rpc_prepare_task;
1115
1116 rpc_init_task_statistics(task);
1117
1118 dprintk("RPC: new task initialized, procpid %u\n",
1119 task_pid_nr(current));
1120}
1121
1122static struct rpc_task *
1123rpc_alloc_task(void)
1124{
1125 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1126}
1127
1128/*
1129 * Create a new task for the specified client.
1130 */
1131struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1132{
1133 struct rpc_task *task = setup_data->task;
1134 unsigned short flags = 0;
1135
1136 if (task == NULL) {
1137 task = rpc_alloc_task();
1138 flags = RPC_TASK_DYNAMIC;
1139 }
1140
1141 rpc_init_task(task, setup_data);
1142 task->tk_flags |= flags;
1143 dprintk("RPC: allocated task %p\n", task);
1144 return task;
1145}
1146
1147/*
1148 * rpc_free_task - release rpc task and perform cleanups
1149 *
1150 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1151 * in order to work around a workqueue dependency issue.
1152 *
1153 * Tejun Heo states:
1154 * "Workqueue currently considers two work items to be the same if they're
1155 * on the same address and won't execute them concurrently - ie. it
1156 * makes a work item which is queued again while being executed wait
1157 * for the previous execution to complete.
1158 *
1159 * If a work function frees the work item, and then waits for an event
1160 * which should be performed by another work item and *that* work item
1161 * recycles the freed work item, it can create a false dependency loop.
1162 * There really is no reliable way to detect this short of verifying
1163 * every memory free."
1164 *
1165 */
1166static void rpc_free_task(struct rpc_task *task)
1167{
1168 unsigned short tk_flags = task->tk_flags;
1169
1170 put_rpccred(task->tk_op_cred);
1171 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1172
1173 if (tk_flags & RPC_TASK_DYNAMIC) {
1174 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1175 mempool_free(task, rpc_task_mempool);
1176 }
1177}
1178
1179static void rpc_async_release(struct work_struct *work)
1180{
1181 unsigned int pflags = memalloc_nofs_save();
1182
1183 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1184 memalloc_nofs_restore(pflags);
1185}
1186
1187static void rpc_release_resources_task(struct rpc_task *task)
1188{
1189 xprt_release(task);
1190 if (task->tk_msg.rpc_cred) {
1191 put_cred(task->tk_msg.rpc_cred);
1192 task->tk_msg.rpc_cred = NULL;
1193 }
1194 rpc_task_release_client(task);
1195}
1196
1197static void rpc_final_put_task(struct rpc_task *task,
1198 struct workqueue_struct *q)
1199{
1200 if (q != NULL) {
1201 INIT_WORK(&task->u.tk_work, rpc_async_release);
1202 queue_work(q, &task->u.tk_work);
1203 } else
1204 rpc_free_task(task);
1205}
1206
1207static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1208{
1209 if (atomic_dec_and_test(&task->tk_count)) {
1210 rpc_release_resources_task(task);
1211 rpc_final_put_task(task, q);
1212 }
1213}
1214
1215void rpc_put_task(struct rpc_task *task)
1216{
1217 rpc_do_put_task(task, NULL);
1218}
1219EXPORT_SYMBOL_GPL(rpc_put_task);
1220
1221void rpc_put_task_async(struct rpc_task *task)
1222{
1223 rpc_do_put_task(task, task->tk_workqueue);
1224}
1225EXPORT_SYMBOL_GPL(rpc_put_task_async);
1226
1227static void rpc_release_task(struct rpc_task *task)
1228{
1229 dprintk("RPC: %5u release task\n", task->tk_pid);
1230
1231 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1232
1233 rpc_release_resources_task(task);
1234
1235 /*
1236 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1237 * so it should be safe to use task->tk_count as a test for whether
1238 * or not any other processes still hold references to our rpc_task.
1239 */
1240 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1241 /* Wake up anyone who may be waiting for task completion */
1242 if (!rpc_complete_task(task))
1243 return;
1244 } else {
1245 if (!atomic_dec_and_test(&task->tk_count))
1246 return;
1247 }
1248 rpc_final_put_task(task, task->tk_workqueue);
1249}
1250
1251int rpciod_up(void)
1252{
1253 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1254}
1255
1256void rpciod_down(void)
1257{
1258 module_put(THIS_MODULE);
1259}
1260
1261/*
1262 * Start up the rpciod workqueue.
1263 */
1264static int rpciod_start(void)
1265{
1266 struct workqueue_struct *wq;
1267
1268 /*
1269 * Create the rpciod thread and wait for it to start.
1270 */
1271 dprintk("RPC: creating workqueue rpciod\n");
1272 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1273 if (!wq)
1274 goto out_failed;
1275 rpciod_workqueue = wq;
1276 /* Note: highpri because network receive is latency sensitive */
1277 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1278 if (!wq)
1279 goto free_rpciod;
1280 xprtiod_workqueue = wq;
1281 return 1;
1282free_rpciod:
1283 wq = rpciod_workqueue;
1284 rpciod_workqueue = NULL;
1285 destroy_workqueue(wq);
1286out_failed:
1287 return 0;
1288}
1289
1290static void rpciod_stop(void)
1291{
1292 struct workqueue_struct *wq = NULL;
1293
1294 if (rpciod_workqueue == NULL)
1295 return;
1296 dprintk("RPC: destroying workqueue rpciod\n");
1297
1298 wq = rpciod_workqueue;
1299 rpciod_workqueue = NULL;
1300 destroy_workqueue(wq);
1301 wq = xprtiod_workqueue;
1302 xprtiod_workqueue = NULL;
1303 destroy_workqueue(wq);
1304}
1305
1306void
1307rpc_destroy_mempool(void)
1308{
1309 rpciod_stop();
1310 mempool_destroy(rpc_buffer_mempool);
1311 mempool_destroy(rpc_task_mempool);
1312 kmem_cache_destroy(rpc_task_slabp);
1313 kmem_cache_destroy(rpc_buffer_slabp);
1314 rpc_destroy_wait_queue(&delay_queue);
1315}
1316
1317int
1318rpc_init_mempool(void)
1319{
1320 /*
1321 * The following is not strictly a mempool initialisation,
1322 * but there is no harm in doing it here
1323 */
1324 rpc_init_wait_queue(&delay_queue, "delayq");
1325 if (!rpciod_start())
1326 goto err_nomem;
1327
1328 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1329 sizeof(struct rpc_task),
1330 0, SLAB_HWCACHE_ALIGN,
1331 NULL);
1332 if (!rpc_task_slabp)
1333 goto err_nomem;
1334 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1335 RPC_BUFFER_MAXSIZE,
1336 0, SLAB_HWCACHE_ALIGN,
1337 NULL);
1338 if (!rpc_buffer_slabp)
1339 goto err_nomem;
1340 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1341 rpc_task_slabp);
1342 if (!rpc_task_mempool)
1343 goto err_nomem;
1344 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1345 rpc_buffer_slabp);
1346 if (!rpc_buffer_mempool)
1347 goto err_nomem;
1348 return 0;
1349err_nomem:
1350 rpc_destroy_mempool();
1351 return -ENOMEM;
1352}