b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * multiorder.c: Multi-order radix tree entry testing |
| 4 | * Copyright (c) 2016 Intel Corporation |
| 5 | * Author: Ross Zwisler <ross.zwisler@linux.intel.com> |
| 6 | * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> |
| 7 | */ |
| 8 | #include <linux/radix-tree.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/errno.h> |
| 11 | #include <pthread.h> |
| 12 | |
| 13 | #include "test.h" |
| 14 | |
| 15 | static int item_insert_order(struct xarray *xa, unsigned long index, |
| 16 | unsigned order) |
| 17 | { |
| 18 | XA_STATE_ORDER(xas, xa, index, order); |
| 19 | struct item *item = item_create(index, order); |
| 20 | |
| 21 | do { |
| 22 | xas_lock(&xas); |
| 23 | xas_store(&xas, item); |
| 24 | xas_unlock(&xas); |
| 25 | } while (xas_nomem(&xas, GFP_KERNEL)); |
| 26 | |
| 27 | if (!xas_error(&xas)) |
| 28 | return 0; |
| 29 | |
| 30 | free(item); |
| 31 | return xas_error(&xas); |
| 32 | } |
| 33 | |
| 34 | void multiorder_iteration(struct xarray *xa) |
| 35 | { |
| 36 | XA_STATE(xas, xa, 0); |
| 37 | struct item *item; |
| 38 | int i, j, err; |
| 39 | |
| 40 | #define NUM_ENTRIES 11 |
| 41 | int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; |
| 42 | int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; |
| 43 | |
| 44 | printv(1, "Multiorder iteration test\n"); |
| 45 | |
| 46 | for (i = 0; i < NUM_ENTRIES; i++) { |
| 47 | err = item_insert_order(xa, index[i], order[i]); |
| 48 | assert(!err); |
| 49 | } |
| 50 | |
| 51 | for (j = 0; j < 256; j++) { |
| 52 | for (i = 0; i < NUM_ENTRIES; i++) |
| 53 | if (j <= (index[i] | ((1 << order[i]) - 1))) |
| 54 | break; |
| 55 | |
| 56 | xas_set(&xas, j); |
| 57 | xas_for_each(&xas, item, ULONG_MAX) { |
| 58 | int height = order[i] / XA_CHUNK_SHIFT; |
| 59 | int shift = height * XA_CHUNK_SHIFT; |
| 60 | unsigned long mask = (1UL << order[i]) - 1; |
| 61 | |
| 62 | assert((xas.xa_index | mask) == (index[i] | mask)); |
| 63 | assert(xas.xa_node->shift == shift); |
| 64 | assert(!radix_tree_is_internal_node(item)); |
| 65 | assert((item->index | mask) == (index[i] | mask)); |
| 66 | assert(item->order == order[i]); |
| 67 | i++; |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | item_kill_tree(xa); |
| 72 | } |
| 73 | |
| 74 | void multiorder_tagged_iteration(struct xarray *xa) |
| 75 | { |
| 76 | XA_STATE(xas, xa, 0); |
| 77 | struct item *item; |
| 78 | int i, j; |
| 79 | |
| 80 | #define MT_NUM_ENTRIES 9 |
| 81 | int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; |
| 82 | int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; |
| 83 | |
| 84 | #define TAG_ENTRIES 7 |
| 85 | int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; |
| 86 | |
| 87 | printv(1, "Multiorder tagged iteration test\n"); |
| 88 | |
| 89 | for (i = 0; i < MT_NUM_ENTRIES; i++) |
| 90 | assert(!item_insert_order(xa, index[i], order[i])); |
| 91 | |
| 92 | assert(!xa_marked(xa, XA_MARK_1)); |
| 93 | |
| 94 | for (i = 0; i < TAG_ENTRIES; i++) |
| 95 | xa_set_mark(xa, tag_index[i], XA_MARK_1); |
| 96 | |
| 97 | for (j = 0; j < 256; j++) { |
| 98 | int k; |
| 99 | |
| 100 | for (i = 0; i < TAG_ENTRIES; i++) { |
| 101 | for (k = i; index[k] < tag_index[i]; k++) |
| 102 | ; |
| 103 | if (j <= (index[k] | ((1 << order[k]) - 1))) |
| 104 | break; |
| 105 | } |
| 106 | |
| 107 | xas_set(&xas, j); |
| 108 | xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) { |
| 109 | unsigned long mask; |
| 110 | for (k = i; index[k] < tag_index[i]; k++) |
| 111 | ; |
| 112 | mask = (1UL << order[k]) - 1; |
| 113 | |
| 114 | assert((xas.xa_index | mask) == (tag_index[i] | mask)); |
| 115 | assert(!xa_is_internal(item)); |
| 116 | assert((item->index | mask) == (tag_index[i] | mask)); |
| 117 | assert(item->order == order[k]); |
| 118 | i++; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1, |
| 123 | XA_MARK_2) == TAG_ENTRIES); |
| 124 | |
| 125 | for (j = 0; j < 256; j++) { |
| 126 | int mask, k; |
| 127 | |
| 128 | for (i = 0; i < TAG_ENTRIES; i++) { |
| 129 | for (k = i; index[k] < tag_index[i]; k++) |
| 130 | ; |
| 131 | if (j <= (index[k] | ((1 << order[k]) - 1))) |
| 132 | break; |
| 133 | } |
| 134 | |
| 135 | xas_set(&xas, j); |
| 136 | xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) { |
| 137 | for (k = i; index[k] < tag_index[i]; k++) |
| 138 | ; |
| 139 | mask = (1 << order[k]) - 1; |
| 140 | |
| 141 | assert((xas.xa_index | mask) == (tag_index[i] | mask)); |
| 142 | assert(!xa_is_internal(item)); |
| 143 | assert((item->index | mask) == (tag_index[i] | mask)); |
| 144 | assert(item->order == order[k]); |
| 145 | i++; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1, |
| 150 | XA_MARK_0) == TAG_ENTRIES); |
| 151 | i = 0; |
| 152 | xas_set(&xas, 0); |
| 153 | xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) { |
| 154 | assert(xas.xa_index == tag_index[i]); |
| 155 | i++; |
| 156 | } |
| 157 | assert(i == TAG_ENTRIES); |
| 158 | |
| 159 | item_kill_tree(xa); |
| 160 | } |
| 161 | |
| 162 | bool stop_iteration = false; |
| 163 | |
| 164 | static void *creator_func(void *ptr) |
| 165 | { |
| 166 | /* 'order' is set up to ensure we have sibling entries */ |
| 167 | unsigned int order = RADIX_TREE_MAP_SHIFT - 1; |
| 168 | struct radix_tree_root *tree = ptr; |
| 169 | int i; |
| 170 | |
| 171 | for (i = 0; i < 10000; i++) { |
| 172 | item_insert_order(tree, 0, order); |
| 173 | item_delete_rcu(tree, 0); |
| 174 | } |
| 175 | |
| 176 | stop_iteration = true; |
| 177 | return NULL; |
| 178 | } |
| 179 | |
| 180 | static void *iterator_func(void *ptr) |
| 181 | { |
| 182 | XA_STATE(xas, ptr, 0); |
| 183 | struct item *item; |
| 184 | |
| 185 | while (!stop_iteration) { |
| 186 | rcu_read_lock(); |
| 187 | xas_for_each(&xas, item, ULONG_MAX) { |
| 188 | if (xas_retry(&xas, item)) |
| 189 | continue; |
| 190 | |
| 191 | item_sanity(item, xas.xa_index); |
| 192 | } |
| 193 | rcu_read_unlock(); |
| 194 | } |
| 195 | return NULL; |
| 196 | } |
| 197 | |
| 198 | static void multiorder_iteration_race(struct xarray *xa) |
| 199 | { |
| 200 | const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); |
| 201 | pthread_t worker_thread[num_threads]; |
| 202 | int i; |
| 203 | |
| 204 | pthread_create(&worker_thread[0], NULL, &creator_func, xa); |
| 205 | for (i = 1; i < num_threads; i++) |
| 206 | pthread_create(&worker_thread[i], NULL, &iterator_func, xa); |
| 207 | |
| 208 | for (i = 0; i < num_threads; i++) |
| 209 | pthread_join(worker_thread[i], NULL); |
| 210 | |
| 211 | item_kill_tree(xa); |
| 212 | } |
| 213 | |
| 214 | static DEFINE_XARRAY(array); |
| 215 | |
| 216 | void multiorder_checks(void) |
| 217 | { |
| 218 | multiorder_iteration(&array); |
| 219 | multiorder_tagged_iteration(&array); |
| 220 | multiorder_iteration_race(&array); |
| 221 | |
| 222 | radix_tree_cpu_dead(0); |
| 223 | } |
| 224 | |
| 225 | int __weak main(void) |
| 226 | { |
| 227 | rcu_register_thread(); |
| 228 | radix_tree_init(); |
| 229 | multiorder_checks(); |
| 230 | rcu_unregister_thread(); |
| 231 | return 0; |
| 232 | } |