b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #define _GNU_SOURCE |
| 3 | |
| 4 | #include <linux/limits.h> |
| 5 | #include <linux/oom.h> |
| 6 | #include <fcntl.h> |
| 7 | #include <stdio.h> |
| 8 | #include <stdlib.h> |
| 9 | #include <string.h> |
| 10 | #include <sys/stat.h> |
| 11 | #include <sys/types.h> |
| 12 | #include <unistd.h> |
| 13 | #include <sys/socket.h> |
| 14 | #include <sys/wait.h> |
| 15 | #include <arpa/inet.h> |
| 16 | #include <netinet/in.h> |
| 17 | #include <netdb.h> |
| 18 | #include <errno.h> |
| 19 | |
| 20 | #include "../kselftest.h" |
| 21 | #include "cgroup_util.h" |
| 22 | |
| 23 | /* |
| 24 | * This test creates two nested cgroups with and without enabling |
| 25 | * the memory controller. |
| 26 | */ |
| 27 | static int test_memcg_subtree_control(const char *root) |
| 28 | { |
| 29 | char *parent, *child, *parent2 = NULL, *child2 = NULL; |
| 30 | int ret = KSFT_FAIL; |
| 31 | char buf[PAGE_SIZE]; |
| 32 | |
| 33 | /* Create two nested cgroups with the memory controller enabled */ |
| 34 | parent = cg_name(root, "memcg_test_0"); |
| 35 | child = cg_name(root, "memcg_test_0/memcg_test_1"); |
| 36 | if (!parent || !child) |
| 37 | goto cleanup_free; |
| 38 | |
| 39 | if (cg_create(parent)) |
| 40 | goto cleanup_free; |
| 41 | |
| 42 | if (cg_write(parent, "cgroup.subtree_control", "+memory")) |
| 43 | goto cleanup_parent; |
| 44 | |
| 45 | if (cg_create(child)) |
| 46 | goto cleanup_parent; |
| 47 | |
| 48 | if (cg_read_strstr(child, "cgroup.controllers", "memory")) |
| 49 | goto cleanup_child; |
| 50 | |
| 51 | /* Create two nested cgroups without enabling memory controller */ |
| 52 | parent2 = cg_name(root, "memcg_test_1"); |
| 53 | child2 = cg_name(root, "memcg_test_1/memcg_test_1"); |
| 54 | if (!parent2 || !child2) |
| 55 | goto cleanup_free2; |
| 56 | |
| 57 | if (cg_create(parent2)) |
| 58 | goto cleanup_free2; |
| 59 | |
| 60 | if (cg_create(child2)) |
| 61 | goto cleanup_parent2; |
| 62 | |
| 63 | if (cg_read(child2, "cgroup.controllers", buf, sizeof(buf))) |
| 64 | goto cleanup_all; |
| 65 | |
| 66 | if (!cg_read_strstr(child2, "cgroup.controllers", "memory")) |
| 67 | goto cleanup_all; |
| 68 | |
| 69 | ret = KSFT_PASS; |
| 70 | |
| 71 | cleanup_all: |
| 72 | cg_destroy(child2); |
| 73 | cleanup_parent2: |
| 74 | cg_destroy(parent2); |
| 75 | cleanup_free2: |
| 76 | free(parent2); |
| 77 | free(child2); |
| 78 | cleanup_child: |
| 79 | cg_destroy(child); |
| 80 | cleanup_parent: |
| 81 | cg_destroy(parent); |
| 82 | cleanup_free: |
| 83 | free(parent); |
| 84 | free(child); |
| 85 | |
| 86 | return ret; |
| 87 | } |
| 88 | |
| 89 | static int alloc_anon_50M_check(const char *cgroup, void *arg) |
| 90 | { |
| 91 | size_t size = MB(50); |
| 92 | char *buf, *ptr; |
| 93 | long anon, current; |
| 94 | int ret = -1; |
| 95 | |
| 96 | buf = malloc(size); |
| 97 | for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE) |
| 98 | *ptr = 0; |
| 99 | |
| 100 | current = cg_read_long(cgroup, "memory.current"); |
| 101 | if (current < size) |
| 102 | goto cleanup; |
| 103 | |
| 104 | if (!values_close(size, current, 3)) |
| 105 | goto cleanup; |
| 106 | |
| 107 | anon = cg_read_key_long(cgroup, "memory.stat", "anon "); |
| 108 | if (anon < 0) |
| 109 | goto cleanup; |
| 110 | |
| 111 | if (!values_close(anon, current, 3)) |
| 112 | goto cleanup; |
| 113 | |
| 114 | ret = 0; |
| 115 | cleanup: |
| 116 | free(buf); |
| 117 | return ret; |
| 118 | } |
| 119 | |
| 120 | static int alloc_pagecache_50M_check(const char *cgroup, void *arg) |
| 121 | { |
| 122 | size_t size = MB(50); |
| 123 | int ret = -1; |
| 124 | long current, file; |
| 125 | int fd; |
| 126 | |
| 127 | fd = get_temp_fd(); |
| 128 | if (fd < 0) |
| 129 | return -1; |
| 130 | |
| 131 | if (alloc_pagecache(fd, size)) |
| 132 | goto cleanup; |
| 133 | |
| 134 | current = cg_read_long(cgroup, "memory.current"); |
| 135 | if (current < size) |
| 136 | goto cleanup; |
| 137 | |
| 138 | file = cg_read_key_long(cgroup, "memory.stat", "file "); |
| 139 | if (file < 0) |
| 140 | goto cleanup; |
| 141 | |
| 142 | if (!values_close(file, current, 10)) |
| 143 | goto cleanup; |
| 144 | |
| 145 | ret = 0; |
| 146 | |
| 147 | cleanup: |
| 148 | close(fd); |
| 149 | return ret; |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * This test create a memory cgroup, allocates |
| 154 | * some anonymous memory and some pagecache |
| 155 | * and check memory.current and some memory.stat values. |
| 156 | */ |
| 157 | static int test_memcg_current(const char *root) |
| 158 | { |
| 159 | int ret = KSFT_FAIL; |
| 160 | long current; |
| 161 | char *memcg; |
| 162 | |
| 163 | memcg = cg_name(root, "memcg_test"); |
| 164 | if (!memcg) |
| 165 | goto cleanup; |
| 166 | |
| 167 | if (cg_create(memcg)) |
| 168 | goto cleanup; |
| 169 | |
| 170 | current = cg_read_long(memcg, "memory.current"); |
| 171 | if (current != 0) |
| 172 | goto cleanup; |
| 173 | |
| 174 | if (cg_run(memcg, alloc_anon_50M_check, NULL)) |
| 175 | goto cleanup; |
| 176 | |
| 177 | if (cg_run(memcg, alloc_pagecache_50M_check, NULL)) |
| 178 | goto cleanup; |
| 179 | |
| 180 | ret = KSFT_PASS; |
| 181 | |
| 182 | cleanup: |
| 183 | cg_destroy(memcg); |
| 184 | free(memcg); |
| 185 | |
| 186 | return ret; |
| 187 | } |
| 188 | |
| 189 | static int alloc_pagecache_50M(const char *cgroup, void *arg) |
| 190 | { |
| 191 | int fd = (long)arg; |
| 192 | |
| 193 | return alloc_pagecache(fd, MB(50)); |
| 194 | } |
| 195 | |
| 196 | static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg) |
| 197 | { |
| 198 | int fd = (long)arg; |
| 199 | int ppid = getppid(); |
| 200 | |
| 201 | if (alloc_pagecache(fd, MB(50))) |
| 202 | return -1; |
| 203 | |
| 204 | while (getppid() == ppid) |
| 205 | sleep(1); |
| 206 | |
| 207 | return 0; |
| 208 | } |
| 209 | |
| 210 | static int alloc_anon_noexit(const char *cgroup, void *arg) |
| 211 | { |
| 212 | int ppid = getppid(); |
| 213 | |
| 214 | if (alloc_anon(cgroup, arg)) |
| 215 | return -1; |
| 216 | |
| 217 | while (getppid() == ppid) |
| 218 | sleep(1); |
| 219 | |
| 220 | return 0; |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * Wait until processes are killed asynchronously by the OOM killer |
| 225 | * If we exceed a timeout, fail. |
| 226 | */ |
| 227 | static int cg_test_proc_killed(const char *cgroup) |
| 228 | { |
| 229 | int limit; |
| 230 | |
| 231 | for (limit = 10; limit > 0; limit--) { |
| 232 | if (cg_read_strcmp(cgroup, "cgroup.procs", "") == 0) |
| 233 | return 0; |
| 234 | |
| 235 | usleep(100000); |
| 236 | } |
| 237 | return -1; |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * First, this test creates the following hierarchy: |
| 242 | * A memory.min = 50M, memory.max = 200M |
| 243 | * A/B memory.min = 50M, memory.current = 50M |
| 244 | * A/B/C memory.min = 75M, memory.current = 50M |
| 245 | * A/B/D memory.min = 25M, memory.current = 50M |
| 246 | * A/B/E memory.min = 500M, memory.current = 0 |
| 247 | * A/B/F memory.min = 0, memory.current = 50M |
| 248 | * |
| 249 | * Usages are pagecache, but the test keeps a running |
| 250 | * process in every leaf cgroup. |
| 251 | * Then it creates A/G and creates a significant |
| 252 | * memory pressure in it. |
| 253 | * |
| 254 | * A/B memory.current ~= 50M |
| 255 | * A/B/C memory.current ~= 33M |
| 256 | * A/B/D memory.current ~= 17M |
| 257 | * A/B/E memory.current ~= 0 |
| 258 | * |
| 259 | * After that it tries to allocate more than there is |
| 260 | * unprotected memory in A available, and checks |
| 261 | * checks that memory.min protects pagecache even |
| 262 | * in this case. |
| 263 | */ |
| 264 | static int test_memcg_min(const char *root) |
| 265 | { |
| 266 | int ret = KSFT_FAIL; |
| 267 | char *parent[3] = {NULL}; |
| 268 | char *children[4] = {NULL}; |
| 269 | long c[4]; |
| 270 | int i, attempts; |
| 271 | int fd; |
| 272 | |
| 273 | fd = get_temp_fd(); |
| 274 | if (fd < 0) |
| 275 | goto cleanup; |
| 276 | |
| 277 | parent[0] = cg_name(root, "memcg_test_0"); |
| 278 | if (!parent[0]) |
| 279 | goto cleanup; |
| 280 | |
| 281 | parent[1] = cg_name(parent[0], "memcg_test_1"); |
| 282 | if (!parent[1]) |
| 283 | goto cleanup; |
| 284 | |
| 285 | parent[2] = cg_name(parent[0], "memcg_test_2"); |
| 286 | if (!parent[2]) |
| 287 | goto cleanup; |
| 288 | |
| 289 | if (cg_create(parent[0])) |
| 290 | goto cleanup; |
| 291 | |
| 292 | if (cg_read_long(parent[0], "memory.min")) { |
| 293 | ret = KSFT_SKIP; |
| 294 | goto cleanup; |
| 295 | } |
| 296 | |
| 297 | if (cg_write(parent[0], "cgroup.subtree_control", "+memory")) |
| 298 | goto cleanup; |
| 299 | |
| 300 | if (cg_write(parent[0], "memory.max", "200M")) |
| 301 | goto cleanup; |
| 302 | |
| 303 | if (cg_write(parent[0], "memory.swap.max", "0")) |
| 304 | goto cleanup; |
| 305 | |
| 306 | if (cg_create(parent[1])) |
| 307 | goto cleanup; |
| 308 | |
| 309 | if (cg_write(parent[1], "cgroup.subtree_control", "+memory")) |
| 310 | goto cleanup; |
| 311 | |
| 312 | if (cg_create(parent[2])) |
| 313 | goto cleanup; |
| 314 | |
| 315 | for (i = 0; i < ARRAY_SIZE(children); i++) { |
| 316 | children[i] = cg_name_indexed(parent[1], "child_memcg", i); |
| 317 | if (!children[i]) |
| 318 | goto cleanup; |
| 319 | |
| 320 | if (cg_create(children[i])) |
| 321 | goto cleanup; |
| 322 | |
| 323 | if (i == 2) |
| 324 | continue; |
| 325 | |
| 326 | cg_run_nowait(children[i], alloc_pagecache_50M_noexit, |
| 327 | (void *)(long)fd); |
| 328 | } |
| 329 | |
| 330 | if (cg_write(parent[0], "memory.min", "50M")) |
| 331 | goto cleanup; |
| 332 | if (cg_write(parent[1], "memory.min", "50M")) |
| 333 | goto cleanup; |
| 334 | if (cg_write(children[0], "memory.min", "75M")) |
| 335 | goto cleanup; |
| 336 | if (cg_write(children[1], "memory.min", "25M")) |
| 337 | goto cleanup; |
| 338 | if (cg_write(children[2], "memory.min", "500M")) |
| 339 | goto cleanup; |
| 340 | if (cg_write(children[3], "memory.min", "0")) |
| 341 | goto cleanup; |
| 342 | |
| 343 | attempts = 0; |
| 344 | while (!values_close(cg_read_long(parent[1], "memory.current"), |
| 345 | MB(150), 3)) { |
| 346 | if (attempts++ > 5) |
| 347 | break; |
| 348 | sleep(1); |
| 349 | } |
| 350 | |
| 351 | if (cg_run(parent[2], alloc_anon, (void *)MB(148))) |
| 352 | goto cleanup; |
| 353 | |
| 354 | if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3)) |
| 355 | goto cleanup; |
| 356 | |
| 357 | for (i = 0; i < ARRAY_SIZE(children); i++) |
| 358 | c[i] = cg_read_long(children[i], "memory.current"); |
| 359 | |
| 360 | if (!values_close(c[0], MB(33), 10)) |
| 361 | goto cleanup; |
| 362 | |
| 363 | if (!values_close(c[1], MB(17), 10)) |
| 364 | goto cleanup; |
| 365 | |
| 366 | if (!values_close(c[2], 0, 1)) |
| 367 | goto cleanup; |
| 368 | |
| 369 | if (!cg_run(parent[2], alloc_anon, (void *)MB(170))) |
| 370 | goto cleanup; |
| 371 | |
| 372 | if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3)) |
| 373 | goto cleanup; |
| 374 | |
| 375 | ret = KSFT_PASS; |
| 376 | |
| 377 | cleanup: |
| 378 | for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) { |
| 379 | if (!children[i]) |
| 380 | continue; |
| 381 | |
| 382 | cg_destroy(children[i]); |
| 383 | free(children[i]); |
| 384 | } |
| 385 | |
| 386 | for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) { |
| 387 | if (!parent[i]) |
| 388 | continue; |
| 389 | |
| 390 | cg_destroy(parent[i]); |
| 391 | free(parent[i]); |
| 392 | } |
| 393 | close(fd); |
| 394 | return ret; |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * First, this test creates the following hierarchy: |
| 399 | * A memory.low = 50M, memory.max = 200M |
| 400 | * A/B memory.low = 50M, memory.current = 50M |
| 401 | * A/B/C memory.low = 75M, memory.current = 50M |
| 402 | * A/B/D memory.low = 25M, memory.current = 50M |
| 403 | * A/B/E memory.low = 500M, memory.current = 0 |
| 404 | * A/B/F memory.low = 0, memory.current = 50M |
| 405 | * |
| 406 | * Usages are pagecache. |
| 407 | * Then it creates A/G an creates a significant |
| 408 | * memory pressure in it. |
| 409 | * |
| 410 | * Then it checks actual memory usages and expects that: |
| 411 | * A/B memory.current ~= 50M |
| 412 | * A/B/ memory.current ~= 33M |
| 413 | * A/B/D memory.current ~= 17M |
| 414 | * A/B/E memory.current ~= 0 |
| 415 | * |
| 416 | * After that it tries to allocate more than there is |
| 417 | * unprotected memory in A available, |
| 418 | * and checks low and oom events in memory.events. |
| 419 | */ |
| 420 | static int test_memcg_low(const char *root) |
| 421 | { |
| 422 | int ret = KSFT_FAIL; |
| 423 | char *parent[3] = {NULL}; |
| 424 | char *children[4] = {NULL}; |
| 425 | long low, oom; |
| 426 | long c[4]; |
| 427 | int i; |
| 428 | int fd; |
| 429 | |
| 430 | fd = get_temp_fd(); |
| 431 | if (fd < 0) |
| 432 | goto cleanup; |
| 433 | |
| 434 | parent[0] = cg_name(root, "memcg_test_0"); |
| 435 | if (!parent[0]) |
| 436 | goto cleanup; |
| 437 | |
| 438 | parent[1] = cg_name(parent[0], "memcg_test_1"); |
| 439 | if (!parent[1]) |
| 440 | goto cleanup; |
| 441 | |
| 442 | parent[2] = cg_name(parent[0], "memcg_test_2"); |
| 443 | if (!parent[2]) |
| 444 | goto cleanup; |
| 445 | |
| 446 | if (cg_create(parent[0])) |
| 447 | goto cleanup; |
| 448 | |
| 449 | if (cg_read_long(parent[0], "memory.low")) |
| 450 | goto cleanup; |
| 451 | |
| 452 | if (cg_write(parent[0], "cgroup.subtree_control", "+memory")) |
| 453 | goto cleanup; |
| 454 | |
| 455 | if (cg_write(parent[0], "memory.max", "200M")) |
| 456 | goto cleanup; |
| 457 | |
| 458 | if (cg_write(parent[0], "memory.swap.max", "0")) |
| 459 | goto cleanup; |
| 460 | |
| 461 | if (cg_create(parent[1])) |
| 462 | goto cleanup; |
| 463 | |
| 464 | if (cg_write(parent[1], "cgroup.subtree_control", "+memory")) |
| 465 | goto cleanup; |
| 466 | |
| 467 | if (cg_create(parent[2])) |
| 468 | goto cleanup; |
| 469 | |
| 470 | for (i = 0; i < ARRAY_SIZE(children); i++) { |
| 471 | children[i] = cg_name_indexed(parent[1], "child_memcg", i); |
| 472 | if (!children[i]) |
| 473 | goto cleanup; |
| 474 | |
| 475 | if (cg_create(children[i])) |
| 476 | goto cleanup; |
| 477 | |
| 478 | if (i == 2) |
| 479 | continue; |
| 480 | |
| 481 | if (cg_run(children[i], alloc_pagecache_50M, (void *)(long)fd)) |
| 482 | goto cleanup; |
| 483 | } |
| 484 | |
| 485 | if (cg_write(parent[0], "memory.low", "50M")) |
| 486 | goto cleanup; |
| 487 | if (cg_write(parent[1], "memory.low", "50M")) |
| 488 | goto cleanup; |
| 489 | if (cg_write(children[0], "memory.low", "75M")) |
| 490 | goto cleanup; |
| 491 | if (cg_write(children[1], "memory.low", "25M")) |
| 492 | goto cleanup; |
| 493 | if (cg_write(children[2], "memory.low", "500M")) |
| 494 | goto cleanup; |
| 495 | if (cg_write(children[3], "memory.low", "0")) |
| 496 | goto cleanup; |
| 497 | |
| 498 | if (cg_run(parent[2], alloc_anon, (void *)MB(148))) |
| 499 | goto cleanup; |
| 500 | |
| 501 | if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3)) |
| 502 | goto cleanup; |
| 503 | |
| 504 | for (i = 0; i < ARRAY_SIZE(children); i++) |
| 505 | c[i] = cg_read_long(children[i], "memory.current"); |
| 506 | |
| 507 | if (!values_close(c[0], MB(33), 10)) |
| 508 | goto cleanup; |
| 509 | |
| 510 | if (!values_close(c[1], MB(17), 10)) |
| 511 | goto cleanup; |
| 512 | |
| 513 | if (!values_close(c[2], 0, 1)) |
| 514 | goto cleanup; |
| 515 | |
| 516 | if (cg_run(parent[2], alloc_anon, (void *)MB(166))) { |
| 517 | fprintf(stderr, |
| 518 | "memory.low prevents from allocating anon memory\n"); |
| 519 | goto cleanup; |
| 520 | } |
| 521 | |
| 522 | for (i = 0; i < ARRAY_SIZE(children); i++) { |
| 523 | oom = cg_read_key_long(children[i], "memory.events", "oom "); |
| 524 | low = cg_read_key_long(children[i], "memory.events", "low "); |
| 525 | |
| 526 | if (oom) |
| 527 | goto cleanup; |
| 528 | if (i < 2 && low <= 0) |
| 529 | goto cleanup; |
| 530 | if (i >= 2 && low) |
| 531 | goto cleanup; |
| 532 | } |
| 533 | |
| 534 | ret = KSFT_PASS; |
| 535 | |
| 536 | cleanup: |
| 537 | for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) { |
| 538 | if (!children[i]) |
| 539 | continue; |
| 540 | |
| 541 | cg_destroy(children[i]); |
| 542 | free(children[i]); |
| 543 | } |
| 544 | |
| 545 | for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) { |
| 546 | if (!parent[i]) |
| 547 | continue; |
| 548 | |
| 549 | cg_destroy(parent[i]); |
| 550 | free(parent[i]); |
| 551 | } |
| 552 | close(fd); |
| 553 | return ret; |
| 554 | } |
| 555 | |
| 556 | static int alloc_pagecache_max_30M(const char *cgroup, void *arg) |
| 557 | { |
| 558 | size_t size = MB(50); |
| 559 | int ret = -1; |
| 560 | long current; |
| 561 | int fd; |
| 562 | |
| 563 | fd = get_temp_fd(); |
| 564 | if (fd < 0) |
| 565 | return -1; |
| 566 | |
| 567 | if (alloc_pagecache(fd, size)) |
| 568 | goto cleanup; |
| 569 | |
| 570 | current = cg_read_long(cgroup, "memory.current"); |
| 571 | if (current <= MB(29) || current > MB(30)) |
| 572 | goto cleanup; |
| 573 | |
| 574 | ret = 0; |
| 575 | |
| 576 | cleanup: |
| 577 | close(fd); |
| 578 | return ret; |
| 579 | |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * This test checks that memory.high limits the amount of |
| 584 | * memory which can be consumed by either anonymous memory |
| 585 | * or pagecache. |
| 586 | */ |
| 587 | static int test_memcg_high(const char *root) |
| 588 | { |
| 589 | int ret = KSFT_FAIL; |
| 590 | char *memcg; |
| 591 | long high; |
| 592 | |
| 593 | memcg = cg_name(root, "memcg_test"); |
| 594 | if (!memcg) |
| 595 | goto cleanup; |
| 596 | |
| 597 | if (cg_create(memcg)) |
| 598 | goto cleanup; |
| 599 | |
| 600 | if (cg_read_strcmp(memcg, "memory.high", "max\n")) |
| 601 | goto cleanup; |
| 602 | |
| 603 | if (cg_write(memcg, "memory.swap.max", "0")) |
| 604 | goto cleanup; |
| 605 | |
| 606 | if (cg_write(memcg, "memory.high", "30M")) |
| 607 | goto cleanup; |
| 608 | |
| 609 | if (cg_run(memcg, alloc_anon, (void *)MB(100))) |
| 610 | goto cleanup; |
| 611 | |
| 612 | if (!cg_run(memcg, alloc_pagecache_50M_check, NULL)) |
| 613 | goto cleanup; |
| 614 | |
| 615 | if (cg_run(memcg, alloc_pagecache_max_30M, NULL)) |
| 616 | goto cleanup; |
| 617 | |
| 618 | high = cg_read_key_long(memcg, "memory.events", "high "); |
| 619 | if (high <= 0) |
| 620 | goto cleanup; |
| 621 | |
| 622 | ret = KSFT_PASS; |
| 623 | |
| 624 | cleanup: |
| 625 | cg_destroy(memcg); |
| 626 | free(memcg); |
| 627 | |
| 628 | return ret; |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * This test checks that memory.max limits the amount of |
| 633 | * memory which can be consumed by either anonymous memory |
| 634 | * or pagecache. |
| 635 | */ |
| 636 | static int test_memcg_max(const char *root) |
| 637 | { |
| 638 | int ret = KSFT_FAIL; |
| 639 | char *memcg; |
| 640 | long current, max; |
| 641 | |
| 642 | memcg = cg_name(root, "memcg_test"); |
| 643 | if (!memcg) |
| 644 | goto cleanup; |
| 645 | |
| 646 | if (cg_create(memcg)) |
| 647 | goto cleanup; |
| 648 | |
| 649 | if (cg_read_strcmp(memcg, "memory.max", "max\n")) |
| 650 | goto cleanup; |
| 651 | |
| 652 | if (cg_write(memcg, "memory.swap.max", "0")) |
| 653 | goto cleanup; |
| 654 | |
| 655 | if (cg_write(memcg, "memory.max", "30M")) |
| 656 | goto cleanup; |
| 657 | |
| 658 | /* Should be killed by OOM killer */ |
| 659 | if (!cg_run(memcg, alloc_anon, (void *)MB(100))) |
| 660 | goto cleanup; |
| 661 | |
| 662 | if (cg_run(memcg, alloc_pagecache_max_30M, NULL)) |
| 663 | goto cleanup; |
| 664 | |
| 665 | current = cg_read_long(memcg, "memory.current"); |
| 666 | if (current > MB(30) || !current) |
| 667 | goto cleanup; |
| 668 | |
| 669 | max = cg_read_key_long(memcg, "memory.events", "max "); |
| 670 | if (max <= 0) |
| 671 | goto cleanup; |
| 672 | |
| 673 | ret = KSFT_PASS; |
| 674 | |
| 675 | cleanup: |
| 676 | cg_destroy(memcg); |
| 677 | free(memcg); |
| 678 | |
| 679 | return ret; |
| 680 | } |
| 681 | |
| 682 | static int alloc_anon_50M_check_swap(const char *cgroup, void *arg) |
| 683 | { |
| 684 | long mem_max = (long)arg; |
| 685 | size_t size = MB(50); |
| 686 | char *buf, *ptr; |
| 687 | long mem_current, swap_current; |
| 688 | int ret = -1; |
| 689 | |
| 690 | buf = malloc(size); |
| 691 | for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE) |
| 692 | *ptr = 0; |
| 693 | |
| 694 | mem_current = cg_read_long(cgroup, "memory.current"); |
| 695 | if (!mem_current || !values_close(mem_current, mem_max, 3)) |
| 696 | goto cleanup; |
| 697 | |
| 698 | swap_current = cg_read_long(cgroup, "memory.swap.current"); |
| 699 | if (!swap_current || |
| 700 | !values_close(mem_current + swap_current, size, 3)) |
| 701 | goto cleanup; |
| 702 | |
| 703 | ret = 0; |
| 704 | cleanup: |
| 705 | free(buf); |
| 706 | return ret; |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * This test checks that memory.swap.max limits the amount of |
| 711 | * anonymous memory which can be swapped out. |
| 712 | */ |
| 713 | static int test_memcg_swap_max(const char *root) |
| 714 | { |
| 715 | int ret = KSFT_FAIL; |
| 716 | char *memcg; |
| 717 | long max; |
| 718 | |
| 719 | if (!is_swap_enabled()) |
| 720 | return KSFT_SKIP; |
| 721 | |
| 722 | memcg = cg_name(root, "memcg_test"); |
| 723 | if (!memcg) |
| 724 | goto cleanup; |
| 725 | |
| 726 | if (cg_create(memcg)) |
| 727 | goto cleanup; |
| 728 | |
| 729 | if (cg_read_long(memcg, "memory.swap.current")) { |
| 730 | ret = KSFT_SKIP; |
| 731 | goto cleanup; |
| 732 | } |
| 733 | |
| 734 | if (cg_read_strcmp(memcg, "memory.max", "max\n")) |
| 735 | goto cleanup; |
| 736 | |
| 737 | if (cg_read_strcmp(memcg, "memory.swap.max", "max\n")) |
| 738 | goto cleanup; |
| 739 | |
| 740 | if (cg_write(memcg, "memory.swap.max", "30M")) |
| 741 | goto cleanup; |
| 742 | |
| 743 | if (cg_write(memcg, "memory.max", "30M")) |
| 744 | goto cleanup; |
| 745 | |
| 746 | /* Should be killed by OOM killer */ |
| 747 | if (!cg_run(memcg, alloc_anon, (void *)MB(100))) |
| 748 | goto cleanup; |
| 749 | |
| 750 | if (cg_read_key_long(memcg, "memory.events", "oom ") != 1) |
| 751 | goto cleanup; |
| 752 | |
| 753 | if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1) |
| 754 | goto cleanup; |
| 755 | |
| 756 | if (cg_run(memcg, alloc_anon_50M_check_swap, (void *)MB(30))) |
| 757 | goto cleanup; |
| 758 | |
| 759 | max = cg_read_key_long(memcg, "memory.events", "max "); |
| 760 | if (max <= 0) |
| 761 | goto cleanup; |
| 762 | |
| 763 | ret = KSFT_PASS; |
| 764 | |
| 765 | cleanup: |
| 766 | cg_destroy(memcg); |
| 767 | free(memcg); |
| 768 | |
| 769 | return ret; |
| 770 | } |
| 771 | |
| 772 | /* |
| 773 | * This test disables swapping and tries to allocate anonymous memory |
| 774 | * up to OOM. Then it checks for oom and oom_kill events in |
| 775 | * memory.events. |
| 776 | */ |
| 777 | static int test_memcg_oom_events(const char *root) |
| 778 | { |
| 779 | int ret = KSFT_FAIL; |
| 780 | char *memcg; |
| 781 | |
| 782 | memcg = cg_name(root, "memcg_test"); |
| 783 | if (!memcg) |
| 784 | goto cleanup; |
| 785 | |
| 786 | if (cg_create(memcg)) |
| 787 | goto cleanup; |
| 788 | |
| 789 | if (cg_write(memcg, "memory.max", "30M")) |
| 790 | goto cleanup; |
| 791 | |
| 792 | if (cg_write(memcg, "memory.swap.max", "0")) |
| 793 | goto cleanup; |
| 794 | |
| 795 | if (!cg_run(memcg, alloc_anon, (void *)MB(100))) |
| 796 | goto cleanup; |
| 797 | |
| 798 | if (cg_read_strcmp(memcg, "cgroup.procs", "")) |
| 799 | goto cleanup; |
| 800 | |
| 801 | if (cg_read_key_long(memcg, "memory.events", "oom ") != 1) |
| 802 | goto cleanup; |
| 803 | |
| 804 | if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1) |
| 805 | goto cleanup; |
| 806 | |
| 807 | ret = KSFT_PASS; |
| 808 | |
| 809 | cleanup: |
| 810 | cg_destroy(memcg); |
| 811 | free(memcg); |
| 812 | |
| 813 | return ret; |
| 814 | } |
| 815 | |
| 816 | struct tcp_server_args { |
| 817 | unsigned short port; |
| 818 | int ctl[2]; |
| 819 | }; |
| 820 | |
| 821 | static int tcp_server(const char *cgroup, void *arg) |
| 822 | { |
| 823 | struct tcp_server_args *srv_args = arg; |
| 824 | struct sockaddr_in6 saddr = { 0 }; |
| 825 | socklen_t slen = sizeof(saddr); |
| 826 | int sk, client_sk, ctl_fd, yes = 1, ret = -1; |
| 827 | |
| 828 | close(srv_args->ctl[0]); |
| 829 | ctl_fd = srv_args->ctl[1]; |
| 830 | |
| 831 | saddr.sin6_family = AF_INET6; |
| 832 | saddr.sin6_addr = in6addr_any; |
| 833 | saddr.sin6_port = htons(srv_args->port); |
| 834 | |
| 835 | sk = socket(AF_INET6, SOCK_STREAM, 0); |
| 836 | if (sk < 0) |
| 837 | return ret; |
| 838 | |
| 839 | if (setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)) < 0) |
| 840 | goto cleanup; |
| 841 | |
| 842 | if (bind(sk, (struct sockaddr *)&saddr, slen)) { |
| 843 | write(ctl_fd, &errno, sizeof(errno)); |
| 844 | goto cleanup; |
| 845 | } |
| 846 | |
| 847 | if (listen(sk, 1)) |
| 848 | goto cleanup; |
| 849 | |
| 850 | ret = 0; |
| 851 | if (write(ctl_fd, &ret, sizeof(ret)) != sizeof(ret)) { |
| 852 | ret = -1; |
| 853 | goto cleanup; |
| 854 | } |
| 855 | |
| 856 | client_sk = accept(sk, NULL, NULL); |
| 857 | if (client_sk < 0) |
| 858 | goto cleanup; |
| 859 | |
| 860 | ret = -1; |
| 861 | for (;;) { |
| 862 | uint8_t buf[0x100000]; |
| 863 | |
| 864 | if (write(client_sk, buf, sizeof(buf)) <= 0) { |
| 865 | if (errno == ECONNRESET) |
| 866 | ret = 0; |
| 867 | break; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | close(client_sk); |
| 872 | |
| 873 | cleanup: |
| 874 | close(sk); |
| 875 | return ret; |
| 876 | } |
| 877 | |
| 878 | static int tcp_client(const char *cgroup, unsigned short port) |
| 879 | { |
| 880 | const char server[] = "localhost"; |
| 881 | struct addrinfo *ai; |
| 882 | char servport[6]; |
| 883 | int retries = 0x10; /* nice round number */ |
| 884 | int sk, ret; |
| 885 | |
| 886 | snprintf(servport, sizeof(servport), "%hd", port); |
| 887 | ret = getaddrinfo(server, servport, NULL, &ai); |
| 888 | if (ret) |
| 889 | return ret; |
| 890 | |
| 891 | sk = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol); |
| 892 | if (sk < 0) |
| 893 | goto free_ainfo; |
| 894 | |
| 895 | ret = connect(sk, ai->ai_addr, ai->ai_addrlen); |
| 896 | if (ret < 0) |
| 897 | goto close_sk; |
| 898 | |
| 899 | ret = KSFT_FAIL; |
| 900 | while (retries--) { |
| 901 | uint8_t buf[0x100000]; |
| 902 | long current, sock; |
| 903 | |
| 904 | if (read(sk, buf, sizeof(buf)) <= 0) |
| 905 | goto close_sk; |
| 906 | |
| 907 | current = cg_read_long(cgroup, "memory.current"); |
| 908 | sock = cg_read_key_long(cgroup, "memory.stat", "sock "); |
| 909 | |
| 910 | if (current < 0 || sock < 0) |
| 911 | goto close_sk; |
| 912 | |
| 913 | if (current < sock) |
| 914 | goto close_sk; |
| 915 | |
| 916 | if (values_close(current, sock, 10)) { |
| 917 | ret = KSFT_PASS; |
| 918 | break; |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | close_sk: |
| 923 | close(sk); |
| 924 | free_ainfo: |
| 925 | freeaddrinfo(ai); |
| 926 | return ret; |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * This test checks socket memory accounting. |
| 931 | * The test forks a TCP server listens on a random port between 1000 |
| 932 | * and 61000. Once it gets a client connection, it starts writing to |
| 933 | * its socket. |
| 934 | * The TCP client interleaves reads from the socket with check whether |
| 935 | * memory.current and memory.stat.sock are similar. |
| 936 | */ |
| 937 | static int test_memcg_sock(const char *root) |
| 938 | { |
| 939 | int bind_retries = 5, ret = KSFT_FAIL, pid, err; |
| 940 | unsigned short port; |
| 941 | char *memcg; |
| 942 | |
| 943 | memcg = cg_name(root, "memcg_test"); |
| 944 | if (!memcg) |
| 945 | goto cleanup; |
| 946 | |
| 947 | if (cg_create(memcg)) |
| 948 | goto cleanup; |
| 949 | |
| 950 | while (bind_retries--) { |
| 951 | struct tcp_server_args args; |
| 952 | |
| 953 | if (pipe(args.ctl)) |
| 954 | goto cleanup; |
| 955 | |
| 956 | port = args.port = 1000 + rand() % 60000; |
| 957 | |
| 958 | pid = cg_run_nowait(memcg, tcp_server, &args); |
| 959 | if (pid < 0) |
| 960 | goto cleanup; |
| 961 | |
| 962 | close(args.ctl[1]); |
| 963 | if (read(args.ctl[0], &err, sizeof(err)) != sizeof(err)) |
| 964 | goto cleanup; |
| 965 | close(args.ctl[0]); |
| 966 | |
| 967 | if (!err) |
| 968 | break; |
| 969 | if (err != EADDRINUSE) |
| 970 | goto cleanup; |
| 971 | |
| 972 | waitpid(pid, NULL, 0); |
| 973 | } |
| 974 | |
| 975 | if (err == EADDRINUSE) { |
| 976 | ret = KSFT_SKIP; |
| 977 | goto cleanup; |
| 978 | } |
| 979 | |
| 980 | if (tcp_client(memcg, port) != KSFT_PASS) |
| 981 | goto cleanup; |
| 982 | |
| 983 | waitpid(pid, &err, 0); |
| 984 | if (WEXITSTATUS(err)) |
| 985 | goto cleanup; |
| 986 | |
| 987 | if (cg_read_long(memcg, "memory.current") < 0) |
| 988 | goto cleanup; |
| 989 | |
| 990 | if (cg_read_key_long(memcg, "memory.stat", "sock ")) |
| 991 | goto cleanup; |
| 992 | |
| 993 | ret = KSFT_PASS; |
| 994 | |
| 995 | cleanup: |
| 996 | cg_destroy(memcg); |
| 997 | free(memcg); |
| 998 | |
| 999 | return ret; |
| 1000 | } |
| 1001 | |
| 1002 | /* |
| 1003 | * This test disables swapping and tries to allocate anonymous memory |
| 1004 | * up to OOM with memory.group.oom set. Then it checks that all |
| 1005 | * processes in the leaf (but not the parent) were killed. |
| 1006 | */ |
| 1007 | static int test_memcg_oom_group_leaf_events(const char *root) |
| 1008 | { |
| 1009 | int ret = KSFT_FAIL; |
| 1010 | char *parent, *child; |
| 1011 | |
| 1012 | parent = cg_name(root, "memcg_test_0"); |
| 1013 | child = cg_name(root, "memcg_test_0/memcg_test_1"); |
| 1014 | |
| 1015 | if (!parent || !child) |
| 1016 | goto cleanup; |
| 1017 | |
| 1018 | if (cg_create(parent)) |
| 1019 | goto cleanup; |
| 1020 | |
| 1021 | if (cg_create(child)) |
| 1022 | goto cleanup; |
| 1023 | |
| 1024 | if (cg_write(parent, "cgroup.subtree_control", "+memory")) |
| 1025 | goto cleanup; |
| 1026 | |
| 1027 | if (cg_write(child, "memory.max", "50M")) |
| 1028 | goto cleanup; |
| 1029 | |
| 1030 | if (cg_write(child, "memory.swap.max", "0")) |
| 1031 | goto cleanup; |
| 1032 | |
| 1033 | if (cg_write(child, "memory.oom.group", "1")) |
| 1034 | goto cleanup; |
| 1035 | |
| 1036 | cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60)); |
| 1037 | cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1)); |
| 1038 | cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1)); |
| 1039 | if (!cg_run(child, alloc_anon, (void *)MB(100))) |
| 1040 | goto cleanup; |
| 1041 | |
| 1042 | if (cg_test_proc_killed(child)) |
| 1043 | goto cleanup; |
| 1044 | |
| 1045 | if (cg_read_key_long(child, "memory.events", "oom_kill ") <= 0) |
| 1046 | goto cleanup; |
| 1047 | |
| 1048 | if (cg_read_key_long(parent, "memory.events", "oom_kill ") != 0) |
| 1049 | goto cleanup; |
| 1050 | |
| 1051 | ret = KSFT_PASS; |
| 1052 | |
| 1053 | cleanup: |
| 1054 | if (child) |
| 1055 | cg_destroy(child); |
| 1056 | if (parent) |
| 1057 | cg_destroy(parent); |
| 1058 | free(child); |
| 1059 | free(parent); |
| 1060 | |
| 1061 | return ret; |
| 1062 | } |
| 1063 | |
| 1064 | /* |
| 1065 | * This test disables swapping and tries to allocate anonymous memory |
| 1066 | * up to OOM with memory.group.oom set. Then it checks that all |
| 1067 | * processes in the parent and leaf were killed. |
| 1068 | */ |
| 1069 | static int test_memcg_oom_group_parent_events(const char *root) |
| 1070 | { |
| 1071 | int ret = KSFT_FAIL; |
| 1072 | char *parent, *child; |
| 1073 | |
| 1074 | parent = cg_name(root, "memcg_test_0"); |
| 1075 | child = cg_name(root, "memcg_test_0/memcg_test_1"); |
| 1076 | |
| 1077 | if (!parent || !child) |
| 1078 | goto cleanup; |
| 1079 | |
| 1080 | if (cg_create(parent)) |
| 1081 | goto cleanup; |
| 1082 | |
| 1083 | if (cg_create(child)) |
| 1084 | goto cleanup; |
| 1085 | |
| 1086 | if (cg_write(parent, "memory.max", "80M")) |
| 1087 | goto cleanup; |
| 1088 | |
| 1089 | if (cg_write(parent, "memory.swap.max", "0")) |
| 1090 | goto cleanup; |
| 1091 | |
| 1092 | if (cg_write(parent, "memory.oom.group", "1")) |
| 1093 | goto cleanup; |
| 1094 | |
| 1095 | cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60)); |
| 1096 | cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1)); |
| 1097 | cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1)); |
| 1098 | |
| 1099 | if (!cg_run(child, alloc_anon, (void *)MB(100))) |
| 1100 | goto cleanup; |
| 1101 | |
| 1102 | if (cg_test_proc_killed(child)) |
| 1103 | goto cleanup; |
| 1104 | if (cg_test_proc_killed(parent)) |
| 1105 | goto cleanup; |
| 1106 | |
| 1107 | ret = KSFT_PASS; |
| 1108 | |
| 1109 | cleanup: |
| 1110 | if (child) |
| 1111 | cg_destroy(child); |
| 1112 | if (parent) |
| 1113 | cg_destroy(parent); |
| 1114 | free(child); |
| 1115 | free(parent); |
| 1116 | |
| 1117 | return ret; |
| 1118 | } |
| 1119 | |
| 1120 | /* |
| 1121 | * This test disables swapping and tries to allocate anonymous memory |
| 1122 | * up to OOM with memory.group.oom set. Then it checks that all |
| 1123 | * processes were killed except those set with OOM_SCORE_ADJ_MIN |
| 1124 | */ |
| 1125 | static int test_memcg_oom_group_score_events(const char *root) |
| 1126 | { |
| 1127 | int ret = KSFT_FAIL; |
| 1128 | char *memcg; |
| 1129 | int safe_pid; |
| 1130 | |
| 1131 | memcg = cg_name(root, "memcg_test_0"); |
| 1132 | |
| 1133 | if (!memcg) |
| 1134 | goto cleanup; |
| 1135 | |
| 1136 | if (cg_create(memcg)) |
| 1137 | goto cleanup; |
| 1138 | |
| 1139 | if (cg_write(memcg, "memory.max", "50M")) |
| 1140 | goto cleanup; |
| 1141 | |
| 1142 | if (cg_write(memcg, "memory.swap.max", "0")) |
| 1143 | goto cleanup; |
| 1144 | |
| 1145 | if (cg_write(memcg, "memory.oom.group", "1")) |
| 1146 | goto cleanup; |
| 1147 | |
| 1148 | safe_pid = cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1)); |
| 1149 | if (set_oom_adj_score(safe_pid, OOM_SCORE_ADJ_MIN)) |
| 1150 | goto cleanup; |
| 1151 | |
| 1152 | cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1)); |
| 1153 | if (!cg_run(memcg, alloc_anon, (void *)MB(100))) |
| 1154 | goto cleanup; |
| 1155 | |
| 1156 | if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 3) |
| 1157 | goto cleanup; |
| 1158 | |
| 1159 | if (kill(safe_pid, SIGKILL)) |
| 1160 | goto cleanup; |
| 1161 | |
| 1162 | ret = KSFT_PASS; |
| 1163 | |
| 1164 | cleanup: |
| 1165 | if (memcg) |
| 1166 | cg_destroy(memcg); |
| 1167 | free(memcg); |
| 1168 | |
| 1169 | return ret; |
| 1170 | } |
| 1171 | |
| 1172 | |
| 1173 | #define T(x) { x, #x } |
| 1174 | struct memcg_test { |
| 1175 | int (*fn)(const char *root); |
| 1176 | const char *name; |
| 1177 | } tests[] = { |
| 1178 | T(test_memcg_subtree_control), |
| 1179 | T(test_memcg_current), |
| 1180 | T(test_memcg_min), |
| 1181 | T(test_memcg_low), |
| 1182 | T(test_memcg_high), |
| 1183 | T(test_memcg_max), |
| 1184 | T(test_memcg_oom_events), |
| 1185 | T(test_memcg_swap_max), |
| 1186 | T(test_memcg_sock), |
| 1187 | T(test_memcg_oom_group_leaf_events), |
| 1188 | T(test_memcg_oom_group_parent_events), |
| 1189 | T(test_memcg_oom_group_score_events), |
| 1190 | }; |
| 1191 | #undef T |
| 1192 | |
| 1193 | int main(int argc, char **argv) |
| 1194 | { |
| 1195 | char root[PATH_MAX]; |
| 1196 | int i, ret = EXIT_SUCCESS; |
| 1197 | |
| 1198 | if (cg_find_unified_root(root, sizeof(root))) |
| 1199 | ksft_exit_skip("cgroup v2 isn't mounted\n"); |
| 1200 | |
| 1201 | /* |
| 1202 | * Check that memory controller is available: |
| 1203 | * memory is listed in cgroup.controllers |
| 1204 | */ |
| 1205 | if (cg_read_strstr(root, "cgroup.controllers", "memory")) |
| 1206 | ksft_exit_skip("memory controller isn't available\n"); |
| 1207 | |
| 1208 | if (cg_read_strstr(root, "cgroup.subtree_control", "memory")) |
| 1209 | if (cg_write(root, "cgroup.subtree_control", "+memory")) |
| 1210 | ksft_exit_skip("Failed to set memory controller\n"); |
| 1211 | |
| 1212 | for (i = 0; i < ARRAY_SIZE(tests); i++) { |
| 1213 | switch (tests[i].fn(root)) { |
| 1214 | case KSFT_PASS: |
| 1215 | ksft_test_result_pass("%s\n", tests[i].name); |
| 1216 | break; |
| 1217 | case KSFT_SKIP: |
| 1218 | ksft_test_result_skip("%s\n", tests[i].name); |
| 1219 | break; |
| 1220 | default: |
| 1221 | ret = EXIT_FAILURE; |
| 1222 | ksft_test_result_fail("%s\n", tests[i].name); |
| 1223 | break; |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | return ret; |
| 1228 | } |