b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Sparse bit array |
| 4 | * |
| 5 | * Copyright (C) 2018, Google LLC. |
| 6 | * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver) |
| 7 | * |
| 8 | * This library provides functions to support a memory efficient bit array, |
| 9 | * with an index size of 2^64. A sparsebit array is allocated through |
| 10 | * the use sparsebit_alloc() and free'd via sparsebit_free(), |
| 11 | * such as in the following: |
| 12 | * |
| 13 | * struct sparsebit *s; |
| 14 | * s = sparsebit_alloc(); |
| 15 | * sparsebit_free(&s); |
| 16 | * |
| 17 | * The struct sparsebit type resolves down to a struct sparsebit. |
| 18 | * Note that, sparsebit_free() takes a pointer to the sparsebit |
| 19 | * structure. This is so that sparsebit_free() is able to poison |
| 20 | * the pointer (e.g. set it to NULL) to the struct sparsebit before |
| 21 | * returning to the caller. |
| 22 | * |
| 23 | * Between the return of sparsebit_alloc() and the call of |
| 24 | * sparsebit_free(), there are multiple query and modifying operations |
| 25 | * that can be performed on the allocated sparsebit array. All of |
| 26 | * these operations take as a parameter the value returned from |
| 27 | * sparsebit_alloc() and most also take a bit index. Frequently |
| 28 | * used routines include: |
| 29 | * |
| 30 | * ---- Query Operations |
| 31 | * sparsebit_is_set(s, idx) |
| 32 | * sparsebit_is_clear(s, idx) |
| 33 | * sparsebit_any_set(s) |
| 34 | * sparsebit_first_set(s) |
| 35 | * sparsebit_next_set(s, prev_idx) |
| 36 | * |
| 37 | * ---- Modifying Operations |
| 38 | * sparsebit_set(s, idx) |
| 39 | * sparsebit_clear(s, idx) |
| 40 | * sparsebit_set_num(s, idx, num); |
| 41 | * sparsebit_clear_num(s, idx, num); |
| 42 | * |
| 43 | * A common operation, is to itterate over all the bits set in a test |
| 44 | * sparsebit array. This can be done via code with the following structure: |
| 45 | * |
| 46 | * sparsebit_idx_t idx; |
| 47 | * if (sparsebit_any_set(s)) { |
| 48 | * idx = sparsebit_first_set(s); |
| 49 | * do { |
| 50 | * ... |
| 51 | * idx = sparsebit_next_set(s, idx); |
| 52 | * } while (idx != 0); |
| 53 | * } |
| 54 | * |
| 55 | * The index of the first bit set needs to be obtained via |
| 56 | * sparsebit_first_set(), because sparsebit_next_set(), needs |
| 57 | * the index of the previously set. The sparsebit_idx_t type is |
| 58 | * unsigned, so there is no previous index before 0 that is available. |
| 59 | * Also, the call to sparsebit_first_set() is not made unless there |
| 60 | * is at least 1 bit in the array set. This is because sparsebit_first_set() |
| 61 | * aborts if sparsebit_first_set() is called with no bits set. |
| 62 | * It is the callers responsibility to assure that the |
| 63 | * sparsebit array has at least a single bit set before calling |
| 64 | * sparsebit_first_set(). |
| 65 | * |
| 66 | * ==== Implementation Overview ==== |
| 67 | * For the most part the internal implementation of sparsebit is |
| 68 | * opaque to the caller. One important implementation detail that the |
| 69 | * caller may need to be aware of is the spatial complexity of the |
| 70 | * implementation. This implementation of a sparsebit array is not |
| 71 | * only sparse, in that it uses memory proportional to the number of bits |
| 72 | * set. It is also efficient in memory usage when most of the bits are |
| 73 | * set. |
| 74 | * |
| 75 | * At a high-level the state of the bit settings are maintained through |
| 76 | * the use of a binary-search tree, where each node contains at least |
| 77 | * the following members: |
| 78 | * |
| 79 | * typedef uint64_t sparsebit_idx_t; |
| 80 | * typedef uint64_t sparsebit_num_t; |
| 81 | * |
| 82 | * sparsebit_idx_t idx; |
| 83 | * uint32_t mask; |
| 84 | * sparsebit_num_t num_after; |
| 85 | * |
| 86 | * The idx member contains the bit index of the first bit described by this |
| 87 | * node, while the mask member stores the setting of the first 32-bits. |
| 88 | * The setting of the bit at idx + n, where 0 <= n < 32, is located in the |
| 89 | * mask member at 1 << n. |
| 90 | * |
| 91 | * Nodes are sorted by idx and the bits described by two nodes will never |
| 92 | * overlap. The idx member is always aligned to the mask size, i.e. a |
| 93 | * multiple of 32. |
| 94 | * |
| 95 | * Beyond a typical implementation, the nodes in this implementation also |
| 96 | * contains a member named num_after. The num_after member holds the |
| 97 | * number of bits immediately after the mask bits that are contiguously set. |
| 98 | * The use of the num_after member allows this implementation to efficiently |
| 99 | * represent cases where most bits are set. For example, the case of all |
| 100 | * but the last two bits set, is represented by the following two nodes: |
| 101 | * |
| 102 | * node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0 |
| 103 | * node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0 |
| 104 | * |
| 105 | * ==== Invariants ==== |
| 106 | * This implementation usses the following invariants: |
| 107 | * |
| 108 | * + Node are only used to represent bits that are set. |
| 109 | * Nodes with a mask of 0 and num_after of 0 are not allowed. |
| 110 | * |
| 111 | * + Sum of bits set in all the nodes is equal to the value of |
| 112 | * the struct sparsebit_pvt num_set member. |
| 113 | * |
| 114 | * + The setting of at least one bit is always described in a nodes |
| 115 | * mask (mask >= 1). |
| 116 | * |
| 117 | * + A node with all mask bits set only occurs when the last bit |
| 118 | * described by the previous node is not equal to this nodes |
| 119 | * starting index - 1. All such occurences of this condition are |
| 120 | * avoided by moving the setting of the nodes mask bits into |
| 121 | * the previous nodes num_after setting. |
| 122 | * |
| 123 | * + Node starting index is evenly divisible by the number of bits |
| 124 | * within a nodes mask member. |
| 125 | * |
| 126 | * + Nodes never represent a range of bits that wrap around the |
| 127 | * highest supported index. |
| 128 | * |
| 129 | * (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1) |
| 130 | * |
| 131 | * As a consequence of the above, the num_after member of a node |
| 132 | * will always be <=: |
| 133 | * |
| 134 | * maximum_index - nodes_starting_index - number_of_mask_bits |
| 135 | * |
| 136 | * + Nodes within the binary search tree are sorted based on each |
| 137 | * nodes starting index. |
| 138 | * |
| 139 | * + The range of bits described by any two nodes do not overlap. The |
| 140 | * range of bits described by a single node is: |
| 141 | * |
| 142 | * start: node->idx |
| 143 | * end (inclusive): node->idx + MASK_BITS + node->num_after - 1; |
| 144 | * |
| 145 | * Note, at times these invariants are temporarily violated for a |
| 146 | * specific portion of the code. For example, when setting a mask |
| 147 | * bit, there is a small delay between when the mask bit is set and the |
| 148 | * value in the struct sparsebit_pvt num_set member is updated. Other |
| 149 | * temporary violations occur when node_split() is called with a specified |
| 150 | * index and assures that a node where its mask represents the bit |
| 151 | * at the specified index exists. At times to do this node_split() |
| 152 | * must split an existing node into two nodes or create a node that |
| 153 | * has no bits set. Such temporary violations must be corrected before |
| 154 | * returning to the caller. These corrections are typically performed |
| 155 | * by the local function node_reduce(). |
| 156 | */ |
| 157 | |
| 158 | #include "test_util.h" |
| 159 | #include "sparsebit.h" |
| 160 | #include <limits.h> |
| 161 | #include <assert.h> |
| 162 | |
| 163 | #define DUMP_LINE_MAX 100 /* Does not include indent amount */ |
| 164 | |
| 165 | typedef uint32_t mask_t; |
| 166 | #define MASK_BITS (sizeof(mask_t) * CHAR_BIT) |
| 167 | |
| 168 | struct node { |
| 169 | struct node *parent; |
| 170 | struct node *left; |
| 171 | struct node *right; |
| 172 | sparsebit_idx_t idx; /* index of least-significant bit in mask */ |
| 173 | sparsebit_num_t num_after; /* num contiguously set after mask */ |
| 174 | mask_t mask; |
| 175 | }; |
| 176 | |
| 177 | struct sparsebit { |
| 178 | /* |
| 179 | * Points to root node of the binary search |
| 180 | * tree. Equal to NULL when no bits are set in |
| 181 | * the entire sparsebit array. |
| 182 | */ |
| 183 | struct node *root; |
| 184 | |
| 185 | /* |
| 186 | * A redundant count of the total number of bits set. Used for |
| 187 | * diagnostic purposes and to change the time complexity of |
| 188 | * sparsebit_num_set() from O(n) to O(1). |
| 189 | * Note: Due to overflow, a value of 0 means none or all set. |
| 190 | */ |
| 191 | sparsebit_num_t num_set; |
| 192 | }; |
| 193 | |
| 194 | /* Returns the number of set bits described by the settings |
| 195 | * of the node pointed to by nodep. |
| 196 | */ |
| 197 | static sparsebit_num_t node_num_set(struct node *nodep) |
| 198 | { |
| 199 | return nodep->num_after + __builtin_popcount(nodep->mask); |
| 200 | } |
| 201 | |
| 202 | /* Returns a pointer to the node that describes the |
| 203 | * lowest bit index. |
| 204 | */ |
| 205 | static struct node *node_first(struct sparsebit *s) |
| 206 | { |
| 207 | struct node *nodep; |
| 208 | |
| 209 | for (nodep = s->root; nodep && nodep->left; nodep = nodep->left) |
| 210 | ; |
| 211 | |
| 212 | return nodep; |
| 213 | } |
| 214 | |
| 215 | /* Returns a pointer to the node that describes the |
| 216 | * lowest bit index > the index of the node pointed to by np. |
| 217 | * Returns NULL if no node with a higher index exists. |
| 218 | */ |
| 219 | static struct node *node_next(struct sparsebit *s, struct node *np) |
| 220 | { |
| 221 | struct node *nodep = np; |
| 222 | |
| 223 | /* |
| 224 | * If current node has a right child, next node is the left-most |
| 225 | * of the right child. |
| 226 | */ |
| 227 | if (nodep->right) { |
| 228 | for (nodep = nodep->right; nodep->left; nodep = nodep->left) |
| 229 | ; |
| 230 | return nodep; |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * No right child. Go up until node is left child of a parent. |
| 235 | * That parent is then the next node. |
| 236 | */ |
| 237 | while (nodep->parent && nodep == nodep->parent->right) |
| 238 | nodep = nodep->parent; |
| 239 | |
| 240 | return nodep->parent; |
| 241 | } |
| 242 | |
| 243 | /* Searches for and returns a pointer to the node that describes the |
| 244 | * highest index < the index of the node pointed to by np. |
| 245 | * Returns NULL if no node with a lower index exists. |
| 246 | */ |
| 247 | static struct node *node_prev(struct sparsebit *s, struct node *np) |
| 248 | { |
| 249 | struct node *nodep = np; |
| 250 | |
| 251 | /* |
| 252 | * If current node has a left child, next node is the right-most |
| 253 | * of the left child. |
| 254 | */ |
| 255 | if (nodep->left) { |
| 256 | for (nodep = nodep->left; nodep->right; nodep = nodep->right) |
| 257 | ; |
| 258 | return (struct node *) nodep; |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * No left child. Go up until node is right child of a parent. |
| 263 | * That parent is then the next node. |
| 264 | */ |
| 265 | while (nodep->parent && nodep == nodep->parent->left) |
| 266 | nodep = nodep->parent; |
| 267 | |
| 268 | return (struct node *) nodep->parent; |
| 269 | } |
| 270 | |
| 271 | |
| 272 | /* Allocates space to hold a copy of the node sub-tree pointed to by |
| 273 | * subtree and duplicates the bit settings to the newly allocated nodes. |
| 274 | * Returns the newly allocated copy of subtree. |
| 275 | */ |
| 276 | static struct node *node_copy_subtree(struct node *subtree) |
| 277 | { |
| 278 | struct node *root; |
| 279 | |
| 280 | /* Duplicate the node at the root of the subtree */ |
| 281 | root = calloc(1, sizeof(*root)); |
| 282 | if (!root) { |
| 283 | perror("calloc"); |
| 284 | abort(); |
| 285 | } |
| 286 | |
| 287 | root->idx = subtree->idx; |
| 288 | root->mask = subtree->mask; |
| 289 | root->num_after = subtree->num_after; |
| 290 | |
| 291 | /* As needed, recursively duplicate the left and right subtrees */ |
| 292 | if (subtree->left) { |
| 293 | root->left = node_copy_subtree(subtree->left); |
| 294 | root->left->parent = root; |
| 295 | } |
| 296 | |
| 297 | if (subtree->right) { |
| 298 | root->right = node_copy_subtree(subtree->right); |
| 299 | root->right->parent = root; |
| 300 | } |
| 301 | |
| 302 | return root; |
| 303 | } |
| 304 | |
| 305 | /* Searches for and returns a pointer to the node that describes the setting |
| 306 | * of the bit given by idx. A node describes the setting of a bit if its |
| 307 | * index is within the bits described by the mask bits or the number of |
| 308 | * contiguous bits set after the mask. Returns NULL if there is no such node. |
| 309 | */ |
| 310 | static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx) |
| 311 | { |
| 312 | struct node *nodep; |
| 313 | |
| 314 | /* Find the node that describes the setting of the bit at idx */ |
| 315 | for (nodep = s->root; nodep; |
| 316 | nodep = nodep->idx > idx ? nodep->left : nodep->right) { |
| 317 | if (idx >= nodep->idx && |
| 318 | idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) |
| 319 | break; |
| 320 | } |
| 321 | |
| 322 | return nodep; |
| 323 | } |
| 324 | |
| 325 | /* Entry Requirements: |
| 326 | * + A node that describes the setting of idx is not already present. |
| 327 | * |
| 328 | * Adds a new node to describe the setting of the bit at the index given |
| 329 | * by idx. Returns a pointer to the newly added node. |
| 330 | * |
| 331 | * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced. |
| 332 | */ |
| 333 | static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx) |
| 334 | { |
| 335 | struct node *nodep, *parentp, *prev; |
| 336 | |
| 337 | /* Allocate and initialize the new node. */ |
| 338 | nodep = calloc(1, sizeof(*nodep)); |
| 339 | if (!nodep) { |
| 340 | perror("calloc"); |
| 341 | abort(); |
| 342 | } |
| 343 | |
| 344 | nodep->idx = idx & -MASK_BITS; |
| 345 | |
| 346 | /* If no nodes, set it up as the root node. */ |
| 347 | if (!s->root) { |
| 348 | s->root = nodep; |
| 349 | return nodep; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Find the parent where the new node should be attached |
| 354 | * and add the node there. |
| 355 | */ |
| 356 | parentp = s->root; |
| 357 | while (true) { |
| 358 | if (idx < parentp->idx) { |
| 359 | if (!parentp->left) { |
| 360 | parentp->left = nodep; |
| 361 | nodep->parent = parentp; |
| 362 | break; |
| 363 | } |
| 364 | parentp = parentp->left; |
| 365 | } else { |
| 366 | assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1); |
| 367 | if (!parentp->right) { |
| 368 | parentp->right = nodep; |
| 369 | nodep->parent = parentp; |
| 370 | break; |
| 371 | } |
| 372 | parentp = parentp->right; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | /* |
| 377 | * Does num_after bits of previous node overlap with the mask |
| 378 | * of the new node? If so set the bits in the new nodes mask |
| 379 | * and reduce the previous nodes num_after. |
| 380 | */ |
| 381 | prev = node_prev(s, nodep); |
| 382 | while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) { |
| 383 | unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1) |
| 384 | - nodep->idx; |
| 385 | assert(prev->num_after > 0); |
| 386 | assert(n1 < MASK_BITS); |
| 387 | assert(!(nodep->mask & (1 << n1))); |
| 388 | nodep->mask |= (1 << n1); |
| 389 | prev->num_after--; |
| 390 | } |
| 391 | |
| 392 | return nodep; |
| 393 | } |
| 394 | |
| 395 | /* Returns whether all the bits in the sparsebit array are set. */ |
| 396 | bool sparsebit_all_set(struct sparsebit *s) |
| 397 | { |
| 398 | /* |
| 399 | * If any nodes there must be at least one bit set. Only case |
| 400 | * where a bit is set and total num set is 0, is when all bits |
| 401 | * are set. |
| 402 | */ |
| 403 | return s->root && s->num_set == 0; |
| 404 | } |
| 405 | |
| 406 | /* Clears all bits described by the node pointed to by nodep, then |
| 407 | * removes the node. |
| 408 | */ |
| 409 | static void node_rm(struct sparsebit *s, struct node *nodep) |
| 410 | { |
| 411 | struct node *tmp; |
| 412 | sparsebit_num_t num_set; |
| 413 | |
| 414 | num_set = node_num_set(nodep); |
| 415 | assert(s->num_set >= num_set || sparsebit_all_set(s)); |
| 416 | s->num_set -= node_num_set(nodep); |
| 417 | |
| 418 | /* Have both left and right child */ |
| 419 | if (nodep->left && nodep->right) { |
| 420 | /* |
| 421 | * Move left children to the leftmost leaf node |
| 422 | * of the right child. |
| 423 | */ |
| 424 | for (tmp = nodep->right; tmp->left; tmp = tmp->left) |
| 425 | ; |
| 426 | tmp->left = nodep->left; |
| 427 | nodep->left = NULL; |
| 428 | tmp->left->parent = tmp; |
| 429 | } |
| 430 | |
| 431 | /* Left only child */ |
| 432 | if (nodep->left) { |
| 433 | if (!nodep->parent) { |
| 434 | s->root = nodep->left; |
| 435 | nodep->left->parent = NULL; |
| 436 | } else { |
| 437 | nodep->left->parent = nodep->parent; |
| 438 | if (nodep == nodep->parent->left) |
| 439 | nodep->parent->left = nodep->left; |
| 440 | else { |
| 441 | assert(nodep == nodep->parent->right); |
| 442 | nodep->parent->right = nodep->left; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | nodep->parent = nodep->left = nodep->right = NULL; |
| 447 | free(nodep); |
| 448 | |
| 449 | return; |
| 450 | } |
| 451 | |
| 452 | |
| 453 | /* Right only child */ |
| 454 | if (nodep->right) { |
| 455 | if (!nodep->parent) { |
| 456 | s->root = nodep->right; |
| 457 | nodep->right->parent = NULL; |
| 458 | } else { |
| 459 | nodep->right->parent = nodep->parent; |
| 460 | if (nodep == nodep->parent->left) |
| 461 | nodep->parent->left = nodep->right; |
| 462 | else { |
| 463 | assert(nodep == nodep->parent->right); |
| 464 | nodep->parent->right = nodep->right; |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | nodep->parent = nodep->left = nodep->right = NULL; |
| 469 | free(nodep); |
| 470 | |
| 471 | return; |
| 472 | } |
| 473 | |
| 474 | /* Leaf Node */ |
| 475 | if (!nodep->parent) { |
| 476 | s->root = NULL; |
| 477 | } else { |
| 478 | if (nodep->parent->left == nodep) |
| 479 | nodep->parent->left = NULL; |
| 480 | else { |
| 481 | assert(nodep == nodep->parent->right); |
| 482 | nodep->parent->right = NULL; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | nodep->parent = nodep->left = nodep->right = NULL; |
| 487 | free(nodep); |
| 488 | |
| 489 | return; |
| 490 | } |
| 491 | |
| 492 | /* Splits the node containing the bit at idx so that there is a node |
| 493 | * that starts at the specified index. If no such node exists, a new |
| 494 | * node at the specified index is created. Returns the new node. |
| 495 | * |
| 496 | * idx must start of a mask boundary. |
| 497 | */ |
| 498 | static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx) |
| 499 | { |
| 500 | struct node *nodep1, *nodep2; |
| 501 | sparsebit_idx_t offset; |
| 502 | sparsebit_num_t orig_num_after; |
| 503 | |
| 504 | assert(!(idx % MASK_BITS)); |
| 505 | |
| 506 | /* |
| 507 | * Is there a node that describes the setting of idx? |
| 508 | * If not, add it. |
| 509 | */ |
| 510 | nodep1 = node_find(s, idx); |
| 511 | if (!nodep1) |
| 512 | return node_add(s, idx); |
| 513 | |
| 514 | /* |
| 515 | * All done if the starting index of the node is where the |
| 516 | * split should occur. |
| 517 | */ |
| 518 | if (nodep1->idx == idx) |
| 519 | return nodep1; |
| 520 | |
| 521 | /* |
| 522 | * Split point not at start of mask, so it must be part of |
| 523 | * bits described by num_after. |
| 524 | */ |
| 525 | |
| 526 | /* |
| 527 | * Calculate offset within num_after for where the split is |
| 528 | * to occur. |
| 529 | */ |
| 530 | offset = idx - (nodep1->idx + MASK_BITS); |
| 531 | orig_num_after = nodep1->num_after; |
| 532 | |
| 533 | /* |
| 534 | * Add a new node to describe the bits starting at |
| 535 | * the split point. |
| 536 | */ |
| 537 | nodep1->num_after = offset; |
| 538 | nodep2 = node_add(s, idx); |
| 539 | |
| 540 | /* Move bits after the split point into the new node */ |
| 541 | nodep2->num_after = orig_num_after - offset; |
| 542 | if (nodep2->num_after >= MASK_BITS) { |
| 543 | nodep2->mask = ~(mask_t) 0; |
| 544 | nodep2->num_after -= MASK_BITS; |
| 545 | } else { |
| 546 | nodep2->mask = (1 << nodep2->num_after) - 1; |
| 547 | nodep2->num_after = 0; |
| 548 | } |
| 549 | |
| 550 | return nodep2; |
| 551 | } |
| 552 | |
| 553 | /* Iteratively reduces the node pointed to by nodep and its adjacent |
| 554 | * nodes into a more compact form. For example, a node with a mask with |
| 555 | * all bits set adjacent to a previous node, will get combined into a |
| 556 | * single node with an increased num_after setting. |
| 557 | * |
| 558 | * After each reduction, a further check is made to see if additional |
| 559 | * reductions are possible with the new previous and next nodes. Note, |
| 560 | * a search for a reduction is only done across the nodes nearest nodep |
| 561 | * and those that became part of a reduction. Reductions beyond nodep |
| 562 | * and the adjacent nodes that are reduced are not discovered. It is the |
| 563 | * responsibility of the caller to pass a nodep that is within one node |
| 564 | * of each possible reduction. |
| 565 | * |
| 566 | * This function does not fix the temporary violation of all invariants. |
| 567 | * For example it does not fix the case where the bit settings described |
| 568 | * by two or more nodes overlap. Such a violation introduces the potential |
| 569 | * complication of a bit setting for a specific index having different settings |
| 570 | * in different nodes. This would then introduce the further complication |
| 571 | * of which node has the correct setting of the bit and thus such conditions |
| 572 | * are not allowed. |
| 573 | * |
| 574 | * This function is designed to fix invariant violations that are introduced |
| 575 | * by node_split() and by changes to the nodes mask or num_after members. |
| 576 | * For example, when setting a bit within a nodes mask, the function that |
| 577 | * sets the bit doesn't have to worry about whether the setting of that |
| 578 | * bit caused the mask to have leading only or trailing only bits set. |
| 579 | * Instead, the function can call node_reduce(), with nodep equal to the |
| 580 | * node address that it set a mask bit in, and node_reduce() will notice |
| 581 | * the cases of leading or trailing only bits and that there is an |
| 582 | * adjacent node that the bit settings could be merged into. |
| 583 | * |
| 584 | * This implementation specifically detects and corrects violation of the |
| 585 | * following invariants: |
| 586 | * |
| 587 | * + Node are only used to represent bits that are set. |
| 588 | * Nodes with a mask of 0 and num_after of 0 are not allowed. |
| 589 | * |
| 590 | * + The setting of at least one bit is always described in a nodes |
| 591 | * mask (mask >= 1). |
| 592 | * |
| 593 | * + A node with all mask bits set only occurs when the last bit |
| 594 | * described by the previous node is not equal to this nodes |
| 595 | * starting index - 1. All such occurences of this condition are |
| 596 | * avoided by moving the setting of the nodes mask bits into |
| 597 | * the previous nodes num_after setting. |
| 598 | */ |
| 599 | static void node_reduce(struct sparsebit *s, struct node *nodep) |
| 600 | { |
| 601 | bool reduction_performed; |
| 602 | |
| 603 | do { |
| 604 | reduction_performed = false; |
| 605 | struct node *prev, *next, *tmp; |
| 606 | |
| 607 | /* 1) Potential reductions within the current node. */ |
| 608 | |
| 609 | /* Nodes with all bits cleared may be removed. */ |
| 610 | if (nodep->mask == 0 && nodep->num_after == 0) { |
| 611 | /* |
| 612 | * About to remove the node pointed to by |
| 613 | * nodep, which normally would cause a problem |
| 614 | * for the next pass through the reduction loop, |
| 615 | * because the node at the starting point no longer |
| 616 | * exists. This potential problem is handled |
| 617 | * by first remembering the location of the next |
| 618 | * or previous nodes. Doesn't matter which, because |
| 619 | * once the node at nodep is removed, there will be |
| 620 | * no other nodes between prev and next. |
| 621 | * |
| 622 | * Note, the checks performed on nodep against both |
| 623 | * both prev and next both check for an adjacent |
| 624 | * node that can be reduced into a single node. As |
| 625 | * such, after removing the node at nodep, doesn't |
| 626 | * matter whether the nodep for the next pass |
| 627 | * through the loop is equal to the previous pass |
| 628 | * prev or next node. Either way, on the next pass |
| 629 | * the one not selected will become either the |
| 630 | * prev or next node. |
| 631 | */ |
| 632 | tmp = node_next(s, nodep); |
| 633 | if (!tmp) |
| 634 | tmp = node_prev(s, nodep); |
| 635 | |
| 636 | node_rm(s, nodep); |
| 637 | nodep = NULL; |
| 638 | |
| 639 | nodep = tmp; |
| 640 | reduction_performed = true; |
| 641 | continue; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * When the mask is 0, can reduce the amount of num_after |
| 646 | * bits by moving the initial num_after bits into the mask. |
| 647 | */ |
| 648 | if (nodep->mask == 0) { |
| 649 | assert(nodep->num_after != 0); |
| 650 | assert(nodep->idx + MASK_BITS > nodep->idx); |
| 651 | |
| 652 | nodep->idx += MASK_BITS; |
| 653 | |
| 654 | if (nodep->num_after >= MASK_BITS) { |
| 655 | nodep->mask = ~0; |
| 656 | nodep->num_after -= MASK_BITS; |
| 657 | } else { |
| 658 | nodep->mask = (1u << nodep->num_after) - 1; |
| 659 | nodep->num_after = 0; |
| 660 | } |
| 661 | |
| 662 | reduction_performed = true; |
| 663 | continue; |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * 2) Potential reductions between the current and |
| 668 | * previous nodes. |
| 669 | */ |
| 670 | prev = node_prev(s, nodep); |
| 671 | if (prev) { |
| 672 | sparsebit_idx_t prev_highest_bit; |
| 673 | |
| 674 | /* Nodes with no bits set can be removed. */ |
| 675 | if (prev->mask == 0 && prev->num_after == 0) { |
| 676 | node_rm(s, prev); |
| 677 | |
| 678 | reduction_performed = true; |
| 679 | continue; |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * All mask bits set and previous node has |
| 684 | * adjacent index. |
| 685 | */ |
| 686 | if (nodep->mask + 1 == 0 && |
| 687 | prev->idx + MASK_BITS == nodep->idx) { |
| 688 | prev->num_after += MASK_BITS + nodep->num_after; |
| 689 | nodep->mask = 0; |
| 690 | nodep->num_after = 0; |
| 691 | |
| 692 | reduction_performed = true; |
| 693 | continue; |
| 694 | } |
| 695 | |
| 696 | /* |
| 697 | * Is node adjacent to previous node and the node |
| 698 | * contains a single contiguous range of bits |
| 699 | * starting from the beginning of the mask? |
| 700 | */ |
| 701 | prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after; |
| 702 | if (prev_highest_bit + 1 == nodep->idx && |
| 703 | (nodep->mask | (nodep->mask >> 1)) == nodep->mask) { |
| 704 | /* |
| 705 | * How many contiguous bits are there? |
| 706 | * Is equal to the total number of set |
| 707 | * bits, due to an earlier check that |
| 708 | * there is a single contiguous range of |
| 709 | * set bits. |
| 710 | */ |
| 711 | unsigned int num_contiguous |
| 712 | = __builtin_popcount(nodep->mask); |
| 713 | assert((num_contiguous > 0) && |
| 714 | ((1ULL << num_contiguous) - 1) == nodep->mask); |
| 715 | |
| 716 | prev->num_after += num_contiguous; |
| 717 | nodep->mask = 0; |
| 718 | |
| 719 | /* |
| 720 | * For predictable performance, handle special |
| 721 | * case where all mask bits are set and there |
| 722 | * is a non-zero num_after setting. This code |
| 723 | * is functionally correct without the following |
| 724 | * conditionalized statements, but without them |
| 725 | * the value of num_after is only reduced by |
| 726 | * the number of mask bits per pass. There are |
| 727 | * cases where num_after can be close to 2^64. |
| 728 | * Without this code it could take nearly |
| 729 | * (2^64) / 32 passes to perform the full |
| 730 | * reduction. |
| 731 | */ |
| 732 | if (num_contiguous == MASK_BITS) { |
| 733 | prev->num_after += nodep->num_after; |
| 734 | nodep->num_after = 0; |
| 735 | } |
| 736 | |
| 737 | reduction_performed = true; |
| 738 | continue; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * 3) Potential reductions between the current and |
| 744 | * next nodes. |
| 745 | */ |
| 746 | next = node_next(s, nodep); |
| 747 | if (next) { |
| 748 | /* Nodes with no bits set can be removed. */ |
| 749 | if (next->mask == 0 && next->num_after == 0) { |
| 750 | node_rm(s, next); |
| 751 | reduction_performed = true; |
| 752 | continue; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * Is next node index adjacent to current node |
| 757 | * and has a mask with all bits set? |
| 758 | */ |
| 759 | if (next->idx == nodep->idx + MASK_BITS + nodep->num_after && |
| 760 | next->mask == ~(mask_t) 0) { |
| 761 | nodep->num_after += MASK_BITS; |
| 762 | next->mask = 0; |
| 763 | nodep->num_after += next->num_after; |
| 764 | next->num_after = 0; |
| 765 | |
| 766 | node_rm(s, next); |
| 767 | next = NULL; |
| 768 | |
| 769 | reduction_performed = true; |
| 770 | continue; |
| 771 | } |
| 772 | } |
| 773 | } while (nodep && reduction_performed); |
| 774 | } |
| 775 | |
| 776 | /* Returns whether the bit at the index given by idx, within the |
| 777 | * sparsebit array is set or not. |
| 778 | */ |
| 779 | bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx) |
| 780 | { |
| 781 | struct node *nodep; |
| 782 | |
| 783 | /* Find the node that describes the setting of the bit at idx */ |
| 784 | for (nodep = s->root; nodep; |
| 785 | nodep = nodep->idx > idx ? nodep->left : nodep->right) |
| 786 | if (idx >= nodep->idx && |
| 787 | idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) |
| 788 | goto have_node; |
| 789 | |
| 790 | return false; |
| 791 | |
| 792 | have_node: |
| 793 | /* Bit is set if it is any of the bits described by num_after */ |
| 794 | if (nodep->num_after && idx >= nodep->idx + MASK_BITS) |
| 795 | return true; |
| 796 | |
| 797 | /* Is the corresponding mask bit set */ |
| 798 | assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS); |
| 799 | return !!(nodep->mask & (1 << (idx - nodep->idx))); |
| 800 | } |
| 801 | |
| 802 | /* Within the sparsebit array pointed to by s, sets the bit |
| 803 | * at the index given by idx. |
| 804 | */ |
| 805 | static void bit_set(struct sparsebit *s, sparsebit_idx_t idx) |
| 806 | { |
| 807 | struct node *nodep; |
| 808 | |
| 809 | /* Skip bits that are already set */ |
| 810 | if (sparsebit_is_set(s, idx)) |
| 811 | return; |
| 812 | |
| 813 | /* |
| 814 | * Get a node where the bit at idx is described by the mask. |
| 815 | * The node_split will also create a node, if there isn't |
| 816 | * already a node that describes the setting of bit. |
| 817 | */ |
| 818 | nodep = node_split(s, idx & -MASK_BITS); |
| 819 | |
| 820 | /* Set the bit within the nodes mask */ |
| 821 | assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); |
| 822 | assert(!(nodep->mask & (1 << (idx - nodep->idx)))); |
| 823 | nodep->mask |= 1 << (idx - nodep->idx); |
| 824 | s->num_set++; |
| 825 | |
| 826 | node_reduce(s, nodep); |
| 827 | } |
| 828 | |
| 829 | /* Within the sparsebit array pointed to by s, clears the bit |
| 830 | * at the index given by idx. |
| 831 | */ |
| 832 | static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx) |
| 833 | { |
| 834 | struct node *nodep; |
| 835 | |
| 836 | /* Skip bits that are already cleared */ |
| 837 | if (!sparsebit_is_set(s, idx)) |
| 838 | return; |
| 839 | |
| 840 | /* Is there a node that describes the setting of this bit? */ |
| 841 | nodep = node_find(s, idx); |
| 842 | if (!nodep) |
| 843 | return; |
| 844 | |
| 845 | /* |
| 846 | * If a num_after bit, split the node, so that the bit is |
| 847 | * part of a node mask. |
| 848 | */ |
| 849 | if (idx >= nodep->idx + MASK_BITS) |
| 850 | nodep = node_split(s, idx & -MASK_BITS); |
| 851 | |
| 852 | /* |
| 853 | * After node_split above, bit at idx should be within the mask. |
| 854 | * Clear that bit. |
| 855 | */ |
| 856 | assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); |
| 857 | assert(nodep->mask & (1 << (idx - nodep->idx))); |
| 858 | nodep->mask &= ~(1 << (idx - nodep->idx)); |
| 859 | assert(s->num_set > 0 || sparsebit_all_set(s)); |
| 860 | s->num_set--; |
| 861 | |
| 862 | node_reduce(s, nodep); |
| 863 | } |
| 864 | |
| 865 | /* Recursively dumps to the FILE stream given by stream the contents |
| 866 | * of the sub-tree of nodes pointed to by nodep. Each line of output |
| 867 | * is prefixed by the number of spaces given by indent. On each |
| 868 | * recursion, the indent amount is increased by 2. This causes nodes |
| 869 | * at each level deeper into the binary search tree to be displayed |
| 870 | * with a greater indent. |
| 871 | */ |
| 872 | static void dump_nodes(FILE *stream, struct node *nodep, |
| 873 | unsigned int indent) |
| 874 | { |
| 875 | char *node_type; |
| 876 | |
| 877 | /* Dump contents of node */ |
| 878 | if (!nodep->parent) |
| 879 | node_type = "root"; |
| 880 | else if (nodep == nodep->parent->left) |
| 881 | node_type = "left"; |
| 882 | else { |
| 883 | assert(nodep == nodep->parent->right); |
| 884 | node_type = "right"; |
| 885 | } |
| 886 | fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep); |
| 887 | fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "", |
| 888 | nodep->parent, nodep->left, nodep->right); |
| 889 | fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n", |
| 890 | indent, "", nodep->idx, nodep->mask, nodep->num_after); |
| 891 | |
| 892 | /* If present, dump contents of left child nodes */ |
| 893 | if (nodep->left) |
| 894 | dump_nodes(stream, nodep->left, indent + 2); |
| 895 | |
| 896 | /* If present, dump contents of right child nodes */ |
| 897 | if (nodep->right) |
| 898 | dump_nodes(stream, nodep->right, indent + 2); |
| 899 | } |
| 900 | |
| 901 | static inline sparsebit_idx_t node_first_set(struct node *nodep, int start) |
| 902 | { |
| 903 | mask_t leading = (mask_t)1 << start; |
| 904 | int n1 = __builtin_ctz(nodep->mask & -leading); |
| 905 | |
| 906 | return nodep->idx + n1; |
| 907 | } |
| 908 | |
| 909 | static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start) |
| 910 | { |
| 911 | mask_t leading = (mask_t)1 << start; |
| 912 | int n1 = __builtin_ctz(~nodep->mask & -leading); |
| 913 | |
| 914 | return nodep->idx + n1; |
| 915 | } |
| 916 | |
| 917 | /* Dumps to the FILE stream specified by stream, the implementation dependent |
| 918 | * internal state of s. Each line of output is prefixed with the number |
| 919 | * of spaces given by indent. The output is completely implementation |
| 920 | * dependent and subject to change. Output from this function should only |
| 921 | * be used for diagnostic purposes. For example, this function can be |
| 922 | * used by test cases after they detect an unexpected condition, as a means |
| 923 | * to capture diagnostic information. |
| 924 | */ |
| 925 | static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s, |
| 926 | unsigned int indent) |
| 927 | { |
| 928 | /* Dump the contents of s */ |
| 929 | fprintf(stream, "%*sroot: %p\n", indent, "", s->root); |
| 930 | fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set); |
| 931 | |
| 932 | if (s->root) |
| 933 | dump_nodes(stream, s->root, indent); |
| 934 | } |
| 935 | |
| 936 | /* Allocates and returns a new sparsebit array. The initial state |
| 937 | * of the newly allocated sparsebit array has all bits cleared. |
| 938 | */ |
| 939 | struct sparsebit *sparsebit_alloc(void) |
| 940 | { |
| 941 | struct sparsebit *s; |
| 942 | |
| 943 | /* Allocate top level structure. */ |
| 944 | s = calloc(1, sizeof(*s)); |
| 945 | if (!s) { |
| 946 | perror("calloc"); |
| 947 | abort(); |
| 948 | } |
| 949 | |
| 950 | return s; |
| 951 | } |
| 952 | |
| 953 | /* Frees the implementation dependent data for the sparsebit array |
| 954 | * pointed to by s and poisons the pointer to that data. |
| 955 | */ |
| 956 | void sparsebit_free(struct sparsebit **sbitp) |
| 957 | { |
| 958 | struct sparsebit *s = *sbitp; |
| 959 | |
| 960 | if (!s) |
| 961 | return; |
| 962 | |
| 963 | sparsebit_clear_all(s); |
| 964 | free(s); |
| 965 | *sbitp = NULL; |
| 966 | } |
| 967 | |
| 968 | /* Makes a copy of the sparsebit array given by s, to the sparsebit |
| 969 | * array given by d. Note, d must have already been allocated via |
| 970 | * sparsebit_alloc(). It can though already have bits set, which |
| 971 | * if different from src will be cleared. |
| 972 | */ |
| 973 | void sparsebit_copy(struct sparsebit *d, struct sparsebit *s) |
| 974 | { |
| 975 | /* First clear any bits already set in the destination */ |
| 976 | sparsebit_clear_all(d); |
| 977 | |
| 978 | if (s->root) { |
| 979 | d->root = node_copy_subtree(s->root); |
| 980 | d->num_set = s->num_set; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | /* Returns whether num consecutive bits starting at idx are all set. */ |
| 985 | bool sparsebit_is_set_num(struct sparsebit *s, |
| 986 | sparsebit_idx_t idx, sparsebit_num_t num) |
| 987 | { |
| 988 | sparsebit_idx_t next_cleared; |
| 989 | |
| 990 | assert(num > 0); |
| 991 | assert(idx + num - 1 >= idx); |
| 992 | |
| 993 | /* With num > 0, the first bit must be set. */ |
| 994 | if (!sparsebit_is_set(s, idx)) |
| 995 | return false; |
| 996 | |
| 997 | /* Find the next cleared bit */ |
| 998 | next_cleared = sparsebit_next_clear(s, idx); |
| 999 | |
| 1000 | /* |
| 1001 | * If no cleared bits beyond idx, then there are at least num |
| 1002 | * set bits. idx + num doesn't wrap. Otherwise check if |
| 1003 | * there are enough set bits between idx and the next cleared bit. |
| 1004 | */ |
| 1005 | return next_cleared == 0 || next_cleared - idx >= num; |
| 1006 | } |
| 1007 | |
| 1008 | /* Returns whether the bit at the index given by idx. */ |
| 1009 | bool sparsebit_is_clear(struct sparsebit *s, |
| 1010 | sparsebit_idx_t idx) |
| 1011 | { |
| 1012 | return !sparsebit_is_set(s, idx); |
| 1013 | } |
| 1014 | |
| 1015 | /* Returns whether num consecutive bits starting at idx are all cleared. */ |
| 1016 | bool sparsebit_is_clear_num(struct sparsebit *s, |
| 1017 | sparsebit_idx_t idx, sparsebit_num_t num) |
| 1018 | { |
| 1019 | sparsebit_idx_t next_set; |
| 1020 | |
| 1021 | assert(num > 0); |
| 1022 | assert(idx + num - 1 >= idx); |
| 1023 | |
| 1024 | /* With num > 0, the first bit must be cleared. */ |
| 1025 | if (!sparsebit_is_clear(s, idx)) |
| 1026 | return false; |
| 1027 | |
| 1028 | /* Find the next set bit */ |
| 1029 | next_set = sparsebit_next_set(s, idx); |
| 1030 | |
| 1031 | /* |
| 1032 | * If no set bits beyond idx, then there are at least num |
| 1033 | * cleared bits. idx + num doesn't wrap. Otherwise check if |
| 1034 | * there are enough cleared bits between idx and the next set bit. |
| 1035 | */ |
| 1036 | return next_set == 0 || next_set - idx >= num; |
| 1037 | } |
| 1038 | |
| 1039 | /* Returns the total number of bits set. Note: 0 is also returned for |
| 1040 | * the case of all bits set. This is because with all bits set, there |
| 1041 | * is 1 additional bit set beyond what can be represented in the return |
| 1042 | * value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0, |
| 1043 | * to determine if the sparsebit array has any bits set. |
| 1044 | */ |
| 1045 | sparsebit_num_t sparsebit_num_set(struct sparsebit *s) |
| 1046 | { |
| 1047 | return s->num_set; |
| 1048 | } |
| 1049 | |
| 1050 | /* Returns whether any bit is set in the sparsebit array. */ |
| 1051 | bool sparsebit_any_set(struct sparsebit *s) |
| 1052 | { |
| 1053 | /* |
| 1054 | * Nodes only describe set bits. If any nodes then there |
| 1055 | * is at least 1 bit set. |
| 1056 | */ |
| 1057 | if (!s->root) |
| 1058 | return false; |
| 1059 | |
| 1060 | /* |
| 1061 | * Every node should have a non-zero mask. For now will |
| 1062 | * just assure that the root node has a non-zero mask, |
| 1063 | * which is a quick check that at least 1 bit is set. |
| 1064 | */ |
| 1065 | assert(s->root->mask != 0); |
| 1066 | assert(s->num_set > 0 || |
| 1067 | (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS && |
| 1068 | s->root->mask == ~(mask_t) 0)); |
| 1069 | |
| 1070 | return true; |
| 1071 | } |
| 1072 | |
| 1073 | /* Returns whether all the bits in the sparsebit array are cleared. */ |
| 1074 | bool sparsebit_all_clear(struct sparsebit *s) |
| 1075 | { |
| 1076 | return !sparsebit_any_set(s); |
| 1077 | } |
| 1078 | |
| 1079 | /* Returns whether all the bits in the sparsebit array are set. */ |
| 1080 | bool sparsebit_any_clear(struct sparsebit *s) |
| 1081 | { |
| 1082 | return !sparsebit_all_set(s); |
| 1083 | } |
| 1084 | |
| 1085 | /* Returns the index of the first set bit. Abort if no bits are set. |
| 1086 | */ |
| 1087 | sparsebit_idx_t sparsebit_first_set(struct sparsebit *s) |
| 1088 | { |
| 1089 | struct node *nodep; |
| 1090 | |
| 1091 | /* Validate at least 1 bit is set */ |
| 1092 | assert(sparsebit_any_set(s)); |
| 1093 | |
| 1094 | nodep = node_first(s); |
| 1095 | return node_first_set(nodep, 0); |
| 1096 | } |
| 1097 | |
| 1098 | /* Returns the index of the first cleared bit. Abort if |
| 1099 | * no bits are cleared. |
| 1100 | */ |
| 1101 | sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s) |
| 1102 | { |
| 1103 | struct node *nodep1, *nodep2; |
| 1104 | |
| 1105 | /* Validate at least 1 bit is cleared. */ |
| 1106 | assert(sparsebit_any_clear(s)); |
| 1107 | |
| 1108 | /* If no nodes or first node index > 0 then lowest cleared is 0 */ |
| 1109 | nodep1 = node_first(s); |
| 1110 | if (!nodep1 || nodep1->idx > 0) |
| 1111 | return 0; |
| 1112 | |
| 1113 | /* Does the mask in the first node contain any cleared bits. */ |
| 1114 | if (nodep1->mask != ~(mask_t) 0) |
| 1115 | return node_first_clear(nodep1, 0); |
| 1116 | |
| 1117 | /* |
| 1118 | * All mask bits set in first node. If there isn't a second node |
| 1119 | * then the first cleared bit is the first bit after the bits |
| 1120 | * described by the first node. |
| 1121 | */ |
| 1122 | nodep2 = node_next(s, nodep1); |
| 1123 | if (!nodep2) { |
| 1124 | /* |
| 1125 | * No second node. First cleared bit is first bit beyond |
| 1126 | * bits described by first node. |
| 1127 | */ |
| 1128 | assert(nodep1->mask == ~(mask_t) 0); |
| 1129 | assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0); |
| 1130 | return nodep1->idx + MASK_BITS + nodep1->num_after; |
| 1131 | } |
| 1132 | |
| 1133 | /* |
| 1134 | * There is a second node. |
| 1135 | * If it is not adjacent to the first node, then there is a gap |
| 1136 | * of cleared bits between the nodes, and the first cleared bit |
| 1137 | * is the first bit within the gap. |
| 1138 | */ |
| 1139 | if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) |
| 1140 | return nodep1->idx + MASK_BITS + nodep1->num_after; |
| 1141 | |
| 1142 | /* |
| 1143 | * Second node is adjacent to the first node. |
| 1144 | * Because it is adjacent, its mask should be non-zero. If all |
| 1145 | * its mask bits are set, then with it being adjacent, it should |
| 1146 | * have had the mask bits moved into the num_after setting of the |
| 1147 | * previous node. |
| 1148 | */ |
| 1149 | return node_first_clear(nodep2, 0); |
| 1150 | } |
| 1151 | |
| 1152 | /* Returns index of next bit set within s after the index given by prev. |
| 1153 | * Returns 0 if there are no bits after prev that are set. |
| 1154 | */ |
| 1155 | sparsebit_idx_t sparsebit_next_set(struct sparsebit *s, |
| 1156 | sparsebit_idx_t prev) |
| 1157 | { |
| 1158 | sparsebit_idx_t lowest_possible = prev + 1; |
| 1159 | sparsebit_idx_t start; |
| 1160 | struct node *nodep; |
| 1161 | |
| 1162 | /* A bit after the highest index can't be set. */ |
| 1163 | if (lowest_possible == 0) |
| 1164 | return 0; |
| 1165 | |
| 1166 | /* |
| 1167 | * Find the leftmost 'candidate' overlapping or to the right |
| 1168 | * of lowest_possible. |
| 1169 | */ |
| 1170 | struct node *candidate = NULL; |
| 1171 | |
| 1172 | /* True iff lowest_possible is within candidate */ |
| 1173 | bool contains = false; |
| 1174 | |
| 1175 | /* |
| 1176 | * Find node that describes setting of bit at lowest_possible. |
| 1177 | * If such a node doesn't exist, find the node with the lowest |
| 1178 | * starting index that is > lowest_possible. |
| 1179 | */ |
| 1180 | for (nodep = s->root; nodep;) { |
| 1181 | if ((nodep->idx + MASK_BITS + nodep->num_after - 1) |
| 1182 | >= lowest_possible) { |
| 1183 | candidate = nodep; |
| 1184 | if (candidate->idx <= lowest_possible) { |
| 1185 | contains = true; |
| 1186 | break; |
| 1187 | } |
| 1188 | nodep = nodep->left; |
| 1189 | } else { |
| 1190 | nodep = nodep->right; |
| 1191 | } |
| 1192 | } |
| 1193 | if (!candidate) |
| 1194 | return 0; |
| 1195 | |
| 1196 | assert(candidate->mask != 0); |
| 1197 | |
| 1198 | /* Does the candidate node describe the setting of lowest_possible? */ |
| 1199 | if (!contains) { |
| 1200 | /* |
| 1201 | * Candidate doesn't describe setting of bit at lowest_possible. |
| 1202 | * Candidate points to the first node with a starting index |
| 1203 | * > lowest_possible. |
| 1204 | */ |
| 1205 | assert(candidate->idx > lowest_possible); |
| 1206 | |
| 1207 | return node_first_set(candidate, 0); |
| 1208 | } |
| 1209 | |
| 1210 | /* |
| 1211 | * Candidate describes setting of bit at lowest_possible. |
| 1212 | * Note: although the node describes the setting of the bit |
| 1213 | * at lowest_possible, its possible that its setting and the |
| 1214 | * setting of all latter bits described by this node are 0. |
| 1215 | * For now, just handle the cases where this node describes |
| 1216 | * a bit at or after an index of lowest_possible that is set. |
| 1217 | */ |
| 1218 | start = lowest_possible - candidate->idx; |
| 1219 | |
| 1220 | if (start < MASK_BITS && candidate->mask >= (1 << start)) |
| 1221 | return node_first_set(candidate, start); |
| 1222 | |
| 1223 | if (candidate->num_after) { |
| 1224 | sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS; |
| 1225 | |
| 1226 | return lowest_possible < first_num_after_idx |
| 1227 | ? first_num_after_idx : lowest_possible; |
| 1228 | } |
| 1229 | |
| 1230 | /* |
| 1231 | * Although candidate node describes setting of bit at |
| 1232 | * the index of lowest_possible, all bits at that index and |
| 1233 | * latter that are described by candidate are cleared. With |
| 1234 | * this, the next bit is the first bit in the next node, if |
| 1235 | * such a node exists. If a next node doesn't exist, then |
| 1236 | * there is no next set bit. |
| 1237 | */ |
| 1238 | candidate = node_next(s, candidate); |
| 1239 | if (!candidate) |
| 1240 | return 0; |
| 1241 | |
| 1242 | return node_first_set(candidate, 0); |
| 1243 | } |
| 1244 | |
| 1245 | /* Returns index of next bit cleared within s after the index given by prev. |
| 1246 | * Returns 0 if there are no bits after prev that are cleared. |
| 1247 | */ |
| 1248 | sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s, |
| 1249 | sparsebit_idx_t prev) |
| 1250 | { |
| 1251 | sparsebit_idx_t lowest_possible = prev + 1; |
| 1252 | sparsebit_idx_t idx; |
| 1253 | struct node *nodep1, *nodep2; |
| 1254 | |
| 1255 | /* A bit after the highest index can't be set. */ |
| 1256 | if (lowest_possible == 0) |
| 1257 | return 0; |
| 1258 | |
| 1259 | /* |
| 1260 | * Does a node describing the setting of lowest_possible exist? |
| 1261 | * If not, the bit at lowest_possible is cleared. |
| 1262 | */ |
| 1263 | nodep1 = node_find(s, lowest_possible); |
| 1264 | if (!nodep1) |
| 1265 | return lowest_possible; |
| 1266 | |
| 1267 | /* Does a mask bit in node 1 describe the next cleared bit. */ |
| 1268 | for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++) |
| 1269 | if (!(nodep1->mask & (1 << idx))) |
| 1270 | return nodep1->idx + idx; |
| 1271 | |
| 1272 | /* |
| 1273 | * Next cleared bit is not described by node 1. If there |
| 1274 | * isn't a next node, then next cleared bit is described |
| 1275 | * by bit after the bits described by the first node. |
| 1276 | */ |
| 1277 | nodep2 = node_next(s, nodep1); |
| 1278 | if (!nodep2) |
| 1279 | return nodep1->idx + MASK_BITS + nodep1->num_after; |
| 1280 | |
| 1281 | /* |
| 1282 | * There is a second node. |
| 1283 | * If it is not adjacent to the first node, then there is a gap |
| 1284 | * of cleared bits between the nodes, and the next cleared bit |
| 1285 | * is the first bit within the gap. |
| 1286 | */ |
| 1287 | if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) |
| 1288 | return nodep1->idx + MASK_BITS + nodep1->num_after; |
| 1289 | |
| 1290 | /* |
| 1291 | * Second node is adjacent to the first node. |
| 1292 | * Because it is adjacent, its mask should be non-zero. If all |
| 1293 | * its mask bits are set, then with it being adjacent, it should |
| 1294 | * have had the mask bits moved into the num_after setting of the |
| 1295 | * previous node. |
| 1296 | */ |
| 1297 | return node_first_clear(nodep2, 0); |
| 1298 | } |
| 1299 | |
| 1300 | /* Starting with the index 1 greater than the index given by start, finds |
| 1301 | * and returns the index of the first sequence of num consecutively set |
| 1302 | * bits. Returns a value of 0 of no such sequence exists. |
| 1303 | */ |
| 1304 | sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s, |
| 1305 | sparsebit_idx_t start, sparsebit_num_t num) |
| 1306 | { |
| 1307 | sparsebit_idx_t idx; |
| 1308 | |
| 1309 | assert(num >= 1); |
| 1310 | |
| 1311 | for (idx = sparsebit_next_set(s, start); |
| 1312 | idx != 0 && idx + num - 1 >= idx; |
| 1313 | idx = sparsebit_next_set(s, idx)) { |
| 1314 | assert(sparsebit_is_set(s, idx)); |
| 1315 | |
| 1316 | /* |
| 1317 | * Does the sequence of bits starting at idx consist of |
| 1318 | * num set bits? |
| 1319 | */ |
| 1320 | if (sparsebit_is_set_num(s, idx, num)) |
| 1321 | return idx; |
| 1322 | |
| 1323 | /* |
| 1324 | * Sequence of set bits at idx isn't large enough. |
| 1325 | * Skip this entire sequence of set bits. |
| 1326 | */ |
| 1327 | idx = sparsebit_next_clear(s, idx); |
| 1328 | if (idx == 0) |
| 1329 | return 0; |
| 1330 | } |
| 1331 | |
| 1332 | return 0; |
| 1333 | } |
| 1334 | |
| 1335 | /* Starting with the index 1 greater than the index given by start, finds |
| 1336 | * and returns the index of the first sequence of num consecutively cleared |
| 1337 | * bits. Returns a value of 0 of no such sequence exists. |
| 1338 | */ |
| 1339 | sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s, |
| 1340 | sparsebit_idx_t start, sparsebit_num_t num) |
| 1341 | { |
| 1342 | sparsebit_idx_t idx; |
| 1343 | |
| 1344 | assert(num >= 1); |
| 1345 | |
| 1346 | for (idx = sparsebit_next_clear(s, start); |
| 1347 | idx != 0 && idx + num - 1 >= idx; |
| 1348 | idx = sparsebit_next_clear(s, idx)) { |
| 1349 | assert(sparsebit_is_clear(s, idx)); |
| 1350 | |
| 1351 | /* |
| 1352 | * Does the sequence of bits starting at idx consist of |
| 1353 | * num cleared bits? |
| 1354 | */ |
| 1355 | if (sparsebit_is_clear_num(s, idx, num)) |
| 1356 | return idx; |
| 1357 | |
| 1358 | /* |
| 1359 | * Sequence of cleared bits at idx isn't large enough. |
| 1360 | * Skip this entire sequence of cleared bits. |
| 1361 | */ |
| 1362 | idx = sparsebit_next_set(s, idx); |
| 1363 | if (idx == 0) |
| 1364 | return 0; |
| 1365 | } |
| 1366 | |
| 1367 | return 0; |
| 1368 | } |
| 1369 | |
| 1370 | /* Sets the bits * in the inclusive range idx through idx + num - 1. */ |
| 1371 | void sparsebit_set_num(struct sparsebit *s, |
| 1372 | sparsebit_idx_t start, sparsebit_num_t num) |
| 1373 | { |
| 1374 | struct node *nodep, *next; |
| 1375 | unsigned int n1; |
| 1376 | sparsebit_idx_t idx; |
| 1377 | sparsebit_num_t n; |
| 1378 | sparsebit_idx_t middle_start, middle_end; |
| 1379 | |
| 1380 | assert(num > 0); |
| 1381 | assert(start + num - 1 >= start); |
| 1382 | |
| 1383 | /* |
| 1384 | * Leading - bits before first mask boundary. |
| 1385 | * |
| 1386 | * TODO(lhuemill): With some effort it may be possible to |
| 1387 | * replace the following loop with a sequential sequence |
| 1388 | * of statements. High level sequence would be: |
| 1389 | * |
| 1390 | * 1. Use node_split() to force node that describes setting |
| 1391 | * of idx to be within the mask portion of a node. |
| 1392 | * 2. Form mask of bits to be set. |
| 1393 | * 3. Determine number of mask bits already set in the node |
| 1394 | * and store in a local variable named num_already_set. |
| 1395 | * 4. Set the appropriate mask bits within the node. |
| 1396 | * 5. Increment struct sparsebit_pvt num_set member |
| 1397 | * by the number of bits that were actually set. |
| 1398 | * Exclude from the counts bits that were already set. |
| 1399 | * 6. Before returning to the caller, use node_reduce() to |
| 1400 | * handle the multiple corner cases that this method |
| 1401 | * introduces. |
| 1402 | */ |
| 1403 | for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) |
| 1404 | bit_set(s, idx); |
| 1405 | |
| 1406 | /* Middle - bits spanning one or more entire mask */ |
| 1407 | middle_start = idx; |
| 1408 | middle_end = middle_start + (n & -MASK_BITS) - 1; |
| 1409 | if (n >= MASK_BITS) { |
| 1410 | nodep = node_split(s, middle_start); |
| 1411 | |
| 1412 | /* |
| 1413 | * As needed, split just after end of middle bits. |
| 1414 | * No split needed if end of middle bits is at highest |
| 1415 | * supported bit index. |
| 1416 | */ |
| 1417 | if (middle_end + 1 > middle_end) |
| 1418 | (void) node_split(s, middle_end + 1); |
| 1419 | |
| 1420 | /* Delete nodes that only describe bits within the middle. */ |
| 1421 | for (next = node_next(s, nodep); |
| 1422 | next && (next->idx < middle_end); |
| 1423 | next = node_next(s, nodep)) { |
| 1424 | assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); |
| 1425 | node_rm(s, next); |
| 1426 | next = NULL; |
| 1427 | } |
| 1428 | |
| 1429 | /* As needed set each of the mask bits */ |
| 1430 | for (n1 = 0; n1 < MASK_BITS; n1++) { |
| 1431 | if (!(nodep->mask & (1 << n1))) { |
| 1432 | nodep->mask |= 1 << n1; |
| 1433 | s->num_set++; |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | s->num_set -= nodep->num_after; |
| 1438 | nodep->num_after = middle_end - middle_start + 1 - MASK_BITS; |
| 1439 | s->num_set += nodep->num_after; |
| 1440 | |
| 1441 | node_reduce(s, nodep); |
| 1442 | } |
| 1443 | idx = middle_end + 1; |
| 1444 | n -= middle_end - middle_start + 1; |
| 1445 | |
| 1446 | /* Trailing - bits at and beyond last mask boundary */ |
| 1447 | assert(n < MASK_BITS); |
| 1448 | for (; n > 0; idx++, n--) |
| 1449 | bit_set(s, idx); |
| 1450 | } |
| 1451 | |
| 1452 | /* Clears the bits * in the inclusive range idx through idx + num - 1. */ |
| 1453 | void sparsebit_clear_num(struct sparsebit *s, |
| 1454 | sparsebit_idx_t start, sparsebit_num_t num) |
| 1455 | { |
| 1456 | struct node *nodep, *next; |
| 1457 | unsigned int n1; |
| 1458 | sparsebit_idx_t idx; |
| 1459 | sparsebit_num_t n; |
| 1460 | sparsebit_idx_t middle_start, middle_end; |
| 1461 | |
| 1462 | assert(num > 0); |
| 1463 | assert(start + num - 1 >= start); |
| 1464 | |
| 1465 | /* Leading - bits before first mask boundary */ |
| 1466 | for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) |
| 1467 | bit_clear(s, idx); |
| 1468 | |
| 1469 | /* Middle - bits spanning one or more entire mask */ |
| 1470 | middle_start = idx; |
| 1471 | middle_end = middle_start + (n & -MASK_BITS) - 1; |
| 1472 | if (n >= MASK_BITS) { |
| 1473 | nodep = node_split(s, middle_start); |
| 1474 | |
| 1475 | /* |
| 1476 | * As needed, split just after end of middle bits. |
| 1477 | * No split needed if end of middle bits is at highest |
| 1478 | * supported bit index. |
| 1479 | */ |
| 1480 | if (middle_end + 1 > middle_end) |
| 1481 | (void) node_split(s, middle_end + 1); |
| 1482 | |
| 1483 | /* Delete nodes that only describe bits within the middle. */ |
| 1484 | for (next = node_next(s, nodep); |
| 1485 | next && (next->idx < middle_end); |
| 1486 | next = node_next(s, nodep)) { |
| 1487 | assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); |
| 1488 | node_rm(s, next); |
| 1489 | next = NULL; |
| 1490 | } |
| 1491 | |
| 1492 | /* As needed clear each of the mask bits */ |
| 1493 | for (n1 = 0; n1 < MASK_BITS; n1++) { |
| 1494 | if (nodep->mask & (1 << n1)) { |
| 1495 | nodep->mask &= ~(1 << n1); |
| 1496 | s->num_set--; |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | /* Clear any bits described by num_after */ |
| 1501 | s->num_set -= nodep->num_after; |
| 1502 | nodep->num_after = 0; |
| 1503 | |
| 1504 | /* |
| 1505 | * Delete the node that describes the beginning of |
| 1506 | * the middle bits and perform any allowed reductions |
| 1507 | * with the nodes prev or next of nodep. |
| 1508 | */ |
| 1509 | node_reduce(s, nodep); |
| 1510 | nodep = NULL; |
| 1511 | } |
| 1512 | idx = middle_end + 1; |
| 1513 | n -= middle_end - middle_start + 1; |
| 1514 | |
| 1515 | /* Trailing - bits at and beyond last mask boundary */ |
| 1516 | assert(n < MASK_BITS); |
| 1517 | for (; n > 0; idx++, n--) |
| 1518 | bit_clear(s, idx); |
| 1519 | } |
| 1520 | |
| 1521 | /* Sets the bit at the index given by idx. */ |
| 1522 | void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx) |
| 1523 | { |
| 1524 | sparsebit_set_num(s, idx, 1); |
| 1525 | } |
| 1526 | |
| 1527 | /* Clears the bit at the index given by idx. */ |
| 1528 | void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx) |
| 1529 | { |
| 1530 | sparsebit_clear_num(s, idx, 1); |
| 1531 | } |
| 1532 | |
| 1533 | /* Sets the bits in the entire addressable range of the sparsebit array. */ |
| 1534 | void sparsebit_set_all(struct sparsebit *s) |
| 1535 | { |
| 1536 | sparsebit_set(s, 0); |
| 1537 | sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0); |
| 1538 | assert(sparsebit_all_set(s)); |
| 1539 | } |
| 1540 | |
| 1541 | /* Clears the bits in the entire addressable range of the sparsebit array. */ |
| 1542 | void sparsebit_clear_all(struct sparsebit *s) |
| 1543 | { |
| 1544 | sparsebit_clear(s, 0); |
| 1545 | sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0); |
| 1546 | assert(!sparsebit_any_set(s)); |
| 1547 | } |
| 1548 | |
| 1549 | static size_t display_range(FILE *stream, sparsebit_idx_t low, |
| 1550 | sparsebit_idx_t high, bool prepend_comma_space) |
| 1551 | { |
| 1552 | char *fmt_str; |
| 1553 | size_t sz; |
| 1554 | |
| 1555 | /* Determine the printf format string */ |
| 1556 | if (low == high) |
| 1557 | fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx"; |
| 1558 | else |
| 1559 | fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx"; |
| 1560 | |
| 1561 | /* |
| 1562 | * When stream is NULL, just determine the size of what would |
| 1563 | * have been printed, else print the range. |
| 1564 | */ |
| 1565 | if (!stream) |
| 1566 | sz = snprintf(NULL, 0, fmt_str, low, high); |
| 1567 | else |
| 1568 | sz = fprintf(stream, fmt_str, low, high); |
| 1569 | |
| 1570 | return sz; |
| 1571 | } |
| 1572 | |
| 1573 | |
| 1574 | /* Dumps to the FILE stream given by stream, the bit settings |
| 1575 | * of s. Each line of output is prefixed with the number of |
| 1576 | * spaces given by indent. The length of each line is implementation |
| 1577 | * dependent and does not depend on the indent amount. The following |
| 1578 | * is an example output of a sparsebit array that has bits: |
| 1579 | * |
| 1580 | * 0x5, 0x8, 0xa:0xe, 0x12 |
| 1581 | * |
| 1582 | * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18 |
| 1583 | * are set. Note that a ':', instead of a '-' is used to specify a range of |
| 1584 | * contiguous bits. This is done because '-' is used to specify command-line |
| 1585 | * options, and sometimes ranges are specified as command-line arguments. |
| 1586 | */ |
| 1587 | void sparsebit_dump(FILE *stream, struct sparsebit *s, |
| 1588 | unsigned int indent) |
| 1589 | { |
| 1590 | size_t current_line_len = 0; |
| 1591 | size_t sz; |
| 1592 | struct node *nodep; |
| 1593 | |
| 1594 | if (!sparsebit_any_set(s)) |
| 1595 | return; |
| 1596 | |
| 1597 | /* Display initial indent */ |
| 1598 | fprintf(stream, "%*s", indent, ""); |
| 1599 | |
| 1600 | /* For each node */ |
| 1601 | for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) { |
| 1602 | unsigned int n1; |
| 1603 | sparsebit_idx_t low, high; |
| 1604 | |
| 1605 | /* For each group of bits in the mask */ |
| 1606 | for (n1 = 0; n1 < MASK_BITS; n1++) { |
| 1607 | if (nodep->mask & (1 << n1)) { |
| 1608 | low = high = nodep->idx + n1; |
| 1609 | |
| 1610 | for (; n1 < MASK_BITS; n1++) { |
| 1611 | if (nodep->mask & (1 << n1)) |
| 1612 | high = nodep->idx + n1; |
| 1613 | else |
| 1614 | break; |
| 1615 | } |
| 1616 | |
| 1617 | if ((n1 == MASK_BITS) && nodep->num_after) |
| 1618 | high += nodep->num_after; |
| 1619 | |
| 1620 | /* |
| 1621 | * How much room will it take to display |
| 1622 | * this range. |
| 1623 | */ |
| 1624 | sz = display_range(NULL, low, high, |
| 1625 | current_line_len != 0); |
| 1626 | |
| 1627 | /* |
| 1628 | * If there is not enough room, display |
| 1629 | * a newline plus the indent of the next |
| 1630 | * line. |
| 1631 | */ |
| 1632 | if (current_line_len + sz > DUMP_LINE_MAX) { |
| 1633 | fputs("\n", stream); |
| 1634 | fprintf(stream, "%*s", indent, ""); |
| 1635 | current_line_len = 0; |
| 1636 | } |
| 1637 | |
| 1638 | /* Display the range */ |
| 1639 | sz = display_range(stream, low, high, |
| 1640 | current_line_len != 0); |
| 1641 | current_line_len += sz; |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | /* |
| 1646 | * If num_after and most significant-bit of mask is not |
| 1647 | * set, then still need to display a range for the bits |
| 1648 | * described by num_after. |
| 1649 | */ |
| 1650 | if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) { |
| 1651 | low = nodep->idx + MASK_BITS; |
| 1652 | high = nodep->idx + MASK_BITS + nodep->num_after - 1; |
| 1653 | |
| 1654 | /* |
| 1655 | * How much room will it take to display |
| 1656 | * this range. |
| 1657 | */ |
| 1658 | sz = display_range(NULL, low, high, |
| 1659 | current_line_len != 0); |
| 1660 | |
| 1661 | /* |
| 1662 | * If there is not enough room, display |
| 1663 | * a newline plus the indent of the next |
| 1664 | * line. |
| 1665 | */ |
| 1666 | if (current_line_len + sz > DUMP_LINE_MAX) { |
| 1667 | fputs("\n", stream); |
| 1668 | fprintf(stream, "%*s", indent, ""); |
| 1669 | current_line_len = 0; |
| 1670 | } |
| 1671 | |
| 1672 | /* Display the range */ |
| 1673 | sz = display_range(stream, low, high, |
| 1674 | current_line_len != 0); |
| 1675 | current_line_len += sz; |
| 1676 | } |
| 1677 | } |
| 1678 | fputs("\n", stream); |
| 1679 | } |
| 1680 | |
| 1681 | /* Validates the internal state of the sparsebit array given by |
| 1682 | * s. On error, diagnostic information is printed to stderr and |
| 1683 | * abort is called. |
| 1684 | */ |
| 1685 | void sparsebit_validate_internal(struct sparsebit *s) |
| 1686 | { |
| 1687 | bool error_detected = false; |
| 1688 | struct node *nodep, *prev = NULL; |
| 1689 | sparsebit_num_t total_bits_set = 0; |
| 1690 | unsigned int n1; |
| 1691 | |
| 1692 | /* For each node */ |
| 1693 | for (nodep = node_first(s); nodep; |
| 1694 | prev = nodep, nodep = node_next(s, nodep)) { |
| 1695 | |
| 1696 | /* |
| 1697 | * Increase total bits set by the number of bits set |
| 1698 | * in this node. |
| 1699 | */ |
| 1700 | for (n1 = 0; n1 < MASK_BITS; n1++) |
| 1701 | if (nodep->mask & (1 << n1)) |
| 1702 | total_bits_set++; |
| 1703 | |
| 1704 | total_bits_set += nodep->num_after; |
| 1705 | |
| 1706 | /* |
| 1707 | * Arbitrary choice as to whether a mask of 0 is allowed |
| 1708 | * or not. For diagnostic purposes it is beneficial to |
| 1709 | * have only one valid means to represent a set of bits. |
| 1710 | * To support this an arbitrary choice has been made |
| 1711 | * to not allow a mask of zero. |
| 1712 | */ |
| 1713 | if (nodep->mask == 0) { |
| 1714 | fprintf(stderr, "Node mask of zero, " |
| 1715 | "nodep: %p nodep->mask: 0x%x", |
| 1716 | nodep, nodep->mask); |
| 1717 | error_detected = true; |
| 1718 | break; |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * Validate num_after is not greater than the max index |
| 1723 | * - the number of mask bits. The num_after member |
| 1724 | * uses 0-based indexing and thus has no value that |
| 1725 | * represents all bits set. This limitation is handled |
| 1726 | * by requiring a non-zero mask. With a non-zero mask, |
| 1727 | * MASK_BITS worth of bits are described by the mask, |
| 1728 | * which makes the largest needed num_after equal to: |
| 1729 | * |
| 1730 | * (~(sparsebit_num_t) 0) - MASK_BITS + 1 |
| 1731 | */ |
| 1732 | if (nodep->num_after |
| 1733 | > (~(sparsebit_num_t) 0) - MASK_BITS + 1) { |
| 1734 | fprintf(stderr, "num_after too large, " |
| 1735 | "nodep: %p nodep->num_after: 0x%lx", |
| 1736 | nodep, nodep->num_after); |
| 1737 | error_detected = true; |
| 1738 | break; |
| 1739 | } |
| 1740 | |
| 1741 | /* Validate node index is divisible by the mask size */ |
| 1742 | if (nodep->idx % MASK_BITS) { |
| 1743 | fprintf(stderr, "Node index not divisible by " |
| 1744 | "mask size,\n" |
| 1745 | " nodep: %p nodep->idx: 0x%lx " |
| 1746 | "MASK_BITS: %lu\n", |
| 1747 | nodep, nodep->idx, MASK_BITS); |
| 1748 | error_detected = true; |
| 1749 | break; |
| 1750 | } |
| 1751 | |
| 1752 | /* |
| 1753 | * Validate bits described by node don't wrap beyond the |
| 1754 | * highest supported index. |
| 1755 | */ |
| 1756 | if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) { |
| 1757 | fprintf(stderr, "Bits described by node wrap " |
| 1758 | "beyond highest supported index,\n" |
| 1759 | " nodep: %p nodep->idx: 0x%lx\n" |
| 1760 | " MASK_BITS: %lu nodep->num_after: 0x%lx", |
| 1761 | nodep, nodep->idx, MASK_BITS, nodep->num_after); |
| 1762 | error_detected = true; |
| 1763 | break; |
| 1764 | } |
| 1765 | |
| 1766 | /* Check parent pointers. */ |
| 1767 | if (nodep->left) { |
| 1768 | if (nodep->left->parent != nodep) { |
| 1769 | fprintf(stderr, "Left child parent pointer " |
| 1770 | "doesn't point to this node,\n" |
| 1771 | " nodep: %p nodep->left: %p " |
| 1772 | "nodep->left->parent: %p", |
| 1773 | nodep, nodep->left, |
| 1774 | nodep->left->parent); |
| 1775 | error_detected = true; |
| 1776 | break; |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | if (nodep->right) { |
| 1781 | if (nodep->right->parent != nodep) { |
| 1782 | fprintf(stderr, "Right child parent pointer " |
| 1783 | "doesn't point to this node,\n" |
| 1784 | " nodep: %p nodep->right: %p " |
| 1785 | "nodep->right->parent: %p", |
| 1786 | nodep, nodep->right, |
| 1787 | nodep->right->parent); |
| 1788 | error_detected = true; |
| 1789 | break; |
| 1790 | } |
| 1791 | } |
| 1792 | |
| 1793 | if (!nodep->parent) { |
| 1794 | if (s->root != nodep) { |
| 1795 | fprintf(stderr, "Unexpected root node, " |
| 1796 | "s->root: %p nodep: %p", |
| 1797 | s->root, nodep); |
| 1798 | error_detected = true; |
| 1799 | break; |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | if (prev) { |
| 1804 | /* |
| 1805 | * Is index of previous node before index of |
| 1806 | * current node? |
| 1807 | */ |
| 1808 | if (prev->idx >= nodep->idx) { |
| 1809 | fprintf(stderr, "Previous node index " |
| 1810 | ">= current node index,\n" |
| 1811 | " prev: %p prev->idx: 0x%lx\n" |
| 1812 | " nodep: %p nodep->idx: 0x%lx", |
| 1813 | prev, prev->idx, nodep, nodep->idx); |
| 1814 | error_detected = true; |
| 1815 | break; |
| 1816 | } |
| 1817 | |
| 1818 | /* |
| 1819 | * Nodes occur in asscending order, based on each |
| 1820 | * nodes starting index. |
| 1821 | */ |
| 1822 | if ((prev->idx + MASK_BITS + prev->num_after - 1) |
| 1823 | >= nodep->idx) { |
| 1824 | fprintf(stderr, "Previous node bit range " |
| 1825 | "overlap with current node bit range,\n" |
| 1826 | " prev: %p prev->idx: 0x%lx " |
| 1827 | "prev->num_after: 0x%lx\n" |
| 1828 | " nodep: %p nodep->idx: 0x%lx " |
| 1829 | "nodep->num_after: 0x%lx\n" |
| 1830 | " MASK_BITS: %lu", |
| 1831 | prev, prev->idx, prev->num_after, |
| 1832 | nodep, nodep->idx, nodep->num_after, |
| 1833 | MASK_BITS); |
| 1834 | error_detected = true; |
| 1835 | break; |
| 1836 | } |
| 1837 | |
| 1838 | /* |
| 1839 | * When the node has all mask bits set, it shouldn't |
| 1840 | * be adjacent to the last bit described by the |
| 1841 | * previous node. |
| 1842 | */ |
| 1843 | if (nodep->mask == ~(mask_t) 0 && |
| 1844 | prev->idx + MASK_BITS + prev->num_after == nodep->idx) { |
| 1845 | fprintf(stderr, "Current node has mask with " |
| 1846 | "all bits set and is adjacent to the " |
| 1847 | "previous node,\n" |
| 1848 | " prev: %p prev->idx: 0x%lx " |
| 1849 | "prev->num_after: 0x%lx\n" |
| 1850 | " nodep: %p nodep->idx: 0x%lx " |
| 1851 | "nodep->num_after: 0x%lx\n" |
| 1852 | " MASK_BITS: %lu", |
| 1853 | prev, prev->idx, prev->num_after, |
| 1854 | nodep, nodep->idx, nodep->num_after, |
| 1855 | MASK_BITS); |
| 1856 | |
| 1857 | error_detected = true; |
| 1858 | break; |
| 1859 | } |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | if (!error_detected) { |
| 1864 | /* |
| 1865 | * Is sum of bits set in each node equal to the count |
| 1866 | * of total bits set. |
| 1867 | */ |
| 1868 | if (s->num_set != total_bits_set) { |
| 1869 | fprintf(stderr, "Number of bits set missmatch,\n" |
| 1870 | " s->num_set: 0x%lx total_bits_set: 0x%lx", |
| 1871 | s->num_set, total_bits_set); |
| 1872 | |
| 1873 | error_detected = true; |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | if (error_detected) { |
| 1878 | fputs(" dump_internal:\n", stderr); |
| 1879 | sparsebit_dump_internal(stderr, s, 4); |
| 1880 | abort(); |
| 1881 | } |
| 1882 | } |
| 1883 | |
| 1884 | |
| 1885 | #ifdef FUZZ |
| 1886 | /* A simple but effective fuzzing driver. Look for bugs with the help |
| 1887 | * of some invariants and of a trivial representation of sparsebit. |
| 1888 | * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let |
| 1889 | * afl-fuzz do the magic. :) |
| 1890 | */ |
| 1891 | |
| 1892 | #include <stdlib.h> |
| 1893 | #include <assert.h> |
| 1894 | |
| 1895 | struct range { |
| 1896 | sparsebit_idx_t first, last; |
| 1897 | bool set; |
| 1898 | }; |
| 1899 | |
| 1900 | struct sparsebit *s; |
| 1901 | struct range ranges[1000]; |
| 1902 | int num_ranges; |
| 1903 | |
| 1904 | static bool get_value(sparsebit_idx_t idx) |
| 1905 | { |
| 1906 | int i; |
| 1907 | |
| 1908 | for (i = num_ranges; --i >= 0; ) |
| 1909 | if (ranges[i].first <= idx && idx <= ranges[i].last) |
| 1910 | return ranges[i].set; |
| 1911 | |
| 1912 | return false; |
| 1913 | } |
| 1914 | |
| 1915 | static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last) |
| 1916 | { |
| 1917 | sparsebit_num_t num; |
| 1918 | sparsebit_idx_t next; |
| 1919 | |
| 1920 | if (first < last) { |
| 1921 | num = last - first + 1; |
| 1922 | } else { |
| 1923 | num = first - last + 1; |
| 1924 | first = last; |
| 1925 | last = first + num - 1; |
| 1926 | } |
| 1927 | |
| 1928 | switch (code) { |
| 1929 | case 0: |
| 1930 | sparsebit_set(s, first); |
| 1931 | assert(sparsebit_is_set(s, first)); |
| 1932 | assert(!sparsebit_is_clear(s, first)); |
| 1933 | assert(sparsebit_any_set(s)); |
| 1934 | assert(!sparsebit_all_clear(s)); |
| 1935 | if (get_value(first)) |
| 1936 | return; |
| 1937 | if (num_ranges == 1000) |
| 1938 | exit(0); |
| 1939 | ranges[num_ranges++] = (struct range) |
| 1940 | { .first = first, .last = first, .set = true }; |
| 1941 | break; |
| 1942 | case 1: |
| 1943 | sparsebit_clear(s, first); |
| 1944 | assert(!sparsebit_is_set(s, first)); |
| 1945 | assert(sparsebit_is_clear(s, first)); |
| 1946 | assert(sparsebit_any_clear(s)); |
| 1947 | assert(!sparsebit_all_set(s)); |
| 1948 | if (!get_value(first)) |
| 1949 | return; |
| 1950 | if (num_ranges == 1000) |
| 1951 | exit(0); |
| 1952 | ranges[num_ranges++] = (struct range) |
| 1953 | { .first = first, .last = first, .set = false }; |
| 1954 | break; |
| 1955 | case 2: |
| 1956 | assert(sparsebit_is_set(s, first) == get_value(first)); |
| 1957 | assert(sparsebit_is_clear(s, first) == !get_value(first)); |
| 1958 | break; |
| 1959 | case 3: |
| 1960 | if (sparsebit_any_set(s)) |
| 1961 | assert(get_value(sparsebit_first_set(s))); |
| 1962 | if (sparsebit_any_clear(s)) |
| 1963 | assert(!get_value(sparsebit_first_clear(s))); |
| 1964 | sparsebit_set_all(s); |
| 1965 | assert(!sparsebit_any_clear(s)); |
| 1966 | assert(sparsebit_all_set(s)); |
| 1967 | num_ranges = 0; |
| 1968 | ranges[num_ranges++] = (struct range) |
| 1969 | { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true }; |
| 1970 | break; |
| 1971 | case 4: |
| 1972 | if (sparsebit_any_set(s)) |
| 1973 | assert(get_value(sparsebit_first_set(s))); |
| 1974 | if (sparsebit_any_clear(s)) |
| 1975 | assert(!get_value(sparsebit_first_clear(s))); |
| 1976 | sparsebit_clear_all(s); |
| 1977 | assert(!sparsebit_any_set(s)); |
| 1978 | assert(sparsebit_all_clear(s)); |
| 1979 | num_ranges = 0; |
| 1980 | break; |
| 1981 | case 5: |
| 1982 | next = sparsebit_next_set(s, first); |
| 1983 | assert(next == 0 || next > first); |
| 1984 | assert(next == 0 || get_value(next)); |
| 1985 | break; |
| 1986 | case 6: |
| 1987 | next = sparsebit_next_clear(s, first); |
| 1988 | assert(next == 0 || next > first); |
| 1989 | assert(next == 0 || !get_value(next)); |
| 1990 | break; |
| 1991 | case 7: |
| 1992 | next = sparsebit_next_clear(s, first); |
| 1993 | if (sparsebit_is_set_num(s, first, num)) { |
| 1994 | assert(next == 0 || next > last); |
| 1995 | if (first) |
| 1996 | next = sparsebit_next_set(s, first - 1); |
| 1997 | else if (sparsebit_any_set(s)) |
| 1998 | next = sparsebit_first_set(s); |
| 1999 | else |
| 2000 | return; |
| 2001 | assert(next == first); |
| 2002 | } else { |
| 2003 | assert(sparsebit_is_clear(s, first) || next <= last); |
| 2004 | } |
| 2005 | break; |
| 2006 | case 8: |
| 2007 | next = sparsebit_next_set(s, first); |
| 2008 | if (sparsebit_is_clear_num(s, first, num)) { |
| 2009 | assert(next == 0 || next > last); |
| 2010 | if (first) |
| 2011 | next = sparsebit_next_clear(s, first - 1); |
| 2012 | else if (sparsebit_any_clear(s)) |
| 2013 | next = sparsebit_first_clear(s); |
| 2014 | else |
| 2015 | return; |
| 2016 | assert(next == first); |
| 2017 | } else { |
| 2018 | assert(sparsebit_is_set(s, first) || next <= last); |
| 2019 | } |
| 2020 | break; |
| 2021 | case 9: |
| 2022 | sparsebit_set_num(s, first, num); |
| 2023 | assert(sparsebit_is_set_num(s, first, num)); |
| 2024 | assert(!sparsebit_is_clear_num(s, first, num)); |
| 2025 | assert(sparsebit_any_set(s)); |
| 2026 | assert(!sparsebit_all_clear(s)); |
| 2027 | if (num_ranges == 1000) |
| 2028 | exit(0); |
| 2029 | ranges[num_ranges++] = (struct range) |
| 2030 | { .first = first, .last = last, .set = true }; |
| 2031 | break; |
| 2032 | case 10: |
| 2033 | sparsebit_clear_num(s, first, num); |
| 2034 | assert(!sparsebit_is_set_num(s, first, num)); |
| 2035 | assert(sparsebit_is_clear_num(s, first, num)); |
| 2036 | assert(sparsebit_any_clear(s)); |
| 2037 | assert(!sparsebit_all_set(s)); |
| 2038 | if (num_ranges == 1000) |
| 2039 | exit(0); |
| 2040 | ranges[num_ranges++] = (struct range) |
| 2041 | { .first = first, .last = last, .set = false }; |
| 2042 | break; |
| 2043 | case 11: |
| 2044 | sparsebit_validate_internal(s); |
| 2045 | break; |
| 2046 | default: |
| 2047 | break; |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | unsigned char get8(void) |
| 2052 | { |
| 2053 | int ch; |
| 2054 | |
| 2055 | ch = getchar(); |
| 2056 | if (ch == EOF) |
| 2057 | exit(0); |
| 2058 | return ch; |
| 2059 | } |
| 2060 | |
| 2061 | uint64_t get64(void) |
| 2062 | { |
| 2063 | uint64_t x; |
| 2064 | |
| 2065 | x = get8(); |
| 2066 | x = (x << 8) | get8(); |
| 2067 | x = (x << 8) | get8(); |
| 2068 | x = (x << 8) | get8(); |
| 2069 | x = (x << 8) | get8(); |
| 2070 | x = (x << 8) | get8(); |
| 2071 | x = (x << 8) | get8(); |
| 2072 | return (x << 8) | get8(); |
| 2073 | } |
| 2074 | |
| 2075 | int main(void) |
| 2076 | { |
| 2077 | s = sparsebit_alloc(); |
| 2078 | for (;;) { |
| 2079 | uint8_t op = get8() & 0xf; |
| 2080 | uint64_t first = get64(); |
| 2081 | uint64_t last = get64(); |
| 2082 | |
| 2083 | operate(op, first, last); |
| 2084 | } |
| 2085 | } |
| 2086 | #endif |