blob: 50e8d82b4b38efcbe9af59981fd05a1fbbe3650b [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * (C) Copyright 2006
3 * Heiko Schocher, DENX Software Engineering, hs@denx.de
4 *
5 * (C) Copyright 2006
6 * Stefan Roese, DENX Software Engineering, sr@denx.de.
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11#include <common.h>
12
13#if defined(CONFIG_CMD_NAND)
14
15#include <asm/processor.h>
16#include <nand.h>
17
18struct alpr_ndfc_regs {
19 u8 cmd[4];
20 u8 addr_wait;
21 u8 term;
22 u8 dummy;
23 u8 dummy2;
24 u8 data;
25};
26
27static u8 hwctl;
28static struct alpr_ndfc_regs *alpr_ndfc = NULL;
29
30#define readb(addr) (u8)(*(volatile u8 *)(addr))
31#define writeb(d,addr) *(volatile u8 *)(addr) = ((u8)(d))
32
33/*
34 * The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to
35 * the NAND devices. The NDFC has command, address and data registers that
36 * when accessed will set up the NAND flash pins appropriately. We'll use the
37 * hwcontrol function to save the configuration in a global variable.
38 * We can then use this information in the read and write functions to
39 * determine which NDFC register to access.
40 *
41 * There are 2 NAND devices on the board, a Hynix HY27US08561A (1 GByte).
42 */
43static void alpr_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
44{
45 struct nand_chip *this = mtd->priv;
46
47 if (ctrl & NAND_CTRL_CHANGE) {
48 if ( ctrl & NAND_CLE )
49 hwctl |= 0x1;
50 else
51 hwctl &= ~0x1;
52 if ( ctrl & NAND_ALE )
53 hwctl |= 0x2;
54 else
55 hwctl &= ~0x2;
56 if ( (ctrl & NAND_NCE) != NAND_NCE)
57 writeb(0x00, &(alpr_ndfc->term));
58 }
59 if (cmd != NAND_CMD_NONE)
60 writeb(cmd, this->IO_ADDR_W);
61}
62
63static u_char alpr_nand_read_byte(struct mtd_info *mtd)
64{
65 return readb(&(alpr_ndfc->data));
66}
67
68static void alpr_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
69{
70 struct nand_chip *nand = mtd->priv;
71 int i;
72
73 for (i = 0; i < len; i++) {
74 if (hwctl & 0x1)
75 /*
76 * IO_ADDR_W used as CMD[i] reg to support multiple NAND
77 * chips.
78 */
79 writeb(buf[i], nand->IO_ADDR_W);
80 else if (hwctl & 0x2)
81 writeb(buf[i], &(alpr_ndfc->addr_wait));
82 else
83 writeb(buf[i], &(alpr_ndfc->data));
84 }
85}
86
87static void alpr_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
88{
89 int i;
90
91 for (i = 0; i < len; i++) {
92 buf[i] = readb(&(alpr_ndfc->data));
93 }
94}
95
96static int alpr_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
97{
98 int i;
99
100 for (i = 0; i < len; i++)
101 if (buf[i] != readb(&(alpr_ndfc->data)))
102 return i;
103
104 return 0;
105}
106
107static int alpr_nand_dev_ready(struct mtd_info *mtd)
108{
109 /*
110 * Blocking read to wait for NAND to be ready
111 */
112 (void)readb(&(alpr_ndfc->addr_wait));
113
114 /*
115 * Return always true
116 */
117 return 1;
118}
119
120int board_nand_init(struct nand_chip *nand)
121{
122 alpr_ndfc = (struct alpr_ndfc_regs *)CONFIG_SYS_NAND_BASE;
123
124 nand->ecc.mode = NAND_ECC_SOFT;
125
126 /* Reference hardware control function */
127 nand->cmd_ctrl = alpr_nand_hwcontrol;
128 nand->read_byte = alpr_nand_read_byte;
129 nand->write_buf = alpr_nand_write_buf;
130 nand->read_buf = alpr_nand_read_buf;
131 nand->verify_buf = alpr_nand_verify_buf;
132 nand->dev_ready = alpr_nand_dev_ready;
133
134 return 0;
135}
136#endif