b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | #include <common.h> |
| 2 | #include <config.h> |
| 3 | #include <asm/arch/cpu.h> |
| 4 | #include <config.h> |
| 5 | #include <asm/arch/asr1802.h> |
| 6 | #include <power/asr1802s_freq.h> |
| 7 | #include "te200_cipher.h" |
| 8 | |
| 9 | /* |
| 10 | notice: 1) use hardware key if burned hardware key; |
| 11 | 1) use input key if not burned hardware key but input key not null; |
| 12 | 2) use default key if not burned rkek but input key is null; |
| 13 | char default_key[64] = {"asr-aes-default-key-without-rkek"}; |
| 14 | */ |
| 15 | static const char default_key[64] = {"asr-aes-default-key-without-rkek"}; |
| 16 | |
| 17 | void te200_enable_clk(int enable) |
| 18 | { |
| 19 | uint32_t val; |
| 20 | /* it will no longer enable clk if the clk has been enabled */ |
| 21 | static int enabled = 0; |
| 22 | if (enable) { |
| 23 | val = readl(ASR1802_APMU_BASE + AES_CLK_RES_CTRL); |
| 24 | if ((val & (1 << 3 | 1 << 0)) == (1 << 3 | 1 << 0)) { |
| 25 | enabled = 1; |
| 26 | return; |
| 27 | } |
| 28 | val |= (1 << 3); |
| 29 | val |= (1 << 0); |
| 30 | writel(val, ASR1802_APMU_BASE + AES_CLK_RES_CTRL); |
| 31 | } else { |
| 32 | if (enabled) { |
| 33 | return; |
| 34 | } |
| 35 | val = readl(ASR1802_APMU_BASE + AES_CLK_RES_CTRL); |
| 36 | val &= ~(1 << 3); |
| 37 | writel(val, ASR1802_APMU_BASE+ AES_CLK_RES_CTRL); |
| 38 | } |
| 39 | } |
| 40 | |
| 41 | static int sca_clock_switch(int enable) |
| 42 | { |
| 43 | uint32_t value; |
| 44 | value = readl(TE200_CLOCK_CTRL); |
| 45 | if (enable) { |
| 46 | value |= SCA_CLK_EN; |
| 47 | } else { |
| 48 | value &= ~SCA_CLK_EN; |
| 49 | } |
| 50 | writel(value, TE200_CLOCK_CTRL); |
| 51 | return 0; |
| 52 | } |
| 53 | |
| 54 | static int sca_start_run(void) |
| 55 | { |
| 56 | uint32_t value; |
| 57 | value = readl(TE200_SSCA_CTRL); |
| 58 | value |= SCA_RUN; |
| 59 | writel(value, TE200_SSCA_CTRL); |
| 60 | return 0; |
| 61 | } |
| 62 | |
| 63 | static int sca_set_alg(int alg_type, uint32_t *value) |
| 64 | { |
| 65 | switch (alg_type) { |
| 66 | case NORMAL_AES: |
| 67 | *value &= SCA_NORMAL_AES; |
| 68 | break; |
| 69 | case SM4: |
| 70 | *value |= SCA_SM4; |
| 71 | break; |
| 72 | default: |
| 73 | return -1; |
| 74 | } |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | static int sca_set_cipher_mode(int mode, uint32_t *value) |
| 79 | { |
| 80 | switch (mode) { |
| 81 | case ECB: |
| 82 | *value &= SCA_MODE_ECB; |
| 83 | break; |
| 84 | case CTR: |
| 85 | *value |= SCA_MODE_CTR; |
| 86 | break; |
| 87 | case CBC: |
| 88 | *value |= SCA_MODE_CBC; |
| 89 | break; |
| 90 | default: |
| 91 | return -1; |
| 92 | } |
| 93 | return 0; |
| 94 | } |
| 95 | |
| 96 | static int sca_set_iv(const uint8_t *iv, uint32_t *value) |
| 97 | { |
| 98 | if (iv) { |
| 99 | *value |= SCA_SET_IV | SCA_SET_IV_ADDR; |
| 100 | } else { |
| 101 | *value &= (~(SCA_SET_IV | SCA_SET_IV_ADDR)); |
| 102 | } |
| 103 | return 0; |
| 104 | } |
| 105 | |
| 106 | static int sca_set_key(const uint8_t *key, uint32_t key_len, uint32_t *value) |
| 107 | { |
| 108 | switch (key_len) { |
| 109 | case 16: |
| 110 | *value &= SCA_KEY_128_BITS; |
| 111 | break; |
| 112 | case 24: |
| 113 | *value |= SCA_KEY_192_BITS; |
| 114 | break; |
| 115 | case 32: |
| 116 | *value |= SCA_KEY_256_BITS; |
| 117 | break; |
| 118 | default: |
| 119 | return -1; |
| 120 | } |
| 121 | |
| 122 | if (key) { |
| 123 | *value |= SCA_EXTERNAL_KEY | SCA_KEY_IS_ADDR; |
| 124 | } else { |
| 125 | *value |= SCA_DEVICE_ROOT_KEY | SCA_KEY_IS_ADDR; |
| 126 | } |
| 127 | |
| 128 | return 0; |
| 129 | } |
| 130 | |
| 131 | static int sca_wait_intr(void) |
| 132 | { |
| 133 | int ret = 0; |
| 134 | uint32_t value; |
| 135 | uint32_t time_start; |
| 136 | time_start = get_timer(0); |
| 137 | value = readl(TE200_SSCA_INTR_STAT); |
| 138 | |
| 139 | while (1) { |
| 140 | value = readl(TE200_SSCA_INTR_STAT); |
| 141 | |
| 142 | if (value & SCA_INVALID_CMD) { |
| 143 | printf("invallid cmd\n"); |
| 144 | ret = -1; |
| 145 | break; |
| 146 | } |
| 147 | |
| 148 | if (value & SCA_INVALID_KEY) { |
| 149 | printf("invallid key\n"); |
| 150 | ret = -1; |
| 151 | break; |
| 152 | } |
| 153 | |
| 154 | if (value & SCA_BUS_ERROR) { |
| 155 | printf("bus err\n"); |
| 156 | ret = -1; |
| 157 | ret = -1; |
| 158 | break; |
| 159 | } |
| 160 | |
| 161 | if ((get_timer(0) - time_start) > 500) { |
| 162 | printf("wait intr timeout !\n"); |
| 163 | ret = -1; |
| 164 | break; |
| 165 | } |
| 166 | |
| 167 | if (value & SCA_CMD_INTR) { |
| 168 | break; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | value = readl(TE200_SSCA_INTR_STAT); |
| 173 | value |= SCA_CMD_INTR; |
| 174 | writel(value, TE200_SSCA_INTR_STAT); |
| 175 | return ret; |
| 176 | } |
| 177 | |
| 178 | /* sync the same key ladder in /tos/uboot/kernel te200 driver */ |
| 179 | static const struct { |
| 180 | __attribute__ ((aligned (16))) uint8_t ek3[16]; |
| 181 | __attribute__ ((aligned (16))) uint8_t ek2[16]; |
| 182 | __attribute__ ((aligned (16))) uint8_t ek1[16]; |
| 183 | } key_ladder = { |
| 184 | { 0x50,0xCF,0x0F,0x29,0xD1,0xCF,0x32,0x41,0xC5,0x64,0xAC,0xDB,0xDD,0x9A,0xFC,0xF4 }, |
| 185 | { 0x9C,0xAB,0x04,0x57,0xB7,0x17,0xD9,0x4A,0x34,0x74,0x28,0x30,0x34,0x16,0x3B,0x52 }, |
| 186 | { 0xF5,0xA0,0x33,0x7B,0x4B,0xE8,0x18,0x84,0x51,0x4E,0x38,0x86,0x6D,0x08,0xBB,0x6E }, |
| 187 | }; |
| 188 | |
| 189 | static int rkek_cfg_init(void) |
| 190 | { |
| 191 | uint32_t value; |
| 192 | |
| 193 | value = readl(TE200_CLOCK_CTRL); |
| 194 | value &= ~OTP_CLK_EN; |
| 195 | writel(value, TE200_CLOCK_CTRL); |
| 196 | |
| 197 | value = readl(TE200_CLOCK_CTRL); |
| 198 | value |= OTP_CLK_EN; |
| 199 | writel(value, TE200_CLOCK_CTRL); |
| 200 | |
| 201 | /* set opt key sel */ |
| 202 | value = readl(ASR1802_CIU_BASE + 0x0C); |
| 203 | value |= (1 << 24); |
| 204 | writel(value, ASR1802_CIU_BASE + 0x0C); |
| 205 | |
| 206 | /* enable lock */ |
| 207 | value = readl(TE200_OTP_DUMMY_CFG); |
| 208 | value |= 0x10; |
| 209 | writel(value, TE200_OTP_DUMMY_CFG); |
| 210 | |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | static int sca_cipher_init(int alg_type, int mode, uint8_t *iv, uint8_t *key, uint32_t key_len) |
| 215 | { |
| 216 | int ret; |
| 217 | uint32_t cmd = 0; |
| 218 | uint32_t param; |
| 219 | |
| 220 | te200_enable_clk(1); |
| 221 | sca_clock_switch(0); |
| 222 | sca_clock_switch(1); |
| 223 | |
| 224 | /* config rkek */ |
| 225 | if (!key) { |
| 226 | rkek_cfg_init(); |
| 227 | } |
| 228 | |
| 229 | sca_start_run(); |
| 230 | |
| 231 | ret = sca_set_alg(alg_type, &cmd); |
| 232 | if (ret) { |
| 233 | ret = -1; |
| 234 | goto err; |
| 235 | } |
| 236 | ret = sca_set_cipher_mode(mode, &cmd); |
| 237 | if (ret) { |
| 238 | ret = -1; |
| 239 | goto err; |
| 240 | } |
| 241 | |
| 242 | ret = sca_set_key(key, key_len, &cmd); |
| 243 | if (ret) { |
| 244 | ret = -1; |
| 245 | goto err; |
| 246 | } |
| 247 | |
| 248 | ret = sca_set_iv(iv, &cmd); |
| 249 | if (ret) { |
| 250 | ret = -1; |
| 251 | goto err; |
| 252 | } |
| 253 | |
| 254 | cmd |= SCA_INTER_TRIGGERD | SCA_INIT_CMD; |
| 255 | writel(cmd, TE200_SSCA_QUEUE); |
| 256 | |
| 257 | /* set key params */ |
| 258 | if (key) { |
| 259 | flush_dcache_range((unsigned long)key, (uint32_t)key + key_len); |
| 260 | param = (uint32_t)virt_to_phys((void *)key); |
| 261 | writel(param, TE200_SSCA_QUEUE); |
| 262 | } else { |
| 263 | flush_dcache_range((unsigned long)key_ladder.ek3, |
| 264 | (uint32_t)key_ladder.ek3 + sizeof(key_ladder.ek3)); |
| 265 | param = (uint32_t)virt_to_phys((void *)key_ladder.ek3); |
| 266 | writel(param, TE200_SSCA_QUEUE); |
| 267 | |
| 268 | flush_dcache_range((unsigned long)key_ladder.ek2, |
| 269 | (uint32_t)key_ladder.ek2 + sizeof(key_ladder.ek2)); |
| 270 | param = (uint32_t)virt_to_phys((void *)key_ladder.ek2); |
| 271 | writel(param, TE200_SSCA_QUEUE); |
| 272 | |
| 273 | flush_dcache_range((unsigned long)key_ladder.ek1, |
| 274 | (uint32_t)key_ladder.ek1 + sizeof(key_ladder.ek1)); |
| 275 | param = (uint32_t)virt_to_phys((void *)key_ladder.ek1); |
| 276 | writel(param, TE200_SSCA_QUEUE); |
| 277 | } |
| 278 | |
| 279 | /* set iv params */ |
| 280 | if (iv) { |
| 281 | /* set iv addr */ |
| 282 | flush_dcache_range((unsigned long)iv, (uint32_t)iv + 16); |
| 283 | param = (uint32_t)virt_to_phys((void *)iv); |
| 284 | writel(param, TE200_SSCA_QUEUE); |
| 285 | } |
| 286 | |
| 287 | ret = sca_wait_intr(); |
| 288 | if (ret) { |
| 289 | ret = -1; |
| 290 | goto err; |
| 291 | } |
| 292 | return 0; |
| 293 | |
| 294 | err: |
| 295 | sca_clock_switch(0); |
| 296 | te200_enable_clk(0); |
| 297 | return ret; |
| 298 | } |
| 299 | |
| 300 | static int sca_cipher_process(int encrypt, int last_one, void *in, uint32_t size, void *out) |
| 301 | { |
| 302 | int ret; |
| 303 | uint32_t cmd = 0; |
| 304 | uint32_t param; |
| 305 | /* set big endain */ |
| 306 | if (encrypt) { |
| 307 | cmd |= SCA_ENCRYPTION; |
| 308 | } else { |
| 309 | cmd &= (~SCA_ENCRYPTION); |
| 310 | } |
| 311 | |
| 312 | cmd |= SCA_INTER_TRIGGERD | SCA_PROCESS_CMD; |
| 313 | if (last_one) { |
| 314 | cmd |= SCA_LAST_ONE_SESSION; |
| 315 | } else { |
| 316 | cmd &= ~SCA_LAST_ONE_SESSION; |
| 317 | } |
| 318 | writel(cmd, TE200_SSCA_QUEUE); |
| 319 | |
| 320 | /* set src addr */ |
| 321 | flush_dcache_range((unsigned long)in, (uint32_t)in + size); |
| 322 | param = (uint32_t)virt_to_phys((void *)in); |
| 323 | writel(param, TE200_SSCA_QUEUE); |
| 324 | |
| 325 | /* set data length */ |
| 326 | param = (uint32_t)size; |
| 327 | writel(param, TE200_SSCA_QUEUE); |
| 328 | |
| 329 | /* set dst addr */ |
| 330 | if (out) { |
| 331 | flush_dcache_range((unsigned long)out, (uint32_t)out + size); |
| 332 | param = (uint32_t)virt_to_phys((void *)out); |
| 333 | writel(param, TE200_SSCA_QUEUE); |
| 334 | } |
| 335 | |
| 336 | sca_start_run(); |
| 337 | ret = sca_wait_intr(); |
| 338 | if (ret) { |
| 339 | sca_clock_switch(0); |
| 340 | te200_enable_clk(0); |
| 341 | return -1; |
| 342 | } |
| 343 | |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | static int sca_cipher_finish(void) |
| 348 | { |
| 349 | uint32_t cmd = 0; |
| 350 | /* set cmd*/ |
| 351 | cmd |= SCA_INTER_TRIGGERD | SCA_FINISH_CMD; |
| 352 | writel(cmd, TE200_SSCA_QUEUE); |
| 353 | |
| 354 | sca_start_run(); |
| 355 | return sca_wait_intr(); |
| 356 | } |
| 357 | |
| 358 | static int sca_cipher_handle(struct sca_data *psca_data, uint8_t *iv, |
| 359 | uint8_t *key, uint32_t key_len, void *in, uint32_t size, void *out) |
| 360 | { |
| 361 | int ret = 0; |
| 362 | |
| 363 | ret = sca_cipher_init(psca_data->alg_type, psca_data->mode, iv, key, key_len); |
| 364 | if (ret) { |
| 365 | return -1; |
| 366 | } |
| 367 | |
| 368 | ret = sca_cipher_process(psca_data->encrypt, 1, in, size, out); |
| 369 | if (ret) { |
| 370 | return -1; |
| 371 | } |
| 372 | |
| 373 | ret = sca_cipher_finish(); |
| 374 | if (ret) { |
| 375 | return -1; |
| 376 | } |
| 377 | |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | static int asr_lapw_rkek_fused(void) |
| 382 | { |
| 383 | u32 val; |
| 384 | return 1; |
| 385 | |
| 386 | /* If RKEK is burned, SW access to it must be disabled as well */ |
| 387 | val = readl(GEU_FUSE_VAL_APCFG2); |
| 388 | if (val & (1 << 29)) |
| 389 | return 1; |
| 390 | |
| 391 | return 0; |
| 392 | } |
| 393 | |
| 394 | /* cipher */ |
| 395 | int aes_ecb_encrypt_te200(uint8_t *key, uint32_t key_len, bool use_rkek, |
| 396 | void *in, void *out, uint32_t size) |
| 397 | { |
| 398 | uint8_t *use_key; |
| 399 | struct sca_data sca_data; |
| 400 | memset(&sca_data, 0, sizeof(sca_data)); |
| 401 | |
| 402 | if ((key_len > 32) && (key_len < 16)) { |
| 403 | printf("err: aes ecb encrypt key len %d\n", key_len); |
| 404 | return -1; |
| 405 | } |
| 406 | |
| 407 | if ((key == NULL) && (use_rkek == false)) { |
| 408 | printf("%s error: key can't NULL when not use rkek\n", __func__); |
| 409 | return -1; |
| 410 | } |
| 411 | |
| 412 | if (!asr_lapw_rkek_fused()) { |
| 413 | if (key == NULL) { |
| 414 | use_key = (uint8_t *)default_key; |
| 415 | } else { |
| 416 | use_key = key; |
| 417 | } |
| 418 | } else { |
| 419 | if (use_rkek) { |
| 420 | use_key = NULL; |
| 421 | } else { |
| 422 | use_key = key; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | sca_data.encrypt = 1; |
| 427 | sca_data.alg_type = NORMAL_AES; |
| 428 | sca_data.mode = ECB; |
| 429 | |
| 430 | return sca_cipher_handle(&sca_data, NULL, use_key, key_len, in, size, out); |
| 431 | } |
| 432 | |
| 433 | int aes_ecb_decrypt_te200(uint8_t *key, uint32_t key_len, bool use_rkek, |
| 434 | void *in, void *out, uint32_t size) |
| 435 | { |
| 436 | uint8_t *use_key; |
| 437 | struct sca_data sca_data; |
| 438 | memset(&sca_data, 0, sizeof(sca_data)); |
| 439 | |
| 440 | if ((key_len > 32) && (key_len < 16)) { |
| 441 | printf("err: aes ecb decrypt key len %d\n", key_len); |
| 442 | return -1; |
| 443 | } |
| 444 | |
| 445 | if (!asr_lapw_rkek_fused()) { |
| 446 | if (key == NULL) { |
| 447 | use_key = (uint8_t *)default_key; |
| 448 | } else { |
| 449 | use_key = key; |
| 450 | } |
| 451 | } else { |
| 452 | if (use_rkek) { |
| 453 | use_key = NULL; |
| 454 | } else { |
| 455 | use_key = key; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | sca_data.encrypt = 0; |
| 460 | sca_data.alg_type = NORMAL_AES; |
| 461 | sca_data.mode = ECB; |
| 462 | |
| 463 | return sca_cipher_handle(&sca_data, NULL, use_key, key_len, in, size, out); |
| 464 | } |
| 465 | |
| 466 | int aes_cbc_encrypt_te200(uint8_t *iv, uint8_t *key, uint32_t key_len, |
| 467 | bool use_rkek, void *in, void *out, uint32_t size) |
| 468 | { |
| 469 | uint8_t *use_key; |
| 470 | struct sca_data sca_data; |
| 471 | memset(&sca_data, 0, sizeof(sca_data)); |
| 472 | |
| 473 | if ((key_len > 32) && (key_len < 16)) { |
| 474 | printf("err: aes ecb encrypt key len %d\n", key_len); |
| 475 | return -1; |
| 476 | } |
| 477 | |
| 478 | if ((key == NULL) && (use_rkek == false)) { |
| 479 | printf("%s error: key can't NULL when not use rkek\n", __func__); |
| 480 | return -1; |
| 481 | } |
| 482 | |
| 483 | if (!asr_lapw_rkek_fused()) { |
| 484 | if (key == NULL) { |
| 485 | use_key = (uint8_t *)default_key; |
| 486 | } else { |
| 487 | use_key = key; |
| 488 | } |
| 489 | } else { |
| 490 | if (use_rkek) { |
| 491 | use_key = NULL; |
| 492 | } else { |
| 493 | use_key = key; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | sca_data.encrypt = 1; |
| 498 | sca_data.alg_type = NORMAL_AES; |
| 499 | sca_data.mode = CBC; |
| 500 | |
| 501 | return sca_cipher_handle(&sca_data, iv, use_key, key_len, in, size, out); |
| 502 | } |
| 503 | |
| 504 | int aes_cbc_decrypt_te200(uint8_t *iv, uint8_t *key, uint32_t key_len, |
| 505 | bool use_rkek, void *in, void *out, uint32_t size) |
| 506 | { |
| 507 | uint8_t *use_key; |
| 508 | struct sca_data sca_data; |
| 509 | memset(&sca_data, 0, sizeof(sca_data)); |
| 510 | |
| 511 | if ((key_len > 32) && (key_len < 16)) { |
| 512 | printf("err: aes ecb encrypt key len %d\n", key_len); |
| 513 | return -1; |
| 514 | } |
| 515 | |
| 516 | if ((key == NULL) && (use_rkek == false)) { |
| 517 | printf("%s error: key can't NULL when not use rkek\n", __func__); |
| 518 | return -1; |
| 519 | } |
| 520 | |
| 521 | if (!asr_lapw_rkek_fused()) { |
| 522 | if (key == NULL) { |
| 523 | use_key = (uint8_t *)default_key; |
| 524 | } else { |
| 525 | use_key = key; |
| 526 | } |
| 527 | } else { |
| 528 | if (use_rkek) { |
| 529 | use_key = NULL; |
| 530 | } else { |
| 531 | use_key = key; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | sca_data.encrypt = 0; |
| 536 | sca_data.alg_type = NORMAL_AES; |
| 537 | sca_data.mode = CBC; |
| 538 | |
| 539 | return sca_cipher_handle(&sca_data, iv, use_key, key_len, in, size, out); |
| 540 | } |