b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * drivers/mtd/nand/nand_util.c |
| 3 | * |
| 4 | * Copyright (C) 2006 by Weiss-Electronic GmbH. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * @author: Guido Classen <clagix@gmail.com> |
| 8 | * @descr: NAND Flash support |
| 9 | * @references: borrowed heavily from Linux mtd-utils code: |
| 10 | * flash_eraseall.c by Arcom Control System Ltd |
| 11 | * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) |
| 12 | * and Thomas Gleixner (tglx@linutronix.de) |
| 13 | * |
| 14 | * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by |
| 15 | * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils |
| 16 | * |
| 17 | * Copyright 2010 Freescale Semiconductor |
| 18 | * |
| 19 | * SPDX-License-Identifier: GPL-2.0 |
| 20 | */ |
| 21 | |
| 22 | #include <common.h> |
| 23 | #include <command.h> |
| 24 | #include <watchdog.h> |
| 25 | #include <malloc.h> |
| 26 | #include <div64.h> |
| 27 | |
| 28 | #include <asm/errno.h> |
| 29 | #include <linux/mtd/mtd.h> |
| 30 | #include <nand.h> |
| 31 | #include <jffs2/jffs2.h> |
| 32 | |
| 33 | typedef struct erase_info erase_info_t; |
| 34 | typedef struct mtd_info mtd_info_t; |
| 35 | |
| 36 | /* support only for native endian JFFS2 */ |
| 37 | #define cpu_to_je16(x) (x) |
| 38 | #define cpu_to_je32(x) (x) |
| 39 | |
| 40 | /** |
| 41 | * nand_erase_opts: - erase NAND flash with support for various options |
| 42 | * (jffs2 formatting) |
| 43 | * |
| 44 | * @param meminfo NAND device to erase |
| 45 | * @param opts options, @see struct nand_erase_options |
| 46 | * @return 0 in case of success |
| 47 | * |
| 48 | * This code is ported from flash_eraseall.c from Linux mtd utils by |
| 49 | * Arcom Control System Ltd. |
| 50 | */ |
| 51 | int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts) |
| 52 | { |
| 53 | struct jffs2_unknown_node cleanmarker; |
| 54 | erase_info_t erase; |
| 55 | unsigned long erase_length, erased_length; /* in blocks */ |
| 56 | int result; |
| 57 | int percent_complete = -1; |
| 58 | const char *mtd_device = meminfo->name; |
| 59 | struct mtd_oob_ops oob_opts; |
| 60 | struct nand_chip *chip = meminfo->priv; |
| 61 | |
| 62 | if ((opts->offset & (meminfo->erasesize - 1)) != 0) { |
| 63 | printf("Attempt to erase non block-aligned data\n"); |
| 64 | return -1; |
| 65 | } |
| 66 | |
| 67 | memset(&erase, 0, sizeof(erase)); |
| 68 | memset(&oob_opts, 0, sizeof(oob_opts)); |
| 69 | |
| 70 | erase.mtd = meminfo; |
| 71 | erase.len = meminfo->erasesize; |
| 72 | erase.addr = opts->offset; |
| 73 | erase_length = lldiv(opts->length + meminfo->erasesize - 1, |
| 74 | meminfo->erasesize); |
| 75 | |
| 76 | cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 77 | cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); |
| 78 | cleanmarker.totlen = cpu_to_je32(8); |
| 79 | |
| 80 | /* scrub option allows to erase badblock. To prevent internal |
| 81 | * check from erase() method, set block check method to dummy |
| 82 | * and disable bad block table while erasing. |
| 83 | */ |
| 84 | if (opts->scrub) { |
| 85 | erase.scrub = opts->scrub; |
| 86 | /* |
| 87 | * We don't need the bad block table anymore... |
| 88 | * after scrub, there are no bad blocks left! |
| 89 | */ |
| 90 | if (chip->bbt) { |
| 91 | kfree(chip->bbt); |
| 92 | } |
| 93 | chip->bbt = NULL; |
| 94 | } |
| 95 | |
| 96 | for (erased_length = 0; |
| 97 | erased_length < erase_length; |
| 98 | erase.addr += meminfo->erasesize) { |
| 99 | |
| 100 | WATCHDOG_RESET(); |
| 101 | |
| 102 | if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) { |
| 103 | puts("Size of erase exceeds limit\n"); |
| 104 | return -EFBIG; |
| 105 | } |
| 106 | if (!opts->scrub) { |
| 107 | int ret = mtd_block_isbad(meminfo, erase.addr); |
| 108 | if (ret > 0) { |
| 109 | if (!opts->quiet) |
| 110 | printf("\rSkipping bad block at " |
| 111 | "0x%08llx " |
| 112 | " \n", |
| 113 | erase.addr); |
| 114 | |
| 115 | if (!opts->spread) |
| 116 | erased_length++; |
| 117 | |
| 118 | continue; |
| 119 | |
| 120 | } else if (ret < 0) { |
| 121 | printf("\n%s: MTD get bad block failed: %d\n", |
| 122 | mtd_device, |
| 123 | ret); |
| 124 | return -1; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | erased_length++; |
| 129 | |
| 130 | result = mtd_erase(meminfo, &erase); |
| 131 | if (result != 0) { |
| 132 | result = mtd_erase(meminfo, &erase); |
| 133 | if (result != 0) { |
| 134 | printf("%s: MTD Erase failure: %d\n", |
| 135 | mtd_device, result); |
| 136 | mtd_block_markbad(meminfo, erase.addr); |
| 137 | } |
| 138 | continue; |
| 139 | } |
| 140 | |
| 141 | /* format for JFFS2 ? */ |
| 142 | if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { |
| 143 | struct mtd_oob_ops ops; |
| 144 | ops.ooblen = 8; |
| 145 | ops.datbuf = NULL; |
| 146 | ops.oobbuf = (uint8_t *)&cleanmarker; |
| 147 | ops.ooboffs = 0; |
| 148 | ops.mode = MTD_OPS_AUTO_OOB; |
| 149 | |
| 150 | result = mtd_write_oob(meminfo, |
| 151 | erase.addr, |
| 152 | &ops); |
| 153 | if (result != 0) { |
| 154 | printf("\n%s: MTD writeoob failure: %d\n", |
| 155 | mtd_device, result); |
| 156 | continue; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | if (!opts->quiet) { |
| 161 | unsigned long long n = erased_length * 100ULL; |
| 162 | int percent; |
| 163 | |
| 164 | do_div(n, erase_length); |
| 165 | percent = (int)n; |
| 166 | |
| 167 | /* output progress message only at whole percent |
| 168 | * steps to reduce the number of messages printed |
| 169 | * on (slow) serial consoles |
| 170 | */ |
| 171 | if (percent != percent_complete) { |
| 172 | percent_complete = percent; |
| 173 | |
| 174 | printf("\rErasing at 0x%llx -- %3d%% complete.", |
| 175 | erase.addr, percent); |
| 176 | |
| 177 | if (opts->jffs2 && result == 0) |
| 178 | printf(" Cleanmarker written at 0x%llx.", |
| 179 | erase.addr); |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | if (!opts->quiet) |
| 184 | printf("\n"); |
| 185 | |
| 186 | if (opts->scrub) |
| 187 | chip->scan_bbt(meminfo); |
| 188 | |
| 189 | return 0; |
| 190 | } |
| 191 | |
| 192 | #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK |
| 193 | |
| 194 | /****************************************************************************** |
| 195 | * Support for locking / unlocking operations of some NAND devices |
| 196 | *****************************************************************************/ |
| 197 | |
| 198 | /** |
| 199 | * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT |
| 200 | * state |
| 201 | * |
| 202 | * @param mtd nand mtd instance |
| 203 | * @param tight bring device in lock tight mode |
| 204 | * |
| 205 | * @return 0 on success, -1 in case of error |
| 206 | * |
| 207 | * The lock / lock-tight command only applies to the whole chip. To get some |
| 208 | * parts of the chip lock and others unlocked use the following sequence: |
| 209 | * |
| 210 | * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) |
| 211 | * - Call nand_unlock() once for each consecutive area to be unlocked |
| 212 | * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) |
| 213 | * |
| 214 | * If the device is in lock-tight state software can't change the |
| 215 | * current active lock/unlock state of all pages. nand_lock() / nand_unlock() |
| 216 | * calls will fail. It is only posible to leave lock-tight state by |
| 217 | * an hardware signal (low pulse on _WP pin) or by power down. |
| 218 | */ |
| 219 | int nand_lock(struct mtd_info *mtd, int tight) |
| 220 | { |
| 221 | int ret = 0; |
| 222 | int status; |
| 223 | struct nand_chip *chip = mtd->priv; |
| 224 | |
| 225 | /* select the NAND device */ |
| 226 | chip->select_chip(mtd, 0); |
| 227 | |
| 228 | /* check the Lock Tight Status */ |
| 229 | chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0); |
| 230 | if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { |
| 231 | printf("nand_lock: Device is locked tight!\n"); |
| 232 | ret = -1; |
| 233 | goto out; |
| 234 | } |
| 235 | |
| 236 | chip->cmdfunc(mtd, |
| 237 | (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), |
| 238 | -1, -1); |
| 239 | |
| 240 | /* call wait ready function */ |
| 241 | status = chip->waitfunc(mtd, chip); |
| 242 | |
| 243 | /* see if device thinks it succeeded */ |
| 244 | if (status & 0x01) { |
| 245 | ret = -1; |
| 246 | } |
| 247 | |
| 248 | out: |
| 249 | /* de-select the NAND device */ |
| 250 | chip->select_chip(mtd, -1); |
| 251 | return ret; |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * nand_get_lock_status: - query current lock state from one page of NAND |
| 256 | * flash |
| 257 | * |
| 258 | * @param mtd nand mtd instance |
| 259 | * @param offset page address to query (must be page-aligned!) |
| 260 | * |
| 261 | * @return -1 in case of error |
| 262 | * >0 lock status: |
| 263 | * bitfield with the following combinations: |
| 264 | * NAND_LOCK_STATUS_TIGHT: page in tight state |
| 265 | * NAND_LOCK_STATUS_UNLOCK: page unlocked |
| 266 | * |
| 267 | */ |
| 268 | int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) |
| 269 | { |
| 270 | int ret = 0; |
| 271 | int chipnr; |
| 272 | int page; |
| 273 | struct nand_chip *chip = mtd->priv; |
| 274 | |
| 275 | /* select the NAND device */ |
| 276 | chipnr = (int)(offset >> chip->chip_shift); |
| 277 | chip->select_chip(mtd, chipnr); |
| 278 | |
| 279 | |
| 280 | if ((offset & (mtd->writesize - 1)) != 0) { |
| 281 | printf("nand_get_lock_status: " |
| 282 | "Start address must be beginning of " |
| 283 | "nand page!\n"); |
| 284 | ret = -1; |
| 285 | goto out; |
| 286 | } |
| 287 | |
| 288 | /* check the Lock Status */ |
| 289 | page = (int)(offset >> chip->page_shift); |
| 290 | chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); |
| 291 | |
| 292 | ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT |
| 293 | | NAND_LOCK_STATUS_UNLOCK); |
| 294 | |
| 295 | out: |
| 296 | /* de-select the NAND device */ |
| 297 | chip->select_chip(mtd, -1); |
| 298 | return ret; |
| 299 | } |
| 300 | |
| 301 | /** |
| 302 | * nand_unlock: - Unlock area of NAND pages |
| 303 | * only one consecutive area can be unlocked at one time! |
| 304 | * |
| 305 | * @param mtd nand mtd instance |
| 306 | * @param start start byte address |
| 307 | * @param length number of bytes to unlock (must be a multiple of |
| 308 | * page size nand->writesize) |
| 309 | * @param allexcept if set, unlock everything not selected |
| 310 | * |
| 311 | * @return 0 on success, -1 in case of error |
| 312 | */ |
| 313 | int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length, |
| 314 | int allexcept) |
| 315 | { |
| 316 | int ret = 0; |
| 317 | int chipnr; |
| 318 | int status; |
| 319 | int page; |
| 320 | struct nand_chip *chip = mtd->priv; |
| 321 | |
| 322 | debug("nand_unlock%s: start: %08llx, length: %zd!\n", |
| 323 | allexcept ? " (allexcept)" : "", start, length); |
| 324 | |
| 325 | /* select the NAND device */ |
| 326 | chipnr = (int)(start >> chip->chip_shift); |
| 327 | chip->select_chip(mtd, chipnr); |
| 328 | |
| 329 | /* check the WP bit */ |
| 330 | chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| 331 | if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { |
| 332 | printf("nand_unlock: Device is write protected!\n"); |
| 333 | ret = -1; |
| 334 | goto out; |
| 335 | } |
| 336 | |
| 337 | /* check the Lock Tight Status */ |
| 338 | page = (int)(start >> chip->page_shift); |
| 339 | chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); |
| 340 | if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { |
| 341 | printf("nand_unlock: Device is locked tight!\n"); |
| 342 | ret = -1; |
| 343 | goto out; |
| 344 | } |
| 345 | |
| 346 | if ((start & (mtd->erasesize - 1)) != 0) { |
| 347 | printf("nand_unlock: Start address must be beginning of " |
| 348 | "nand block!\n"); |
| 349 | ret = -1; |
| 350 | goto out; |
| 351 | } |
| 352 | |
| 353 | if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { |
| 354 | printf("nand_unlock: Length must be a multiple of nand block " |
| 355 | "size %08x!\n", mtd->erasesize); |
| 356 | ret = -1; |
| 357 | goto out; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Set length so that the last address is set to the |
| 362 | * starting address of the last block |
| 363 | */ |
| 364 | length -= mtd->erasesize; |
| 365 | |
| 366 | /* submit address of first page to unlock */ |
| 367 | chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); |
| 368 | |
| 369 | /* submit ADDRESS of LAST page to unlock */ |
| 370 | page += (int)(length >> chip->page_shift); |
| 371 | |
| 372 | /* |
| 373 | * Page addresses for unlocking are supposed to be block-aligned. |
| 374 | * At least some NAND chips use the low bit to indicate that the |
| 375 | * page range should be inverted. |
| 376 | */ |
| 377 | if (allexcept) |
| 378 | page |= 1; |
| 379 | |
| 380 | chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); |
| 381 | |
| 382 | /* call wait ready function */ |
| 383 | status = chip->waitfunc(mtd, chip); |
| 384 | /* see if device thinks it succeeded */ |
| 385 | if (status & 0x01) { |
| 386 | /* there was an error */ |
| 387 | ret = -1; |
| 388 | goto out; |
| 389 | } |
| 390 | |
| 391 | out: |
| 392 | /* de-select the NAND device */ |
| 393 | chip->select_chip(mtd, -1); |
| 394 | return ret; |
| 395 | } |
| 396 | #endif |
| 397 | |
| 398 | /** |
| 399 | * check_skip_len |
| 400 | * |
| 401 | * Check if there are any bad blocks, and whether length including bad |
| 402 | * blocks fits into device |
| 403 | * |
| 404 | * @param nand NAND device |
| 405 | * @param offset offset in flash |
| 406 | * @param length image length |
| 407 | * @param used length of flash needed for the requested length |
| 408 | * @return 0 if the image fits and there are no bad blocks |
| 409 | * 1 if the image fits, but there are bad blocks |
| 410 | * -1 if the image does not fit |
| 411 | */ |
| 412 | static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length, |
| 413 | size_t *used) |
| 414 | { |
| 415 | size_t len_excl_bad = 0; |
| 416 | int ret = 0; |
| 417 | |
| 418 | while (len_excl_bad < length) { |
| 419 | size_t block_len, block_off; |
| 420 | loff_t block_start; |
| 421 | |
| 422 | if (offset >= nand->size) |
| 423 | return -1; |
| 424 | |
| 425 | block_start = offset & ~(loff_t)(nand->erasesize - 1); |
| 426 | block_off = offset & (nand->erasesize - 1); |
| 427 | block_len = nand->erasesize - block_off; |
| 428 | |
| 429 | if (!nand_block_isbad(nand, block_start)) |
| 430 | len_excl_bad += block_len; |
| 431 | else |
| 432 | ret = 1; |
| 433 | |
| 434 | offset += block_len; |
| 435 | *used += block_len; |
| 436 | } |
| 437 | |
| 438 | /* If the length is not a multiple of block_len, adjust. */ |
| 439 | if (len_excl_bad > length) |
| 440 | *used -= (len_excl_bad - length); |
| 441 | |
| 442 | return ret; |
| 443 | } |
| 444 | |
| 445 | #ifdef CONFIG_CMD_NAND_TRIMFFS |
| 446 | static size_t drop_ffs(const nand_info_t *nand, const u_char *buf, |
| 447 | const size_t *len) |
| 448 | { |
| 449 | size_t l = *len; |
| 450 | ssize_t i; |
| 451 | |
| 452 | for (i = l - 1; i >= 0; i--) |
| 453 | if (buf[i] != 0xFF) |
| 454 | break; |
| 455 | |
| 456 | /* The resulting length must be aligned to the minimum flash I/O size */ |
| 457 | l = i + 1; |
| 458 | l = (l + nand->writesize - 1) / nand->writesize; |
| 459 | l *= nand->writesize; |
| 460 | |
| 461 | /* |
| 462 | * since the input length may be unaligned, prevent access past the end |
| 463 | * of the buffer |
| 464 | */ |
| 465 | return min(l, *len); |
| 466 | } |
| 467 | #endif |
| 468 | |
| 469 | /** |
| 470 | * nand_write_skip_bad: |
| 471 | * |
| 472 | * Write image to NAND flash. |
| 473 | * Blocks that are marked bad are skipped and the is written to the next |
| 474 | * block instead as long as the image is short enough to fit even after |
| 475 | * skipping the bad blocks. Due to bad blocks we may not be able to |
| 476 | * perform the requested write. In the case where the write would |
| 477 | * extend beyond the end of the NAND device, both length and actual (if |
| 478 | * not NULL) are set to 0. In the case where the write would extend |
| 479 | * beyond the limit we are passed, length is set to 0 and actual is set |
| 480 | * to the required length. |
| 481 | * |
| 482 | * @param nand NAND device |
| 483 | * @param offset offset in flash |
| 484 | * @param length buffer length |
| 485 | * @param actual set to size required to write length worth of |
| 486 | * buffer or 0 on error, if not NULL |
| 487 | * @param lim maximum size that actual may be in order to not |
| 488 | * exceed the buffer |
| 489 | * @param buffer buffer to read from |
| 490 | * @param flags flags modifying the behaviour of the write to NAND |
| 491 | * @return 0 in case of success |
| 492 | */ |
| 493 | int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, |
| 494 | size_t *actual, loff_t lim, u_char *buffer, int flags) |
| 495 | { |
| 496 | int rval = 0, blocksize; |
| 497 | size_t left_to_write = *length; |
| 498 | size_t used_for_write = 0; |
| 499 | u_char *p_buffer = buffer; |
| 500 | int need_skip; |
| 501 | |
| 502 | if (actual) |
| 503 | *actual = 0; |
| 504 | |
| 505 | #ifdef CONFIG_CMD_NAND_YAFFS |
| 506 | if (flags & WITH_YAFFS_OOB) { |
| 507 | if (flags & ~WITH_YAFFS_OOB) |
| 508 | return -EINVAL; |
| 509 | |
| 510 | int pages; |
| 511 | pages = nand->erasesize / nand->writesize; |
| 512 | blocksize = (pages * nand->oobsize) + nand->erasesize; |
| 513 | if (*length % (nand->writesize + nand->oobsize)) { |
| 514 | printf("Attempt to write incomplete page" |
| 515 | " in yaffs mode\n"); |
| 516 | return -EINVAL; |
| 517 | } |
| 518 | } else |
| 519 | #endif |
| 520 | { |
| 521 | blocksize = nand->erasesize; |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * nand_write() handles unaligned, partial page writes. |
| 526 | * |
| 527 | * We allow length to be unaligned, for convenience in |
| 528 | * using the $filesize variable. |
| 529 | * |
| 530 | * However, starting at an unaligned offset makes the |
| 531 | * semantics of bad block skipping ambiguous (really, |
| 532 | * you should only start a block skipping access at a |
| 533 | * partition boundary). So don't try to handle that. |
| 534 | */ |
| 535 | if ((offset & (nand->writesize - 1)) != 0) { |
| 536 | printf("Attempt to write non page-aligned data\n"); |
| 537 | *length = 0; |
| 538 | return -EINVAL; |
| 539 | } |
| 540 | |
| 541 | need_skip = check_skip_len(nand, offset, *length, &used_for_write); |
| 542 | |
| 543 | if (actual) |
| 544 | *actual = used_for_write; |
| 545 | |
| 546 | if (need_skip < 0) { |
| 547 | printf("Attempt to write outside the flash area\n"); |
| 548 | *length = 0; |
| 549 | return -EINVAL; |
| 550 | } |
| 551 | |
| 552 | if (used_for_write > lim) { |
| 553 | puts("Size of write exceeds partition or device limit\n"); |
| 554 | *length = 0; |
| 555 | return -EFBIG; |
| 556 | } |
| 557 | |
| 558 | if (!need_skip && !(flags & WITH_DROP_FFS)) { |
| 559 | rval = nand_write(nand, offset, length, buffer); |
| 560 | if (rval == 0) |
| 561 | return 0; |
| 562 | |
| 563 | *length = 0; |
| 564 | printf("NAND write to offset %llx failed %d\n", |
| 565 | offset, rval); |
| 566 | return rval; |
| 567 | } |
| 568 | |
| 569 | while (left_to_write > 0) { |
| 570 | size_t block_offset = offset & (nand->erasesize - 1); |
| 571 | size_t write_size, truncated_write_size; |
| 572 | |
| 573 | WATCHDOG_RESET(); |
| 574 | |
| 575 | if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) { |
| 576 | printf("Skip bad block 0x%08llx\n", |
| 577 | offset & ~(nand->erasesize - 1)); |
| 578 | offset += nand->erasesize - block_offset; |
| 579 | continue; |
| 580 | } |
| 581 | |
| 582 | if (left_to_write < (blocksize - block_offset)) |
| 583 | write_size = left_to_write; |
| 584 | else |
| 585 | write_size = blocksize - block_offset; |
| 586 | |
| 587 | #ifdef CONFIG_CMD_NAND_YAFFS |
| 588 | if (flags & WITH_YAFFS_OOB) { |
| 589 | int page, pages; |
| 590 | size_t pagesize = nand->writesize; |
| 591 | size_t pagesize_oob = pagesize + nand->oobsize; |
| 592 | struct mtd_oob_ops ops; |
| 593 | |
| 594 | ops.len = pagesize; |
| 595 | ops.ooblen = nand->oobsize; |
| 596 | ops.mode = MTD_OPS_AUTO_OOB; |
| 597 | ops.ooboffs = 0; |
| 598 | |
| 599 | pages = write_size / pagesize_oob; |
| 600 | for (page = 0; page < pages; page++) { |
| 601 | WATCHDOG_RESET(); |
| 602 | |
| 603 | ops.datbuf = p_buffer; |
| 604 | ops.oobbuf = ops.datbuf + pagesize; |
| 605 | |
| 606 | rval = mtd_write_oob(nand, offset, &ops); |
| 607 | if (rval != 0) |
| 608 | break; |
| 609 | |
| 610 | offset += pagesize; |
| 611 | p_buffer += pagesize_oob; |
| 612 | } |
| 613 | } |
| 614 | else |
| 615 | #endif |
| 616 | { |
| 617 | truncated_write_size = write_size; |
| 618 | #ifdef CONFIG_CMD_NAND_TRIMFFS |
| 619 | if (flags & WITH_DROP_FFS) |
| 620 | truncated_write_size = drop_ffs(nand, p_buffer, |
| 621 | &write_size); |
| 622 | #endif |
| 623 | |
| 624 | rval = nand_write(nand, offset, &truncated_write_size, |
| 625 | p_buffer); |
| 626 | offset += write_size; |
| 627 | p_buffer += write_size; |
| 628 | } |
| 629 | |
| 630 | if (rval != 0) { |
| 631 | printf("NAND write to offset %llx failed %d\n", |
| 632 | offset, rval); |
| 633 | *length -= left_to_write; |
| 634 | return rval; |
| 635 | } |
| 636 | |
| 637 | left_to_write -= write_size; |
| 638 | } |
| 639 | |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | /** |
| 644 | * nand_read_skip_bad: |
| 645 | * |
| 646 | * Read image from NAND flash. |
| 647 | * Blocks that are marked bad are skipped and the next block is read |
| 648 | * instead as long as the image is short enough to fit even after |
| 649 | * skipping the bad blocks. Due to bad blocks we may not be able to |
| 650 | * perform the requested read. In the case where the read would extend |
| 651 | * beyond the end of the NAND device, both length and actual (if not |
| 652 | * NULL) are set to 0. In the case where the read would extend beyond |
| 653 | * the limit we are passed, length is set to 0 and actual is set to the |
| 654 | * required length. |
| 655 | * |
| 656 | * @param nand NAND device |
| 657 | * @param offset offset in flash |
| 658 | * @param length buffer length, on return holds number of read bytes |
| 659 | * @param actual set to size required to read length worth of buffer or 0 |
| 660 | * on error, if not NULL |
| 661 | * @param lim maximum size that actual may be in order to not exceed the |
| 662 | * buffer |
| 663 | * @param buffer buffer to write to |
| 664 | * @return 0 in case of success |
| 665 | */ |
| 666 | int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, |
| 667 | size_t *actual, loff_t lim, u_char *buffer) |
| 668 | { |
| 669 | int rval; |
| 670 | size_t left_to_read = *length; |
| 671 | size_t used_for_read = 0; |
| 672 | u_char *p_buffer = buffer; |
| 673 | int need_skip; |
| 674 | |
| 675 | if ((offset & (nand->writesize - 1)) != 0) { |
| 676 | printf("Attempt to read non page-aligned data\n"); |
| 677 | *length = 0; |
| 678 | if (actual) |
| 679 | *actual = 0; |
| 680 | return -EINVAL; |
| 681 | } |
| 682 | |
| 683 | need_skip = check_skip_len(nand, offset, *length, &used_for_read); |
| 684 | |
| 685 | if (actual) |
| 686 | *actual = used_for_read; |
| 687 | |
| 688 | if (need_skip < 0) { |
| 689 | printf("Attempt to read outside the flash area\n"); |
| 690 | *length = 0; |
| 691 | return -EINVAL; |
| 692 | } |
| 693 | |
| 694 | if (used_for_read > lim) { |
| 695 | puts("Size of read exceeds partition or device limit\n"); |
| 696 | *length = 0; |
| 697 | return -EFBIG; |
| 698 | } |
| 699 | |
| 700 | if (!need_skip) { |
| 701 | rval = nand_read(nand, offset, length, buffer); |
| 702 | if (!rval || rval == -EUCLEAN) |
| 703 | return 0; |
| 704 | |
| 705 | *length = 0; |
| 706 | printf("NAND read from offset %llx failed %d\n", |
| 707 | offset, rval); |
| 708 | return rval; |
| 709 | } |
| 710 | |
| 711 | while (left_to_read > 0) { |
| 712 | size_t block_offset = offset & (nand->erasesize - 1); |
| 713 | size_t read_length; |
| 714 | |
| 715 | WATCHDOG_RESET(); |
| 716 | |
| 717 | if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) { |
| 718 | printf("Skipping bad block 0x%08llx\n", |
| 719 | offset & ~(nand->erasesize - 1)); |
| 720 | offset += nand->erasesize - block_offset; |
| 721 | continue; |
| 722 | } |
| 723 | |
| 724 | if (left_to_read < (nand->erasesize - block_offset)) |
| 725 | read_length = left_to_read; |
| 726 | else |
| 727 | read_length = nand->erasesize - block_offset; |
| 728 | |
| 729 | rval = nand_read(nand, offset, &read_length, p_buffer); |
| 730 | if (rval && rval != -EUCLEAN) { |
| 731 | printf("NAND read from offset %llx failed %d\n", |
| 732 | offset, rval); |
| 733 | *length -= left_to_read; |
| 734 | return rval; |
| 735 | } |
| 736 | |
| 737 | left_to_read -= read_length; |
| 738 | offset += read_length; |
| 739 | p_buffer += read_length; |
| 740 | } |
| 741 | |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | #ifdef CONFIG_CMD_NAND_TORTURE |
| 746 | |
| 747 | /** |
| 748 | * check_pattern: |
| 749 | * |
| 750 | * Check if buffer contains only a certain byte pattern. |
| 751 | * |
| 752 | * @param buf buffer to check |
| 753 | * @param patt the pattern to check |
| 754 | * @param size buffer size in bytes |
| 755 | * @return 1 if there are only patt bytes in buf |
| 756 | * 0 if something else was found |
| 757 | */ |
| 758 | static int check_pattern(const u_char *buf, u_char patt, int size) |
| 759 | { |
| 760 | int i; |
| 761 | |
| 762 | for (i = 0; i < size; i++) |
| 763 | if (buf[i] != patt) |
| 764 | return 0; |
| 765 | return 1; |
| 766 | } |
| 767 | |
| 768 | /** |
| 769 | * nand_torture: |
| 770 | * |
| 771 | * Torture a block of NAND flash. |
| 772 | * This is useful to determine if a block that caused a write error is still |
| 773 | * good or should be marked as bad. |
| 774 | * |
| 775 | * @param nand NAND device |
| 776 | * @param offset offset in flash |
| 777 | * @return 0 if the block is still good |
| 778 | */ |
| 779 | int nand_torture(nand_info_t *nand, loff_t offset) |
| 780 | { |
| 781 | u_char patterns[] = {0xa5, 0x5a, 0x00}; |
| 782 | struct erase_info instr = { |
| 783 | .mtd = nand, |
| 784 | .addr = offset, |
| 785 | .len = nand->erasesize, |
| 786 | }; |
| 787 | size_t retlen; |
| 788 | int err, ret = -1, i, patt_count; |
| 789 | u_char *buf; |
| 790 | |
| 791 | if ((offset & (nand->erasesize - 1)) != 0) { |
| 792 | puts("Attempt to torture a block at a non block-aligned offset\n"); |
| 793 | return -EINVAL; |
| 794 | } |
| 795 | |
| 796 | if (offset + nand->erasesize > nand->size) { |
| 797 | puts("Attempt to torture a block outside the flash area\n"); |
| 798 | return -EINVAL; |
| 799 | } |
| 800 | |
| 801 | patt_count = ARRAY_SIZE(patterns); |
| 802 | |
| 803 | buf = malloc(nand->erasesize); |
| 804 | if (buf == NULL) { |
| 805 | puts("Out of memory for erase block buffer\n"); |
| 806 | return -ENOMEM; |
| 807 | } |
| 808 | |
| 809 | for (i = 0; i < patt_count; i++) { |
| 810 | err = nand->erase(nand, &instr); |
| 811 | if (err) { |
| 812 | printf("%s: erase() failed for block at 0x%llx: %d\n", |
| 813 | nand->name, instr.addr, err); |
| 814 | goto out; |
| 815 | } |
| 816 | |
| 817 | /* Make sure the block contains only 0xff bytes */ |
| 818 | err = nand->read(nand, offset, nand->erasesize, &retlen, buf); |
| 819 | if ((err && err != -EUCLEAN) || retlen != nand->erasesize) { |
| 820 | printf("%s: read() failed for block at 0x%llx: %d\n", |
| 821 | nand->name, instr.addr, err); |
| 822 | goto out; |
| 823 | } |
| 824 | |
| 825 | err = check_pattern(buf, 0xff, nand->erasesize); |
| 826 | if (!err) { |
| 827 | printf("Erased block at 0x%llx, but a non-0xff byte was found\n", |
| 828 | offset); |
| 829 | ret = -EIO; |
| 830 | goto out; |
| 831 | } |
| 832 | |
| 833 | /* Write a pattern and check it */ |
| 834 | memset(buf, patterns[i], nand->erasesize); |
| 835 | err = nand->write(nand, offset, nand->erasesize, &retlen, buf); |
| 836 | if (err || retlen != nand->erasesize) { |
| 837 | printf("%s: write() failed for block at 0x%llx: %d\n", |
| 838 | nand->name, instr.addr, err); |
| 839 | goto out; |
| 840 | } |
| 841 | |
| 842 | err = nand->read(nand, offset, nand->erasesize, &retlen, buf); |
| 843 | if ((err && err != -EUCLEAN) || retlen != nand->erasesize) { |
| 844 | printf("%s: read() failed for block at 0x%llx: %d\n", |
| 845 | nand->name, instr.addr, err); |
| 846 | goto out; |
| 847 | } |
| 848 | |
| 849 | err = check_pattern(buf, patterns[i], nand->erasesize); |
| 850 | if (!err) { |
| 851 | printf("Pattern 0x%.2x checking failed for block at " |
| 852 | "0x%llx\n", patterns[i], offset); |
| 853 | ret = -EIO; |
| 854 | goto out; |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | ret = 0; |
| 859 | |
| 860 | out: |
| 861 | free(buf); |
| 862 | return ret; |
| 863 | } |
| 864 | |
| 865 | #endif |