blob: 8b40d31aa6ab255a7ddbac4ca9a998eef214c617 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * drivers/mtd/nand/nand_util.c
3 *
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
5 * All rights reserved.
6 *
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
15 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
16 *
17 * Copyright 2010 Freescale Semiconductor
18 *
19 * SPDX-License-Identifier: GPL-2.0
20 */
21
22#include <common.h>
23#include <command.h>
24#include <watchdog.h>
25#include <malloc.h>
26#include <div64.h>
27
28#include <asm/errno.h>
29#include <linux/mtd/mtd.h>
30#include <nand.h>
31#include <jffs2/jffs2.h>
32
33typedef struct erase_info erase_info_t;
34typedef struct mtd_info mtd_info_t;
35
36/* support only for native endian JFFS2 */
37#define cpu_to_je16(x) (x)
38#define cpu_to_je32(x) (x)
39
40/**
41 * nand_erase_opts: - erase NAND flash with support for various options
42 * (jffs2 formatting)
43 *
44 * @param meminfo NAND device to erase
45 * @param opts options, @see struct nand_erase_options
46 * @return 0 in case of success
47 *
48 * This code is ported from flash_eraseall.c from Linux mtd utils by
49 * Arcom Control System Ltd.
50 */
51int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
52{
53 struct jffs2_unknown_node cleanmarker;
54 erase_info_t erase;
55 unsigned long erase_length, erased_length; /* in blocks */
56 int result;
57 int percent_complete = -1;
58 const char *mtd_device = meminfo->name;
59 struct mtd_oob_ops oob_opts;
60 struct nand_chip *chip = meminfo->priv;
61
62 if ((opts->offset & (meminfo->erasesize - 1)) != 0) {
63 printf("Attempt to erase non block-aligned data\n");
64 return -1;
65 }
66
67 memset(&erase, 0, sizeof(erase));
68 memset(&oob_opts, 0, sizeof(oob_opts));
69
70 erase.mtd = meminfo;
71 erase.len = meminfo->erasesize;
72 erase.addr = opts->offset;
73 erase_length = lldiv(opts->length + meminfo->erasesize - 1,
74 meminfo->erasesize);
75
76 cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
77 cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
78 cleanmarker.totlen = cpu_to_je32(8);
79
80 /* scrub option allows to erase badblock. To prevent internal
81 * check from erase() method, set block check method to dummy
82 * and disable bad block table while erasing.
83 */
84 if (opts->scrub) {
85 erase.scrub = opts->scrub;
86 /*
87 * We don't need the bad block table anymore...
88 * after scrub, there are no bad blocks left!
89 */
90 if (chip->bbt) {
91 kfree(chip->bbt);
92 }
93 chip->bbt = NULL;
94 }
95
96 for (erased_length = 0;
97 erased_length < erase_length;
98 erase.addr += meminfo->erasesize) {
99
100 WATCHDOG_RESET();
101
102 if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
103 puts("Size of erase exceeds limit\n");
104 return -EFBIG;
105 }
106 if (!opts->scrub) {
107 int ret = mtd_block_isbad(meminfo, erase.addr);
108 if (ret > 0) {
109 if (!opts->quiet)
110 printf("\rSkipping bad block at "
111 "0x%08llx "
112 " \n",
113 erase.addr);
114
115 if (!opts->spread)
116 erased_length++;
117
118 continue;
119
120 } else if (ret < 0) {
121 printf("\n%s: MTD get bad block failed: %d\n",
122 mtd_device,
123 ret);
124 return -1;
125 }
126 }
127
128 erased_length++;
129
130 result = mtd_erase(meminfo, &erase);
131 if (result != 0) {
132 result = mtd_erase(meminfo, &erase);
133 if (result != 0) {
134 printf("%s: MTD Erase failure: %d\n",
135 mtd_device, result);
136 mtd_block_markbad(meminfo, erase.addr);
137 }
138 continue;
139 }
140
141 /* format for JFFS2 ? */
142 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
143 struct mtd_oob_ops ops;
144 ops.ooblen = 8;
145 ops.datbuf = NULL;
146 ops.oobbuf = (uint8_t *)&cleanmarker;
147 ops.ooboffs = 0;
148 ops.mode = MTD_OPS_AUTO_OOB;
149
150 result = mtd_write_oob(meminfo,
151 erase.addr,
152 &ops);
153 if (result != 0) {
154 printf("\n%s: MTD writeoob failure: %d\n",
155 mtd_device, result);
156 continue;
157 }
158 }
159
160 if (!opts->quiet) {
161 unsigned long long n = erased_length * 100ULL;
162 int percent;
163
164 do_div(n, erase_length);
165 percent = (int)n;
166
167 /* output progress message only at whole percent
168 * steps to reduce the number of messages printed
169 * on (slow) serial consoles
170 */
171 if (percent != percent_complete) {
172 percent_complete = percent;
173
174 printf("\rErasing at 0x%llx -- %3d%% complete.",
175 erase.addr, percent);
176
177 if (opts->jffs2 && result == 0)
178 printf(" Cleanmarker written at 0x%llx.",
179 erase.addr);
180 }
181 }
182 }
183 if (!opts->quiet)
184 printf("\n");
185
186 if (opts->scrub)
187 chip->scan_bbt(meminfo);
188
189 return 0;
190}
191
192#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
193
194/******************************************************************************
195 * Support for locking / unlocking operations of some NAND devices
196 *****************************************************************************/
197
198/**
199 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
200 * state
201 *
202 * @param mtd nand mtd instance
203 * @param tight bring device in lock tight mode
204 *
205 * @return 0 on success, -1 in case of error
206 *
207 * The lock / lock-tight command only applies to the whole chip. To get some
208 * parts of the chip lock and others unlocked use the following sequence:
209 *
210 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
211 * - Call nand_unlock() once for each consecutive area to be unlocked
212 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
213 *
214 * If the device is in lock-tight state software can't change the
215 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
216 * calls will fail. It is only posible to leave lock-tight state by
217 * an hardware signal (low pulse on _WP pin) or by power down.
218 */
219int nand_lock(struct mtd_info *mtd, int tight)
220{
221 int ret = 0;
222 int status;
223 struct nand_chip *chip = mtd->priv;
224
225 /* select the NAND device */
226 chip->select_chip(mtd, 0);
227
228 /* check the Lock Tight Status */
229 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
230 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
231 printf("nand_lock: Device is locked tight!\n");
232 ret = -1;
233 goto out;
234 }
235
236 chip->cmdfunc(mtd,
237 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
238 -1, -1);
239
240 /* call wait ready function */
241 status = chip->waitfunc(mtd, chip);
242
243 /* see if device thinks it succeeded */
244 if (status & 0x01) {
245 ret = -1;
246 }
247
248 out:
249 /* de-select the NAND device */
250 chip->select_chip(mtd, -1);
251 return ret;
252}
253
254/**
255 * nand_get_lock_status: - query current lock state from one page of NAND
256 * flash
257 *
258 * @param mtd nand mtd instance
259 * @param offset page address to query (must be page-aligned!)
260 *
261 * @return -1 in case of error
262 * >0 lock status:
263 * bitfield with the following combinations:
264 * NAND_LOCK_STATUS_TIGHT: page in tight state
265 * NAND_LOCK_STATUS_UNLOCK: page unlocked
266 *
267 */
268int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
269{
270 int ret = 0;
271 int chipnr;
272 int page;
273 struct nand_chip *chip = mtd->priv;
274
275 /* select the NAND device */
276 chipnr = (int)(offset >> chip->chip_shift);
277 chip->select_chip(mtd, chipnr);
278
279
280 if ((offset & (mtd->writesize - 1)) != 0) {
281 printf("nand_get_lock_status: "
282 "Start address must be beginning of "
283 "nand page!\n");
284 ret = -1;
285 goto out;
286 }
287
288 /* check the Lock Status */
289 page = (int)(offset >> chip->page_shift);
290 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
291
292 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
293 | NAND_LOCK_STATUS_UNLOCK);
294
295 out:
296 /* de-select the NAND device */
297 chip->select_chip(mtd, -1);
298 return ret;
299}
300
301/**
302 * nand_unlock: - Unlock area of NAND pages
303 * only one consecutive area can be unlocked at one time!
304 *
305 * @param mtd nand mtd instance
306 * @param start start byte address
307 * @param length number of bytes to unlock (must be a multiple of
308 * page size nand->writesize)
309 * @param allexcept if set, unlock everything not selected
310 *
311 * @return 0 on success, -1 in case of error
312 */
313int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
314 int allexcept)
315{
316 int ret = 0;
317 int chipnr;
318 int status;
319 int page;
320 struct nand_chip *chip = mtd->priv;
321
322 debug("nand_unlock%s: start: %08llx, length: %zd!\n",
323 allexcept ? " (allexcept)" : "", start, length);
324
325 /* select the NAND device */
326 chipnr = (int)(start >> chip->chip_shift);
327 chip->select_chip(mtd, chipnr);
328
329 /* check the WP bit */
330 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
331 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
332 printf("nand_unlock: Device is write protected!\n");
333 ret = -1;
334 goto out;
335 }
336
337 /* check the Lock Tight Status */
338 page = (int)(start >> chip->page_shift);
339 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
340 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
341 printf("nand_unlock: Device is locked tight!\n");
342 ret = -1;
343 goto out;
344 }
345
346 if ((start & (mtd->erasesize - 1)) != 0) {
347 printf("nand_unlock: Start address must be beginning of "
348 "nand block!\n");
349 ret = -1;
350 goto out;
351 }
352
353 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
354 printf("nand_unlock: Length must be a multiple of nand block "
355 "size %08x!\n", mtd->erasesize);
356 ret = -1;
357 goto out;
358 }
359
360 /*
361 * Set length so that the last address is set to the
362 * starting address of the last block
363 */
364 length -= mtd->erasesize;
365
366 /* submit address of first page to unlock */
367 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
368
369 /* submit ADDRESS of LAST page to unlock */
370 page += (int)(length >> chip->page_shift);
371
372 /*
373 * Page addresses for unlocking are supposed to be block-aligned.
374 * At least some NAND chips use the low bit to indicate that the
375 * page range should be inverted.
376 */
377 if (allexcept)
378 page |= 1;
379
380 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
381
382 /* call wait ready function */
383 status = chip->waitfunc(mtd, chip);
384 /* see if device thinks it succeeded */
385 if (status & 0x01) {
386 /* there was an error */
387 ret = -1;
388 goto out;
389 }
390
391 out:
392 /* de-select the NAND device */
393 chip->select_chip(mtd, -1);
394 return ret;
395}
396#endif
397
398/**
399 * check_skip_len
400 *
401 * Check if there are any bad blocks, and whether length including bad
402 * blocks fits into device
403 *
404 * @param nand NAND device
405 * @param offset offset in flash
406 * @param length image length
407 * @param used length of flash needed for the requested length
408 * @return 0 if the image fits and there are no bad blocks
409 * 1 if the image fits, but there are bad blocks
410 * -1 if the image does not fit
411 */
412static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length,
413 size_t *used)
414{
415 size_t len_excl_bad = 0;
416 int ret = 0;
417
418 while (len_excl_bad < length) {
419 size_t block_len, block_off;
420 loff_t block_start;
421
422 if (offset >= nand->size)
423 return -1;
424
425 block_start = offset & ~(loff_t)(nand->erasesize - 1);
426 block_off = offset & (nand->erasesize - 1);
427 block_len = nand->erasesize - block_off;
428
429 if (!nand_block_isbad(nand, block_start))
430 len_excl_bad += block_len;
431 else
432 ret = 1;
433
434 offset += block_len;
435 *used += block_len;
436 }
437
438 /* If the length is not a multiple of block_len, adjust. */
439 if (len_excl_bad > length)
440 *used -= (len_excl_bad - length);
441
442 return ret;
443}
444
445#ifdef CONFIG_CMD_NAND_TRIMFFS
446static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
447 const size_t *len)
448{
449 size_t l = *len;
450 ssize_t i;
451
452 for (i = l - 1; i >= 0; i--)
453 if (buf[i] != 0xFF)
454 break;
455
456 /* The resulting length must be aligned to the minimum flash I/O size */
457 l = i + 1;
458 l = (l + nand->writesize - 1) / nand->writesize;
459 l *= nand->writesize;
460
461 /*
462 * since the input length may be unaligned, prevent access past the end
463 * of the buffer
464 */
465 return min(l, *len);
466}
467#endif
468
469/**
470 * nand_write_skip_bad:
471 *
472 * Write image to NAND flash.
473 * Blocks that are marked bad are skipped and the is written to the next
474 * block instead as long as the image is short enough to fit even after
475 * skipping the bad blocks. Due to bad blocks we may not be able to
476 * perform the requested write. In the case where the write would
477 * extend beyond the end of the NAND device, both length and actual (if
478 * not NULL) are set to 0. In the case where the write would extend
479 * beyond the limit we are passed, length is set to 0 and actual is set
480 * to the required length.
481 *
482 * @param nand NAND device
483 * @param offset offset in flash
484 * @param length buffer length
485 * @param actual set to size required to write length worth of
486 * buffer or 0 on error, if not NULL
487 * @param lim maximum size that actual may be in order to not
488 * exceed the buffer
489 * @param buffer buffer to read from
490 * @param flags flags modifying the behaviour of the write to NAND
491 * @return 0 in case of success
492 */
493int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
494 size_t *actual, loff_t lim, u_char *buffer, int flags)
495{
496 int rval = 0, blocksize;
497 size_t left_to_write = *length;
498 size_t used_for_write = 0;
499 u_char *p_buffer = buffer;
500 int need_skip;
501
502 if (actual)
503 *actual = 0;
504
505#ifdef CONFIG_CMD_NAND_YAFFS
506 if (flags & WITH_YAFFS_OOB) {
507 if (flags & ~WITH_YAFFS_OOB)
508 return -EINVAL;
509
510 int pages;
511 pages = nand->erasesize / nand->writesize;
512 blocksize = (pages * nand->oobsize) + nand->erasesize;
513 if (*length % (nand->writesize + nand->oobsize)) {
514 printf("Attempt to write incomplete page"
515 " in yaffs mode\n");
516 return -EINVAL;
517 }
518 } else
519#endif
520 {
521 blocksize = nand->erasesize;
522 }
523
524 /*
525 * nand_write() handles unaligned, partial page writes.
526 *
527 * We allow length to be unaligned, for convenience in
528 * using the $filesize variable.
529 *
530 * However, starting at an unaligned offset makes the
531 * semantics of bad block skipping ambiguous (really,
532 * you should only start a block skipping access at a
533 * partition boundary). So don't try to handle that.
534 */
535 if ((offset & (nand->writesize - 1)) != 0) {
536 printf("Attempt to write non page-aligned data\n");
537 *length = 0;
538 return -EINVAL;
539 }
540
541 need_skip = check_skip_len(nand, offset, *length, &used_for_write);
542
543 if (actual)
544 *actual = used_for_write;
545
546 if (need_skip < 0) {
547 printf("Attempt to write outside the flash area\n");
548 *length = 0;
549 return -EINVAL;
550 }
551
552 if (used_for_write > lim) {
553 puts("Size of write exceeds partition or device limit\n");
554 *length = 0;
555 return -EFBIG;
556 }
557
558 if (!need_skip && !(flags & WITH_DROP_FFS)) {
559 rval = nand_write(nand, offset, length, buffer);
560 if (rval == 0)
561 return 0;
562
563 *length = 0;
564 printf("NAND write to offset %llx failed %d\n",
565 offset, rval);
566 return rval;
567 }
568
569 while (left_to_write > 0) {
570 size_t block_offset = offset & (nand->erasesize - 1);
571 size_t write_size, truncated_write_size;
572
573 WATCHDOG_RESET();
574
575 if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
576 printf("Skip bad block 0x%08llx\n",
577 offset & ~(nand->erasesize - 1));
578 offset += nand->erasesize - block_offset;
579 continue;
580 }
581
582 if (left_to_write < (blocksize - block_offset))
583 write_size = left_to_write;
584 else
585 write_size = blocksize - block_offset;
586
587#ifdef CONFIG_CMD_NAND_YAFFS
588 if (flags & WITH_YAFFS_OOB) {
589 int page, pages;
590 size_t pagesize = nand->writesize;
591 size_t pagesize_oob = pagesize + nand->oobsize;
592 struct mtd_oob_ops ops;
593
594 ops.len = pagesize;
595 ops.ooblen = nand->oobsize;
596 ops.mode = MTD_OPS_AUTO_OOB;
597 ops.ooboffs = 0;
598
599 pages = write_size / pagesize_oob;
600 for (page = 0; page < pages; page++) {
601 WATCHDOG_RESET();
602
603 ops.datbuf = p_buffer;
604 ops.oobbuf = ops.datbuf + pagesize;
605
606 rval = mtd_write_oob(nand, offset, &ops);
607 if (rval != 0)
608 break;
609
610 offset += pagesize;
611 p_buffer += pagesize_oob;
612 }
613 }
614 else
615#endif
616 {
617 truncated_write_size = write_size;
618#ifdef CONFIG_CMD_NAND_TRIMFFS
619 if (flags & WITH_DROP_FFS)
620 truncated_write_size = drop_ffs(nand, p_buffer,
621 &write_size);
622#endif
623
624 rval = nand_write(nand, offset, &truncated_write_size,
625 p_buffer);
626 offset += write_size;
627 p_buffer += write_size;
628 }
629
630 if (rval != 0) {
631 printf("NAND write to offset %llx failed %d\n",
632 offset, rval);
633 *length -= left_to_write;
634 return rval;
635 }
636
637 left_to_write -= write_size;
638 }
639
640 return 0;
641}
642
643/**
644 * nand_read_skip_bad:
645 *
646 * Read image from NAND flash.
647 * Blocks that are marked bad are skipped and the next block is read
648 * instead as long as the image is short enough to fit even after
649 * skipping the bad blocks. Due to bad blocks we may not be able to
650 * perform the requested read. In the case where the read would extend
651 * beyond the end of the NAND device, both length and actual (if not
652 * NULL) are set to 0. In the case where the read would extend beyond
653 * the limit we are passed, length is set to 0 and actual is set to the
654 * required length.
655 *
656 * @param nand NAND device
657 * @param offset offset in flash
658 * @param length buffer length, on return holds number of read bytes
659 * @param actual set to size required to read length worth of buffer or 0
660 * on error, if not NULL
661 * @param lim maximum size that actual may be in order to not exceed the
662 * buffer
663 * @param buffer buffer to write to
664 * @return 0 in case of success
665 */
666int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
667 size_t *actual, loff_t lim, u_char *buffer)
668{
669 int rval;
670 size_t left_to_read = *length;
671 size_t used_for_read = 0;
672 u_char *p_buffer = buffer;
673 int need_skip;
674
675 if ((offset & (nand->writesize - 1)) != 0) {
676 printf("Attempt to read non page-aligned data\n");
677 *length = 0;
678 if (actual)
679 *actual = 0;
680 return -EINVAL;
681 }
682
683 need_skip = check_skip_len(nand, offset, *length, &used_for_read);
684
685 if (actual)
686 *actual = used_for_read;
687
688 if (need_skip < 0) {
689 printf("Attempt to read outside the flash area\n");
690 *length = 0;
691 return -EINVAL;
692 }
693
694 if (used_for_read > lim) {
695 puts("Size of read exceeds partition or device limit\n");
696 *length = 0;
697 return -EFBIG;
698 }
699
700 if (!need_skip) {
701 rval = nand_read(nand, offset, length, buffer);
702 if (!rval || rval == -EUCLEAN)
703 return 0;
704
705 *length = 0;
706 printf("NAND read from offset %llx failed %d\n",
707 offset, rval);
708 return rval;
709 }
710
711 while (left_to_read > 0) {
712 size_t block_offset = offset & (nand->erasesize - 1);
713 size_t read_length;
714
715 WATCHDOG_RESET();
716
717 if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
718 printf("Skipping bad block 0x%08llx\n",
719 offset & ~(nand->erasesize - 1));
720 offset += nand->erasesize - block_offset;
721 continue;
722 }
723
724 if (left_to_read < (nand->erasesize - block_offset))
725 read_length = left_to_read;
726 else
727 read_length = nand->erasesize - block_offset;
728
729 rval = nand_read(nand, offset, &read_length, p_buffer);
730 if (rval && rval != -EUCLEAN) {
731 printf("NAND read from offset %llx failed %d\n",
732 offset, rval);
733 *length -= left_to_read;
734 return rval;
735 }
736
737 left_to_read -= read_length;
738 offset += read_length;
739 p_buffer += read_length;
740 }
741
742 return 0;
743}
744
745#ifdef CONFIG_CMD_NAND_TORTURE
746
747/**
748 * check_pattern:
749 *
750 * Check if buffer contains only a certain byte pattern.
751 *
752 * @param buf buffer to check
753 * @param patt the pattern to check
754 * @param size buffer size in bytes
755 * @return 1 if there are only patt bytes in buf
756 * 0 if something else was found
757 */
758static int check_pattern(const u_char *buf, u_char patt, int size)
759{
760 int i;
761
762 for (i = 0; i < size; i++)
763 if (buf[i] != patt)
764 return 0;
765 return 1;
766}
767
768/**
769 * nand_torture:
770 *
771 * Torture a block of NAND flash.
772 * This is useful to determine if a block that caused a write error is still
773 * good or should be marked as bad.
774 *
775 * @param nand NAND device
776 * @param offset offset in flash
777 * @return 0 if the block is still good
778 */
779int nand_torture(nand_info_t *nand, loff_t offset)
780{
781 u_char patterns[] = {0xa5, 0x5a, 0x00};
782 struct erase_info instr = {
783 .mtd = nand,
784 .addr = offset,
785 .len = nand->erasesize,
786 };
787 size_t retlen;
788 int err, ret = -1, i, patt_count;
789 u_char *buf;
790
791 if ((offset & (nand->erasesize - 1)) != 0) {
792 puts("Attempt to torture a block at a non block-aligned offset\n");
793 return -EINVAL;
794 }
795
796 if (offset + nand->erasesize > nand->size) {
797 puts("Attempt to torture a block outside the flash area\n");
798 return -EINVAL;
799 }
800
801 patt_count = ARRAY_SIZE(patterns);
802
803 buf = malloc(nand->erasesize);
804 if (buf == NULL) {
805 puts("Out of memory for erase block buffer\n");
806 return -ENOMEM;
807 }
808
809 for (i = 0; i < patt_count; i++) {
810 err = nand->erase(nand, &instr);
811 if (err) {
812 printf("%s: erase() failed for block at 0x%llx: %d\n",
813 nand->name, instr.addr, err);
814 goto out;
815 }
816
817 /* Make sure the block contains only 0xff bytes */
818 err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
819 if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
820 printf("%s: read() failed for block at 0x%llx: %d\n",
821 nand->name, instr.addr, err);
822 goto out;
823 }
824
825 err = check_pattern(buf, 0xff, nand->erasesize);
826 if (!err) {
827 printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
828 offset);
829 ret = -EIO;
830 goto out;
831 }
832
833 /* Write a pattern and check it */
834 memset(buf, patterns[i], nand->erasesize);
835 err = nand->write(nand, offset, nand->erasesize, &retlen, buf);
836 if (err || retlen != nand->erasesize) {
837 printf("%s: write() failed for block at 0x%llx: %d\n",
838 nand->name, instr.addr, err);
839 goto out;
840 }
841
842 err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
843 if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
844 printf("%s: read() failed for block at 0x%llx: %d\n",
845 nand->name, instr.addr, err);
846 goto out;
847 }
848
849 err = check_pattern(buf, patterns[i], nand->erasesize);
850 if (!err) {
851 printf("Pattern 0x%.2x checking failed for block at "
852 "0x%llx\n", patterns[i], offset);
853 ret = -EIO;
854 goto out;
855 }
856 }
857
858 ret = 0;
859
860out:
861 free(buf);
862 return ret;
863}
864
865#endif