blob: 953706cf5256fb5e41d0862f9978f326044b11e3 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Copyright (c) 2013 Google, Inc
4 *
5 * (C) Copyright 2012
6 * Pavel Herrmann <morpheus.ibis@gmail.com>
7 * Marek Vasut <marex@denx.de>
8 */
9
10#ifndef _DM_DEVICE_H
11#define _DM_DEVICE_H
12
13#include <dm/ofnode.h>
14#include <dm/uclass-id.h>
15#include <fdtdec.h>
16#include <linker_lists.h>
17#include <linux/kernel.h>
18#include <linux/list.h>
19#include <linux/printk.h>
20
21struct driver_info;
22
23/* Driver is active (probed). Cleared when it is removed */
24#define DM_FLAG_ACTIVATED (1 << 0)
25
26/* DM is responsible for allocating and freeing platdata */
27#define DM_FLAG_ALLOC_PDATA (1 << 1)
28
29/* DM should init this device prior to relocation */
30#define DM_FLAG_PRE_RELOC (1 << 2)
31
32/* DM is responsible for allocating and freeing parent_platdata */
33#define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
34
35/* DM is responsible for allocating and freeing uclass_platdata */
36#define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
37
38/* Allocate driver private data on a DMA boundary */
39#define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
40
41/* Device is bound */
42#define DM_FLAG_BOUND (1 << 6)
43
44/* Device name is allocated and should be freed on unbind() */
45#define DM_FLAG_NAME_ALLOCED (1 << 7)
46
47/* Device has platform data provided by of-platdata */
48#define DM_FLAG_OF_PLATDATA (1 << 8)
49
50/*
51 * Call driver remove function to stop currently active DMA transfers or
52 * give DMA buffers back to the HW / controller. This may be needed for
53 * some drivers to do some final stage cleanup before the OS is called
54 * (U-Boot exit)
55 */
56#define DM_FLAG_ACTIVE_DMA (1 << 9)
57
58/*
59 * Call driver remove function to do some final configuration, before
60 * U-Boot exits and the OS is started
61 */
62#define DM_FLAG_OS_PREPARE (1 << 10)
63
64/* DM does not enable/disable the power domains corresponding to this device */
65#define DM_FLAG_DEFAULT_PD_CTRL_OFF (1 << 11)
66
67/* Driver platdata has been read. Cleared when the device is removed */
68#define DM_FLAG_PLATDATA_VALID (1 << 12)
69
70/*
71 * Device is removed without switching off its power domain. This might
72 * be required, i. e. for serial console (debug) output when booting OS.
73 */
74#define DM_FLAG_REMOVE_WITH_PD_ON (1 << 13)
75
76/*
77 * One or multiple of these flags are passed to device_remove() so that
78 * a selective device removal as specified by the remove-stage and the
79 * driver flags can be done.
80 */
81enum {
82 /* Normal remove, remove all devices */
83 DM_REMOVE_NORMAL = 1 << 0,
84
85 /* Remove devices with active DMA */
86 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
87
88 /* Remove devices which need some final OS preparation steps */
89 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
90
91 /* Add more use cases here */
92
93 /* Remove devices with any active flag */
94 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
95
96 /* Don't power down any attached power domains */
97 DM_REMOVE_NO_PD = 1 << 1,
98};
99
100/**
101 * struct udevice - An instance of a driver
102 *
103 * This holds information about a device, which is a driver bound to a
104 * particular port or peripheral (essentially a driver instance).
105 *
106 * A device will come into existence through a 'bind' call, either due to
107 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
108 * in the device tree (in which case of_offset is >= 0). In the latter case
109 * we translate the device tree information into platdata in a function
110 * implemented by the driver ofdata_to_platdata method (called just before the
111 * probe method if the device has a device tree node.
112 *
113 * All three of platdata, priv and uclass_priv can be allocated by the
114 * driver, or you can use the auto_alloc_size members of struct driver and
115 * struct uclass_driver to have driver model do this automatically.
116 *
117 * @driver: The driver used by this device
118 * @name: Name of device, typically the FDT node name
119 * @platdata: Configuration data for this device
120 * @parent_platdata: The parent bus's configuration data for this device
121 * @uclass_platdata: The uclass's configuration data for this device
122 * @node: Reference to device tree node for this device
123 * @driver_data: Driver data word for the entry that matched this device with
124 * its driver
125 * @parent: Parent of this device, or NULL for the top level device
126 * @priv: Private data for this device
127 * @uclass: Pointer to uclass for this device
128 * @uclass_priv: The uclass's private data for this device
129 * @parent_priv: The parent's private data for this device
130 * @uclass_node: Used by uclass to link its devices
131 * @child_head: List of children of this device
132 * @sibling_node: Next device in list of all devices
133 * @flags: Flags for this device DM_FLAG_...
134 * @req_seq: Requested sequence number for this device (-1 = any)
135 * @seq: Allocated sequence number for this device (-1 = none). This is set up
136 * when the device is probed and will be unique within the device's uclass.
137 * @devres_head: List of memory allocations associated with this device.
138 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
139 * add to this list. Memory so-allocated will be freed
140 * automatically when the device is removed / unbound
141 */
142struct udevice {
143 const struct driver *driver;
144 const char *name;
145 void *platdata;
146 void *parent_platdata;
147 void *uclass_platdata;
148 ofnode node;
149 ulong driver_data;
150 struct udevice *parent;
151 void *priv;
152 struct uclass *uclass;
153 void *uclass_priv;
154 void *parent_priv;
155 struct list_head uclass_node;
156 struct list_head child_head;
157 struct list_head sibling_node;
158 uint32_t flags;
159 int req_seq;
160 int seq;
161#ifdef CONFIG_DEVRES
162 struct list_head devres_head;
163#endif
164};
165
166/* Maximum sequence number supported */
167#define DM_MAX_SEQ 999
168
169/* Returns the operations for a device */
170#define device_get_ops(dev) (dev->driver->ops)
171
172/* Returns non-zero if the device is active (probed and not removed) */
173#define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
174
175static inline int dev_of_offset(const struct udevice *dev)
176{
177 return ofnode_to_offset(dev->node);
178}
179
180static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
181{
182 dev->node = offset_to_ofnode(of_offset);
183}
184
185static inline bool dev_has_of_node(struct udevice *dev)
186{
187 return ofnode_valid(dev->node);
188}
189
190/**
191 * struct udevice_id - Lists the compatible strings supported by a driver
192 * @compatible: Compatible string
193 * @data: Data for this compatible string
194 */
195struct udevice_id {
196 const char *compatible;
197 ulong data;
198};
199
200#if CONFIG_IS_ENABLED(OF_CONTROL)
201#define of_match_ptr(_ptr) (_ptr)
202#else
203#define of_match_ptr(_ptr) NULL
204#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
205
206/**
207 * struct driver - A driver for a feature or peripheral
208 *
209 * This holds methods for setting up a new device, and also removing it.
210 * The device needs information to set itself up - this is provided either
211 * by platdata or a device tree node (which we find by looking up
212 * matching compatible strings with of_match).
213 *
214 * Drivers all belong to a uclass, representing a class of devices of the
215 * same type. Common elements of the drivers can be implemented in the uclass,
216 * or the uclass can provide a consistent interface to the drivers within
217 * it.
218 *
219 * @name: Device name
220 * @id: Identifies the uclass we belong to
221 * @of_match: List of compatible strings to match, and any identifying data
222 * for each.
223 * @bind: Called to bind a device to its driver
224 * @probe: Called to probe a device, i.e. activate it
225 * @remove: Called to remove a device, i.e. de-activate it
226 * @unbind: Called to unbind a device from its driver
227 * @ofdata_to_platdata: Called before probe to decode device tree data
228 * @child_post_bind: Called after a new child has been bound
229 * @child_pre_probe: Called before a child device is probed. The device has
230 * memory allocated but it has not yet been probed.
231 * @child_post_remove: Called after a child device is removed. The device
232 * has memory allocated but its device_remove() method has been called.
233 * @priv_auto_alloc_size: If non-zero this is the size of the private data
234 * to be allocated in the device's ->priv pointer. If zero, then the driver
235 * is responsible for allocating any data required.
236 * @platdata_auto_alloc_size: If non-zero this is the size of the
237 * platform data to be allocated in the device's ->platdata pointer.
238 * This is typically only useful for device-tree-aware drivers (those with
239 * an of_match), since drivers which use platdata will have the data
240 * provided in the U_BOOT_DEVICE() instantiation.
241 * @per_child_auto_alloc_size: Each device can hold private data owned by
242 * its parent. If required this will be automatically allocated if this
243 * value is non-zero.
244 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
245 * its children. If non-zero this is the size of this data, to be allocated
246 * in the child's parent_platdata pointer.
247 * @ops: Driver-specific operations. This is typically a list of function
248 * pointers defined by the driver, to implement driver functions required by
249 * the uclass.
250 * @flags: driver flags - see DM_FLAGS_...
251 * @acpi_ops: Advanced Configuration and Power Interface (ACPI) operations,
252 * allowing the device to add things to the ACPI tables passed to Linux
253 */
254struct driver {
255 char *name;
256 enum uclass_id id;
257 const struct udevice_id *of_match;
258 int (*bind)(struct udevice *dev);
259 int (*probe)(struct udevice *dev);
260 int (*remove)(struct udevice *dev);
261 int (*unbind)(struct udevice *dev);
262 int (*ofdata_to_platdata)(struct udevice *dev);
263 int (*child_post_bind)(struct udevice *dev);
264 int (*child_pre_probe)(struct udevice *dev);
265 int (*child_post_remove)(struct udevice *dev);
266 int priv_auto_alloc_size;
267 int platdata_auto_alloc_size;
268 int per_child_auto_alloc_size;
269 int per_child_platdata_auto_alloc_size;
270 const void *ops; /* driver-specific operations */
271 uint32_t flags;
272#if CONFIG_IS_ENABLED(ACPIGEN)
273 struct acpi_ops *acpi_ops;
274#endif
275};
276
277/* Declare a new U-Boot driver */
278#define U_BOOT_DRIVER(__name) \
279 ll_entry_declare(struct driver, __name, driver)
280
281/* Get a pointer to a given driver */
282#define DM_GET_DRIVER(__name) \
283 ll_entry_get(struct driver, __name, driver)
284
285/**
286 * Declare a macro to state a alias for a driver name. This macro will
287 * produce no code but its information will be parsed by tools like
288 * dtoc
289 */
290#define U_BOOT_DRIVER_ALIAS(__name, __alias)
291
292/**
293 * dev_get_platdata() - Get the platform data for a device
294 *
295 * This checks that dev is not NULL, but no other checks for now
296 *
297 * @dev Device to check
298 * @return platform data, or NULL if none
299 */
300void *dev_get_platdata(const struct udevice *dev);
301
302/**
303 * dev_get_parent_platdata() - Get the parent platform data for a device
304 *
305 * This checks that dev is not NULL, but no other checks for now
306 *
307 * @dev Device to check
308 * @return parent's platform data, or NULL if none
309 */
310void *dev_get_parent_platdata(const struct udevice *dev);
311
312/**
313 * dev_get_uclass_platdata() - Get the uclass platform data for a device
314 *
315 * This checks that dev is not NULL, but no other checks for now
316 *
317 * @dev Device to check
318 * @return uclass's platform data, or NULL if none
319 */
320void *dev_get_uclass_platdata(const struct udevice *dev);
321
322/**
323 * dev_get_priv() - Get the private data for a device
324 *
325 * This checks that dev is not NULL, but no other checks for now
326 *
327 * @dev Device to check
328 * @return private data, or NULL if none
329 */
330void *dev_get_priv(const struct udevice *dev);
331
332/**
333 * dev_get_parent_priv() - Get the parent private data for a device
334 *
335 * The parent private data is data stored in the device but owned by the
336 * parent. For example, a USB device may have parent data which contains
337 * information about how to talk to the device over USB.
338 *
339 * This checks that dev is not NULL, but no other checks for now
340 *
341 * @dev Device to check
342 * @return parent data, or NULL if none
343 */
344void *dev_get_parent_priv(const struct udevice *dev);
345
346/**
347 * dev_get_uclass_priv() - Get the private uclass data for a device
348 *
349 * This checks that dev is not NULL, but no other checks for now
350 *
351 * @dev Device to check
352 * @return private uclass data for this device, or NULL if none
353 */
354void *dev_get_uclass_priv(const struct udevice *dev);
355
356/**
357 * struct dev_get_parent() - Get the parent of a device
358 *
359 * @child: Child to check
360 * @return parent of child, or NULL if this is the root device
361 */
362struct udevice *dev_get_parent(const struct udevice *child);
363
364/**
365 * dev_get_driver_data() - get the driver data used to bind a device
366 *
367 * When a device is bound using a device tree node, it matches a
368 * particular compatible string in struct udevice_id. This function
369 * returns the associated data value for that compatible string. This is
370 * the 'data' field in struct udevice_id.
371 *
372 * As an example, consider this structure:
373 * static const struct udevice_id tegra_i2c_ids[] = {
374 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
375 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
376 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
377 * { }
378 * };
379 *
380 * When driver model finds a driver for this it will store the 'data' value
381 * corresponding to the compatible string it matches. This function returns
382 * that value. This allows the driver to handle several variants of a device.
383 *
384 * For USB devices, this is the driver_info field in struct usb_device_id.
385 *
386 * @dev: Device to check
387 * @return driver data (0 if none is provided)
388 */
389ulong dev_get_driver_data(const struct udevice *dev);
390
391/**
392 * dev_get_driver_ops() - get the device's driver's operations
393 *
394 * This checks that dev is not NULL, and returns the pointer to device's
395 * driver's operations.
396 *
397 * @dev: Device to check
398 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
399 */
400const void *dev_get_driver_ops(const struct udevice *dev);
401
402/**
403 * device_get_uclass_id() - return the uclass ID of a device
404 *
405 * @dev: Device to check
406 * @return uclass ID for the device
407 */
408enum uclass_id device_get_uclass_id(const struct udevice *dev);
409
410/**
411 * dev_get_uclass_name() - return the uclass name of a device
412 *
413 * This checks that dev is not NULL.
414 *
415 * @dev: Device to check
416 * @return pointer to the uclass name for the device
417 */
418const char *dev_get_uclass_name(const struct udevice *dev);
419
420/**
421 * device_get_child() - Get the child of a device by index
422 *
423 * Returns the numbered child, 0 being the first. This does not use
424 * sequence numbers, only the natural order.
425 *
426 * @dev: Parent device to check
427 * @index: Child index
428 * @devp: Returns pointer to device
429 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
430 * to probe
431 */
432int device_get_child(const struct udevice *parent, int index,
433 struct udevice **devp);
434
435/**
436 * device_get_child_count() - Get the available child count of a device
437 *
438 * Returns the number of children to a device.
439 *
440 * @parent: Parent device to check
441 */
442int device_get_child_count(const struct udevice *parent);
443
444/**
445 * device_find_child_by_seq() - Find a child device based on a sequence
446 *
447 * This searches for a device with the given seq or req_seq.
448 *
449 * For seq, if an active device has this sequence it will be returned.
450 * If there is no such device then this will return -ENODEV.
451 *
452 * For req_seq, if a device (whether activated or not) has this req_seq
453 * value, that device will be returned. This is a strong indication that
454 * the device will receive that sequence when activated.
455 *
456 * @parent: Parent device
457 * @seq_or_req_seq: Sequence number to find (0=first)
458 * @find_req_seq: true to find req_seq, false to find seq
459 * @devp: Returns pointer to device (there is only one per for each seq).
460 * Set to NULL if none is found
461 * @return 0 if OK, -ve on error
462 */
463int device_find_child_by_seq(const struct udevice *parent, int seq_or_req_seq,
464 bool find_req_seq, struct udevice **devp);
465
466/**
467 * device_get_child_by_seq() - Get a child device based on a sequence
468 *
469 * If an active device has this sequence it will be returned. If there is no
470 * such device then this will check for a device that is requesting this
471 * sequence.
472 *
473 * The device is probed to activate it ready for use.
474 *
475 * @parent: Parent device
476 * @seq: Sequence number to find (0=first)
477 * @devp: Returns pointer to device (there is only one per for each seq)
478 * Set to NULL if none is found
479 * @return 0 if OK, -ve on error
480 */
481int device_get_child_by_seq(const struct udevice *parent, int seq,
482 struct udevice **devp);
483
484/**
485 * device_find_child_by_of_offset() - Find a child device based on FDT offset
486 *
487 * Locates a child device by its device tree offset.
488 *
489 * @parent: Parent device
490 * @of_offset: Device tree offset to find
491 * @devp: Returns pointer to device if found, otherwise this is set to NULL
492 * @return 0 if OK, -ve on error
493 */
494int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
495 struct udevice **devp);
496
497/**
498 * device_get_child_by_of_offset() - Get a child device based on FDT offset
499 *
500 * Locates a child device by its device tree offset.
501 *
502 * The device is probed to activate it ready for use.
503 *
504 * @parent: Parent device
505 * @of_offset: Device tree offset to find
506 * @devp: Returns pointer to device if found, otherwise this is set to NULL
507 * @return 0 if OK, -ve on error
508 */
509int device_get_child_by_of_offset(const struct udevice *parent, int of_offset,
510 struct udevice **devp);
511
512/**
513 * device_find_global_by_ofnode() - Get a device based on ofnode
514 *
515 * Locates a device by its device tree ofnode, searching globally throughout
516 * the all driver model devices.
517 *
518 * The device is NOT probed
519 *
520 * @node: Device tree ofnode to find
521 * @devp: Returns pointer to device if found, otherwise this is set to NULL
522 * @return 0 if OK, -ve on error
523 */
524
525int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
526
527/**
528 * device_get_global_by_ofnode() - Get a device based on ofnode
529 *
530 * Locates a device by its device tree ofnode, searching globally throughout
531 * the all driver model devices.
532 *
533 * The device is probed to activate it ready for use.
534 *
535 * @node: Device tree ofnode to find
536 * @devp: Returns pointer to device if found, otherwise this is set to NULL
537 * @return 0 if OK, -ve on error
538 */
539int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
540
541/**
542 * device_get_by_driver_info() - Get a device based on driver_info
543 *
544 * Locates a device by its struct driver_info, by using its reference which
545 * is updated during the bind process.
546 *
547 * The device is probed to activate it ready for use.
548 *
549 * @info: Struct driver_info
550 * @devp: Returns pointer to device if found, otherwise this is set to NULL
551 * @return 0 if OK, -ve on error
552 */
553int device_get_by_driver_info(const struct driver_info *info,
554 struct udevice **devp);
555
556/**
557 * device_find_first_child() - Find the first child of a device
558 *
559 * @parent: Parent device to search
560 * @devp: Returns first child device, or NULL if none
561 * @return 0
562 */
563int device_find_first_child(const struct udevice *parent,
564 struct udevice **devp);
565
566/**
567 * device_find_next_child() - Find the next child of a device
568 *
569 * @devp: Pointer to previous child device on entry. Returns pointer to next
570 * child device, or NULL if none
571 * @return 0
572 */
573int device_find_next_child(struct udevice **devp);
574
575/**
576 * device_find_first_inactive_child() - Find the first inactive child
577 *
578 * This is used to locate an existing child of a device which is of a given
579 * uclass.
580 *
581 * The device is NOT probed
582 *
583 * @parent: Parent device to search
584 * @uclass_id: Uclass to look for
585 * @devp: Returns device found, if any
586 * @return 0 if found, else -ENODEV
587 */
588int device_find_first_inactive_child(const struct udevice *parent,
589 enum uclass_id uclass_id,
590 struct udevice **devp);
591
592/**
593 * device_find_first_child_by_uclass() - Find the first child of a device in uc
594 *
595 * @parent: Parent device to search
596 * @uclass_id: Uclass to look for
597 * @devp: Returns first child device in that uclass, if any
598 * @return 0 if found, else -ENODEV
599 */
600int device_find_first_child_by_uclass(const struct udevice *parent,
601 enum uclass_id uclass_id,
602 struct udevice **devp);
603
604/**
605 * device_find_child_by_name() - Find a child by device name
606 *
607 * @parent: Parent device to search
608 * @name: Name to look for
609 * @devp: Returns device found, if any
610 * @return 0 if found, else -ENODEV
611 */
612int device_find_child_by_name(const struct udevice *parent, const char *name,
613 struct udevice **devp);
614
615/**
616 * device_first_child_ofdata_err() - Find the first child and reads its platdata
617 *
618 * The ofdata_to_platdata() method is called on the child before it is returned,
619 * but the child is not probed.
620 *
621 * @parent: Parent to check
622 * @devp: Returns child that was found, if any
623 * @return 0 on success, -ENODEV if no children, other -ve on error
624 */
625int device_first_child_ofdata_err(struct udevice *parent,
626 struct udevice **devp);
627
628/*
629 * device_next_child_ofdata_err() - Find the next child and read its platdata
630 *
631 * The ofdata_to_platdata() method is called on the child before it is returned,
632 * but the child is not probed.
633 *
634 * @devp: On entry, points to the previous child; on exit returns the child that
635 * was found, if any
636 * @return 0 on success, -ENODEV if no children, other -ve on error
637 */
638int device_next_child_ofdata_err(struct udevice **devp);
639
640/**
641 * device_first_child_err() - Get the first child of a device
642 *
643 * The device returned is probed if necessary, and ready for use
644 *
645 * @parent: Parent device to search
646 * @devp: Returns device found, if any
647 * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
648 */
649int device_first_child_err(struct udevice *parent, struct udevice **devp);
650
651/**
652 * device_next_child_err() - Get the next child of a parent device
653 *
654 * The device returned is probed if necessary, and ready for use
655 *
656 * @devp: On entry, pointer to device to lookup. On exit, returns pointer
657 * to the next sibling if no error occurred
658 * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
659 */
660int device_next_child_err(struct udevice **devp);
661
662/**
663 * device_has_children() - check if a device has any children
664 *
665 * @dev: Device to check
666 * @return true if the device has one or more children
667 */
668bool device_has_children(const struct udevice *dev);
669
670/**
671 * device_has_active_children() - check if a device has any active children
672 *
673 * @dev: Device to check
674 * @return true if the device has one or more children and at least one of
675 * them is active (probed).
676 */
677bool device_has_active_children(const struct udevice *dev);
678
679/**
680 * device_is_last_sibling() - check if a device is the last sibling
681 *
682 * This function can be useful for display purposes, when special action needs
683 * to be taken when displaying the last sibling. This can happen when a tree
684 * view of devices is being displayed.
685 *
686 * @dev: Device to check
687 * @return true if there are no more siblings after this one - i.e. is it
688 * last in the list.
689 */
690bool device_is_last_sibling(const struct udevice *dev);
691
692/**
693 * device_set_name() - set the name of a device
694 *
695 * This must be called in the device's bind() method and no later. Normally
696 * this is unnecessary but for probed devices which don't get a useful name
697 * this function can be helpful.
698 *
699 * The name is allocated and will be freed automatically when the device is
700 * unbound.
701 *
702 * @dev: Device to update
703 * @name: New name (this string is allocated new memory and attached to
704 * the device)
705 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
706 * string
707 */
708int device_set_name(struct udevice *dev, const char *name);
709
710/**
711 * device_set_name_alloced() - note that a device name is allocated
712 *
713 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
714 * unbound the name will be freed. This avoids memory leaks.
715 *
716 * @dev: Device to update
717 */
718void device_set_name_alloced(struct udevice *dev);
719
720/**
721 * device_is_compatible() - check if the device is compatible with the compat
722 *
723 * This allows to check whether the device is comaptible with the compat.
724 *
725 * @dev: udevice pointer for which compatible needs to be verified.
726 * @compat: Compatible string which needs to verified in the given
727 * device
728 * @return true if OK, false if the compatible is not found
729 */
730bool device_is_compatible(const struct udevice *dev, const char *compat);
731
732/**
733 * of_machine_is_compatible() - check if the machine is compatible with
734 * the compat
735 *
736 * This allows to check whether the machine is comaptible with the compat.
737 *
738 * @compat: Compatible string which needs to verified
739 * @return true if OK, false if the compatible is not found
740 */
741bool of_machine_is_compatible(const char *compat);
742
743/**
744 * dev_disable_by_path() - Disable a device given its device tree path
745 *
746 * @path: The device tree path identifying the device to be disabled
747 * @return 0 on success, -ve on error
748 */
749int dev_disable_by_path(const char *path);
750
751/**
752 * dev_enable_by_path() - Enable a device given its device tree path
753 *
754 * @path: The device tree path identifying the device to be enabled
755 * @return 0 on success, -ve on error
756 */
757int dev_enable_by_path(const char *path);
758
759/**
760 * device_is_on_pci_bus - Test if a device is on a PCI bus
761 *
762 * @dev: device to test
763 * @return: true if it is on a PCI bus, false otherwise
764 */
765static inline bool device_is_on_pci_bus(const struct udevice *dev)
766{
767 return dev->parent && device_get_uclass_id(dev->parent) == UCLASS_PCI;
768}
769
770/**
771 * device_foreach_child_safe() - iterate through child devices safely
772 *
773 * This allows the @pos child to be removed in the loop if required.
774 *
775 * @pos: struct udevice * for the current device
776 * @next: struct udevice * for the next device
777 * @parent: parent device to scan
778 */
779#define device_foreach_child_safe(pos, next, parent) \
780 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
781
782/**
783 * device_foreach_child() - iterate through child devices
784 *
785 * @pos: struct udevice * for the current device
786 * @parent: parent device to scan
787 */
788#define device_foreach_child(pos, parent) \
789 list_for_each_entry(pos, &parent->child_head, sibling_node)
790
791/**
792 * device_foreach_child_ofdata_to_platdata() - iterate through children
793 *
794 * This stops when it gets an error, with @pos set to the device that failed to
795 * read ofdata.
796
797 * This creates a for() loop which works through the available children of
798 * a device in order from start to end. Device ofdata is read by calling
799 * device_ofdata_to_platdata() on each one. The devices are not probed.
800 *
801 * @pos: struct udevice * for the current device
802 * @parent: parent device to scan
803 */
804#define device_foreach_child_ofdata_to_platdata(pos, parent) \
805 for (int _ret = device_first_child_ofdata_err(parent, &dev); !_ret; \
806 _ret = device_next_child_ofdata_err(&dev))
807
808/**
809 * device_foreach_child_probe() - iterate through children, probing them
810 *
811 * This creates a for() loop which works through the available children of
812 * a device in order from start to end. Devices are probed if necessary,
813 * and ready for use.
814 *
815 * This stops when it gets an error, with @pos set to the device that failed to
816 * probe
817 *
818 * @pos: struct udevice * for the current device
819 * @parent: parent device to scan
820 */
821#define device_foreach_child_probe(pos, parent) \
822 for (int _ret = device_first_child_err(parent, &dev); !_ret; \
823 _ret = device_next_child_err(&dev))
824
825/**
826 * dm_scan_fdt_dev() - Bind child device in a the device tree
827 *
828 * This handles device which have sub-nodes in the device tree. It scans all
829 * sub-nodes and binds drivers for each node where a driver can be found.
830 *
831 * If this is called prior to relocation, only pre-relocation devices will be
832 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
833 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
834 * be bound.
835 *
836 * @dev: Device to scan
837 * @return 0 if OK, -ve on error
838 */
839int dm_scan_fdt_dev(struct udevice *dev);
840
841#endif