b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Real Time Clock driver for WL-HDD |
| 3 | * |
| 4 | * Copyright (C) 2007 Andreas Engel |
| 5 | * |
| 6 | * Hacked together mostly by copying the relevant code parts from: |
| 7 | * drivers/i2c/i2c-bcm5365.c |
| 8 | * drivers/i2c/i2c-algo-bit.c |
| 9 | * drivers/char/rtc.c |
| 10 | * |
| 11 | * Note 1: |
| 12 | * This module uses the standard char device (10,135), while the Asus module |
| 13 | * rtcdrv.o uses (12,0). So, both can coexist which might be handy during |
| 14 | * development (but see the comment in rtc_open()). |
| 15 | * |
| 16 | * Note 2: |
| 17 | * You might need to set the clock once after loading the driver the first |
| 18 | * time because the driver switches the chip into 24h mode if it is running |
| 19 | * in 12h mode. |
| 20 | * |
| 21 | * Usage: |
| 22 | * For compatibility reasons with the original asus driver, the time can be |
| 23 | * read and set via the /dev/rtc device entry. The only accepted data format |
| 24 | * is "YYYY:MM:DD:W:HH:MM:SS\n". See OpenWrt wiki for a script which handles |
| 25 | * this format. |
| 26 | * |
| 27 | * In addition, this driver supports the standard ioctl() calls for setting |
| 28 | * and reading the hardware clock, so the ordinary hwclock utility can also |
| 29 | * be used. |
| 30 | * |
| 31 | * This program is free software; you can redistribute it and/or |
| 32 | * modify it under the terms of the GNU General Public License |
| 33 | * as published by the Free Software Foundation; either version |
| 34 | * 2 of the License, or (at your option) any later version. |
| 35 | * |
| 36 | * TODO: |
| 37 | * - add a /proc/driver/rtc interface? |
| 38 | * - make the battery failure bit available through the /proc interface? |
| 39 | * |
| 40 | * $Id: rtc.c 7 2007-05-25 19:37:01Z ae $ |
| 41 | */ |
| 42 | |
| 43 | #include <linux/module.h> |
| 44 | #include <linux/kmod.h> |
| 45 | #include <linux/kernel.h> |
| 46 | #include <linux/types.h> |
| 47 | #include <linux/miscdevice.h> |
| 48 | #include <linux/ioport.h> |
| 49 | #include <linux/fcntl.h> |
| 50 | #include <linux/mc146818rtc.h> |
| 51 | #include <linux/init.h> |
| 52 | #include <linux/spinlock.h> |
| 53 | #include <linux/rtc.h> |
| 54 | #include <linux/delay.h> |
| 55 | #include <linux/version.h> |
| 56 | #include <linux/gpio.h> |
| 57 | #include <linux/uaccess.h> |
| 58 | |
| 59 | #include <asm/current.h> |
| 60 | |
| 61 | #include <bcm47xx.h> |
| 62 | #include <linux/bcm47xx_nvram.h> |
| 63 | |
| 64 | #define RTC_IS_OPEN 0x01 /* Means /dev/rtc is in use. */ |
| 65 | |
| 66 | /* Can be changed via a module parameter. */ |
| 67 | static int rtc_debug = 0; |
| 68 | |
| 69 | static unsigned long rtc_status = 0; /* Bitmapped status byte. */ |
| 70 | |
| 71 | /* These settings are platform dependents. */ |
| 72 | unsigned int sda_index = 0; |
| 73 | unsigned int scl_index = 0; |
| 74 | |
| 75 | #define I2C_READ_MASK 1 |
| 76 | #define I2C_WRITE_MASK 0 |
| 77 | |
| 78 | #define I2C_ACK 1 |
| 79 | #define I2C_NAK 0 |
| 80 | |
| 81 | #define RTC_EPOCH 1900 |
| 82 | #define RTC_I2C_ADDRESS (0x32 << 1) |
| 83 | #define RTC_24HOUR_MODE_MASK 0x20 |
| 84 | #define RTC_PM_MASK 0x20 |
| 85 | #define RTC_VDET_MASK 0x40 |
| 86 | #define RTC_Y2K_MASK 0x80 |
| 87 | |
| 88 | /* |
| 89 | * Delay in microseconds for generating the pulses on the I2C bus. We use |
| 90 | * a rather conservative setting here. See datasheet of the RTC chip. |
| 91 | */ |
| 92 | #define ADAP_DELAY 50 |
| 93 | |
| 94 | /* Avoid spurious compiler warnings. */ |
| 95 | #define UNUSED __attribute__((unused)) |
| 96 | |
| 97 | MODULE_AUTHOR("Andreas Engel"); |
| 98 | MODULE_LICENSE("GPL"); |
| 99 | |
| 100 | /* Test stolen from switch-adm.c. */ |
| 101 | module_param(rtc_debug, int, 0); |
| 102 | |
| 103 | static inline void sdalo(void) |
| 104 | { |
| 105 | gpio_direction_output(sda_index, 1); |
| 106 | udelay(ADAP_DELAY); |
| 107 | } |
| 108 | |
| 109 | static inline void sdahi(void) |
| 110 | { |
| 111 | gpio_direction_input(sda_index); |
| 112 | udelay(ADAP_DELAY); |
| 113 | } |
| 114 | |
| 115 | static inline void scllo(void) |
| 116 | { |
| 117 | gpio_direction_output(scl_index, 1); |
| 118 | udelay(ADAP_DELAY); |
| 119 | } |
| 120 | |
| 121 | static inline int getscl(void) |
| 122 | { |
| 123 | return (gpio_get_value(scl_index)); |
| 124 | } |
| 125 | |
| 126 | static inline int getsda(void) |
| 127 | { |
| 128 | return (gpio_get_value(sda_index)); |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * We shouldn't simply set the SCL pin to high. Like SDA, the SCL line is |
| 133 | * bidirectional too. According to the I2C spec, the slave is allowed to |
| 134 | * pull down the SCL line to slow down the clock, so we need to check this. |
| 135 | * Generally, we'd need a timeout here, but in our case, we just check the |
| 136 | * line, assuming the RTC chip behaves well. |
| 137 | */ |
| 138 | static int sclhi(void) |
| 139 | { |
| 140 | gpio_direction_input(scl_index); |
| 141 | udelay(ADAP_DELAY); |
| 142 | if (!getscl()) { |
| 143 | printk(KERN_ERR "SCL pin should be low\n"); |
| 144 | return -ETIMEDOUT; |
| 145 | } |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | static void i2c_start(void) |
| 150 | { |
| 151 | sdalo(); |
| 152 | scllo(); |
| 153 | } |
| 154 | |
| 155 | static void i2c_stop(void) |
| 156 | { |
| 157 | sdalo(); |
| 158 | sclhi(); |
| 159 | sdahi(); |
| 160 | } |
| 161 | |
| 162 | static int i2c_outb(int c) |
| 163 | { |
| 164 | int i; |
| 165 | int ack; |
| 166 | |
| 167 | /* assert: scl is low */ |
| 168 | for (i = 7; i >= 0; i--) { |
| 169 | if (c & ( 1 << i )) { |
| 170 | sdahi(); |
| 171 | } else { |
| 172 | sdalo(); |
| 173 | } |
| 174 | if (sclhi() < 0) { /* timed out */ |
| 175 | sdahi(); /* we don't want to block the net */ |
| 176 | return -ETIMEDOUT; |
| 177 | }; |
| 178 | scllo(); |
| 179 | } |
| 180 | sdahi(); |
| 181 | if (sclhi() < 0) { |
| 182 | return -ETIMEDOUT; |
| 183 | }; |
| 184 | /* read ack: SDA should be pulled down by slave */ |
| 185 | ack = getsda() == 0; /* ack: sda is pulled low ->success. */ |
| 186 | scllo(); |
| 187 | |
| 188 | if (rtc_debug) |
| 189 | printk(KERN_DEBUG "i2c_outb(0x%02x) -> %s\n", |
| 190 | c, ack ? "ACK": "NAK"); |
| 191 | |
| 192 | return ack; /* return 1 if device acked */ |
| 193 | /* assert: scl is low (sda undef) */ |
| 194 | } |
| 195 | |
| 196 | static int i2c_inb(int ack) |
| 197 | { |
| 198 | int i; |
| 199 | unsigned int indata = 0; |
| 200 | |
| 201 | /* assert: scl is low */ |
| 202 | |
| 203 | sdahi(); |
| 204 | for (i = 0; i < 8; i++) { |
| 205 | if (sclhi() < 0) { |
| 206 | return -ETIMEDOUT; |
| 207 | }; |
| 208 | indata *= 2; |
| 209 | if (getsda()) |
| 210 | indata |= 0x01; |
| 211 | scllo(); |
| 212 | } |
| 213 | if (ack) { |
| 214 | sdalo(); |
| 215 | } else { |
| 216 | sdahi(); |
| 217 | } |
| 218 | |
| 219 | if (sclhi() < 0) { |
| 220 | sdahi(); |
| 221 | return -ETIMEDOUT; |
| 222 | } |
| 223 | scllo(); |
| 224 | sdahi(); |
| 225 | |
| 226 | if (rtc_debug) |
| 227 | printk(KERN_DEBUG "i2c_inb() -> 0x%02x\n", indata); |
| 228 | |
| 229 | /* assert: scl is low */ |
| 230 | return indata & 0xff; |
| 231 | } |
| 232 | |
| 233 | static void i2c_init(void) |
| 234 | { |
| 235 | /* no gpio_control for EXTIF */ |
| 236 | // ssb_gpio_control(&ssb, sda_mask | scl_mask, 0); |
| 237 | |
| 238 | gpio_set_value(sda_index, 0); |
| 239 | gpio_set_value(scl_index, 0); |
| 240 | sdahi(); |
| 241 | sclhi(); |
| 242 | } |
| 243 | |
| 244 | static int rtc_open(UNUSED struct inode *inode, UNUSED struct file *filp) |
| 245 | { |
| 246 | spin_lock_irq(&rtc_lock); |
| 247 | |
| 248 | if (rtc_status & RTC_IS_OPEN) { |
| 249 | spin_unlock_irq(&rtc_lock); |
| 250 | return -EBUSY; |
| 251 | } |
| 252 | |
| 253 | rtc_status |= RTC_IS_OPEN; |
| 254 | |
| 255 | /* |
| 256 | * The following call is only necessary if we use both this driver and |
| 257 | * the proprietary one from asus at the same time (which, b.t.w. only |
| 258 | * makes sense during development). Otherwise, each access via the asus |
| 259 | * driver will make access via this driver impossible. |
| 260 | */ |
| 261 | i2c_init(); |
| 262 | |
| 263 | spin_unlock_irq(&rtc_lock); |
| 264 | |
| 265 | return 0; |
| 266 | } |
| 267 | |
| 268 | static int rtc_release(UNUSED struct inode *inode, UNUSED struct file *filp) |
| 269 | { |
| 270 | /* No need for locking here. */ |
| 271 | rtc_status &= ~RTC_IS_OPEN; |
| 272 | return 0; |
| 273 | } |
| 274 | |
| 275 | static int from_bcd(int bcdnum) |
| 276 | { |
| 277 | int fac, num = 0; |
| 278 | |
| 279 | for (fac = 1; bcdnum; fac *= 10) { |
| 280 | num += (bcdnum % 16) * fac; |
| 281 | bcdnum /= 16; |
| 282 | } |
| 283 | |
| 284 | return num; |
| 285 | } |
| 286 | |
| 287 | static int to_bcd(int decnum) |
| 288 | { |
| 289 | int fac, num = 0; |
| 290 | |
| 291 | for (fac = 1; decnum; fac *= 16) { |
| 292 | num += (decnum % 10) * fac; |
| 293 | decnum /= 10; |
| 294 | } |
| 295 | |
| 296 | return num; |
| 297 | } |
| 298 | |
| 299 | static void get_rtc_time(struct rtc_time *rtc_tm) |
| 300 | { |
| 301 | int cr2; |
| 302 | |
| 303 | /* |
| 304 | * Read date and time from the RTC. We use read method (3). |
| 305 | */ |
| 306 | |
| 307 | spin_lock_irq(&rtc_lock); |
| 308 | i2c_start(); |
| 309 | i2c_outb(RTC_I2C_ADDRESS | I2C_READ_MASK); |
| 310 | cr2 = i2c_inb(I2C_ACK); |
| 311 | rtc_tm->tm_sec = i2c_inb(I2C_ACK); |
| 312 | rtc_tm->tm_min = i2c_inb(I2C_ACK); |
| 313 | rtc_tm->tm_hour = i2c_inb(I2C_ACK); |
| 314 | rtc_tm->tm_wday = i2c_inb(I2C_ACK); |
| 315 | rtc_tm->tm_mday = i2c_inb(I2C_ACK); |
| 316 | rtc_tm->tm_mon = i2c_inb(I2C_ACK); |
| 317 | rtc_tm->tm_year = i2c_inb(I2C_NAK); |
| 318 | i2c_stop(); |
| 319 | spin_unlock_irq(&rtc_lock); |
| 320 | |
| 321 | if (cr2 & RTC_VDET_MASK) { |
| 322 | printk(KERN_WARNING "***RTC BATTERY FAILURE***\n"); |
| 323 | } |
| 324 | |
| 325 | /* Handle century bit */ |
| 326 | if (rtc_tm->tm_mon & RTC_Y2K_MASK) { |
| 327 | rtc_tm->tm_mon &= ~RTC_Y2K_MASK; |
| 328 | rtc_tm->tm_year += 0x100; |
| 329 | } |
| 330 | |
| 331 | rtc_tm->tm_sec = from_bcd(rtc_tm->tm_sec); |
| 332 | rtc_tm->tm_min = from_bcd(rtc_tm->tm_min); |
| 333 | rtc_tm->tm_hour = from_bcd(rtc_tm->tm_hour); |
| 334 | rtc_tm->tm_mday = from_bcd(rtc_tm->tm_mday); |
| 335 | rtc_tm->tm_mon = from_bcd(rtc_tm->tm_mon) - 1; |
| 336 | rtc_tm->tm_year = from_bcd(rtc_tm->tm_year); |
| 337 | |
| 338 | rtc_tm->tm_isdst = -1; /* DST not known */ |
| 339 | } |
| 340 | |
| 341 | static void set_rtc_time(struct rtc_time *rtc_tm) |
| 342 | { |
| 343 | rtc_tm->tm_sec = to_bcd(rtc_tm->tm_sec); |
| 344 | rtc_tm->tm_min = to_bcd(rtc_tm->tm_min); |
| 345 | rtc_tm->tm_hour = to_bcd(rtc_tm->tm_hour); |
| 346 | rtc_tm->tm_mday = to_bcd(rtc_tm->tm_mday); |
| 347 | rtc_tm->tm_mon = to_bcd(rtc_tm->tm_mon + 1); |
| 348 | rtc_tm->tm_year = to_bcd(rtc_tm->tm_year); |
| 349 | |
| 350 | if (rtc_tm->tm_year >= 0x100) { |
| 351 | rtc_tm->tm_year -= 0x100; |
| 352 | rtc_tm->tm_mon |= RTC_Y2K_MASK; |
| 353 | } |
| 354 | |
| 355 | spin_lock_irq(&rtc_lock); |
| 356 | i2c_start(); |
| 357 | i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK); |
| 358 | i2c_outb(0x00); /* set starting register to 0 (=seconds) */ |
| 359 | i2c_outb(rtc_tm->tm_sec); |
| 360 | i2c_outb(rtc_tm->tm_min); |
| 361 | i2c_outb(rtc_tm->tm_hour); |
| 362 | i2c_outb(rtc_tm->tm_wday); |
| 363 | i2c_outb(rtc_tm->tm_mday); |
| 364 | i2c_outb(rtc_tm->tm_mon); |
| 365 | i2c_outb(rtc_tm->tm_year); |
| 366 | i2c_stop(); |
| 367 | spin_unlock_irq(&rtc_lock); |
| 368 | } |
| 369 | |
| 370 | static ssize_t rtc_write(UNUSED struct file *filp, const char *buf, |
| 371 | size_t count, loff_t *ppos) |
| 372 | { |
| 373 | struct rtc_time rtc_tm; |
| 374 | char buffer[23]; |
| 375 | char *p; |
| 376 | |
| 377 | if (!capable(CAP_SYS_TIME)) |
| 378 | return -EACCES; |
| 379 | |
| 380 | if (ppos != &filp->f_pos) |
| 381 | return -ESPIPE; |
| 382 | |
| 383 | /* |
| 384 | * For simplicity, the only acceptable format is: |
| 385 | * YYYY:MM:DD:W:HH:MM:SS\n |
| 386 | */ |
| 387 | |
| 388 | if (count != 22) |
| 389 | goto err_out; |
| 390 | |
| 391 | if (copy_from_user(buffer, buf, count)) |
| 392 | return -EFAULT; |
| 393 | |
| 394 | buffer[sizeof(buffer)-1] = '\0'; |
| 395 | |
| 396 | p = &buffer[0]; |
| 397 | |
| 398 | rtc_tm.tm_year = simple_strtoul(p, &p, 10); |
| 399 | if (*p++ != ':') goto err_out; |
| 400 | |
| 401 | rtc_tm.tm_mon = simple_strtoul(p, &p, 10) - 1; |
| 402 | if (*p++ != ':') goto err_out; |
| 403 | |
| 404 | rtc_tm.tm_mday = simple_strtoul(p, &p, 10); |
| 405 | if (*p++ != ':') goto err_out; |
| 406 | |
| 407 | rtc_tm.tm_wday = simple_strtoul(p, &p, 10); |
| 408 | if (*p++ != ':') goto err_out; |
| 409 | |
| 410 | rtc_tm.tm_hour = simple_strtoul(p, &p, 10); |
| 411 | if (*p++ != ':') goto err_out; |
| 412 | |
| 413 | rtc_tm.tm_min = simple_strtoul(p, &p, 10); |
| 414 | if (*p++ != ':') goto err_out; |
| 415 | |
| 416 | rtc_tm.tm_sec = simple_strtoul(p, &p, 10); |
| 417 | if (*p != '\n') goto err_out; |
| 418 | |
| 419 | rtc_tm.tm_year -= RTC_EPOCH; |
| 420 | |
| 421 | set_rtc_time(&rtc_tm); |
| 422 | |
| 423 | *ppos += count; |
| 424 | |
| 425 | return count; |
| 426 | |
| 427 | err_out: |
| 428 | printk(KERN_ERR "invalid format: use YYYY:MM:DD:W:HH:MM:SS\\n\n"); |
| 429 | return -EINVAL; |
| 430 | } |
| 431 | |
| 432 | |
| 433 | static ssize_t rtc_read(UNUSED struct file *filp, char *buf, size_t count, |
| 434 | loff_t *ppos) |
| 435 | { |
| 436 | char wbuf[23]; |
| 437 | struct rtc_time tm; |
| 438 | ssize_t len; |
| 439 | |
| 440 | if (count == 0 || *ppos != 0) |
| 441 | return 0; |
| 442 | |
| 443 | get_rtc_time(&tm); |
| 444 | |
| 445 | len = sprintf(wbuf, "%04d:%02d:%02d:%d:%02d:%02d:%02d\n", |
| 446 | tm.tm_year + RTC_EPOCH, |
| 447 | tm.tm_mon + 1, |
| 448 | tm.tm_mday, |
| 449 | tm.tm_wday, |
| 450 | tm.tm_hour, |
| 451 | tm.tm_min, |
| 452 | tm.tm_sec); |
| 453 | |
| 454 | if (len > (ssize_t)count) |
| 455 | len = count; |
| 456 | |
| 457 | if (copy_to_user(buf, wbuf, len)) |
| 458 | return -EFAULT; |
| 459 | |
| 460 | *ppos += len; |
| 461 | |
| 462 | return len; |
| 463 | } |
| 464 | |
| 465 | static int rtc_do_ioctl(unsigned int cmd, unsigned long arg) |
| 466 | { |
| 467 | struct rtc_time rtc_tm; |
| 468 | |
| 469 | switch (cmd) { |
| 470 | case RTC_RD_TIME: |
| 471 | memset(&rtc_tm, 0, sizeof(struct rtc_time)); |
| 472 | get_rtc_time(&rtc_tm); |
| 473 | if (copy_to_user((void *)arg, &rtc_tm, sizeof(rtc_tm))) |
| 474 | return -EFAULT; |
| 475 | break; |
| 476 | |
| 477 | case RTC_SET_TIME: |
| 478 | if (!capable(CAP_SYS_TIME)) |
| 479 | return -EACCES; |
| 480 | |
| 481 | if (copy_from_user(&rtc_tm, (struct rtc_time *)arg, |
| 482 | sizeof(struct rtc_time))) |
| 483 | return -EFAULT; |
| 484 | |
| 485 | set_rtc_time(&rtc_tm); |
| 486 | break; |
| 487 | |
| 488 | default: |
| 489 | return -ENOTTY; |
| 490 | } |
| 491 | |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| 496 | { |
| 497 | long ret; |
| 498 | ret = rtc_do_ioctl(cmd, arg); |
| 499 | return ret; |
| 500 | } |
| 501 | |
| 502 | static const struct file_operations rtc_fops = { |
| 503 | .owner = THIS_MODULE, |
| 504 | .llseek = no_llseek, |
| 505 | .read = rtc_read, |
| 506 | .write = rtc_write, |
| 507 | .unlocked_ioctl = rtc_ioctl, |
| 508 | .open = rtc_open, |
| 509 | .release = rtc_release, |
| 510 | }; |
| 511 | |
| 512 | static struct miscdevice rtc_dev = { |
| 513 | .minor = RTC_MINOR, |
| 514 | .name = "rtc", |
| 515 | .fops = &rtc_fops, |
| 516 | }; |
| 517 | |
| 518 | /* Savagely ripped from diag.c. */ |
| 519 | static inline int startswith (char *source, char *cmp) |
| 520 | { |
| 521 | return !strncmp(source, cmp, strlen(cmp)); |
| 522 | } |
| 523 | |
| 524 | static void platform_detect(void) |
| 525 | { |
| 526 | char buf[20]; |
| 527 | int et0phyaddr, et1phyaddr; |
| 528 | |
| 529 | /* Based on "model_no". */ |
| 530 | if (bcm47xx_nvram_getenv("model_no", buf, sizeof(buf)) >= 0) { |
| 531 | if (startswith(buf, "WL700")) { /* WL700* */ |
| 532 | sda_index = 2; |
| 533 | scl_index = 5; |
| 534 | return; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | if (bcm47xx_nvram_getenv("et0phyaddr", buf, sizeof(buf)) >= 0 ) |
| 539 | et0phyaddr = simple_strtoul(buf, NULL, 0); |
| 540 | if (bcm47xx_nvram_getenv("et1phyaddr", buf, sizeof(buf)) >= 0 ) |
| 541 | et1phyaddr = simple_strtoul(buf, NULL, 0); |
| 542 | |
| 543 | if (bcm47xx_nvram_getenv("hardware_version", buf, sizeof(buf)) >= 0) { |
| 544 | /* Either WL-300g or WL-HDD, do more extensive checks */ |
| 545 | if (startswith(buf, "WL300-") && et0phyaddr == 0 && et1phyaddr == 1) { |
| 546 | sda_index = 4; |
| 547 | scl_index = 5; |
| 548 | return; |
| 549 | } |
| 550 | } |
| 551 | /* not found */ |
| 552 | } |
| 553 | |
| 554 | static int __init rtc_init(void) |
| 555 | { |
| 556 | int cr1; |
| 557 | |
| 558 | platform_detect(); |
| 559 | |
| 560 | if (sda_index == scl_index) { |
| 561 | printk(KERN_ERR "RTC-RV5C386A: unrecognized platform!\n"); |
| 562 | return -ENODEV; |
| 563 | } |
| 564 | |
| 565 | i2c_init(); |
| 566 | |
| 567 | /* |
| 568 | * Switch RTC to 24h mode |
| 569 | */ |
| 570 | spin_lock_irq(&rtc_lock); |
| 571 | i2c_start(); |
| 572 | i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK); |
| 573 | i2c_outb(0xE4); /* start at address 0xE, transmission mode 4 */ |
| 574 | cr1 = i2c_inb(I2C_NAK); |
| 575 | i2c_stop(); |
| 576 | spin_unlock_irq(&rtc_lock); |
| 577 | if ((cr1 & RTC_24HOUR_MODE_MASK) == 0) { |
| 578 | /* RTC is running in 12h mode */ |
| 579 | printk(KERN_INFO "rtc.o: switching to 24h mode\n"); |
| 580 | spin_lock_irq(&rtc_lock); |
| 581 | i2c_start(); |
| 582 | i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK); |
| 583 | i2c_outb(0xE0); |
| 584 | i2c_outb(cr1 | RTC_24HOUR_MODE_MASK); |
| 585 | i2c_stop(); |
| 586 | spin_unlock_irq(&rtc_lock); |
| 587 | } |
| 588 | |
| 589 | misc_register(&rtc_dev); |
| 590 | |
| 591 | printk(KERN_INFO "RV5C386A Real Time Clock Driver loaded\n"); |
| 592 | |
| 593 | return 0; |
| 594 | } |
| 595 | |
| 596 | static void __exit rtc_exit (void) |
| 597 | { |
| 598 | misc_deregister(&rtc_dev); |
| 599 | printk(KERN_INFO "Successfully removed RTC RV5C386A driver\n"); |
| 600 | } |
| 601 | |
| 602 | module_init(rtc_init); |
| 603 | module_exit(rtc_exit); |
| 604 | |
| 605 | /* |
| 606 | * Local Variables: |
| 607 | * indent-tabs-mode:t |
| 608 | * c-basic-offset:8 |
| 609 | * End: |
| 610 | */ |