| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only | 
|  | 2 | /* | 
|  | 3 | * kexec.c - kexec_load system call | 
|  | 4 | * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com> | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 8 |  | 
|  | 9 | #include <linux/capability.h> | 
|  | 10 | #include <linux/mm.h> | 
|  | 11 | #include <linux/file.h> | 
|  | 12 | #include <linux/security.h> | 
|  | 13 | #include <linux/kexec.h> | 
|  | 14 | #include <linux/mutex.h> | 
|  | 15 | #include <linux/list.h> | 
|  | 16 | #include <linux/syscalls.h> | 
|  | 17 | #include <linux/vmalloc.h> | 
|  | 18 | #include <linux/slab.h> | 
|  | 19 |  | 
|  | 20 | #include "kexec_internal.h" | 
|  | 21 |  | 
|  | 22 | static int copy_user_segment_list(struct kimage *image, | 
|  | 23 | unsigned long nr_segments, | 
|  | 24 | struct kexec_segment __user *segments) | 
|  | 25 | { | 
|  | 26 | int ret; | 
|  | 27 | size_t segment_bytes; | 
|  | 28 |  | 
|  | 29 | /* Read in the segments */ | 
|  | 30 | image->nr_segments = nr_segments; | 
|  | 31 | segment_bytes = nr_segments * sizeof(*segments); | 
|  | 32 | ret = copy_from_user(image->segment, segments, segment_bytes); | 
|  | 33 | if (ret) | 
|  | 34 | ret = -EFAULT; | 
|  | 35 |  | 
|  | 36 | return ret; | 
|  | 37 | } | 
|  | 38 |  | 
|  | 39 | static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, | 
|  | 40 | unsigned long nr_segments, | 
|  | 41 | struct kexec_segment __user *segments, | 
|  | 42 | unsigned long flags) | 
|  | 43 | { | 
|  | 44 | int ret; | 
|  | 45 | struct kimage *image; | 
|  | 46 | bool kexec_on_panic = flags & KEXEC_ON_CRASH; | 
|  | 47 |  | 
|  | 48 | if (kexec_on_panic) { | 
|  | 49 | /* Verify we have a valid entry point */ | 
|  | 50 | if ((entry < phys_to_boot_phys(crashk_res.start)) || | 
|  | 51 | (entry > phys_to_boot_phys(crashk_res.end))) | 
|  | 52 | return -EADDRNOTAVAIL; | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | /* Allocate and initialize a controlling structure */ | 
|  | 56 | image = do_kimage_alloc_init(); | 
|  | 57 | if (!image) | 
|  | 58 | return -ENOMEM; | 
|  | 59 |  | 
|  | 60 | image->start = entry; | 
|  | 61 |  | 
|  | 62 | ret = copy_user_segment_list(image, nr_segments, segments); | 
|  | 63 | if (ret) | 
|  | 64 | goto out_free_image; | 
|  | 65 |  | 
|  | 66 | if (kexec_on_panic) { | 
|  | 67 | /* Enable special crash kernel control page alloc policy. */ | 
|  | 68 | image->control_page = crashk_res.start; | 
|  | 69 | image->type = KEXEC_TYPE_CRASH; | 
|  | 70 | } | 
|  | 71 |  | 
|  | 72 | ret = sanity_check_segment_list(image); | 
|  | 73 | if (ret) | 
|  | 74 | goto out_free_image; | 
|  | 75 |  | 
|  | 76 | /* | 
|  | 77 | * Find a location for the control code buffer, and add it | 
|  | 78 | * the vector of segments so that it's pages will also be | 
|  | 79 | * counted as destination pages. | 
|  | 80 | */ | 
|  | 81 | ret = -ENOMEM; | 
|  | 82 | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | 83 | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | 84 | if (!image->control_code_page) { | 
|  | 85 | pr_err("Could not allocate control_code_buffer\n"); | 
|  | 86 | goto out_free_image; | 
|  | 87 | } | 
|  | 88 |  | 
|  | 89 | if (!kexec_on_panic) { | 
|  | 90 | image->swap_page = kimage_alloc_control_pages(image, 0); | 
|  | 91 | if (!image->swap_page) { | 
|  | 92 | pr_err("Could not allocate swap buffer\n"); | 
|  | 93 | goto out_free_control_pages; | 
|  | 94 | } | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | *rimage = image; | 
|  | 98 | return 0; | 
|  | 99 | out_free_control_pages: | 
|  | 100 | kimage_free_page_list(&image->control_pages); | 
|  | 101 | out_free_image: | 
|  | 102 | kfree(image); | 
|  | 103 | return ret; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | static int do_kexec_load(unsigned long entry, unsigned long nr_segments, | 
|  | 107 | struct kexec_segment __user *segments, unsigned long flags) | 
|  | 108 | { | 
|  | 109 | struct kimage **dest_image, *image; | 
|  | 110 | unsigned long i; | 
|  | 111 | int ret; | 
|  | 112 |  | 
|  | 113 | if (flags & KEXEC_ON_CRASH) { | 
|  | 114 | dest_image = &kexec_crash_image; | 
|  | 115 | if (kexec_crash_image) | 
|  | 116 | arch_kexec_unprotect_crashkres(); | 
|  | 117 | } else { | 
|  | 118 | dest_image = &kexec_image; | 
|  | 119 | } | 
|  | 120 |  | 
|  | 121 | if (nr_segments == 0) { | 
|  | 122 | /* Uninstall image */ | 
|  | 123 | kimage_free(xchg(dest_image, NULL)); | 
|  | 124 | return 0; | 
|  | 125 | } | 
|  | 126 | if (flags & KEXEC_ON_CRASH) { | 
|  | 127 | /* | 
|  | 128 | * Loading another kernel to switch to if this one | 
|  | 129 | * crashes.  Free any current crash dump kernel before | 
|  | 130 | * we corrupt it. | 
|  | 131 | */ | 
|  | 132 | kimage_free(xchg(&kexec_crash_image, NULL)); | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags); | 
|  | 136 | if (ret) | 
|  | 137 | return ret; | 
|  | 138 |  | 
|  | 139 | if (flags & KEXEC_PRESERVE_CONTEXT) | 
|  | 140 | image->preserve_context = 1; | 
|  | 141 |  | 
|  | 142 | ret = machine_kexec_prepare(image); | 
|  | 143 | if (ret) | 
|  | 144 | goto out; | 
|  | 145 |  | 
|  | 146 | /* | 
|  | 147 | * Some architecture(like S390) may touch the crash memory before | 
|  | 148 | * machine_kexec_prepare(), we must copy vmcoreinfo data after it. | 
|  | 149 | */ | 
|  | 150 | ret = kimage_crash_copy_vmcoreinfo(image); | 
|  | 151 | if (ret) | 
|  | 152 | goto out; | 
|  | 153 |  | 
|  | 154 | for (i = 0; i < nr_segments; i++) { | 
|  | 155 | ret = kimage_load_segment(image, &image->segment[i]); | 
|  | 156 | if (ret) | 
|  | 157 | goto out; | 
|  | 158 | } | 
|  | 159 |  | 
|  | 160 | kimage_terminate(image); | 
|  | 161 |  | 
|  | 162 | /* Install the new kernel and uninstall the old */ | 
|  | 163 | image = xchg(dest_image, image); | 
|  | 164 |  | 
|  | 165 | out: | 
|  | 166 | if ((flags & KEXEC_ON_CRASH) && kexec_crash_image) | 
|  | 167 | arch_kexec_protect_crashkres(); | 
|  | 168 |  | 
|  | 169 | kimage_free(image); | 
|  | 170 | return ret; | 
|  | 171 | } | 
|  | 172 |  | 
|  | 173 | /* | 
|  | 174 | * Exec Kernel system call: for obvious reasons only root may call it. | 
|  | 175 | * | 
|  | 176 | * This call breaks up into three pieces. | 
|  | 177 | * - A generic part which loads the new kernel from the current | 
|  | 178 | *   address space, and very carefully places the data in the | 
|  | 179 | *   allocated pages. | 
|  | 180 | * | 
|  | 181 | * - A generic part that interacts with the kernel and tells all of | 
|  | 182 | *   the devices to shut down.  Preventing on-going dmas, and placing | 
|  | 183 | *   the devices in a consistent state so a later kernel can | 
|  | 184 | *   reinitialize them. | 
|  | 185 | * | 
|  | 186 | * - A machine specific part that includes the syscall number | 
|  | 187 | *   and then copies the image to it's final destination.  And | 
|  | 188 | *   jumps into the image at entry. | 
|  | 189 | * | 
|  | 190 | * kexec does not sync, or unmount filesystems so if you need | 
|  | 191 | * that to happen you need to do that yourself. | 
|  | 192 | */ | 
|  | 193 |  | 
|  | 194 | static inline int kexec_load_check(unsigned long nr_segments, | 
|  | 195 | unsigned long flags) | 
|  | 196 | { | 
|  | 197 | int result; | 
|  | 198 |  | 
|  | 199 | /* We only trust the superuser with rebooting the system. */ | 
|  | 200 | if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) | 
|  | 201 | return -EPERM; | 
|  | 202 |  | 
|  | 203 | /* Permit LSMs and IMA to fail the kexec */ | 
|  | 204 | result = security_kernel_load_data(LOADING_KEXEC_IMAGE); | 
|  | 205 | if (result < 0) | 
|  | 206 | return result; | 
|  | 207 |  | 
|  | 208 | /* | 
|  | 209 | * kexec can be used to circumvent module loading restrictions, so | 
|  | 210 | * prevent loading in that case | 
|  | 211 | */ | 
|  | 212 | result = security_locked_down(LOCKDOWN_KEXEC); | 
|  | 213 | if (result) | 
|  | 214 | return result; | 
|  | 215 |  | 
|  | 216 | /* | 
|  | 217 | * Verify we have a legal set of flags | 
|  | 218 | * This leaves us room for future extensions. | 
|  | 219 | */ | 
|  | 220 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | 
|  | 221 | return -EINVAL; | 
|  | 222 |  | 
|  | 223 | /* Put an artificial cap on the number | 
|  | 224 | * of segments passed to kexec_load. | 
|  | 225 | */ | 
|  | 226 | if (nr_segments > KEXEC_SEGMENT_MAX) | 
|  | 227 | return -EINVAL; | 
|  | 228 |  | 
|  | 229 | return 0; | 
|  | 230 | } | 
|  | 231 |  | 
|  | 232 | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, | 
|  | 233 | struct kexec_segment __user *, segments, unsigned long, flags) | 
|  | 234 | { | 
|  | 235 | int result; | 
|  | 236 |  | 
|  | 237 | result = kexec_load_check(nr_segments, flags); | 
|  | 238 | if (result) | 
|  | 239 | return result; | 
|  | 240 |  | 
|  | 241 | /* Verify we are on the appropriate architecture */ | 
|  | 242 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | 
|  | 243 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | 
|  | 244 | return -EINVAL; | 
|  | 245 |  | 
|  | 246 | /* Because we write directly to the reserved memory | 
|  | 247 | * region when loading crash kernels we need a mutex here to | 
|  | 248 | * prevent multiple crash  kernels from attempting to load | 
|  | 249 | * simultaneously, and to prevent a crash kernel from loading | 
|  | 250 | * over the top of a in use crash kernel. | 
|  | 251 | * | 
|  | 252 | * KISS: always take the mutex. | 
|  | 253 | */ | 
|  | 254 | if (!mutex_trylock(&kexec_mutex)) | 
|  | 255 | return -EBUSY; | 
|  | 256 |  | 
|  | 257 | result = do_kexec_load(entry, nr_segments, segments, flags); | 
|  | 258 |  | 
|  | 259 | mutex_unlock(&kexec_mutex); | 
|  | 260 |  | 
|  | 261 | return result; | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | #ifdef CONFIG_COMPAT | 
|  | 265 | COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, | 
|  | 266 | compat_ulong_t, nr_segments, | 
|  | 267 | struct compat_kexec_segment __user *, segments, | 
|  | 268 | compat_ulong_t, flags) | 
|  | 269 | { | 
|  | 270 | struct compat_kexec_segment in; | 
|  | 271 | struct kexec_segment out, __user *ksegments; | 
|  | 272 | unsigned long i, result; | 
|  | 273 |  | 
|  | 274 | result = kexec_load_check(nr_segments, flags); | 
|  | 275 | if (result) | 
|  | 276 | return result; | 
|  | 277 |  | 
|  | 278 | /* Don't allow clients that don't understand the native | 
|  | 279 | * architecture to do anything. | 
|  | 280 | */ | 
|  | 281 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) | 
|  | 282 | return -EINVAL; | 
|  | 283 |  | 
|  | 284 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | 
|  | 285 | for (i = 0; i < nr_segments; i++) { | 
|  | 286 | result = copy_from_user(&in, &segments[i], sizeof(in)); | 
|  | 287 | if (result) | 
|  | 288 | return -EFAULT; | 
|  | 289 |  | 
|  | 290 | out.buf   = compat_ptr(in.buf); | 
|  | 291 | out.bufsz = in.bufsz; | 
|  | 292 | out.mem   = in.mem; | 
|  | 293 | out.memsz = in.memsz; | 
|  | 294 |  | 
|  | 295 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | 
|  | 296 | if (result) | 
|  | 297 | return -EFAULT; | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | /* Because we write directly to the reserved memory | 
|  | 301 | * region when loading crash kernels we need a mutex here to | 
|  | 302 | * prevent multiple crash  kernels from attempting to load | 
|  | 303 | * simultaneously, and to prevent a crash kernel from loading | 
|  | 304 | * over the top of a in use crash kernel. | 
|  | 305 | * | 
|  | 306 | * KISS: always take the mutex. | 
|  | 307 | */ | 
|  | 308 | if (!mutex_trylock(&kexec_mutex)) | 
|  | 309 | return -EBUSY; | 
|  | 310 |  | 
|  | 311 | result = do_kexec_load(entry, nr_segments, ksegments, flags); | 
|  | 312 |  | 
|  | 313 | mutex_unlock(&kexec_mutex); | 
|  | 314 |  | 
|  | 315 | return result; | 
|  | 316 | } | 
|  | 317 | #endif |