| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Common EFI memory map functions. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "efi: " fmt | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/io.h> | 
 | #include <asm/early_ioremap.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size) | 
 | { | 
 | 	return memblock_alloc(size, 0); | 
 | } | 
 |  | 
 | static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size) | 
 | { | 
 | 	unsigned int order = get_order(size); | 
 | 	struct page *p = alloc_pages(GFP_KERNEL, order); | 
 |  | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	return PFN_PHYS(page_to_pfn(p)); | 
 | } | 
 |  | 
 | /** | 
 |  * efi_memmap_alloc - Allocate memory for the EFI memory map | 
 |  * @num_entries: Number of entries in the allocated map. | 
 |  * | 
 |  * Depending on whether mm_init() has already been invoked or not, | 
 |  * either memblock or "normal" page allocation is used. | 
 |  * | 
 |  * Returns the physical address of the allocated memory map on | 
 |  * success, zero on failure. | 
 |  */ | 
 | phys_addr_t __init efi_memmap_alloc(unsigned int num_entries) | 
 | { | 
 | 	unsigned long size = num_entries * efi.memmap.desc_size; | 
 |  | 
 | 	if (slab_is_available()) | 
 | 		return __efi_memmap_alloc_late(size); | 
 |  | 
 | 	return __efi_memmap_alloc_early(size); | 
 | } | 
 |  | 
 | /** | 
 |  * __efi_memmap_init - Common code for mapping the EFI memory map | 
 |  * @data: EFI memory map data | 
 |  * @late: Use early or late mapping function? | 
 |  * | 
 |  * This function takes care of figuring out which function to use to | 
 |  * map the EFI memory map in efi.memmap based on how far into the boot | 
 |  * we are. | 
 |  * | 
 |  * During bootup @late should be %false since we only have access to | 
 |  * the early_memremap*() functions as the vmalloc space isn't setup. | 
 |  * Once the kernel is fully booted we can fallback to the more robust | 
 |  * memremap*() API. | 
 |  * | 
 |  * Returns zero on success, a negative error code on failure. | 
 |  */ | 
 | static int __init | 
 | __efi_memmap_init(struct efi_memory_map_data *data, bool late) | 
 | { | 
 | 	struct efi_memory_map map; | 
 | 	phys_addr_t phys_map; | 
 |  | 
 | 	if (efi_enabled(EFI_PARAVIRT)) | 
 | 		return 0; | 
 |  | 
 | 	phys_map = data->phys_map; | 
 |  | 
 | 	if (late) | 
 | 		map.map = memremap(phys_map, data->size, MEMREMAP_WB); | 
 | 	else | 
 | 		map.map = early_memremap(phys_map, data->size); | 
 |  | 
 | 	if (!map.map) { | 
 | 		pr_err("Could not map the memory map!\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	map.phys_map = data->phys_map; | 
 | 	map.nr_map = data->size / data->desc_size; | 
 | 	map.map_end = map.map + data->size; | 
 |  | 
 | 	map.desc_version = data->desc_version; | 
 | 	map.desc_size = data->desc_size; | 
 | 	map.late = late; | 
 |  | 
 | 	set_bit(EFI_MEMMAP, &efi.flags); | 
 |  | 
 | 	efi.memmap = map; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * efi_memmap_init_early - Map the EFI memory map data structure | 
 |  * @data: EFI memory map data | 
 |  * | 
 |  * Use early_memremap() to map the passed in EFI memory map and assign | 
 |  * it to efi.memmap. | 
 |  */ | 
 | int __init efi_memmap_init_early(struct efi_memory_map_data *data) | 
 | { | 
 | 	/* Cannot go backwards */ | 
 | 	WARN_ON(efi.memmap.late); | 
 |  | 
 | 	return __efi_memmap_init(data, false); | 
 | } | 
 |  | 
 | void __init efi_memmap_unmap(void) | 
 | { | 
 | 	if (!efi_enabled(EFI_MEMMAP)) | 
 | 		return; | 
 |  | 
 | 	if (!efi.memmap.late) { | 
 | 		unsigned long size; | 
 |  | 
 | 		size = efi.memmap.desc_size * efi.memmap.nr_map; | 
 | 		early_memunmap(efi.memmap.map, size); | 
 | 	} else { | 
 | 		memunmap(efi.memmap.map); | 
 | 	} | 
 |  | 
 | 	efi.memmap.map = NULL; | 
 | 	clear_bit(EFI_MEMMAP, &efi.flags); | 
 | } | 
 |  | 
 | /** | 
 |  * efi_memmap_init_late - Map efi.memmap with memremap() | 
 |  * @phys_addr: Physical address of the new EFI memory map | 
 |  * @size: Size in bytes of the new EFI memory map | 
 |  * | 
 |  * Setup a mapping of the EFI memory map using ioremap_cache(). This | 
 |  * function should only be called once the vmalloc space has been | 
 |  * setup and is therefore not suitable for calling during early EFI | 
 |  * initialise, e.g. in efi_init(). Additionally, it expects | 
 |  * efi_memmap_init_early() to have already been called. | 
 |  * | 
 |  * The reason there are two EFI memmap initialisation | 
 |  * (efi_memmap_init_early() and this late version) is because the | 
 |  * early EFI memmap should be explicitly unmapped once EFI | 
 |  * initialisation is complete as the fixmap space used to map the EFI | 
 |  * memmap (via early_memremap()) is a scarce resource. | 
 |  * | 
 |  * This late mapping is intended to persist for the duration of | 
 |  * runtime so that things like efi_mem_desc_lookup() and | 
 |  * efi_mem_attributes() always work. | 
 |  * | 
 |  * Returns zero on success, a negative error code on failure. | 
 |  */ | 
 | int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) | 
 | { | 
 | 	struct efi_memory_map_data data = { | 
 | 		.phys_map = addr, | 
 | 		.size = size, | 
 | 	}; | 
 |  | 
 | 	/* Did we forget to unmap the early EFI memmap? */ | 
 | 	WARN_ON(efi.memmap.map); | 
 |  | 
 | 	/* Were we already called? */ | 
 | 	WARN_ON(efi.memmap.late); | 
 |  | 
 | 	/* | 
 | 	 * It makes no sense to allow callers to register different | 
 | 	 * values for the following fields. Copy them out of the | 
 | 	 * existing early EFI memmap. | 
 | 	 */ | 
 | 	data.desc_version = efi.memmap.desc_version; | 
 | 	data.desc_size = efi.memmap.desc_size; | 
 |  | 
 | 	return __efi_memmap_init(&data, true); | 
 | } | 
 |  | 
 | /** | 
 |  * efi_memmap_install - Install a new EFI memory map in efi.memmap | 
 |  * @addr: Physical address of the memory map | 
 |  * @nr_map: Number of entries in the memory map | 
 |  * | 
 |  * Unlike efi_memmap_init_*(), this function does not allow the caller | 
 |  * to switch from early to late mappings. It simply uses the existing | 
 |  * mapping function and installs the new memmap. | 
 |  * | 
 |  * Returns zero on success, a negative error code on failure. | 
 |  */ | 
 | int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map) | 
 | { | 
 | 	struct efi_memory_map_data data; | 
 |  | 
 | 	efi_memmap_unmap(); | 
 |  | 
 | 	data.phys_map = addr; | 
 | 	data.size = efi.memmap.desc_size * nr_map; | 
 | 	data.desc_version = efi.memmap.desc_version; | 
 | 	data.desc_size = efi.memmap.desc_size; | 
 |  | 
 | 	return __efi_memmap_init(&data, efi.memmap.late); | 
 | } | 
 |  | 
 | /** | 
 |  * efi_memmap_split_count - Count number of additional EFI memmap entries | 
 |  * @md: EFI memory descriptor to split | 
 |  * @range: Address range (start, end) to split around | 
 |  * | 
 |  * Returns the number of additional EFI memmap entries required to | 
 |  * accomodate @range. | 
 |  */ | 
 | int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) | 
 | { | 
 | 	u64 m_start, m_end; | 
 | 	u64 start, end; | 
 | 	int count = 0; | 
 |  | 
 | 	start = md->phys_addr; | 
 | 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; | 
 |  | 
 | 	/* modifying range */ | 
 | 	m_start = range->start; | 
 | 	m_end = range->end; | 
 |  | 
 | 	if (m_start <= start) { | 
 | 		/* split into 2 parts */ | 
 | 		if (start < m_end && m_end < end) | 
 | 			count++; | 
 | 	} | 
 |  | 
 | 	if (start < m_start && m_start < end) { | 
 | 		/* split into 3 parts */ | 
 | 		if (m_end < end) | 
 | 			count += 2; | 
 | 		/* split into 2 parts */ | 
 | 		if (end <= m_end) | 
 | 			count++; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  * efi_memmap_insert - Insert a memory region in an EFI memmap | 
 |  * @old_memmap: The existing EFI memory map structure | 
 |  * @buf: Address of buffer to store new map | 
 |  * @mem: Memory map entry to insert | 
 |  * | 
 |  * It is suggested that you call efi_memmap_split_count() first | 
 |  * to see how large @buf needs to be. | 
 |  */ | 
 | void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, | 
 | 			      struct efi_mem_range *mem) | 
 | { | 
 | 	u64 m_start, m_end, m_attr; | 
 | 	efi_memory_desc_t *md; | 
 | 	u64 start, end; | 
 | 	void *old, *new; | 
 |  | 
 | 	/* modifying range */ | 
 | 	m_start = mem->range.start; | 
 | 	m_end = mem->range.end; | 
 | 	m_attr = mem->attribute; | 
 |  | 
 | 	/* | 
 | 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE | 
 | 	 * units. Ensure that the region described by 'mem' is aligned | 
 | 	 * correctly. | 
 | 	 */ | 
 | 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || | 
 | 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (old = old_memmap->map, new = buf; | 
 | 	     old < old_memmap->map_end; | 
 | 	     old += old_memmap->desc_size, new += old_memmap->desc_size) { | 
 |  | 
 | 		/* copy original EFI memory descriptor */ | 
 | 		memcpy(new, old, old_memmap->desc_size); | 
 | 		md = new; | 
 | 		start = md->phys_addr; | 
 | 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; | 
 |  | 
 | 		if (m_start <= start && end <= m_end) | 
 | 			md->attribute |= m_attr; | 
 |  | 
 | 		if (m_start <= start && | 
 | 		    (start < m_end && m_end < end)) { | 
 | 			/* first part */ | 
 | 			md->attribute |= m_attr; | 
 | 			md->num_pages = (m_end - md->phys_addr + 1) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 			/* latter part */ | 
 | 			new += old_memmap->desc_size; | 
 | 			memcpy(new, old, old_memmap->desc_size); | 
 | 			md = new; | 
 | 			md->phys_addr = m_end + 1; | 
 | 			md->num_pages = (end - md->phys_addr + 1) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 		} | 
 |  | 
 | 		if ((start < m_start && m_start < end) && m_end < end) { | 
 | 			/* first part */ | 
 | 			md->num_pages = (m_start - md->phys_addr) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 			/* middle part */ | 
 | 			new += old_memmap->desc_size; | 
 | 			memcpy(new, old, old_memmap->desc_size); | 
 | 			md = new; | 
 | 			md->attribute |= m_attr; | 
 | 			md->phys_addr = m_start; | 
 | 			md->num_pages = (m_end - m_start + 1) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 			/* last part */ | 
 | 			new += old_memmap->desc_size; | 
 | 			memcpy(new, old, old_memmap->desc_size); | 
 | 			md = new; | 
 | 			md->phys_addr = m_end + 1; | 
 | 			md->num_pages = (end - m_end) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 		} | 
 |  | 
 | 		if ((start < m_start && m_start < end) && | 
 | 		    (end <= m_end)) { | 
 | 			/* first part */ | 
 | 			md->num_pages = (m_start - md->phys_addr) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 			/* latter part */ | 
 | 			new += old_memmap->desc_size; | 
 | 			memcpy(new, old, old_memmap->desc_size); | 
 | 			md = new; | 
 | 			md->phys_addr = m_start; | 
 | 			md->num_pages = (end - md->phys_addr + 1) >> | 
 | 				EFI_PAGE_SHIFT; | 
 | 			md->attribute |= m_attr; | 
 | 		} | 
 | 	} | 
 | } |