| /* | 
 |  * I2C adapter for the IMG Serial Control Bus (SCB) IP block. | 
 |  * | 
 |  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * There are three ways that this I2C controller can be driven: | 
 |  * | 
 |  * - Raw control of the SDA and SCK signals. | 
 |  * | 
 |  *   This corresponds to MODE_RAW, which takes control of the signals | 
 |  *   directly for a certain number of clock cycles (the INT_TIMING | 
 |  *   interrupt can be used for timing). | 
 |  * | 
 |  * - Atomic commands. A low level I2C symbol (such as generate | 
 |  *   start/stop/ack/nack bit, generate byte, receive byte, and receive | 
 |  *   ACK) is given to the hardware, with detection of completion by bits | 
 |  *   in the LINESTAT register. | 
 |  * | 
 |  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C | 
 |  *   state machine in the interrupt handler to compose/react to I2C | 
 |  *   transactions using atomic mode commands, and also by MODE_SEQUENCE, | 
 |  *   which emits a simple fixed sequence of atomic mode commands. | 
 |  * | 
 |  *   Due to software control, the use of atomic commands usually results | 
 |  *   in suboptimal use of the bus, with gaps between the I2C symbols while | 
 |  *   the driver decides what to do next. | 
 |  * | 
 |  * - Automatic mode. A bus address, and whether to read/write is | 
 |  *   specified, and the hardware takes care of the I2C state machine, | 
 |  *   using a FIFO to send/receive bytes of data to an I2C slave. The | 
 |  *   driver just has to keep the FIFO drained or filled in response to the | 
 |  *   appropriate FIFO interrupts. | 
 |  * | 
 |  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals | 
 |  *   with control of repeated start bits between I2C messages. | 
 |  * | 
 |  *   Use of automatic mode and the FIFO can make much more efficient use | 
 |  *   of the bus compared to individual atomic commands, with potentially | 
 |  *   no wasted time between I2C symbols or I2C messages. | 
 |  * | 
 |  * In most cases MODE_AUTOMATIC is used, however if any of the messages in | 
 |  * a transaction are zero byte writes (e.g. used by i2cdetect for probing | 
 |  * the bus), MODE_ATOMIC must be used since automatic mode is normally | 
 |  * started by the writing of data into the FIFO. | 
 |  * | 
 |  * The other modes are used in specific circumstances where MODE_ATOMIC and | 
 |  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus | 
 |  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure | 
 |  * it is in a sane state. | 
 |  * | 
 |  * Notice that the driver implements a timer-based timeout mechanism. | 
 |  * The reason for this mechanism is to reduce the number of interrupts | 
 |  * received in automatic mode. | 
 |  * | 
 |  * The driver would get a slave event and transaction done interrupts for | 
 |  * each atomic mode command that gets completed. However, these events are | 
 |  * not needed in automatic mode, becase those atomic mode commands are | 
 |  * managed automatically by the hardware. | 
 |  * | 
 |  * In practice, normal I2C transactions will be complete well before you | 
 |  * get the timer interrupt, as the timer is re-scheduled during FIFO | 
 |  * maintenance and disabled after the transaction is complete. | 
 |  * | 
 |  * In this way normal automatic mode operation isn't impacted by | 
 |  * unnecessary interrupts, but the exceptional abort condition can still be | 
 |  * detected (with a slight delay). | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/err.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/timer.h> | 
 |  | 
 | /* Register offsets */ | 
 |  | 
 | #define SCB_STATUS_REG			0x00 | 
 | #define SCB_OVERRIDE_REG		0x04 | 
 | #define SCB_READ_ADDR_REG		0x08 | 
 | #define SCB_READ_COUNT_REG		0x0c | 
 | #define SCB_WRITE_ADDR_REG		0x10 | 
 | #define SCB_READ_DATA_REG		0x14 | 
 | #define SCB_WRITE_DATA_REG		0x18 | 
 | #define SCB_FIFO_STATUS_REG		0x1c | 
 | #define SCB_CONTROL_SOFT_RESET		0x1f | 
 | #define SCB_CLK_SET_REG			0x3c | 
 | #define SCB_INT_STATUS_REG		0x40 | 
 | #define SCB_INT_CLEAR_REG		0x44 | 
 | #define SCB_INT_MASK_REG		0x48 | 
 | #define SCB_CONTROL_REG			0x4c | 
 | #define SCB_TIME_TPL_REG		0x50 | 
 | #define SCB_TIME_TPH_REG		0x54 | 
 | #define SCB_TIME_TP2S_REG		0x58 | 
 | #define SCB_TIME_TBI_REG		0x60 | 
 | #define SCB_TIME_TSL_REG		0x64 | 
 | #define SCB_TIME_TDL_REG		0x68 | 
 | #define SCB_TIME_TSDL_REG		0x6c | 
 | #define SCB_TIME_TSDH_REG		0x70 | 
 | #define SCB_READ_XADDR_REG		0x74 | 
 | #define SCB_WRITE_XADDR_REG		0x78 | 
 | #define SCB_WRITE_COUNT_REG		0x7c | 
 | #define SCB_CORE_REV_REG		0x80 | 
 | #define SCB_TIME_TCKH_REG		0x84 | 
 | #define SCB_TIME_TCKL_REG		0x88 | 
 | #define SCB_FIFO_FLUSH_REG		0x8c | 
 | #define SCB_READ_FIFO_REG		0x94 | 
 | #define SCB_CLEAR_REG			0x98 | 
 |  | 
 | /* SCB_CONTROL_REG bits */ | 
 |  | 
 | #define SCB_CONTROL_CLK_ENABLE		0x1e0 | 
 | #define SCB_CONTROL_TRANSACTION_HALT	0x200 | 
 |  | 
 | #define FIFO_READ_FULL			BIT(0) | 
 | #define FIFO_READ_EMPTY			BIT(1) | 
 | #define FIFO_WRITE_FULL			BIT(2) | 
 | #define FIFO_WRITE_EMPTY		BIT(3) | 
 |  | 
 | /* SCB_CLK_SET_REG bits */ | 
 | #define SCB_FILT_DISABLE		BIT(31) | 
 | #define SCB_FILT_BYPASS			BIT(30) | 
 | #define SCB_FILT_INC_MASK		0x7f | 
 | #define SCB_FILT_INC_SHIFT		16 | 
 | #define SCB_INC_MASK			0x7f | 
 | #define SCB_INC_SHIFT			8 | 
 |  | 
 | /* SCB_INT_*_REG bits */ | 
 |  | 
 | #define INT_BUS_INACTIVE		BIT(0) | 
 | #define INT_UNEXPECTED_START		BIT(1) | 
 | #define INT_SCLK_LOW_TIMEOUT		BIT(2) | 
 | #define INT_SDAT_LOW_TIMEOUT		BIT(3) | 
 | #define INT_WRITE_ACK_ERR		BIT(4) | 
 | #define INT_ADDR_ACK_ERR		BIT(5) | 
 | #define INT_FIFO_FULL			BIT(9) | 
 | #define INT_FIFO_FILLING		BIT(10) | 
 | #define INT_FIFO_EMPTY			BIT(11) | 
 | #define INT_FIFO_EMPTYING		BIT(12) | 
 | #define INT_TRANSACTION_DONE		BIT(15) | 
 | #define INT_SLAVE_EVENT			BIT(16) | 
 | #define INT_MASTER_HALTED		BIT(17) | 
 | #define INT_TIMING			BIT(18) | 
 | #define INT_STOP_DETECTED		BIT(19) | 
 |  | 
 | #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING) | 
 |  | 
 | /* Level interrupts need clearing after handling instead of before */ | 
 | #define INT_LEVEL			0x01e00 | 
 |  | 
 | /* Don't allow any interrupts while the clock may be off */ | 
 | #define INT_ENABLE_MASK_INACTIVE	0x00000 | 
 |  | 
 | /* Interrupt masks for the different driver modes */ | 
 |  | 
 | #define INT_ENABLE_MASK_RAW		INT_TIMING | 
 |  | 
 | #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \ | 
 | 					 INT_SLAVE_EVENT      | \ | 
 | 					 INT_ADDR_ACK_ERR     | \ | 
 | 					 INT_WRITE_ACK_ERR) | 
 |  | 
 | #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \ | 
 | 					 INT_ADDR_ACK_ERR     | \ | 
 | 					 INT_WRITE_ACK_ERR    | \ | 
 | 					 INT_FIFO_FULL        | \ | 
 | 					 INT_FIFO_FILLING     | \ | 
 | 					 INT_FIFO_EMPTY       | \ | 
 | 					 INT_MASTER_HALTED    | \ | 
 | 					 INT_STOP_DETECTED) | 
 |  | 
 | #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \ | 
 | 					 INT_ADDR_ACK_ERR     | \ | 
 | 					 INT_WRITE_ACK_ERR) | 
 |  | 
 | /* SCB_STATUS_REG fields */ | 
 |  | 
 | #define LINESTAT_SCLK_LINE_STATUS	BIT(0) | 
 | #define LINESTAT_SCLK_EN		BIT(1) | 
 | #define LINESTAT_SDAT_LINE_STATUS	BIT(2) | 
 | #define LINESTAT_SDAT_EN		BIT(3) | 
 | #define LINESTAT_DET_START_STATUS	BIT(4) | 
 | #define LINESTAT_DET_STOP_STATUS	BIT(5) | 
 | #define LINESTAT_DET_ACK_STATUS		BIT(6) | 
 | #define LINESTAT_DET_NACK_STATUS	BIT(7) | 
 | #define LINESTAT_BUS_IDLE		BIT(8) | 
 | #define LINESTAT_T_DONE_STATUS		BIT(9) | 
 | #define LINESTAT_SCLK_OUT_STATUS	BIT(10) | 
 | #define LINESTAT_SDAT_OUT_STATUS	BIT(11) | 
 | #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12) | 
 | #define LINESTAT_START_BIT_DET		BIT(13) | 
 | #define LINESTAT_STOP_BIT_DET		BIT(14) | 
 | #define LINESTAT_ACK_DET		BIT(15) | 
 | #define LINESTAT_NACK_DET		BIT(16) | 
 | #define LINESTAT_INPUT_HELD_V		BIT(17) | 
 | #define LINESTAT_ABORT_DET		BIT(18) | 
 | #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET) | 
 | #define LINESTAT_INPUT_DATA		0xff000000 | 
 | #define LINESTAT_INPUT_DATA_SHIFT	24 | 
 |  | 
 | #define LINESTAT_CLEAR_SHIFT		13 | 
 | #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT) | 
 |  | 
 | /* SCB_OVERRIDE_REG fields */ | 
 |  | 
 | #define OVERRIDE_SCLK_OVR		BIT(0) | 
 | #define OVERRIDE_SCLKEN_OVR		BIT(1) | 
 | #define OVERRIDE_SDAT_OVR		BIT(2) | 
 | #define OVERRIDE_SDATEN_OVR		BIT(3) | 
 | #define OVERRIDE_MASTER			BIT(9) | 
 | #define OVERRIDE_LINE_OVR_EN		BIT(10) | 
 | #define OVERRIDE_DIRECT			BIT(11) | 
 | #define OVERRIDE_CMD_SHIFT		4 | 
 | #define OVERRIDE_CMD_MASK		0x1f | 
 | #define OVERRIDE_DATA_SHIFT		24 | 
 |  | 
 | #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \ | 
 | 					 OVERRIDE_SCLKEN_OVR) | 
 | #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \ | 
 | 					 OVERRIDE_SCLKEN_OVR | \ | 
 | 					 OVERRIDE_SCLK_OVR) | 
 | #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \ | 
 | 					 OVERRIDE_SDATEN_OVR) | 
 | #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \ | 
 | 					 OVERRIDE_SDATEN_OVR | \ | 
 | 					 OVERRIDE_SDAT_OVR) | 
 |  | 
 | /* OVERRIDE_CMD values */ | 
 |  | 
 | #define CMD_PAUSE			0x00 | 
 | #define CMD_GEN_DATA			0x01 | 
 | #define CMD_GEN_START			0x02 | 
 | #define CMD_GEN_STOP			0x03 | 
 | #define CMD_GEN_ACK			0x04 | 
 | #define CMD_GEN_NACK			0x05 | 
 | #define CMD_RET_DATA			0x08 | 
 | #define CMD_RET_ACK			0x09 | 
 |  | 
 | /* Fixed timing values */ | 
 |  | 
 | #define TIMEOUT_TBI			0x0 | 
 | #define TIMEOUT_TSL			0xffff | 
 | #define TIMEOUT_TDL			0x0 | 
 |  | 
 | /* Transaction timeout */ | 
 |  | 
 | #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000)) | 
 |  | 
 | /* | 
 |  * Worst incs are 1 (innacurate) and 16*256 (irregular). | 
 |  * So a sensible inc is the logarithmic mean: 64 (2^6), which is | 
 |  * in the middle of the valid range (0-127). | 
 |  */ | 
 | #define SCB_OPT_INC		64 | 
 |  | 
 | /* Setup the clock enable filtering for 25 ns */ | 
 | #define SCB_FILT_GLITCH		25 | 
 |  | 
 | /* | 
 |  * Bits to return from interrupt handler functions for different modes. | 
 |  * This delays completion until we've finished with the registers, so that the | 
 |  * function waiting for completion can safely disable the clock to save power. | 
 |  */ | 
 | #define ISR_COMPLETE_M		BIT(31) | 
 | #define ISR_FATAL_M		BIT(30) | 
 | #define ISR_WAITSTOP		BIT(29) | 
 | #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */ | 
 | #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err))) | 
 | #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M) | 
 |  | 
 | #define IMG_I2C_PM_TIMEOUT	1000 /* ms */ | 
 |  | 
 | enum img_i2c_mode { | 
 | 	MODE_INACTIVE, | 
 | 	MODE_RAW, | 
 | 	MODE_ATOMIC, | 
 | 	MODE_AUTOMATIC, | 
 | 	MODE_SEQUENCE, | 
 | 	MODE_FATAL, | 
 | 	MODE_WAITSTOP, | 
 | 	MODE_SUSPEND, | 
 | }; | 
 |  | 
 | /* Timing parameters for i2c modes (in ns) */ | 
 | struct img_i2c_timings { | 
 | 	const char *name; | 
 | 	unsigned int max_bitrate; | 
 | 	unsigned int tckh, tckl, tsdh, tsdl; | 
 | 	unsigned int tp2s, tpl, tph; | 
 | }; | 
 |  | 
 | /* The timings array must be ordered from slower to faster */ | 
 | static struct img_i2c_timings timings[] = { | 
 | 	/* Standard mode */ | 
 | 	{ | 
 | 		.name = "standard", | 
 | 		.max_bitrate = 100000, | 
 | 		.tckh = 4000, | 
 | 		.tckl = 4700, | 
 | 		.tsdh = 4700, | 
 | 		.tsdl = 8700, | 
 | 		.tp2s = 4700, | 
 | 		.tpl = 4700, | 
 | 		.tph = 4000, | 
 | 	}, | 
 | 	/* Fast mode */ | 
 | 	{ | 
 | 		.name = "fast", | 
 | 		.max_bitrate = 400000, | 
 | 		.tckh = 600, | 
 | 		.tckl = 1300, | 
 | 		.tsdh = 600, | 
 | 		.tsdl = 1200, | 
 | 		.tp2s = 1300, | 
 | 		.tpl = 600, | 
 | 		.tph = 600, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* Reset dance */ | 
 | static u8 img_i2c_reset_seq[] = { CMD_GEN_START, | 
 | 				  CMD_GEN_DATA, 0xff, | 
 | 				  CMD_RET_ACK, | 
 | 				  CMD_GEN_START, | 
 | 				  CMD_GEN_STOP, | 
 | 				  0 }; | 
 | /* Just issue a stop (after an abort condition) */ | 
 | static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP, | 
 | 				  0 }; | 
 |  | 
 | /* We're interested in different interrupts depending on the mode */ | 
 | static unsigned int img_i2c_int_enable_by_mode[] = { | 
 | 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE, | 
 | 	[MODE_RAW]       = INT_ENABLE_MASK_RAW, | 
 | 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC, | 
 | 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC, | 
 | 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC, | 
 | 	[MODE_FATAL]     = 0, | 
 | 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP, | 
 | 	[MODE_SUSPEND]   = 0, | 
 | }; | 
 |  | 
 | /* Atomic command names */ | 
 | static const char * const img_i2c_atomic_cmd_names[] = { | 
 | 	[CMD_PAUSE]	= "PAUSE", | 
 | 	[CMD_GEN_DATA]	= "GEN_DATA", | 
 | 	[CMD_GEN_START]	= "GEN_START", | 
 | 	[CMD_GEN_STOP]	= "GEN_STOP", | 
 | 	[CMD_GEN_ACK]	= "GEN_ACK", | 
 | 	[CMD_GEN_NACK]	= "GEN_NACK", | 
 | 	[CMD_RET_DATA]	= "RET_DATA", | 
 | 	[CMD_RET_ACK]	= "RET_ACK", | 
 | }; | 
 |  | 
 | struct img_i2c { | 
 | 	struct i2c_adapter adap; | 
 |  | 
 | 	void __iomem *base; | 
 |  | 
 | 	/* | 
 | 	 * The scb core clock is used to get the input frequency, and to disable | 
 | 	 * it after every set of transactions to save some power. | 
 | 	 */ | 
 | 	struct clk *scb_clk, *sys_clk; | 
 | 	unsigned int bitrate; | 
 | 	bool need_wr_rd_fence; | 
 |  | 
 | 	/* state */ | 
 | 	struct completion msg_complete; | 
 | 	spinlock_t lock;	/* lock before doing anything with the state */ | 
 | 	struct i2c_msg msg; | 
 |  | 
 | 	/* After the last transaction, wait for a stop bit */ | 
 | 	bool last_msg; | 
 | 	int msg_status; | 
 |  | 
 | 	enum img_i2c_mode mode; | 
 | 	u32 int_enable;		/* depends on mode */ | 
 | 	u32 line_status;	/* line status over command */ | 
 |  | 
 | 	/* | 
 | 	 * To avoid slave event interrupts in automatic mode, use a timer to | 
 | 	 * poll the abort condition if we don't get an interrupt for too long. | 
 | 	 */ | 
 | 	struct timer_list check_timer; | 
 | 	bool t_halt; | 
 |  | 
 | 	/* atomic mode state */ | 
 | 	bool at_t_done; | 
 | 	bool at_slave_event; | 
 | 	int at_cur_cmd; | 
 | 	u8 at_cur_data; | 
 |  | 
 | 	/* Sequence: either reset or stop. See img_i2c_sequence. */ | 
 | 	u8 *seq; | 
 |  | 
 | 	/* raw mode */ | 
 | 	unsigned int raw_timeout; | 
 | }; | 
 |  | 
 | static int img_i2c_runtime_suspend(struct device *dev); | 
 | static int img_i2c_runtime_resume(struct device *dev); | 
 |  | 
 | static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value) | 
 | { | 
 | 	writel(value, i2c->base + offset); | 
 | } | 
 |  | 
 | static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset) | 
 | { | 
 | 	return readl(i2c->base + offset); | 
 | } | 
 |  | 
 | /* | 
 |  * The code to read from the master read fifo, and write to the master | 
 |  * write fifo, checks a bit in an SCB register before every byte to | 
 |  * ensure that the fifo is not full (write fifo) or empty (read fifo). | 
 |  * Due to clock domain crossing inside the SCB block the updated value | 
 |  * of this bit is only visible after 2 cycles. | 
 |  * | 
 |  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only | 
 |  * revision register), and it's called after reading from or writing to the | 
 |  * fifos to ensure that subsequent reads of the fifo status bits do not read | 
 |  * stale values. | 
 |  */ | 
 | static void img_i2c_wr_rd_fence(struct img_i2c *i2c) | 
 | { | 
 | 	if (i2c->need_wr_rd_fence) { | 
 | 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); | 
 | 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode) | 
 | { | 
 | 	i2c->mode = mode; | 
 | 	i2c->int_enable = img_i2c_int_enable_by_mode[mode]; | 
 | 	i2c->line_status = 0; | 
 | } | 
 |  | 
 | static void img_i2c_raw_op(struct img_i2c *i2c) | 
 | { | 
 | 	i2c->raw_timeout = 0; | 
 | 	img_i2c_writel(i2c, SCB_OVERRIDE_REG, | 
 | 		OVERRIDE_SCLKEN_OVR | | 
 | 		OVERRIDE_SDATEN_OVR | | 
 | 		OVERRIDE_MASTER | | 
 | 		OVERRIDE_LINE_OVR_EN | | 
 | 		OVERRIDE_DIRECT | | 
 | 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | | 
 | 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT)); | 
 | } | 
 |  | 
 | static const char *img_i2c_atomic_op_name(unsigned int cmd) | 
 | { | 
 | 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names))) | 
 | 		return "UNKNOWN"; | 
 | 	return img_i2c_atomic_cmd_names[cmd]; | 
 | } | 
 |  | 
 | /* Send a single atomic mode command to the hardware */ | 
 | static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data) | 
 | { | 
 | 	i2c->at_cur_cmd = cmd; | 
 | 	i2c->at_cur_data = data; | 
 |  | 
 | 	/* work around lack of data setup time when generating data */ | 
 | 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) { | 
 | 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG); | 
 |  | 
 | 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) { | 
 | 			/* hold the data line down for a moment */ | 
 | 			img_i2c_switch_mode(i2c, MODE_RAW); | 
 | 			img_i2c_raw_op(i2c); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dev_dbg(i2c->adap.dev.parent, | 
 | 		"atomic cmd=%s (%d) data=%#x\n", | 
 | 		img_i2c_atomic_op_name(cmd), cmd, data); | 
 | 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK); | 
 | 	i2c->at_slave_event = false; | 
 | 	i2c->line_status = 0; | 
 |  | 
 | 	img_i2c_writel(i2c, SCB_OVERRIDE_REG, | 
 | 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | | 
 | 		OVERRIDE_MASTER | | 
 | 		OVERRIDE_DIRECT | | 
 | 		(data << OVERRIDE_DATA_SHIFT)); | 
 | } | 
 |  | 
 | /* Start a transaction in atomic mode */ | 
 | static void img_i2c_atomic_start(struct img_i2c *i2c) | 
 | { | 
 | 	img_i2c_switch_mode(i2c, MODE_ATOMIC); | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 | 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00); | 
 | } | 
 |  | 
 | static void img_i2c_soft_reset(struct img_i2c *i2c) | 
 | { | 
 | 	i2c->t_halt = false; | 
 | 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0); | 
 | 	img_i2c_writel(i2c, SCB_CONTROL_REG, | 
 | 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET); | 
 | } | 
 |  | 
 | /* | 
 |  * Enable or release transaction halt for control of repeated starts. | 
 |  * In version 3.3 of the IP when transaction halt is set, an interrupt | 
 |  * will be generated after each byte of a transfer instead of after | 
 |  * every transfer but before the stop bit. | 
 |  * Due to this behaviour we have to be careful that every time we | 
 |  * release the transaction halt we have to re-enable it straight away | 
 |  * so that we only process a single byte, not doing so will result in | 
 |  * all remaining bytes been processed and a stop bit being issued, | 
 |  * which will prevent us having a repeated start. | 
 |  */ | 
 | static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (i2c->t_halt == t_halt) | 
 | 		return; | 
 | 	i2c->t_halt = t_halt; | 
 | 	val = img_i2c_readl(i2c, SCB_CONTROL_REG); | 
 | 	if (t_halt) | 
 | 		val |= SCB_CONTROL_TRANSACTION_HALT; | 
 | 	else | 
 | 		val &= ~SCB_CONTROL_TRANSACTION_HALT; | 
 | 	img_i2c_writel(i2c, SCB_CONTROL_REG, val); | 
 | } | 
 |  | 
 | /* Drain data from the FIFO into the buffer (automatic mode) */ | 
 | static void img_i2c_read_fifo(struct img_i2c *i2c) | 
 | { | 
 | 	while (i2c->msg.len) { | 
 | 		u32 fifo_status; | 
 | 		u8 data; | 
 |  | 
 | 		img_i2c_wr_rd_fence(i2c); | 
 | 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); | 
 | 		if (fifo_status & FIFO_READ_EMPTY) | 
 | 			break; | 
 |  | 
 | 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG); | 
 | 		*i2c->msg.buf = data; | 
 |  | 
 | 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff); | 
 | 		i2c->msg.len--; | 
 | 		i2c->msg.buf++; | 
 | 	} | 
 | } | 
 |  | 
 | /* Fill the FIFO with data from the buffer (automatic mode) */ | 
 | static void img_i2c_write_fifo(struct img_i2c *i2c) | 
 | { | 
 | 	while (i2c->msg.len) { | 
 | 		u32 fifo_status; | 
 |  | 
 | 		img_i2c_wr_rd_fence(i2c); | 
 | 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); | 
 | 		if (fifo_status & FIFO_WRITE_FULL) | 
 | 			break; | 
 |  | 
 | 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf); | 
 | 		i2c->msg.len--; | 
 | 		i2c->msg.buf++; | 
 | 	} | 
 |  | 
 | 	/* Disable fifo emptying interrupt if nothing more to write */ | 
 | 	if (!i2c->msg.len) | 
 | 		i2c->int_enable &= ~INT_FIFO_EMPTYING; | 
 | } | 
 |  | 
 | /* Start a read transaction in automatic mode */ | 
 | static void img_i2c_read(struct img_i2c *i2c) | 
 | { | 
 | 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC); | 
 | 	if (!i2c->last_msg) | 
 | 		i2c->int_enable |= INT_SLAVE_EVENT; | 
 |  | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 | 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr); | 
 | 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len); | 
 |  | 
 | 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); | 
 | } | 
 |  | 
 | /* Start a write transaction in automatic mode */ | 
 | static void img_i2c_write(struct img_i2c *i2c) | 
 | { | 
 | 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC); | 
 | 	if (!i2c->last_msg) | 
 | 		i2c->int_enable |= INT_SLAVE_EVENT; | 
 |  | 
 | 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr); | 
 | 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len); | 
 |  | 
 | 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); | 
 | 	img_i2c_write_fifo(i2c); | 
 |  | 
 | 	/* img_i2c_write_fifo() may modify int_enable */ | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 | } | 
 |  | 
 | /* | 
 |  * Indicate that the transaction is complete. This is called from the | 
 |  * ISR to wake up the waiting thread, after which the ISR must not | 
 |  * access any more SCB registers. | 
 |  */ | 
 | static void img_i2c_complete_transaction(struct img_i2c *i2c, int status) | 
 | { | 
 | 	img_i2c_switch_mode(i2c, MODE_INACTIVE); | 
 | 	if (status) { | 
 | 		i2c->msg_status = status; | 
 | 		img_i2c_transaction_halt(i2c, false); | 
 | 	} | 
 | 	complete(&i2c->msg_complete); | 
 | } | 
 |  | 
 | static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c, | 
 | 					u32 int_status, u32 line_status) | 
 | { | 
 | 	/* Stay in raw mode for this, so we don't just loop infinitely */ | 
 | 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data); | 
 | 	img_i2c_switch_mode(i2c, MODE_ATOMIC); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status, | 
 | 				u32 line_status) | 
 | { | 
 | 	if (int_status & INT_TIMING) { | 
 | 		if (i2c->raw_timeout == 0) | 
 | 			return img_i2c_raw_atomic_delay_handler(i2c, | 
 | 				int_status, line_status); | 
 | 		--i2c->raw_timeout; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status) | 
 | { | 
 | 	static const unsigned int continue_bits[] = { | 
 | 		[CMD_GEN_START] = LINESTAT_START_BIT_DET, | 
 | 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V, | 
 | 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET, | 
 | 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V, | 
 | 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET, | 
 | 	}; | 
 | 	int next_cmd = -1; | 
 | 	u8 next_data = 0x00; | 
 |  | 
 | 	if (int_status & INT_SLAVE_EVENT) | 
 | 		i2c->at_slave_event = true; | 
 | 	if (int_status & INT_TRANSACTION_DONE) | 
 | 		i2c->at_t_done = true; | 
 |  | 
 | 	if (!i2c->at_slave_event || !i2c->at_t_done) | 
 | 		return 0; | 
 |  | 
 | 	/* wait if no continue bits are set */ | 
 | 	if (i2c->at_cur_cmd >= 0 && | 
 | 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) { | 
 | 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd]; | 
 |  | 
 | 		if (cont_bits) { | 
 | 			cont_bits |= LINESTAT_ABORT_DET; | 
 | 			if (!(i2c->line_status & cont_bits)) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* follow the sequence of commands in i2c->seq */ | 
 | 	next_cmd = *i2c->seq; | 
 | 	/* stop on a nil */ | 
 | 	if (!next_cmd) { | 
 | 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); | 
 | 		return ISR_COMPLETE(0); | 
 | 	} | 
 | 	/* when generating data, the next byte is the data */ | 
 | 	if (next_cmd == CMD_GEN_DATA) { | 
 | 		++i2c->seq; | 
 | 		next_data = *i2c->seq; | 
 | 	} | 
 | 	++i2c->seq; | 
 | 	img_i2c_atomic_op(i2c, next_cmd, next_data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void img_i2c_reset_start(struct img_i2c *i2c) | 
 | { | 
 | 	/* Initiate the magic dance */ | 
 | 	img_i2c_switch_mode(i2c, MODE_SEQUENCE); | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 | 	i2c->seq = img_i2c_reset_seq; | 
 | 	i2c->at_slave_event = true; | 
 | 	i2c->at_t_done = true; | 
 | 	i2c->at_cur_cmd = -1; | 
 |  | 
 | 	/* img_i2c_reset_seq isn't empty so the following won't fail */ | 
 | 	img_i2c_sequence(i2c, 0); | 
 | } | 
 |  | 
 | static void img_i2c_stop_start(struct img_i2c *i2c) | 
 | { | 
 | 	/* Initiate a stop bit sequence */ | 
 | 	img_i2c_switch_mode(i2c, MODE_SEQUENCE); | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 | 	i2c->seq = img_i2c_stop_seq; | 
 | 	i2c->at_slave_event = true; | 
 | 	i2c->at_t_done = true; | 
 | 	i2c->at_cur_cmd = -1; | 
 |  | 
 | 	/* img_i2c_stop_seq isn't empty so the following won't fail */ | 
 | 	img_i2c_sequence(i2c, 0); | 
 | } | 
 |  | 
 | static unsigned int img_i2c_atomic(struct img_i2c *i2c, | 
 | 				   u32 int_status, | 
 | 				   u32 line_status) | 
 | { | 
 | 	int next_cmd = -1; | 
 | 	u8 next_data = 0x00; | 
 |  | 
 | 	if (int_status & INT_SLAVE_EVENT) | 
 | 		i2c->at_slave_event = true; | 
 | 	if (int_status & INT_TRANSACTION_DONE) | 
 | 		i2c->at_t_done = true; | 
 |  | 
 | 	if (!i2c->at_slave_event || !i2c->at_t_done) | 
 | 		goto next_atomic_cmd; | 
 | 	if (i2c->line_status & LINESTAT_ABORT_DET) { | 
 | 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); | 
 | 		next_cmd = CMD_GEN_STOP; | 
 | 		i2c->msg_status = -EIO; | 
 | 		goto next_atomic_cmd; | 
 | 	} | 
 |  | 
 | 	/* i2c->at_cur_cmd may have completed */ | 
 | 	switch (i2c->at_cur_cmd) { | 
 | 	case CMD_GEN_START: | 
 | 		next_cmd = CMD_GEN_DATA; | 
 | 		next_data = i2c_8bit_addr_from_msg(&i2c->msg); | 
 | 		break; | 
 | 	case CMD_GEN_DATA: | 
 | 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) | 
 | 			next_cmd = CMD_RET_ACK; | 
 | 		break; | 
 | 	case CMD_RET_ACK: | 
 | 		if (i2c->line_status & LINESTAT_ACK_DET || | 
 | 		    (i2c->line_status & LINESTAT_NACK_DET && | 
 | 		    i2c->msg.flags & I2C_M_IGNORE_NAK)) { | 
 | 			if (i2c->msg.len == 0) { | 
 | 				next_cmd = CMD_GEN_STOP; | 
 | 			} else if (i2c->msg.flags & I2C_M_RD) { | 
 | 				next_cmd = CMD_RET_DATA; | 
 | 			} else { | 
 | 				next_cmd = CMD_GEN_DATA; | 
 | 				next_data = *i2c->msg.buf; | 
 | 				--i2c->msg.len; | 
 | 				++i2c->msg.buf; | 
 | 			} | 
 | 		} else if (i2c->line_status & LINESTAT_NACK_DET) { | 
 | 			i2c->msg_status = -EIO; | 
 | 			next_cmd = CMD_GEN_STOP; | 
 | 		} | 
 | 		break; | 
 | 	case CMD_RET_DATA: | 
 | 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) { | 
 | 			*i2c->msg.buf = (i2c->line_status & | 
 | 						LINESTAT_INPUT_DATA) | 
 | 					>> LINESTAT_INPUT_DATA_SHIFT; | 
 | 			--i2c->msg.len; | 
 | 			++i2c->msg.buf; | 
 | 			if (i2c->msg.len) | 
 | 				next_cmd = CMD_GEN_ACK; | 
 | 			else | 
 | 				next_cmd = CMD_GEN_NACK; | 
 | 		} | 
 | 		break; | 
 | 	case CMD_GEN_ACK: | 
 | 		if (i2c->line_status & LINESTAT_ACK_DET) { | 
 | 			next_cmd = CMD_RET_DATA; | 
 | 		} else { | 
 | 			i2c->msg_status = -EIO; | 
 | 			next_cmd = CMD_GEN_STOP; | 
 | 		} | 
 | 		break; | 
 | 	case CMD_GEN_NACK: | 
 | 		next_cmd = CMD_GEN_STOP; | 
 | 		break; | 
 | 	case CMD_GEN_STOP: | 
 | 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); | 
 | 		return ISR_COMPLETE(0); | 
 | 	default: | 
 | 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n", | 
 | 			i2c->at_cur_cmd); | 
 | 		i2c->msg_status = -EIO; | 
 | 		next_cmd = CMD_GEN_STOP; | 
 | 		break; | 
 | 	} | 
 |  | 
 | next_atomic_cmd: | 
 | 	if (next_cmd != -1) { | 
 | 		/* don't actually stop unless we're the last transaction */ | 
 | 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status && | 
 | 						!i2c->last_msg) | 
 | 			return ISR_COMPLETE(0); | 
 | 		img_i2c_atomic_op(i2c, next_cmd, next_data); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Timer function to check if something has gone wrong in automatic mode (so we | 
 |  * don't have to handle so many interrupts just to catch an exception). | 
 |  */ | 
 | static void img_i2c_check_timer(struct timer_list *t) | 
 | { | 
 | 	struct img_i2c *i2c = from_timer(i2c, t, check_timer); | 
 | 	unsigned long flags; | 
 | 	unsigned int line_status; | 
 |  | 
 | 	spin_lock_irqsave(&i2c->lock, flags); | 
 | 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG); | 
 |  | 
 | 	/* check for an abort condition */ | 
 | 	if (line_status & LINESTAT_ABORT_DET) { | 
 | 		dev_dbg(i2c->adap.dev.parent, | 
 | 			"abort condition detected by check timer\n"); | 
 | 		/* enable slave event interrupt mask to trigger irq */ | 
 | 		img_i2c_writel(i2c, SCB_INT_MASK_REG, | 
 | 			       i2c->int_enable | INT_SLAVE_EVENT); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&i2c->lock, flags); | 
 | } | 
 |  | 
 | static unsigned int img_i2c_auto(struct img_i2c *i2c, | 
 | 				 unsigned int int_status, | 
 | 				 unsigned int line_status) | 
 | { | 
 | 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR)) | 
 | 		return ISR_COMPLETE(EIO); | 
 |  | 
 | 	if (line_status & LINESTAT_ABORT_DET) { | 
 | 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); | 
 | 		/* empty the read fifo */ | 
 | 		if ((i2c->msg.flags & I2C_M_RD) && | 
 | 		    (int_status & INT_FIFO_FULL_FILLING)) | 
 | 			img_i2c_read_fifo(i2c); | 
 | 		/* use atomic mode and try to force a stop bit */ | 
 | 		i2c->msg_status = -EIO; | 
 | 		img_i2c_stop_start(i2c); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Enable transaction halt on start bit */ | 
 | 	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) { | 
 | 		img_i2c_transaction_halt(i2c, !i2c->last_msg); | 
 | 		/* we're no longer interested in the slave event */ | 
 | 		i2c->int_enable &= ~INT_SLAVE_EVENT; | 
 | 	} | 
 |  | 
 | 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); | 
 |  | 
 | 	if (int_status & INT_STOP_DETECTED) { | 
 | 		/* Drain remaining data in FIFO and complete transaction */ | 
 | 		if (i2c->msg.flags & I2C_M_RD) | 
 | 			img_i2c_read_fifo(i2c); | 
 | 		return ISR_COMPLETE(0); | 
 | 	} | 
 |  | 
 | 	if (i2c->msg.flags & I2C_M_RD) { | 
 | 		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) { | 
 | 			img_i2c_read_fifo(i2c); | 
 | 			if (i2c->msg.len == 0) | 
 | 				return ISR_WAITSTOP; | 
 | 		} | 
 | 	} else { | 
 | 		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) { | 
 | 			if ((int_status & INT_FIFO_EMPTY) && | 
 | 			    i2c->msg.len == 0) | 
 | 				return ISR_WAITSTOP; | 
 | 			img_i2c_write_fifo(i2c); | 
 | 		} | 
 | 	} | 
 | 	if (int_status & INT_MASTER_HALTED) { | 
 | 		/* | 
 | 		 * Release and then enable transaction halt, to | 
 | 		 * allow only a single byte to proceed. | 
 | 		 */ | 
 | 		img_i2c_transaction_halt(i2c, false); | 
 | 		img_i2c_transaction_halt(i2c, !i2c->last_msg); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t img_i2c_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct img_i2c *i2c = (struct img_i2c *)dev_id; | 
 | 	u32 int_status, line_status; | 
 | 	/* We handle transaction completion AFTER accessing registers */ | 
 | 	unsigned int hret; | 
 |  | 
 | 	/* Read interrupt status register. */ | 
 | 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG); | 
 | 	/* Clear detected interrupts. */ | 
 | 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status); | 
 |  | 
 | 	/* | 
 | 	 * Read line status and clear it until it actually is clear.  We have | 
 | 	 * to be careful not to lose any line status bits that get latched. | 
 | 	 */ | 
 | 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG); | 
 | 	if (line_status & LINESTAT_LATCHED) { | 
 | 		img_i2c_writel(i2c, SCB_CLEAR_REG, | 
 | 			      (line_status & LINESTAT_LATCHED) | 
 | 				>> LINESTAT_CLEAR_SHIFT); | 
 | 		img_i2c_wr_rd_fence(i2c); | 
 | 	} | 
 |  | 
 | 	spin_lock(&i2c->lock); | 
 |  | 
 | 	/* Keep track of line status bits received */ | 
 | 	i2c->line_status &= ~LINESTAT_INPUT_DATA; | 
 | 	i2c->line_status |= line_status; | 
 |  | 
 | 	/* | 
 | 	 * Certain interrupts indicate that sclk low timeout is not | 
 | 	 * a problem. If any of these are set, just continue. | 
 | 	 */ | 
 | 	if ((int_status & INT_SCLK_LOW_TIMEOUT) && | 
 | 	    !(int_status & (INT_SLAVE_EVENT | | 
 | 			    INT_FIFO_EMPTY | | 
 | 			    INT_FIFO_FULL))) { | 
 | 		dev_crit(i2c->adap.dev.parent, | 
 | 			 "fatal: clock low timeout occurred %s addr 0x%02x\n", | 
 | 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing", | 
 | 			 i2c->msg.addr); | 
 | 		hret = ISR_FATAL(EIO); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (i2c->mode == MODE_ATOMIC) | 
 | 		hret = img_i2c_atomic(i2c, int_status, line_status); | 
 | 	else if (i2c->mode == MODE_AUTOMATIC) | 
 | 		hret = img_i2c_auto(i2c, int_status, line_status); | 
 | 	else if (i2c->mode == MODE_SEQUENCE) | 
 | 		hret = img_i2c_sequence(i2c, int_status); | 
 | 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) && | 
 | 			 (line_status & LINESTAT_STOP_BIT_DET)) | 
 | 		hret = ISR_COMPLETE(0); | 
 | 	else if (i2c->mode == MODE_RAW) | 
 | 		hret = img_i2c_raw(i2c, int_status, line_status); | 
 | 	else | 
 | 		hret = 0; | 
 |  | 
 | 	/* Clear detected level interrupts. */ | 
 | 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL); | 
 |  | 
 | out: | 
 | 	if (hret & ISR_WAITSTOP) { | 
 | 		/* | 
 | 		 * Only wait for stop on last message. | 
 | 		 * Also we may already have detected the stop bit. | 
 | 		 */ | 
 | 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET) | 
 | 			hret = ISR_COMPLETE(0); | 
 | 		else | 
 | 			img_i2c_switch_mode(i2c, MODE_WAITSTOP); | 
 | 	} | 
 |  | 
 | 	/* now we've finished using regs, handle transaction completion */ | 
 | 	if (hret & ISR_COMPLETE_M) { | 
 | 		int status = -(hret & ISR_STATUS_M); | 
 |  | 
 | 		img_i2c_complete_transaction(i2c, status); | 
 | 		if (hret & ISR_FATAL_M) | 
 | 			img_i2c_switch_mode(i2c, MODE_FATAL); | 
 | 	} | 
 |  | 
 | 	/* Enable interrupts (int_enable may be altered by changing mode) */ | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 |  | 
 | 	spin_unlock(&i2c->lock); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Force a bus reset sequence and wait for it to complete */ | 
 | static int img_i2c_reset_bus(struct img_i2c *i2c) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long time_left; | 
 |  | 
 | 	spin_lock_irqsave(&i2c->lock, flags); | 
 | 	reinit_completion(&i2c->msg_complete); | 
 | 	img_i2c_reset_start(i2c); | 
 | 	spin_unlock_irqrestore(&i2c->lock, flags); | 
 |  | 
 | 	time_left = wait_for_completion_timeout(&i2c->msg_complete, | 
 | 					      IMG_I2C_TIMEOUT); | 
 | 	if (time_left == 0) | 
 | 		return -ETIMEDOUT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, | 
 | 			int num) | 
 | { | 
 | 	struct img_i2c *i2c = i2c_get_adapdata(adap); | 
 | 	bool atomic = false; | 
 | 	int i, ret; | 
 | 	unsigned long time_left; | 
 |  | 
 | 	if (i2c->mode == MODE_SUSPEND) { | 
 | 		WARN(1, "refusing to service transaction in suspended state\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (i2c->mode == MODE_FATAL) | 
 | 		return -EIO; | 
 |  | 
 | 	for (i = 0; i < num; i++) { | 
 | 		/* | 
 | 		 * 0 byte reads are not possible because the slave could try | 
 | 		 * and pull the data line low, preventing a stop bit. | 
 | 		 */ | 
 | 		if (!msgs[i].len && msgs[i].flags & I2C_M_RD) | 
 | 			return -EIO; | 
 | 		/* | 
 | 		 * 0 byte writes are possible and used for probing, but we | 
 | 		 * cannot do them in automatic mode, so use atomic mode | 
 | 		 * instead. | 
 | 		 * | 
 | 		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented | 
 | 		 * in atomic mode. | 
 | 		 */ | 
 | 		if (!msgs[i].len || | 
 | 		    (msgs[i].flags & I2C_M_IGNORE_NAK)) | 
 | 			atomic = true; | 
 | 	} | 
 |  | 
 | 	ret = pm_runtime_get_sync(adap->dev.parent); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < num; i++) { | 
 | 		struct i2c_msg *msg = &msgs[i]; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&i2c->lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * Make a copy of the message struct. We mustn't modify the | 
 | 		 * original or we'll confuse drivers and i2c-dev. | 
 | 		 */ | 
 | 		i2c->msg = *msg; | 
 | 		i2c->msg_status = 0; | 
 |  | 
 | 		/* | 
 | 		 * After the last message we must have waited for a stop bit. | 
 | 		 * Not waiting can cause problems when the clock is disabled | 
 | 		 * before the stop bit is sent, and the linux I2C interface | 
 | 		 * requires separate transfers not to joined with repeated | 
 | 		 * start. | 
 | 		 */ | 
 | 		i2c->last_msg = (i == num - 1); | 
 | 		reinit_completion(&i2c->msg_complete); | 
 |  | 
 | 		/* | 
 | 		 * Clear line status and all interrupts before starting a | 
 | 		 * transfer, as we may have unserviced interrupts from | 
 | 		 * previous transfers that might be handled in the context | 
 | 		 * of the new transfer. | 
 | 		 */ | 
 | 		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); | 
 | 		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); | 
 |  | 
 | 		if (atomic) { | 
 | 			img_i2c_atomic_start(i2c); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Enable transaction halt if not the last message in | 
 | 			 * the queue so that we can control repeated starts. | 
 | 			 */ | 
 | 			img_i2c_transaction_halt(i2c, !i2c->last_msg); | 
 |  | 
 | 			if (msg->flags & I2C_M_RD) | 
 | 				img_i2c_read(i2c); | 
 | 			else | 
 | 				img_i2c_write(i2c); | 
 |  | 
 | 			/* | 
 | 			 * Release and then enable transaction halt, to | 
 | 			 * allow only a single byte to proceed. | 
 | 			 * This doesn't have an effect on the initial transfer | 
 | 			 * but will allow the following transfers to start | 
 | 			 * processing if the previous transfer was marked as | 
 | 			 * complete while the i2c block was halted. | 
 | 			 */ | 
 | 			img_i2c_transaction_halt(i2c, false); | 
 | 			img_i2c_transaction_halt(i2c, !i2c->last_msg); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&i2c->lock, flags); | 
 |  | 
 | 		time_left = wait_for_completion_timeout(&i2c->msg_complete, | 
 | 						      IMG_I2C_TIMEOUT); | 
 | 		del_timer_sync(&i2c->check_timer); | 
 |  | 
 | 		if (time_left == 0) { | 
 | 			dev_err(adap->dev.parent, "i2c transfer timed out\n"); | 
 | 			i2c->msg_status = -ETIMEDOUT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (i2c->msg_status) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	pm_runtime_mark_last_busy(adap->dev.parent); | 
 | 	pm_runtime_put_autosuspend(adap->dev.parent); | 
 |  | 
 | 	return i2c->msg_status ? i2c->msg_status : num; | 
 | } | 
 |  | 
 | static u32 img_i2c_func(struct i2c_adapter *adap) | 
 | { | 
 | 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; | 
 | } | 
 |  | 
 | static const struct i2c_algorithm img_i2c_algo = { | 
 | 	.master_xfer = img_i2c_xfer, | 
 | 	.functionality = img_i2c_func, | 
 | }; | 
 |  | 
 | static int img_i2c_init(struct img_i2c *i2c) | 
 | { | 
 | 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh; | 
 | 	unsigned int i, data, prescale, inc, int_bitrate, filt; | 
 | 	struct img_i2c_timings timing; | 
 | 	u32 rev; | 
 | 	int ret; | 
 |  | 
 | 	ret = pm_runtime_get_sync(i2c->adap.dev.parent); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG); | 
 | 	if ((rev & 0x00ffffff) < 0x00020200) { | 
 | 		dev_info(i2c->adap.dev.parent, | 
 | 			 "Unknown hardware revision (%d.%d.%d.%d)\n", | 
 | 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff, | 
 | 			 (rev >> 8) & 0xff, rev & 0xff); | 
 | 		pm_runtime_mark_last_busy(i2c->adap.dev.parent); | 
 | 		pm_runtime_put_autosuspend(i2c->adap.dev.parent); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Fencing enabled by default. */ | 
 | 	i2c->need_wr_rd_fence = true; | 
 |  | 
 | 	/* Determine what mode we're in from the bitrate */ | 
 | 	timing = timings[0]; | 
 | 	for (i = 0; i < ARRAY_SIZE(timings); i++) { | 
 | 		if (i2c->bitrate <= timings[i].max_bitrate) { | 
 | 			timing = timings[i]; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) { | 
 | 		dev_warn(i2c->adap.dev.parent, | 
 | 			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n", | 
 | 			 i2c->bitrate, | 
 | 			 timings[ARRAY_SIZE(timings) - 1].max_bitrate); | 
 | 		timing = timings[ARRAY_SIZE(timings) - 1]; | 
 | 		i2c->bitrate = timing.max_bitrate; | 
 | 	} | 
 |  | 
 | 	bitrate_khz = i2c->bitrate / 1000; | 
 | 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000; | 
 |  | 
 | 	/* Find the prescale that would give us that inc (approx delay = 0) */ | 
 | 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz); | 
 | 	prescale = clamp_t(unsigned int, prescale, 1, 8); | 
 | 	clk_khz /= prescale; | 
 |  | 
 | 	/* Setup the clock increment value */ | 
 | 	inc = (256 * 16 * bitrate_khz) / clk_khz; | 
 |  | 
 | 	/* | 
 | 	 * The clock generation logic allows to filter glitches on the bus. | 
 | 	 * This filter is able to remove bus glitches shorter than 50ns. | 
 | 	 * If the clock enable rate is greater than 20 MHz, no filtering | 
 | 	 * is required, so we need to disable it. | 
 | 	 * If it's between the 20-40 MHz range, there's no need to divide | 
 | 	 * the clock to get a filter. | 
 | 	 */ | 
 | 	if (clk_khz < 20000) { | 
 | 		filt = SCB_FILT_DISABLE; | 
 | 	} else if (clk_khz < 40000) { | 
 | 		filt = SCB_FILT_BYPASS; | 
 | 	} else { | 
 | 		/* Calculate filter clock */ | 
 | 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH)); | 
 |  | 
 | 		/* Scale up if needed */ | 
 | 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH)) | 
 | 			inc++; | 
 |  | 
 | 		if (filt > SCB_FILT_INC_MASK) | 
 | 			filt = SCB_FILT_INC_MASK; | 
 |  | 
 | 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT; | 
 | 	} | 
 | 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1); | 
 | 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data); | 
 |  | 
 | 	/* Obtain the clock period of the fx16 clock in ns */ | 
 | 	clk_period = (256 * 1000000) / (clk_khz * inc); | 
 |  | 
 | 	/* Calculate the bitrate in terms of internal clock pulses */ | 
 | 	int_bitrate = 1000000 / (bitrate_khz * clk_period); | 
 | 	if ((1000000 % (bitrate_khz * clk_period)) >= | 
 | 	    ((bitrate_khz * clk_period) / 2)) | 
 | 		int_bitrate++; | 
 |  | 
 | 	/* | 
 | 	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL | 
 | 	 * values from there if they don't meet minimum timing requirements | 
 | 	 */ | 
 | 	tckh = int_bitrate / 2; | 
 | 	tckl = int_bitrate - tckh; | 
 |  | 
 | 	/* Adjust TCKH and TCKL values */ | 
 | 	data = DIV_ROUND_UP(timing.tckl, clk_period); | 
 |  | 
 | 	if (tckl < data) { | 
 | 		tckl = data; | 
 | 		tckh = int_bitrate - tckl; | 
 | 	} | 
 |  | 
 | 	if (tckh > 0) | 
 | 		--tckh; | 
 |  | 
 | 	if (tckl > 0) | 
 | 		--tckl; | 
 |  | 
 | 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh); | 
 | 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl); | 
 |  | 
 | 	/* Setup TSDH value */ | 
 | 	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period); | 
 |  | 
 | 	if (tsdh > 1) | 
 | 		data = tsdh - 1; | 
 | 	else | 
 | 		data = 0x01; | 
 | 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data); | 
 |  | 
 | 	/* This value is used later */ | 
 | 	tsdh = data; | 
 |  | 
 | 	/* Setup TPL value */ | 
 | 	data = timing.tpl / clk_period; | 
 | 	if (data > 0) | 
 | 		--data; | 
 | 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data); | 
 |  | 
 | 	/* Setup TPH value */ | 
 | 	data = timing.tph / clk_period; | 
 | 	if (data > 0) | 
 | 		--data; | 
 | 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data); | 
 |  | 
 | 	/* Setup TSDL value to TPL + TSDH + 2 */ | 
 | 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2); | 
 |  | 
 | 	/* Setup TP2S value */ | 
 | 	data = timing.tp2s / clk_period; | 
 | 	if (data > 0) | 
 | 		--data; | 
 | 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data); | 
 |  | 
 | 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI); | 
 | 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL); | 
 | 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL); | 
 |  | 
 | 	/* Take module out of soft reset and enable clocks */ | 
 | 	img_i2c_soft_reset(i2c); | 
 |  | 
 | 	/* Disable all interrupts */ | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0); | 
 |  | 
 | 	/* Clear all interrupts */ | 
 | 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); | 
 |  | 
 | 	/* Clear the scb_line_status events */ | 
 | 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); | 
 |  | 
 | 	/* Enable interrupts */ | 
 | 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); | 
 |  | 
 | 	/* Perform a synchronous sequence to reset the bus */ | 
 | 	ret = img_i2c_reset_bus(i2c); | 
 |  | 
 | 	pm_runtime_mark_last_busy(i2c->adap.dev.parent); | 
 | 	pm_runtime_put_autosuspend(i2c->adap.dev.parent); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int img_i2c_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct device_node *node = pdev->dev.of_node; | 
 | 	struct img_i2c *i2c; | 
 | 	struct resource *res; | 
 | 	int irq, ret; | 
 | 	u32 val; | 
 |  | 
 | 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL); | 
 | 	if (!i2c) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	i2c->base = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(i2c->base)) | 
 | 		return PTR_ERR(i2c->base); | 
 |  | 
 | 	irq = platform_get_irq(pdev, 0); | 
 | 	if (irq < 0) { | 
 | 		dev_err(&pdev->dev, "can't get irq number\n"); | 
 | 		return irq; | 
 | 	} | 
 |  | 
 | 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys"); | 
 | 	if (IS_ERR(i2c->sys_clk)) { | 
 | 		dev_err(&pdev->dev, "can't get system clock\n"); | 
 | 		return PTR_ERR(i2c->sys_clk); | 
 | 	} | 
 |  | 
 | 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb"); | 
 | 	if (IS_ERR(i2c->scb_clk)) { | 
 | 		dev_err(&pdev->dev, "can't get core clock\n"); | 
 | 		return PTR_ERR(i2c->scb_clk); | 
 | 	} | 
 |  | 
 | 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0, | 
 | 			       pdev->name, i2c); | 
 | 	if (ret) { | 
 | 		dev_err(&pdev->dev, "can't request irq %d\n", irq); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Set up the exception check timer */ | 
 | 	timer_setup(&i2c->check_timer, img_i2c_check_timer, 0); | 
 |  | 
 | 	i2c->bitrate = timings[0].max_bitrate; | 
 | 	if (!of_property_read_u32(node, "clock-frequency", &val)) | 
 | 		i2c->bitrate = val; | 
 |  | 
 | 	i2c_set_adapdata(&i2c->adap, i2c); | 
 | 	i2c->adap.dev.parent = &pdev->dev; | 
 | 	i2c->adap.dev.of_node = node; | 
 | 	i2c->adap.owner = THIS_MODULE; | 
 | 	i2c->adap.algo = &img_i2c_algo; | 
 | 	i2c->adap.retries = 5; | 
 | 	i2c->adap.nr = pdev->id; | 
 | 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C"); | 
 |  | 
 | 	img_i2c_switch_mode(i2c, MODE_INACTIVE); | 
 | 	spin_lock_init(&i2c->lock); | 
 | 	init_completion(&i2c->msg_complete); | 
 |  | 
 | 	platform_set_drvdata(pdev, i2c); | 
 |  | 
 | 	pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT); | 
 | 	pm_runtime_use_autosuspend(&pdev->dev); | 
 | 	pm_runtime_enable(&pdev->dev); | 
 | 	if (!pm_runtime_enabled(&pdev->dev)) { | 
 | 		ret = img_i2c_runtime_resume(&pdev->dev); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	ret = img_i2c_init(i2c); | 
 | 	if (ret) | 
 | 		goto rpm_disable; | 
 |  | 
 | 	ret = i2c_add_numbered_adapter(&i2c->adap); | 
 | 	if (ret < 0) | 
 | 		goto rpm_disable; | 
 |  | 
 | 	return 0; | 
 |  | 
 | rpm_disable: | 
 | 	if (!pm_runtime_enabled(&pdev->dev)) | 
 | 		img_i2c_runtime_suspend(&pdev->dev); | 
 | 	pm_runtime_disable(&pdev->dev); | 
 | 	pm_runtime_dont_use_autosuspend(&pdev->dev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int img_i2c_remove(struct platform_device *dev) | 
 | { | 
 | 	struct img_i2c *i2c = platform_get_drvdata(dev); | 
 |  | 
 | 	i2c_del_adapter(&i2c->adap); | 
 | 	pm_runtime_disable(&dev->dev); | 
 | 	if (!pm_runtime_status_suspended(&dev->dev)) | 
 | 		img_i2c_runtime_suspend(&dev->dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int img_i2c_runtime_suspend(struct device *dev) | 
 | { | 
 | 	struct img_i2c *i2c = dev_get_drvdata(dev); | 
 |  | 
 | 	clk_disable_unprepare(i2c->scb_clk); | 
 | 	clk_disable_unprepare(i2c->sys_clk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int img_i2c_runtime_resume(struct device *dev) | 
 | { | 
 | 	struct img_i2c *i2c = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = clk_prepare_enable(i2c->sys_clk); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "Unable to enable sys clock\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = clk_prepare_enable(i2c->scb_clk); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "Unable to enable scb clock\n"); | 
 | 		clk_disable_unprepare(i2c->sys_clk); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int img_i2c_suspend(struct device *dev) | 
 | { | 
 | 	struct img_i2c *i2c = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = pm_runtime_force_suspend(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	img_i2c_switch_mode(i2c, MODE_SUSPEND); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int img_i2c_resume(struct device *dev) | 
 | { | 
 | 	struct img_i2c *i2c = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = pm_runtime_force_resume(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	img_i2c_init(i2c); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | static const struct dev_pm_ops img_i2c_pm = { | 
 | 	SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend, | 
 | 			   img_i2c_runtime_resume, | 
 | 			   NULL) | 
 | 	SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume) | 
 | }; | 
 |  | 
 | static const struct of_device_id img_scb_i2c_match[] = { | 
 | 	{ .compatible = "img,scb-i2c" }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, img_scb_i2c_match); | 
 |  | 
 | static struct platform_driver img_scb_i2c_driver = { | 
 | 	.driver = { | 
 | 		.name		= "img-i2c-scb", | 
 | 		.of_match_table	= img_scb_i2c_match, | 
 | 		.pm		= &img_i2c_pm, | 
 | 	}, | 
 | 	.probe = img_i2c_probe, | 
 | 	.remove = img_i2c_remove, | 
 | }; | 
 | module_platform_driver(img_scb_i2c_driver); | 
 |  | 
 | MODULE_AUTHOR("James Hogan <jhogan@kernel.org>"); | 
 | MODULE_DESCRIPTION("IMG host I2C driver"); | 
 | MODULE_LICENSE("GPL v2"); |