|  | /* | 
|  | * Microblaze support for cache consistent memory. | 
|  | * Copyright (C) 2010 Michal Simek <monstr@monstr.eu> | 
|  | * Copyright (C) 2010 PetaLogix | 
|  | * Copyright (C) 2005 John Williams <jwilliams@itee.uq.edu.au> | 
|  | * | 
|  | * Based on PowerPC version derived from arch/arm/mm/consistent.c | 
|  | * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) | 
|  | * Copyright (C) 2000 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/dma-noncoherent.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/mmu_context.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/cpuinfo.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | /* I have to use dcache values because I can't relate on ram size */ | 
|  | # define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Consistent memory allocators. Used for DMA devices that want to | 
|  | * share uncached memory with the processor core. | 
|  | * My crufty no-MMU approach is simple. In the HW platform we can optionally | 
|  | * mirror the DDR up above the processor cacheable region.  So, memory accessed | 
|  | * in this mirror region will not be cached.  It's alloced from the same | 
|  | * pool as normal memory, but the handle we return is shifted up into the | 
|  | * uncached region.  This will no doubt cause big problems if memory allocated | 
|  | * here is not also freed properly. -- JW | 
|  | */ | 
|  | void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | 
|  | gfp_t gfp, unsigned long attrs) | 
|  | { | 
|  | unsigned long order, vaddr; | 
|  | void *ret; | 
|  | unsigned int i, err = 0; | 
|  | struct page *page, *end; | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | phys_addr_t pa; | 
|  | struct vm_struct *area; | 
|  | unsigned long va; | 
|  | #endif | 
|  |  | 
|  | if (in_interrupt()) | 
|  | BUG(); | 
|  |  | 
|  | /* Only allocate page size areas. */ | 
|  | size = PAGE_ALIGN(size); | 
|  | order = get_order(size); | 
|  |  | 
|  | vaddr = __get_free_pages(gfp, order); | 
|  | if (!vaddr) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * we need to ensure that there are no cachelines in use, | 
|  | * or worse dirty in this area. | 
|  | */ | 
|  | flush_dcache_range(virt_to_phys((void *)vaddr), | 
|  | virt_to_phys((void *)vaddr) + size); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | ret = (void *)vaddr; | 
|  | /* | 
|  | * Here's the magic!  Note if the uncached shadow is not implemented, | 
|  | * it's up to the calling code to also test that condition and make | 
|  | * other arranegments, such as manually flushing the cache and so on. | 
|  | */ | 
|  | # ifdef CONFIG_XILINX_UNCACHED_SHADOW | 
|  | ret = (void *)((unsigned) ret | UNCACHED_SHADOW_MASK); | 
|  | # endif | 
|  | if ((unsigned int)ret > cpuinfo.dcache_base && | 
|  | (unsigned int)ret < cpuinfo.dcache_high) | 
|  | pr_warn("ERROR: Your cache coherent area is CACHED!!!\n"); | 
|  |  | 
|  | /* dma_handle is same as physical (shadowed) address */ | 
|  | *dma_handle = (dma_addr_t)ret; | 
|  | #else | 
|  | /* Allocate some common virtual space to map the new pages. */ | 
|  | area = get_vm_area(size, VM_ALLOC); | 
|  | if (!area) { | 
|  | free_pages(vaddr, order); | 
|  | return NULL; | 
|  | } | 
|  | va = (unsigned long) area->addr; | 
|  | ret = (void *)va; | 
|  |  | 
|  | /* This gives us the real physical address of the first page. */ | 
|  | *dma_handle = pa = __virt_to_phys(vaddr); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * free wasted pages.  We skip the first page since we know | 
|  | * that it will have count = 1 and won't require freeing. | 
|  | * We also mark the pages in use as reserved so that | 
|  | * remap_page_range works. | 
|  | */ | 
|  | page = virt_to_page(vaddr); | 
|  | end = page + (1 << order); | 
|  |  | 
|  | split_page(page, order); | 
|  |  | 
|  | for (i = 0; i < size && err == 0; i += PAGE_SIZE) { | 
|  | #ifdef CONFIG_MMU | 
|  | /* MS: This is the whole magic - use cache inhibit pages */ | 
|  | err = map_page(va + i, pa + i, _PAGE_KERNEL | _PAGE_NO_CACHE); | 
|  | #endif | 
|  |  | 
|  | SetPageReserved(page); | 
|  | page++; | 
|  | } | 
|  |  | 
|  | /* Free the otherwise unused pages. */ | 
|  | while (page < end) { | 
|  | __free_page(page); | 
|  | page++; | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | free_pages(vaddr, order); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static pte_t *consistent_virt_to_pte(void *vaddr) | 
|  | { | 
|  | unsigned long addr = (unsigned long)vaddr; | 
|  |  | 
|  | return pte_offset_kernel(pmd_offset(pgd_offset_k(addr), addr), addr); | 
|  | } | 
|  |  | 
|  | unsigned long consistent_virt_to_pfn(void *vaddr) | 
|  | { | 
|  | pte_t *ptep = consistent_virt_to_pte(vaddr); | 
|  |  | 
|  | if (pte_none(*ptep) || !pte_present(*ptep)) | 
|  | return 0; | 
|  |  | 
|  | return pte_pfn(*ptep); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * free page(s) as defined by the above mapping. | 
|  | */ | 
|  | void arch_dma_free(struct device *dev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_addr, unsigned long attrs) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (in_interrupt()) | 
|  | BUG(); | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | /* Clear SHADOW_MASK bit in address, and free as per usual */ | 
|  | # ifdef CONFIG_XILINX_UNCACHED_SHADOW | 
|  | vaddr = (void *)((unsigned)vaddr & ~UNCACHED_SHADOW_MASK); | 
|  | # endif | 
|  | page = virt_to_page(vaddr); | 
|  |  | 
|  | do { | 
|  | __free_reserved_page(page); | 
|  | page++; | 
|  | } while (size -= PAGE_SIZE); | 
|  | #else | 
|  | do { | 
|  | pte_t *ptep = consistent_virt_to_pte(vaddr); | 
|  | unsigned long pfn; | 
|  |  | 
|  | if (!pte_none(*ptep) && pte_present(*ptep)) { | 
|  | pfn = pte_pfn(*ptep); | 
|  | pte_clear(&init_mm, (unsigned int)vaddr, ptep); | 
|  | if (pfn_valid(pfn)) { | 
|  | page = pfn_to_page(pfn); | 
|  | __free_reserved_page(page); | 
|  | } | 
|  | } | 
|  | vaddr += PAGE_SIZE; | 
|  | } while (size -= PAGE_SIZE); | 
|  |  | 
|  | /* flush tlb */ | 
|  | flush_tlb_all(); | 
|  | #endif | 
|  | } |