|  | /* | 
|  | *  linux/drivers/video/pxafb.c | 
|  | * | 
|  | *  Copyright (C) 1999 Eric A. Thomas. | 
|  | *  Copyright (C) 2004 Jean-Frederic Clere. | 
|  | *  Copyright (C) 2004 Ian Campbell. | 
|  | *  Copyright (C) 2004 Jeff Lackey. | 
|  | *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas | 
|  | *  which in turn is | 
|  | *   Based on acornfb.c Copyright (C) Russell King. | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file COPYING in the main directory of this archive for | 
|  | * more details. | 
|  | * | 
|  | *	        Intel PXA250/210 LCD Controller Frame Buffer Driver | 
|  | * | 
|  | * Please direct your questions and comments on this driver to the following | 
|  | * email address: | 
|  | * | 
|  | *	linux-arm-kernel@lists.arm.linux.org.uk | 
|  | * | 
|  | * Add support for overlay1 and overlay2 based on pxafb_overlay.c: | 
|  | * | 
|  | *   Copyright (C) 2004, Intel Corporation | 
|  | * | 
|  | *     2003/08/27: <yu.tang@intel.com> | 
|  | *     2004/03/10: <stanley.cai@intel.com> | 
|  | *     2004/10/28: <yan.yin@intel.com> | 
|  | * | 
|  | *   Copyright (C) 2006-2008 Marvell International Ltd. | 
|  | *   All Rights Reserved | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fb.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/of_graph.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <video/of_display_timing.h> | 
|  | #include <video/videomode.h> | 
|  |  | 
|  | #include <mach/hardware.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/div64.h> | 
|  | #include <mach/bitfield.h> | 
|  | #include <linux/platform_data/video-pxafb.h> | 
|  |  | 
|  | /* | 
|  | * Complain if VAR is out of range. | 
|  | */ | 
|  | #define DEBUG_VAR 1 | 
|  |  | 
|  | #include "pxafb.h" | 
|  |  | 
|  | /* Bits which should not be set in machine configuration structures */ | 
|  | #define LCCR0_INVALID_CONFIG_MASK	(LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\ | 
|  | LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\ | 
|  | LCCR0_SFM | LCCR0_LDM | LCCR0_ENB) | 
|  |  | 
|  | #define LCCR3_INVALID_CONFIG_MASK	(LCCR3_HSP | LCCR3_VSP |\ | 
|  | LCCR3_PCD | LCCR3_BPP(0xf)) | 
|  |  | 
|  | static int pxafb_activate_var(struct fb_var_screeninfo *var, | 
|  | struct pxafb_info *); | 
|  | static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); | 
|  | static void setup_base_frame(struct pxafb_info *fbi, | 
|  | struct fb_var_screeninfo *var, int branch); | 
|  | static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, | 
|  | unsigned long offset, size_t size); | 
|  |  | 
|  | static unsigned long video_mem_size = 0; | 
|  |  | 
|  | static inline unsigned long | 
|  | lcd_readl(struct pxafb_info *fbi, unsigned int off) | 
|  | { | 
|  | return __raw_readl(fbi->mmio_base + off); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val) | 
|  | { | 
|  | __raw_writel(val, fbi->mmio_base + off); | 
|  | } | 
|  |  | 
|  | static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | /* | 
|  | * We need to handle two requests being made at the same time. | 
|  | * There are two important cases: | 
|  | *  1. When we are changing VT (C_REENABLE) while unblanking | 
|  | *     (C_ENABLE) We must perform the unblanking, which will | 
|  | *     do our REENABLE for us. | 
|  | *  2. When we are blanking, but immediately unblank before | 
|  | *     we have blanked.  We do the "REENABLE" thing here as | 
|  | *     well, just to be sure. | 
|  | */ | 
|  | if (fbi->task_state == C_ENABLE && state == C_REENABLE) | 
|  | state = (u_int) -1; | 
|  | if (fbi->task_state == C_DISABLE && state == C_ENABLE) | 
|  | state = C_REENABLE; | 
|  |  | 
|  | if (state != (u_int)-1) { | 
|  | fbi->task_state = state; | 
|  | schedule_work(&fbi->task); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) | 
|  | { | 
|  | chan &= 0xffff; | 
|  | chan >>= 16 - bf->length; | 
|  | return chan << bf->offset; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | u_int trans, struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | u_int val; | 
|  |  | 
|  | if (regno >= fbi->palette_size) | 
|  | return 1; | 
|  |  | 
|  | if (fbi->fb.var.grayscale) { | 
|  | fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) { | 
|  | case LCCR4_PAL_FOR_0: | 
|  | val  = ((red   >>  0) & 0xf800); | 
|  | val |= ((green >>  5) & 0x07e0); | 
|  | val |= ((blue  >> 11) & 0x001f); | 
|  | fbi->palette_cpu[regno] = val; | 
|  | break; | 
|  | case LCCR4_PAL_FOR_1: | 
|  | val  = ((red   << 8) & 0x00f80000); | 
|  | val |= ((green >> 0) & 0x0000fc00); | 
|  | val |= ((blue  >> 8) & 0x000000f8); | 
|  | ((u32 *)(fbi->palette_cpu))[regno] = val; | 
|  | break; | 
|  | case LCCR4_PAL_FOR_2: | 
|  | val  = ((red   << 8) & 0x00fc0000); | 
|  | val |= ((green >> 0) & 0x0000fc00); | 
|  | val |= ((blue  >> 8) & 0x000000fc); | 
|  | ((u32 *)(fbi->palette_cpu))[regno] = val; | 
|  | break; | 
|  | case LCCR4_PAL_FOR_3: | 
|  | val  = ((red   << 8) & 0x00ff0000); | 
|  | val |= ((green >> 0) & 0x0000ff00); | 
|  | val |= ((blue  >> 8) & 0x000000ff); | 
|  | ((u32 *)(fbi->palette_cpu))[regno] = val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | u_int trans, struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | unsigned int val; | 
|  | int ret = 1; | 
|  |  | 
|  | /* | 
|  | * If inverse mode was selected, invert all the colours | 
|  | * rather than the register number.  The register number | 
|  | * is what you poke into the framebuffer to produce the | 
|  | * colour you requested. | 
|  | */ | 
|  | if (fbi->cmap_inverse) { | 
|  | red   = 0xffff - red; | 
|  | green = 0xffff - green; | 
|  | blue  = 0xffff - blue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If greyscale is true, then we convert the RGB value | 
|  | * to greyscale no matter what visual we are using. | 
|  | */ | 
|  | if (fbi->fb.var.grayscale) | 
|  | red = green = blue = (19595 * red + 38470 * green + | 
|  | 7471 * blue) >> 16; | 
|  |  | 
|  | switch (fbi->fb.fix.visual) { | 
|  | case FB_VISUAL_TRUECOLOR: | 
|  | /* | 
|  | * 16-bit True Colour.  We encode the RGB value | 
|  | * according to the RGB bitfield information. | 
|  | */ | 
|  | if (regno < 16) { | 
|  | u32 *pal = fbi->fb.pseudo_palette; | 
|  |  | 
|  | val  = chan_to_field(red, &fbi->fb.var.red); | 
|  | val |= chan_to_field(green, &fbi->fb.var.green); | 
|  | val |= chan_to_field(blue, &fbi->fb.var.blue); | 
|  |  | 
|  | pal[regno] = val; | 
|  | ret = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FB_VISUAL_STATIC_PSEUDOCOLOR: | 
|  | case FB_VISUAL_PSEUDOCOLOR: | 
|  | ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */ | 
|  | static inline int var_to_depth(struct fb_var_screeninfo *var) | 
|  | { | 
|  | return var->red.length + var->green.length + | 
|  | var->blue.length + var->transp.length; | 
|  | } | 
|  |  | 
|  | /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */ | 
|  | static int pxafb_var_to_bpp(struct fb_var_screeninfo *var) | 
|  | { | 
|  | int bpp = -EINVAL; | 
|  |  | 
|  | switch (var->bits_per_pixel) { | 
|  | case 1:  bpp = 0; break; | 
|  | case 2:  bpp = 1; break; | 
|  | case 4:  bpp = 2; break; | 
|  | case 8:  bpp = 3; break; | 
|  | case 16: bpp = 4; break; | 
|  | case 24: | 
|  | switch (var_to_depth(var)) { | 
|  | case 18: bpp = 6; break; /* 18-bits/pixel packed */ | 
|  | case 19: bpp = 8; break; /* 19-bits/pixel packed */ | 
|  | case 24: bpp = 9; break; | 
|  | } | 
|  | break; | 
|  | case 32: | 
|  | switch (var_to_depth(var)) { | 
|  | case 18: bpp = 5; break; /* 18-bits/pixel unpacked */ | 
|  | case 19: bpp = 7; break; /* 19-bits/pixel unpacked */ | 
|  | case 25: bpp = 10; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return bpp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  pxafb_var_to_lccr3(): | 
|  | *    Convert a bits per pixel value to the correct bit pattern for LCCR3 | 
|  | * | 
|  | *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an | 
|  | *  implication of the acutal use of transparency bit,  which we handle it | 
|  | *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel | 
|  | *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP. | 
|  | * | 
|  | *  Transparency for palette pixel formats is not supported at the moment. | 
|  | */ | 
|  | static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var) | 
|  | { | 
|  | int bpp = pxafb_var_to_bpp(var); | 
|  | uint32_t lccr3; | 
|  |  | 
|  | if (bpp < 0) | 
|  | return 0; | 
|  |  | 
|  | lccr3 = LCCR3_BPP(bpp); | 
|  |  | 
|  | switch (var_to_depth(var)) { | 
|  | case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break; | 
|  | case 18: lccr3 |= LCCR3_PDFOR_3; break; | 
|  | case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3; | 
|  | break; | 
|  | case 19: | 
|  | case 25: lccr3 |= LCCR3_PDFOR_0; break; | 
|  | } | 
|  | return lccr3; | 
|  | } | 
|  |  | 
|  | #define SET_PIXFMT(v, r, g, b, t)				\ | 
|  | ({								\ | 
|  | (v)->transp.offset = (t) ? (r) + (g) + (b) : 0;		\ | 
|  | (v)->transp.length = (t) ? (t) : 0;			\ | 
|  | (v)->blue.length   = (b); (v)->blue.offset = 0;		\ | 
|  | (v)->green.length  = (g); (v)->green.offset = (b);	\ | 
|  | (v)->red.length    = (r); (v)->red.offset = (b) + (g);	\ | 
|  | }) | 
|  |  | 
|  | /* set the RGBT bitfields of fb_var_screeninf according to | 
|  | * var->bits_per_pixel and given depth | 
|  | */ | 
|  | static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth) | 
|  | { | 
|  | if (depth == 0) | 
|  | depth = var->bits_per_pixel; | 
|  |  | 
|  | if (var->bits_per_pixel < 16) { | 
|  | /* indexed pixel formats */ | 
|  | var->red.offset    = 0; var->red.length    = 8; | 
|  | var->green.offset  = 0; var->green.length  = 8; | 
|  | var->blue.offset   = 0; var->blue.length   = 8; | 
|  | var->transp.offset = 0; var->transp.length = 8; | 
|  | } | 
|  |  | 
|  | switch (depth) { | 
|  | case 16: var->transp.length ? | 
|  | SET_PIXFMT(var, 5, 5, 5, 1) :		/* RGBT555 */ | 
|  | SET_PIXFMT(var, 5, 6, 5, 0); break;	/* RGB565 */ | 
|  | case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;	/* RGB666 */ | 
|  | case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;	/* RGBT666 */ | 
|  | case 24: var->transp.length ? | 
|  | SET_PIXFMT(var, 8, 8, 7, 1) :		/* RGBT887 */ | 
|  | SET_PIXFMT(var, 8, 8, 8, 0); break;	/* RGB888 */ | 
|  | case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;	/* RGBT888 */ | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | /* | 
|  | *  pxafb_display_dma_period() | 
|  | *    Calculate the minimum period (in picoseconds) between two DMA | 
|  | *    requests for the LCD controller.  If we hit this, it means we're | 
|  | *    doing nothing but LCD DMA. | 
|  | */ | 
|  | static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) | 
|  | { | 
|  | /* | 
|  | * Period = pixclock * bits_per_byte * bytes_per_transfer | 
|  | *              / memory_bits_per_pixel; | 
|  | */ | 
|  | return var->pixclock * 8 * 16 / var->bits_per_pixel; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Select the smallest mode that allows the desired resolution to be | 
|  | * displayed. If desired parameters can be rounded up. | 
|  | */ | 
|  | static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | struct pxafb_mode_info *mode = NULL; | 
|  | struct pxafb_mode_info *modelist = mach->modes; | 
|  | unsigned int best_x = 0xffffffff, best_y = 0xffffffff; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < mach->num_modes; i++) { | 
|  | if (modelist[i].xres >= var->xres && | 
|  | modelist[i].yres >= var->yres && | 
|  | modelist[i].xres < best_x && | 
|  | modelist[i].yres < best_y && | 
|  | modelist[i].bpp >= var->bits_per_pixel) { | 
|  | best_x = modelist[i].xres; | 
|  | best_y = modelist[i].yres; | 
|  | mode = &modelist[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | static void pxafb_setmode(struct fb_var_screeninfo *var, | 
|  | struct pxafb_mode_info *mode) | 
|  | { | 
|  | var->xres		= mode->xres; | 
|  | var->yres		= mode->yres; | 
|  | var->bits_per_pixel	= mode->bpp; | 
|  | var->pixclock		= mode->pixclock; | 
|  | var->hsync_len		= mode->hsync_len; | 
|  | var->left_margin	= mode->left_margin; | 
|  | var->right_margin	= mode->right_margin; | 
|  | var->vsync_len		= mode->vsync_len; | 
|  | var->upper_margin	= mode->upper_margin; | 
|  | var->lower_margin	= mode->lower_margin; | 
|  | var->sync		= mode->sync; | 
|  | var->grayscale		= mode->cmap_greyscale; | 
|  | var->transp.length	= mode->transparency; | 
|  |  | 
|  | /* set the initial RGBA bitfields */ | 
|  | pxafb_set_pixfmt(var, mode->depth); | 
|  | } | 
|  |  | 
|  | static int pxafb_adjust_timing(struct pxafb_info *fbi, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | int line_length; | 
|  |  | 
|  | var->xres = max_t(int, var->xres, MIN_XRES); | 
|  | var->yres = max_t(int, var->yres, MIN_YRES); | 
|  |  | 
|  | if (!(fbi->lccr0 & LCCR0_LCDT)) { | 
|  | clamp_val(var->hsync_len, 1, 64); | 
|  | clamp_val(var->vsync_len, 1, 64); | 
|  | clamp_val(var->left_margin,  1, 255); | 
|  | clamp_val(var->right_margin, 1, 255); | 
|  | clamp_val(var->upper_margin, 1, 255); | 
|  | clamp_val(var->lower_margin, 1, 255); | 
|  | } | 
|  |  | 
|  | /* make sure each line is aligned on word boundary */ | 
|  | line_length = var->xres * var->bits_per_pixel / 8; | 
|  | line_length = ALIGN(line_length, 4); | 
|  | var->xres = line_length * 8 / var->bits_per_pixel; | 
|  |  | 
|  | /* we don't support xpan, force xres_virtual to be equal to xres */ | 
|  | var->xres_virtual = var->xres; | 
|  |  | 
|  | if (var->accel_flags & FB_ACCELF_TEXT) | 
|  | var->yres_virtual = fbi->fb.fix.smem_len / line_length; | 
|  | else | 
|  | var->yres_virtual = max(var->yres_virtual, var->yres); | 
|  |  | 
|  | /* check for limits */ | 
|  | if (var->xres > MAX_XRES || var->yres > MAX_YRES) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (var->yres > var->yres_virtual) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  pxafb_check_var(): | 
|  | *    Get the video params out of 'var'. If a value doesn't fit, round it up, | 
|  | *    if it's too big, return -EINVAL. | 
|  | * | 
|  | *    Round up in the following order: bits_per_pixel, xres, | 
|  | *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, | 
|  | *    bitfields, horizontal timing, vertical timing. | 
|  | */ | 
|  | static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | struct pxafb_mach_info *inf = fbi->inf; | 
|  | int err; | 
|  |  | 
|  | if (inf->fixed_modes) { | 
|  | struct pxafb_mode_info *mode; | 
|  |  | 
|  | mode = pxafb_getmode(inf, var); | 
|  | if (!mode) | 
|  | return -EINVAL; | 
|  | pxafb_setmode(var, mode); | 
|  | } | 
|  |  | 
|  | /* do a test conversion to BPP fields to check the color formats */ | 
|  | err = pxafb_var_to_bpp(var); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | pxafb_set_pixfmt(var, var_to_depth(var)); | 
|  |  | 
|  | err = pxafb_adjust_timing(fbi, var); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | pr_debug("pxafb: dma period = %d ps\n", | 
|  | pxafb_display_dma_period(var)); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pxafb_set_par(): | 
|  | *	Set the user defined part of the display for the specified console | 
|  | */ | 
|  | static int pxafb_set_par(struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | struct fb_var_screeninfo *var = &info->var; | 
|  |  | 
|  | if (var->bits_per_pixel >= 16) | 
|  | fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; | 
|  | else if (!fbi->cmap_static) | 
|  | fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; | 
|  | else { | 
|  | /* | 
|  | * Some people have weird ideas about wanting static | 
|  | * pseudocolor maps.  I suspect their user space | 
|  | * applications are broken. | 
|  | */ | 
|  | fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; | 
|  | } | 
|  |  | 
|  | fbi->fb.fix.line_length = var->xres_virtual * | 
|  | var->bits_per_pixel / 8; | 
|  | if (var->bits_per_pixel >= 16) | 
|  | fbi->palette_size = 0; | 
|  | else | 
|  | fbi->palette_size = var->bits_per_pixel == 1 ? | 
|  | 4 : 1 << var->bits_per_pixel; | 
|  |  | 
|  | fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0]; | 
|  |  | 
|  | if (fbi->fb.var.bits_per_pixel >= 16) | 
|  | fb_dealloc_cmap(&fbi->fb.cmap); | 
|  | else | 
|  | fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); | 
|  |  | 
|  | pxafb_activate_var(var, fbi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxafb_pan_display(struct fb_var_screeninfo *var, | 
|  | struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | struct fb_var_screeninfo newvar; | 
|  | int dma = DMA_MAX + DMA_BASE; | 
|  |  | 
|  | if (fbi->state != C_ENABLE) | 
|  | return 0; | 
|  |  | 
|  | /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what | 
|  | * was passed in and copy the rest from the old screeninfo. | 
|  | */ | 
|  | memcpy(&newvar, &fbi->fb.var, sizeof(newvar)); | 
|  | newvar.xoffset = var->xoffset; | 
|  | newvar.yoffset = var->yoffset; | 
|  | newvar.vmode &= ~FB_VMODE_YWRAP; | 
|  | newvar.vmode |= var->vmode & FB_VMODE_YWRAP; | 
|  |  | 
|  | setup_base_frame(fbi, &newvar, 1); | 
|  |  | 
|  | if (fbi->lccr0 & LCCR0_SDS) | 
|  | lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1); | 
|  |  | 
|  | lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pxafb_blank(): | 
|  | *	Blank the display by setting all palette values to zero.  Note, the | 
|  | * 	16 bpp mode does not really use the palette, so this will not | 
|  | *      blank the display in all modes. | 
|  | */ | 
|  | static int pxafb_blank(int blank, struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | int i; | 
|  |  | 
|  | switch (blank) { | 
|  | case FB_BLANK_POWERDOWN: | 
|  | case FB_BLANK_VSYNC_SUSPEND: | 
|  | case FB_BLANK_HSYNC_SUSPEND: | 
|  | case FB_BLANK_NORMAL: | 
|  | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || | 
|  | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) | 
|  | for (i = 0; i < fbi->palette_size; i++) | 
|  | pxafb_setpalettereg(i, 0, 0, 0, 0, info); | 
|  |  | 
|  | pxafb_schedule_work(fbi, C_DISABLE); | 
|  | /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ | 
|  | break; | 
|  |  | 
|  | case FB_BLANK_UNBLANK: | 
|  | /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ | 
|  | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || | 
|  | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) | 
|  | fb_set_cmap(&fbi->fb.cmap, info); | 
|  | pxafb_schedule_work(fbi, C_ENABLE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct fb_ops pxafb_ops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .fb_check_var	= pxafb_check_var, | 
|  | .fb_set_par	= pxafb_set_par, | 
|  | .fb_pan_display	= pxafb_pan_display, | 
|  | .fb_setcolreg	= pxafb_setcolreg, | 
|  | .fb_fillrect	= cfb_fillrect, | 
|  | .fb_copyarea	= cfb_copyarea, | 
|  | .fb_imageblit	= cfb_imageblit, | 
|  | .fb_blank	= pxafb_blank, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_OVERLAY | 
|  | static void overlay1fb_setup(struct pxafb_layer *ofb) | 
|  | { | 
|  | int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; | 
|  | unsigned long start = ofb->video_mem_phys; | 
|  | setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size); | 
|  | } | 
|  |  | 
|  | /* Depending on the enable status of overlay1/2, the DMA should be | 
|  | * updated from FDADRx (when disabled) or FBRx (when enabled). | 
|  | */ | 
|  | static void overlay1fb_enable(struct pxafb_layer *ofb) | 
|  | { | 
|  | int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN; | 
|  | uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0); | 
|  |  | 
|  | lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1); | 
|  | lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]); | 
|  | lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN); | 
|  | } | 
|  |  | 
|  | static void overlay1fb_disable(struct pxafb_layer *ofb) | 
|  | { | 
|  | uint32_t lccr5; | 
|  |  | 
|  | if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN)) | 
|  | return; | 
|  |  | 
|  | lccr5 = lcd_readl(ofb->fbi, LCCR5); | 
|  |  | 
|  | lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN); | 
|  |  | 
|  | lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1)); | 
|  | lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1)); | 
|  | lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3); | 
|  |  | 
|  | if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) | 
|  | pr_warn("%s: timeout disabling overlay1\n", __func__); | 
|  |  | 
|  | lcd_writel(ofb->fbi, LCCR5, lccr5); | 
|  | } | 
|  |  | 
|  | static void overlay2fb_setup(struct pxafb_layer *ofb) | 
|  | { | 
|  | int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); | 
|  | unsigned long start[3] = { ofb->video_mem_phys, 0, 0 }; | 
|  |  | 
|  | if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) { | 
|  | size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; | 
|  | setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); | 
|  | } else { | 
|  | size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual; | 
|  | switch (pfor) { | 
|  | case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break; | 
|  | case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break; | 
|  | case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break; | 
|  | } | 
|  | start[1] = start[0] + size; | 
|  | start[2] = start[1] + size / div; | 
|  | setup_frame_dma(ofb->fbi, DMA_OV2_Y,  -1, start[0], size); | 
|  | setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div); | 
|  | setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void overlay2fb_enable(struct pxafb_layer *ofb) | 
|  | { | 
|  | int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); | 
|  | int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN; | 
|  | uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y]  | (enabled ? 0x1 : 0); | 
|  | uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0); | 
|  | uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0); | 
|  |  | 
|  | if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) | 
|  | lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); | 
|  | else { | 
|  | lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); | 
|  | lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3); | 
|  | lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4); | 
|  | } | 
|  | lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]); | 
|  | lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN); | 
|  | } | 
|  |  | 
|  | static void overlay2fb_disable(struct pxafb_layer *ofb) | 
|  | { | 
|  | uint32_t lccr5; | 
|  |  | 
|  | if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN)) | 
|  | return; | 
|  |  | 
|  | lccr5 = lcd_readl(ofb->fbi, LCCR5); | 
|  |  | 
|  | lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN); | 
|  |  | 
|  | lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2)); | 
|  | lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2)); | 
|  | lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y]  | 0x3); | 
|  | lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3); | 
|  | lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3); | 
|  |  | 
|  | if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) | 
|  | pr_warn("%s: timeout disabling overlay2\n", __func__); | 
|  | } | 
|  |  | 
|  | static struct pxafb_layer_ops ofb_ops[] = { | 
|  | [0] = { | 
|  | .enable		= overlay1fb_enable, | 
|  | .disable	= overlay1fb_disable, | 
|  | .setup		= overlay1fb_setup, | 
|  | }, | 
|  | [1] = { | 
|  | .enable		= overlay2fb_enable, | 
|  | .disable	= overlay2fb_disable, | 
|  | .setup		= overlay2fb_setup, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int overlayfb_open(struct fb_info *info, int user) | 
|  | { | 
|  | struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); | 
|  |  | 
|  | /* no support for framebuffer console on overlay */ | 
|  | if (user == 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (ofb->usage++ == 0) { | 
|  | /* unblank the base framebuffer */ | 
|  | console_lock(); | 
|  | fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK); | 
|  | console_unlock(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int overlayfb_release(struct fb_info *info, int user) | 
|  | { | 
|  | struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); | 
|  |  | 
|  | if (ofb->usage == 1) { | 
|  | ofb->ops->disable(ofb); | 
|  | ofb->fb.var.height	= -1; | 
|  | ofb->fb.var.width	= -1; | 
|  | ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0; | 
|  | ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0; | 
|  |  | 
|  | ofb->usage--; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int overlayfb_check_var(struct fb_var_screeninfo *var, | 
|  | struct fb_info *info) | 
|  | { | 
|  | struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); | 
|  | struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var; | 
|  | int xpos, ypos, pfor, bpp; | 
|  |  | 
|  | xpos = NONSTD_TO_XPOS(var->nonstd); | 
|  | ypos = NONSTD_TO_YPOS(var->nonstd); | 
|  | pfor = NONSTD_TO_PFOR(var->nonstd); | 
|  |  | 
|  | bpp = pxafb_var_to_bpp(var); | 
|  | if (bpp < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* no support for YUV format on overlay1 */ | 
|  | if (ofb->id == OVERLAY1 && pfor != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */ | 
|  | switch (pfor) { | 
|  | case OVERLAY_FORMAT_RGB: | 
|  | bpp = pxafb_var_to_bpp(var); | 
|  | if (bpp < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | pxafb_set_pixfmt(var, var_to_depth(var)); | 
|  | break; | 
|  | case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; | 
|  | case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break; | 
|  | case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break; | 
|  | case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* each line must start at a 32-bit word boundary */ | 
|  | if ((xpos * bpp) % 32) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* xres must align on 32-bit word boundary */ | 
|  | var->xres = roundup(var->xres * bpp, 32) / bpp; | 
|  |  | 
|  | if ((xpos + var->xres > base_var->xres) || | 
|  | (ypos + var->yres > base_var->yres)) | 
|  | return -EINVAL; | 
|  |  | 
|  | var->xres_virtual = var->xres; | 
|  | var->yres_virtual = max(var->yres, var->yres_virtual); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int overlayfb_check_video_memory(struct pxafb_layer *ofb) | 
|  | { | 
|  | struct fb_var_screeninfo *var = &ofb->fb.var; | 
|  | int pfor = NONSTD_TO_PFOR(var->nonstd); | 
|  | int size, bpp = 0; | 
|  |  | 
|  | switch (pfor) { | 
|  | case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break; | 
|  | case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; | 
|  | case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break; | 
|  | case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break; | 
|  | case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break; | 
|  | } | 
|  |  | 
|  | ofb->fb.fix.line_length = var->xres_virtual * bpp / 8; | 
|  |  | 
|  | size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual); | 
|  |  | 
|  | if (ofb->video_mem) { | 
|  | if (ofb->video_mem_size >= size) | 
|  | return 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int overlayfb_set_par(struct fb_info *info) | 
|  | { | 
|  | struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); | 
|  | struct fb_var_screeninfo *var = &info->var; | 
|  | int xpos, ypos, pfor, bpp, ret; | 
|  |  | 
|  | ret = overlayfb_check_video_memory(ofb); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | bpp  = pxafb_var_to_bpp(var); | 
|  | xpos = NONSTD_TO_XPOS(var->nonstd); | 
|  | ypos = NONSTD_TO_YPOS(var->nonstd); | 
|  | pfor = NONSTD_TO_PFOR(var->nonstd); | 
|  |  | 
|  | ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) | | 
|  | OVLxC1_BPP(bpp); | 
|  | ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos); | 
|  |  | 
|  | if (ofb->id == OVERLAY2) | 
|  | ofb->control[1] |= OVL2C2_PFOR(pfor); | 
|  |  | 
|  | ofb->ops->setup(ofb); | 
|  | ofb->ops->enable(ofb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct fb_ops overlay_fb_ops = { | 
|  | .owner			= THIS_MODULE, | 
|  | .fb_open		= overlayfb_open, | 
|  | .fb_release		= overlayfb_release, | 
|  | .fb_check_var 		= overlayfb_check_var, | 
|  | .fb_set_par		= overlayfb_set_par, | 
|  | }; | 
|  |  | 
|  | static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb, | 
|  | int id) | 
|  | { | 
|  | sprintf(ofb->fb.fix.id, "overlay%d", id + 1); | 
|  |  | 
|  | ofb->fb.fix.type		= FB_TYPE_PACKED_PIXELS; | 
|  | ofb->fb.fix.xpanstep		= 0; | 
|  | ofb->fb.fix.ypanstep		= 1; | 
|  |  | 
|  | ofb->fb.var.activate		= FB_ACTIVATE_NOW; | 
|  | ofb->fb.var.height		= -1; | 
|  | ofb->fb.var.width		= -1; | 
|  | ofb->fb.var.vmode		= FB_VMODE_NONINTERLACED; | 
|  |  | 
|  | ofb->fb.fbops			= &overlay_fb_ops; | 
|  | ofb->fb.flags			= FBINFO_FLAG_DEFAULT; | 
|  | ofb->fb.node			= -1; | 
|  | ofb->fb.pseudo_palette		= NULL; | 
|  |  | 
|  | ofb->id = id; | 
|  | ofb->ops = &ofb_ops[id]; | 
|  | ofb->usage = 0; | 
|  | ofb->fbi = fbi; | 
|  | init_completion(&ofb->branch_done); | 
|  | } | 
|  |  | 
|  | static inline int pxafb_overlay_supported(void) | 
|  | { | 
|  | if (cpu_is_pxa27x() || cpu_is_pxa3xx()) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb, | 
|  | struct pxafb_layer *ofb) | 
|  | { | 
|  | /* We assume that user will use at most video_mem_size for overlay fb, | 
|  | * anyway, it's useless to use 16bpp main plane and 24bpp overlay | 
|  | */ | 
|  | ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size), | 
|  | GFP_KERNEL | __GFP_ZERO); | 
|  | if (ofb->video_mem == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ofb->video_mem_phys = virt_to_phys(ofb->video_mem); | 
|  | ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size); | 
|  |  | 
|  | mutex_lock(&ofb->fb.mm_lock); | 
|  | ofb->fb.fix.smem_start	= ofb->video_mem_phys; | 
|  | ofb->fb.fix.smem_len	= pxafb->video_mem_size; | 
|  | mutex_unlock(&ofb->fb.mm_lock); | 
|  |  | 
|  | ofb->fb.screen_base	= ofb->video_mem; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pxafb_overlay_init(struct pxafb_info *fbi) | 
|  | { | 
|  | int i, ret; | 
|  |  | 
|  | if (!pxafb_overlay_supported()) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | struct pxafb_layer *ofb = &fbi->overlay[i]; | 
|  | init_pxafb_overlay(fbi, ofb, i); | 
|  | ret = register_framebuffer(&ofb->fb); | 
|  | if (ret) { | 
|  | dev_err(fbi->dev, "failed to register overlay %d\n", i); | 
|  | continue; | 
|  | } | 
|  | ret = pxafb_overlay_map_video_memory(fbi, ofb); | 
|  | if (ret) { | 
|  | dev_err(fbi->dev, | 
|  | "failed to map video memory for overlay %d\n", | 
|  | i); | 
|  | unregister_framebuffer(&ofb->fb); | 
|  | continue; | 
|  | } | 
|  | ofb->registered = 1; | 
|  | } | 
|  |  | 
|  | /* mask all IU/BS/EOF/SOF interrupts */ | 
|  | lcd_writel(fbi, LCCR5, ~0); | 
|  |  | 
|  | pr_info("PXA Overlay driver loaded successfully!\n"); | 
|  | } | 
|  |  | 
|  | static void pxafb_overlay_exit(struct pxafb_info *fbi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!pxafb_overlay_supported()) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | struct pxafb_layer *ofb = &fbi->overlay[i]; | 
|  | if (ofb->registered) { | 
|  | if (ofb->video_mem) | 
|  | free_pages_exact(ofb->video_mem, | 
|  | ofb->video_mem_size); | 
|  | unregister_framebuffer(&ofb->fb); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void pxafb_overlay_init(struct pxafb_info *fbi) {} | 
|  | static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {} | 
|  | #endif /* CONFIG_FB_PXA_OVERLAY */ | 
|  |  | 
|  | /* | 
|  | * Calculate the PCD value from the clock rate (in picoseconds). | 
|  | * We take account of the PPCR clock setting. | 
|  | * From PXA Developer's Manual: | 
|  | * | 
|  | *   PixelClock =      LCLK | 
|  | *                ------------- | 
|  | *                2 ( PCD + 1 ) | 
|  | * | 
|  | *   PCD =      LCLK | 
|  | *         ------------- - 1 | 
|  | *         2(PixelClock) | 
|  | * | 
|  | * Where: | 
|  | *   LCLK = LCD/Memory Clock | 
|  | *   PCD = LCCR3[7:0] | 
|  | * | 
|  | * PixelClock here is in Hz while the pixclock argument given is the | 
|  | * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) | 
|  | * | 
|  | * The function get_lclk_frequency_10khz returns LCLK in units of | 
|  | * 10khz. Calling the result of this function lclk gives us the | 
|  | * following | 
|  | * | 
|  | *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) | 
|  | *          -------------------------------------- - 1 | 
|  | *                          2 | 
|  | * | 
|  | * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. | 
|  | */ | 
|  | static inline unsigned int get_pcd(struct pxafb_info *fbi, | 
|  | unsigned int pixclock) | 
|  | { | 
|  | unsigned long long pcd; | 
|  |  | 
|  | /* FIXME: Need to take into account Double Pixel Clock mode | 
|  | * (DPC) bit? or perhaps set it based on the various clock | 
|  | * speeds */ | 
|  | pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000); | 
|  | pcd *= pixclock; | 
|  | do_div(pcd, 100000000 * 2); | 
|  | /* no need for this, since we should subtract 1 anyway. they cancel */ | 
|  | /* pcd += 1; */ /* make up for integer math truncations */ | 
|  | return (unsigned int)pcd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some touchscreens need hsync information from the video driver to | 
|  | * function correctly. We export it here.  Note that 'hsync_time' and | 
|  | * the value returned from pxafb_get_hsync_time() is the *reciprocal* | 
|  | * of the hsync period in seconds. | 
|  | */ | 
|  | static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) | 
|  | { | 
|  | unsigned long htime; | 
|  |  | 
|  | if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { | 
|  | fbi->hsync_time = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len); | 
|  |  | 
|  | fbi->hsync_time = htime; | 
|  | } | 
|  |  | 
|  | unsigned long pxafb_get_hsync_time(struct device *dev) | 
|  | { | 
|  | struct pxafb_info *fbi = dev_get_drvdata(dev); | 
|  |  | 
|  | /* If display is blanked/suspended, hsync isn't active */ | 
|  | if (!fbi || (fbi->state != C_ENABLE)) | 
|  | return 0; | 
|  |  | 
|  | return fbi->hsync_time; | 
|  | } | 
|  | EXPORT_SYMBOL(pxafb_get_hsync_time); | 
|  |  | 
|  | static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, | 
|  | unsigned long start, size_t size) | 
|  | { | 
|  | struct pxafb_dma_descriptor *dma_desc, *pal_desc; | 
|  | unsigned int dma_desc_off, pal_desc_off; | 
|  |  | 
|  | if (dma < 0 || dma >= DMA_MAX * 2) | 
|  | return -EINVAL; | 
|  |  | 
|  | dma_desc = &fbi->dma_buff->dma_desc[dma]; | 
|  | dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]); | 
|  |  | 
|  | dma_desc->fsadr = start; | 
|  | dma_desc->fidr  = 0; | 
|  | dma_desc->ldcmd = size; | 
|  |  | 
|  | if (pal < 0 || pal >= PAL_MAX * 2) { | 
|  | dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; | 
|  | fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; | 
|  | } else { | 
|  | pal_desc = &fbi->dma_buff->pal_desc[pal]; | 
|  | pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]); | 
|  |  | 
|  | pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE; | 
|  | pal_desc->fidr  = 0; | 
|  |  | 
|  | if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0) | 
|  | pal_desc->ldcmd = fbi->palette_size * sizeof(u16); | 
|  | else | 
|  | pal_desc->ldcmd = fbi->palette_size * sizeof(u32); | 
|  |  | 
|  | pal_desc->ldcmd |= LDCMD_PAL; | 
|  |  | 
|  | /* flip back and forth between palette and frame buffer */ | 
|  | pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; | 
|  | dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off; | 
|  | fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void setup_base_frame(struct pxafb_info *fbi, | 
|  | struct fb_var_screeninfo *var, | 
|  | int branch) | 
|  | { | 
|  | struct fb_fix_screeninfo *fix = &fbi->fb.fix; | 
|  | int nbytes, dma, pal, bpp = var->bits_per_pixel; | 
|  | unsigned long offset; | 
|  |  | 
|  | dma = DMA_BASE + (branch ? DMA_MAX : 0); | 
|  | pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0); | 
|  |  | 
|  | nbytes = fix->line_length * var->yres; | 
|  | offset = fix->line_length * var->yoffset + fbi->video_mem_phys; | 
|  |  | 
|  | if (fbi->lccr0 & LCCR0_SDS) { | 
|  | nbytes = nbytes / 2; | 
|  | setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes); | 
|  | } | 
|  |  | 
|  | setup_frame_dma(fbi, dma, pal, offset, nbytes); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_SMARTPANEL | 
|  | static int setup_smart_dma(struct pxafb_info *fbi) | 
|  | { | 
|  | struct pxafb_dma_descriptor *dma_desc; | 
|  | unsigned long dma_desc_off, cmd_buff_off; | 
|  |  | 
|  | dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD]; | 
|  | dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]); | 
|  | cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff); | 
|  |  | 
|  | dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; | 
|  | dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off; | 
|  | dma_desc->fidr  = 0; | 
|  | dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t); | 
|  |  | 
|  | fbi->fdadr[DMA_CMD] = dma_desc->fdadr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pxafb_smart_flush(struct fb_info *info) | 
|  | { | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  | uint32_t prsr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* disable controller until all registers are set up */ | 
|  | lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); | 
|  |  | 
|  | /* 1. make it an even number of commands to align on 32-bit boundary | 
|  | * 2. add the interrupt command to the end of the chain so we can | 
|  | *    keep track of the end of the transfer | 
|  | */ | 
|  |  | 
|  | while (fbi->n_smart_cmds & 1) | 
|  | fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP; | 
|  |  | 
|  | fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT; | 
|  | fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC; | 
|  | setup_smart_dma(fbi); | 
|  |  | 
|  | /* continue to execute next command */ | 
|  | prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT; | 
|  | lcd_writel(fbi, PRSR, prsr); | 
|  |  | 
|  | /* stop the processor in case it executed "wait for sync" cmd */ | 
|  | lcd_writel(fbi, CMDCR, 0x0001); | 
|  |  | 
|  | /* don't send interrupts for fifo underruns on channel 6 */ | 
|  | lcd_writel(fbi, LCCR5, LCCR5_IUM(6)); | 
|  |  | 
|  | lcd_writel(fbi, LCCR1, fbi->reg_lccr1); | 
|  | lcd_writel(fbi, LCCR2, fbi->reg_lccr2); | 
|  | lcd_writel(fbi, LCCR3, fbi->reg_lccr3); | 
|  | lcd_writel(fbi, LCCR4, fbi->reg_lccr4); | 
|  | lcd_writel(fbi, FDADR0, fbi->fdadr[0]); | 
|  | lcd_writel(fbi, FDADR6, fbi->fdadr[6]); | 
|  |  | 
|  | /* begin sending */ | 
|  | lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); | 
|  |  | 
|  | if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) { | 
|  | pr_warn("%s: timeout waiting for command done\n", __func__); | 
|  | ret = -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* quick disable */ | 
|  | prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT); | 
|  | lcd_writel(fbi, PRSR, prsr); | 
|  | lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); | 
|  | lcd_writel(fbi, FDADR6, 0); | 
|  | fbi->n_smart_cmds = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds) | 
|  | { | 
|  | int i; | 
|  | struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); | 
|  |  | 
|  | for (i = 0; i < n_cmds; i++, cmds++) { | 
|  | /* if it is a software delay, flush and delay */ | 
|  | if ((*cmds & 0xff00) == SMART_CMD_DELAY) { | 
|  | pxafb_smart_flush(info); | 
|  | mdelay(*cmds & 0xff); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */ | 
|  | if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8) | 
|  | pxafb_smart_flush(info); | 
|  |  | 
|  | fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk) | 
|  | { | 
|  | unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000); | 
|  | return (t == 0) ? 1 : t; | 
|  | } | 
|  |  | 
|  | static void setup_smart_timing(struct pxafb_info *fbi, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | struct pxafb_mach_info *inf = fbi->inf; | 
|  | struct pxafb_mode_info *mode = &inf->modes[0]; | 
|  | unsigned long lclk = clk_get_rate(fbi->clk); | 
|  | unsigned t1, t2, t3, t4; | 
|  |  | 
|  | t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld); | 
|  | t2 = max(mode->rd_pulse_width, mode->wr_pulse_width); | 
|  | t3 = mode->op_hold_time; | 
|  | t4 = mode->cmd_inh_time; | 
|  |  | 
|  | fbi->reg_lccr1 = | 
|  | LCCR1_DisWdth(var->xres) | | 
|  | LCCR1_BegLnDel(__smart_timing(t1, lclk)) | | 
|  | LCCR1_EndLnDel(__smart_timing(t2, lclk)) | | 
|  | LCCR1_HorSnchWdth(__smart_timing(t3, lclk)); | 
|  |  | 
|  | fbi->reg_lccr2 = LCCR2_DisHght(var->yres); | 
|  | fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk)); | 
|  | fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0; | 
|  | fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0; | 
|  |  | 
|  | /* FIXME: make this configurable */ | 
|  | fbi->reg_cmdcr = 1; | 
|  | } | 
|  |  | 
|  | static int pxafb_smart_thread(void *arg) | 
|  | { | 
|  | struct pxafb_info *fbi = arg; | 
|  | struct pxafb_mach_info *inf = fbi->inf; | 
|  |  | 
|  | if (!inf->smart_update) { | 
|  | pr_err("%s: not properly initialized, thread terminated\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | pr_debug("%s(): task starting\n", __func__); | 
|  |  | 
|  | set_freezable(); | 
|  | while (!kthread_should_stop()) { | 
|  |  | 
|  | if (try_to_freeze()) | 
|  | continue; | 
|  |  | 
|  | mutex_lock(&fbi->ctrlr_lock); | 
|  |  | 
|  | if (fbi->state == C_ENABLE) { | 
|  | inf->smart_update(&fbi->fb); | 
|  | complete(&fbi->refresh_done); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fbi->ctrlr_lock); | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule_timeout(msecs_to_jiffies(30)); | 
|  | } | 
|  |  | 
|  | pr_debug("%s(): task ending\n", __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxafb_smart_init(struct pxafb_info *fbi) | 
|  | { | 
|  | if (!(fbi->lccr0 & LCCR0_LCDT)) | 
|  | return 0; | 
|  |  | 
|  | fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff; | 
|  | fbi->n_smart_cmds = 0; | 
|  |  | 
|  | init_completion(&fbi->command_done); | 
|  | init_completion(&fbi->refresh_done); | 
|  |  | 
|  | fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi, | 
|  | "lcd_refresh"); | 
|  | if (IS_ERR(fbi->smart_thread)) { | 
|  | pr_err("%s: unable to create kernel thread\n", __func__); | 
|  | return PTR_ERR(fbi->smart_thread); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; } | 
|  | #endif /* CONFIG_FB_PXA_SMARTPANEL */ | 
|  |  | 
|  | static void setup_parallel_timing(struct pxafb_info *fbi, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock); | 
|  |  | 
|  | fbi->reg_lccr1 = | 
|  | LCCR1_DisWdth(var->xres) + | 
|  | LCCR1_HorSnchWdth(var->hsync_len) + | 
|  | LCCR1_BegLnDel(var->left_margin) + | 
|  | LCCR1_EndLnDel(var->right_margin); | 
|  |  | 
|  | /* | 
|  | * If we have a dual scan LCD, we need to halve | 
|  | * the YRES parameter. | 
|  | */ | 
|  | lines_per_panel = var->yres; | 
|  | if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) | 
|  | lines_per_panel /= 2; | 
|  |  | 
|  | fbi->reg_lccr2 = | 
|  | LCCR2_DisHght(lines_per_panel) + | 
|  | LCCR2_VrtSnchWdth(var->vsync_len) + | 
|  | LCCR2_BegFrmDel(var->upper_margin) + | 
|  | LCCR2_EndFrmDel(var->lower_margin); | 
|  |  | 
|  | fbi->reg_lccr3 = fbi->lccr3 | | 
|  | (var->sync & FB_SYNC_HOR_HIGH_ACT ? | 
|  | LCCR3_HorSnchH : LCCR3_HorSnchL) | | 
|  | (var->sync & FB_SYNC_VERT_HIGH_ACT ? | 
|  | LCCR3_VrtSnchH : LCCR3_VrtSnchL); | 
|  |  | 
|  | if (pcd) { | 
|  | fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd); | 
|  | set_hsync_time(fbi, pcd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pxafb_activate_var(): | 
|  | *	Configures LCD Controller based on entries in var parameter. | 
|  | *	Settings are only written to the controller if changes were made. | 
|  | */ | 
|  | static int pxafb_activate_var(struct fb_var_screeninfo *var, | 
|  | struct pxafb_info *fbi) | 
|  | { | 
|  | u_long flags; | 
|  |  | 
|  | /* Update shadow copy atomically */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_SMARTPANEL | 
|  | if (fbi->lccr0 & LCCR0_LCDT) | 
|  | setup_smart_timing(fbi, var); | 
|  | else | 
|  | #endif | 
|  | setup_parallel_timing(fbi, var); | 
|  |  | 
|  | setup_base_frame(fbi, var, 0); | 
|  |  | 
|  | fbi->reg_lccr0 = fbi->lccr0 | | 
|  | (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | | 
|  | LCCR0_QDM | LCCR0_BM  | LCCR0_OUM); | 
|  |  | 
|  | fbi->reg_lccr3 |= pxafb_var_to_lccr3(var); | 
|  |  | 
|  | fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK; | 
|  | fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * Only update the registers if the controller is enabled | 
|  | * and something has changed. | 
|  | */ | 
|  | if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) || | 
|  | (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) || | 
|  | (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) || | 
|  | (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) || | 
|  | (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) || | 
|  | (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) || | 
|  | ((fbi->lccr0 & LCCR0_SDS) && | 
|  | (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))) | 
|  | pxafb_schedule_work(fbi, C_REENABLE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE!  The following functions are purely helpers for set_ctrlr_state. | 
|  | * Do not call them directly; set_ctrlr_state does the correct serialisation | 
|  | * to ensure that things happen in the right way 100% of time time. | 
|  | *	-- rmk | 
|  | */ | 
|  | static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) | 
|  | { | 
|  | pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); | 
|  |  | 
|  | if (fbi->backlight_power) | 
|  | fbi->backlight_power(on); | 
|  | } | 
|  |  | 
|  | static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) | 
|  | { | 
|  | pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); | 
|  |  | 
|  | if (fbi->lcd_power) | 
|  | fbi->lcd_power(on, &fbi->fb.var); | 
|  |  | 
|  | if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) { | 
|  | int ret; | 
|  |  | 
|  | if (on) | 
|  | ret = regulator_enable(fbi->lcd_supply); | 
|  | else | 
|  | ret = regulator_disable(fbi->lcd_supply); | 
|  |  | 
|  | if (ret < 0) | 
|  | pr_warn("Unable to %s LCD supply regulator: %d\n", | 
|  | on ? "enable" : "disable", ret); | 
|  | else | 
|  | fbi->lcd_supply_enabled = on; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pxafb_enable_controller(struct pxafb_info *fbi) | 
|  | { | 
|  | pr_debug("pxafb: Enabling LCD controller\n"); | 
|  | pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]); | 
|  | pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]); | 
|  | pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); | 
|  | pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); | 
|  | pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); | 
|  | pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); | 
|  |  | 
|  | /* enable LCD controller clock */ | 
|  | if (clk_prepare_enable(fbi->clk)) { | 
|  | pr_err("%s: Failed to prepare clock\n", __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (fbi->lccr0 & LCCR0_LCDT) | 
|  | return; | 
|  |  | 
|  | /* Sequence from 11.7.10 */ | 
|  | lcd_writel(fbi, LCCR4, fbi->reg_lccr4); | 
|  | lcd_writel(fbi, LCCR3, fbi->reg_lccr3); | 
|  | lcd_writel(fbi, LCCR2, fbi->reg_lccr2); | 
|  | lcd_writel(fbi, LCCR1, fbi->reg_lccr1); | 
|  | lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); | 
|  |  | 
|  | lcd_writel(fbi, FDADR0, fbi->fdadr[0]); | 
|  | if (fbi->lccr0 & LCCR0_SDS) | 
|  | lcd_writel(fbi, FDADR1, fbi->fdadr[1]); | 
|  | lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); | 
|  | } | 
|  |  | 
|  | static void pxafb_disable_controller(struct pxafb_info *fbi) | 
|  | { | 
|  | uint32_t lccr0; | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_SMARTPANEL | 
|  | if (fbi->lccr0 & LCCR0_LCDT) { | 
|  | wait_for_completion_timeout(&fbi->refresh_done, | 
|  | msecs_to_jiffies(200)); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Clear LCD Status Register */ | 
|  | lcd_writel(fbi, LCSR, 0xffffffff); | 
|  |  | 
|  | lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM; | 
|  | lcd_writel(fbi, LCCR0, lccr0); | 
|  | lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS); | 
|  |  | 
|  | wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200)); | 
|  |  | 
|  | /* disable LCD controller clock */ | 
|  | clk_disable_unprepare(fbi->clk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  pxafb_handle_irq: Handle 'LCD DONE' interrupts. | 
|  | */ | 
|  | static irqreturn_t pxafb_handle_irq(int irq, void *dev_id) | 
|  | { | 
|  | struct pxafb_info *fbi = dev_id; | 
|  | unsigned int lccr0, lcsr; | 
|  |  | 
|  | lcsr = lcd_readl(fbi, LCSR); | 
|  | if (lcsr & LCSR_LDD) { | 
|  | lccr0 = lcd_readl(fbi, LCCR0); | 
|  | lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM); | 
|  | complete(&fbi->disable_done); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_SMARTPANEL | 
|  | if (lcsr & LCSR_CMD_INT) | 
|  | complete(&fbi->command_done); | 
|  | #endif | 
|  | lcd_writel(fbi, LCSR, lcsr); | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_OVERLAY | 
|  | { | 
|  | unsigned int lcsr1 = lcd_readl(fbi, LCSR1); | 
|  | if (lcsr1 & LCSR1_BS(1)) | 
|  | complete(&fbi->overlay[0].branch_done); | 
|  |  | 
|  | if (lcsr1 & LCSR1_BS(2)) | 
|  | complete(&fbi->overlay[1].branch_done); | 
|  |  | 
|  | lcd_writel(fbi, LCSR1, lcsr1); | 
|  | } | 
|  | #endif | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function must be called from task context only, since it will | 
|  | * sleep when disabling the LCD controller, or if we get two contending | 
|  | * processes trying to alter state. | 
|  | */ | 
|  | static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) | 
|  | { | 
|  | u_int old_state; | 
|  |  | 
|  | mutex_lock(&fbi->ctrlr_lock); | 
|  |  | 
|  | old_state = fbi->state; | 
|  |  | 
|  | /* | 
|  | * Hack around fbcon initialisation. | 
|  | */ | 
|  | if (old_state == C_STARTUP && state == C_REENABLE) | 
|  | state = C_ENABLE; | 
|  |  | 
|  | switch (state) { | 
|  | case C_DISABLE_CLKCHANGE: | 
|  | /* | 
|  | * Disable controller for clock change.  If the | 
|  | * controller is already disabled, then do nothing. | 
|  | */ | 
|  | if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { | 
|  | fbi->state = state; | 
|  | /* TODO __pxafb_lcd_power(fbi, 0); */ | 
|  | pxafb_disable_controller(fbi); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_DISABLE_PM: | 
|  | case C_DISABLE: | 
|  | /* | 
|  | * Disable controller | 
|  | */ | 
|  | if (old_state != C_DISABLE) { | 
|  | fbi->state = state; | 
|  | __pxafb_backlight_power(fbi, 0); | 
|  | __pxafb_lcd_power(fbi, 0); | 
|  | if (old_state != C_DISABLE_CLKCHANGE) | 
|  | pxafb_disable_controller(fbi); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_ENABLE_CLKCHANGE: | 
|  | /* | 
|  | * Enable the controller after clock change.  Only | 
|  | * do this if we were disabled for the clock change. | 
|  | */ | 
|  | if (old_state == C_DISABLE_CLKCHANGE) { | 
|  | fbi->state = C_ENABLE; | 
|  | pxafb_enable_controller(fbi); | 
|  | /* TODO __pxafb_lcd_power(fbi, 1); */ | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_REENABLE: | 
|  | /* | 
|  | * Re-enable the controller only if it was already | 
|  | * enabled.  This is so we reprogram the control | 
|  | * registers. | 
|  | */ | 
|  | if (old_state == C_ENABLE) { | 
|  | __pxafb_lcd_power(fbi, 0); | 
|  | pxafb_disable_controller(fbi); | 
|  | pxafb_enable_controller(fbi); | 
|  | __pxafb_lcd_power(fbi, 1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case C_ENABLE_PM: | 
|  | /* | 
|  | * Re-enable the controller after PM.  This is not | 
|  | * perfect - think about the case where we were doing | 
|  | * a clock change, and we suspended half-way through. | 
|  | */ | 
|  | if (old_state != C_DISABLE_PM) | 
|  | break; | 
|  | /* fall through */ | 
|  |  | 
|  | case C_ENABLE: | 
|  | /* | 
|  | * Power up the LCD screen, enable controller, and | 
|  | * turn on the backlight. | 
|  | */ | 
|  | if (old_state != C_ENABLE) { | 
|  | fbi->state = C_ENABLE; | 
|  | pxafb_enable_controller(fbi); | 
|  | __pxafb_lcd_power(fbi, 1); | 
|  | __pxafb_backlight_power(fbi, 1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&fbi->ctrlr_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our LCD controller task (which is called when we blank or unblank) | 
|  | * via keventd. | 
|  | */ | 
|  | static void pxafb_task(struct work_struct *work) | 
|  | { | 
|  | struct pxafb_info *fbi = | 
|  | container_of(work, struct pxafb_info, task); | 
|  | u_int state = xchg(&fbi->task_state, -1); | 
|  |  | 
|  | set_ctrlr_state(fbi, state); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | /* | 
|  | * CPU clock speed change handler.  We need to adjust the LCD timing | 
|  | * parameters when the CPU clock is adjusted by the power management | 
|  | * subsystem. | 
|  | * | 
|  | * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() | 
|  | */ | 
|  | static int | 
|  | pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) | 
|  | { | 
|  | struct pxafb_info *fbi = TO_INF(nb, freq_transition); | 
|  | /* TODO struct cpufreq_freqs *f = data; */ | 
|  | u_int pcd; | 
|  |  | 
|  | switch (val) { | 
|  | case CPUFREQ_PRECHANGE: | 
|  | #ifdef CONFIG_FB_PXA_OVERLAY | 
|  | if (!(fbi->overlay[0].usage || fbi->overlay[1].usage)) | 
|  | #endif | 
|  | set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_POSTCHANGE: | 
|  | pcd = get_pcd(fbi, fbi->fb.var.pixclock); | 
|  | set_hsync_time(fbi, pcd); | 
|  | fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | | 
|  | LCCR3_PixClkDiv(pcd); | 
|  | set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) | 
|  | { | 
|  | struct pxafb_info *fbi = TO_INF(nb, freq_policy); | 
|  | struct fb_var_screeninfo *var = &fbi->fb.var; | 
|  | struct cpufreq_policy *policy = data; | 
|  |  | 
|  | switch (val) { | 
|  | case CPUFREQ_ADJUST: | 
|  | pr_debug("min dma period: %d ps, " | 
|  | "new clock %d kHz\n", pxafb_display_dma_period(var), | 
|  | policy->max); | 
|  | /* TODO: fill in min/max values */ | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /* | 
|  | * Power management hooks.  Note that we won't be called from IRQ context, | 
|  | * unlike the blank functions above, so we may sleep. | 
|  | */ | 
|  | static int pxafb_suspend(struct device *dev) | 
|  | { | 
|  | struct pxafb_info *fbi = dev_get_drvdata(dev); | 
|  |  | 
|  | set_ctrlr_state(fbi, C_DISABLE_PM); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxafb_resume(struct device *dev) | 
|  | { | 
|  | struct pxafb_info *fbi = dev_get_drvdata(dev); | 
|  |  | 
|  | set_ctrlr_state(fbi, C_ENABLE_PM); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops pxafb_pm_ops = { | 
|  | .suspend	= pxafb_suspend, | 
|  | .resume		= pxafb_resume, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int pxafb_init_video_memory(struct pxafb_info *fbi) | 
|  | { | 
|  | int size = PAGE_ALIGN(fbi->video_mem_size); | 
|  |  | 
|  | fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); | 
|  | if (fbi->video_mem == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fbi->video_mem_phys = virt_to_phys(fbi->video_mem); | 
|  | fbi->video_mem_size = size; | 
|  |  | 
|  | fbi->fb.fix.smem_start	= fbi->video_mem_phys; | 
|  | fbi->fb.fix.smem_len	= fbi->video_mem_size; | 
|  | fbi->fb.screen_base	= fbi->video_mem; | 
|  |  | 
|  | return fbi->video_mem ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void pxafb_decode_mach_info(struct pxafb_info *fbi, | 
|  | struct pxafb_mach_info *inf) | 
|  | { | 
|  | unsigned int lcd_conn = inf->lcd_conn; | 
|  | struct pxafb_mode_info *m; | 
|  | int i; | 
|  |  | 
|  | fbi->cmap_inverse	= inf->cmap_inverse; | 
|  | fbi->cmap_static	= inf->cmap_static; | 
|  | fbi->lccr4 		= inf->lccr4; | 
|  |  | 
|  | switch (lcd_conn & LCD_TYPE_MASK) { | 
|  | case LCD_TYPE_MONO_STN: | 
|  | fbi->lccr0 = LCCR0_CMS; | 
|  | break; | 
|  | case LCD_TYPE_MONO_DSTN: | 
|  | fbi->lccr0 = LCCR0_CMS | LCCR0_SDS; | 
|  | break; | 
|  | case LCD_TYPE_COLOR_STN: | 
|  | fbi->lccr0 = 0; | 
|  | break; | 
|  | case LCD_TYPE_COLOR_DSTN: | 
|  | fbi->lccr0 = LCCR0_SDS; | 
|  | break; | 
|  | case LCD_TYPE_COLOR_TFT: | 
|  | fbi->lccr0 = LCCR0_PAS; | 
|  | break; | 
|  | case LCD_TYPE_SMART_PANEL: | 
|  | fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS; | 
|  | break; | 
|  | default: | 
|  | /* fall back to backward compatibility way */ | 
|  | fbi->lccr0 = inf->lccr0; | 
|  | fbi->lccr3 = inf->lccr3; | 
|  | goto decode_mode; | 
|  | } | 
|  |  | 
|  | if (lcd_conn == LCD_MONO_STN_8BPP) | 
|  | fbi->lccr0 |= LCCR0_DPD; | 
|  |  | 
|  | fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0; | 
|  |  | 
|  | fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff); | 
|  | fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0; | 
|  | fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0; | 
|  |  | 
|  | decode_mode: | 
|  | pxafb_setmode(&fbi->fb.var, &inf->modes[0]); | 
|  |  | 
|  | /* decide video memory size as follows: | 
|  | * 1. default to mode of maximum resolution | 
|  | * 2. allow platform to override | 
|  | * 3. allow module parameter to override | 
|  | */ | 
|  | for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++) | 
|  | fbi->video_mem_size = max_t(size_t, fbi->video_mem_size, | 
|  | m->xres * m->yres * m->bpp / 8); | 
|  |  | 
|  | if (inf->video_mem_size > fbi->video_mem_size) | 
|  | fbi->video_mem_size = inf->video_mem_size; | 
|  |  | 
|  | if (video_mem_size > fbi->video_mem_size) | 
|  | fbi->video_mem_size = video_mem_size; | 
|  | } | 
|  |  | 
|  | static struct pxafb_info *pxafb_init_fbinfo(struct device *dev, | 
|  | struct pxafb_mach_info *inf) | 
|  | { | 
|  | struct pxafb_info *fbi; | 
|  | void *addr; | 
|  |  | 
|  | /* Alloc the pxafb_info and pseudo_palette in one step */ | 
|  | fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16, | 
|  | GFP_KERNEL); | 
|  | if (!fbi) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | fbi->dev = dev; | 
|  | fbi->inf = inf; | 
|  |  | 
|  | fbi->clk = devm_clk_get(dev, NULL); | 
|  | if (IS_ERR(fbi->clk)) | 
|  | return ERR_CAST(fbi->clk); | 
|  |  | 
|  | strcpy(fbi->fb.fix.id, PXA_NAME); | 
|  |  | 
|  | fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS; | 
|  | fbi->fb.fix.type_aux	= 0; | 
|  | fbi->fb.fix.xpanstep	= 0; | 
|  | fbi->fb.fix.ypanstep	= 1; | 
|  | fbi->fb.fix.ywrapstep	= 0; | 
|  | fbi->fb.fix.accel	= FB_ACCEL_NONE; | 
|  |  | 
|  | fbi->fb.var.nonstd	= 0; | 
|  | fbi->fb.var.activate	= FB_ACTIVATE_NOW; | 
|  | fbi->fb.var.height	= -1; | 
|  | fbi->fb.var.width	= -1; | 
|  | fbi->fb.var.accel_flags	= FB_ACCELF_TEXT; | 
|  | fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED; | 
|  |  | 
|  | fbi->fb.fbops		= &pxafb_ops; | 
|  | fbi->fb.flags		= FBINFO_DEFAULT; | 
|  | fbi->fb.node		= -1; | 
|  |  | 
|  | addr = fbi; | 
|  | addr = addr + sizeof(struct pxafb_info); | 
|  | fbi->fb.pseudo_palette	= addr; | 
|  |  | 
|  | fbi->state		= C_STARTUP; | 
|  | fbi->task_state		= (u_char)-1; | 
|  |  | 
|  | pxafb_decode_mach_info(fbi, inf); | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_OVERLAY | 
|  | /* place overlay(s) on top of base */ | 
|  | if (pxafb_overlay_supported()) | 
|  | fbi->lccr0 |= LCCR0_OUC; | 
|  | #endif | 
|  |  | 
|  | init_waitqueue_head(&fbi->ctrlr_wait); | 
|  | INIT_WORK(&fbi->task, pxafb_task); | 
|  | mutex_init(&fbi->ctrlr_lock); | 
|  | init_completion(&fbi->disable_done); | 
|  |  | 
|  | return fbi; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FB_PXA_PARAMETERS | 
|  | static int parse_opt_mode(struct device *dev, const char *this_opt, | 
|  | struct pxafb_mach_info *inf) | 
|  | { | 
|  | const char *name = this_opt+5; | 
|  | unsigned int namelen = strlen(name); | 
|  | int res_specified = 0, bpp_specified = 0; | 
|  | unsigned int xres = 0, yres = 0, bpp = 0; | 
|  | int yres_specified = 0; | 
|  | int i; | 
|  | for (i = namelen-1; i >= 0; i--) { | 
|  | switch (name[i]) { | 
|  | case '-': | 
|  | namelen = i; | 
|  | if (!bpp_specified && !yres_specified) { | 
|  | bpp = simple_strtoul(&name[i+1], NULL, 0); | 
|  | bpp_specified = 1; | 
|  | } else | 
|  | goto done; | 
|  | break; | 
|  | case 'x': | 
|  | if (!yres_specified) { | 
|  | yres = simple_strtoul(&name[i+1], NULL, 0); | 
|  | yres_specified = 1; | 
|  | } else | 
|  | goto done; | 
|  | break; | 
|  | case '0' ... '9': | 
|  | break; | 
|  | default: | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | if (i < 0 && yres_specified) { | 
|  | xres = simple_strtoul(name, NULL, 0); | 
|  | res_specified = 1; | 
|  | } | 
|  | done: | 
|  | if (res_specified) { | 
|  | dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); | 
|  | inf->modes[0].xres = xres; inf->modes[0].yres = yres; | 
|  | } | 
|  | if (bpp_specified) | 
|  | switch (bpp) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | case 16: | 
|  | inf->modes[0].bpp = bpp; | 
|  | dev_info(dev, "overriding bit depth: %d\n", bpp); | 
|  | break; | 
|  | default: | 
|  | dev_err(dev, "Depth %d is not valid\n", bpp); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_opt(struct device *dev, char *this_opt, | 
|  | struct pxafb_mach_info *inf) | 
|  | { | 
|  | struct pxafb_mode_info *mode = &inf->modes[0]; | 
|  | char s[64]; | 
|  |  | 
|  | s[0] = '\0'; | 
|  |  | 
|  | if (!strncmp(this_opt, "vmem:", 5)) { | 
|  | video_mem_size = memparse(this_opt + 5, NULL); | 
|  | } else if (!strncmp(this_opt, "mode:", 5)) { | 
|  | return parse_opt_mode(dev, this_opt, inf); | 
|  | } else if (!strncmp(this_opt, "pixclock:", 9)) { | 
|  | mode->pixclock = simple_strtoul(this_opt+9, NULL, 0); | 
|  | sprintf(s, "pixclock: %ld\n", mode->pixclock); | 
|  | } else if (!strncmp(this_opt, "left:", 5)) { | 
|  | mode->left_margin = simple_strtoul(this_opt+5, NULL, 0); | 
|  | sprintf(s, "left: %u\n", mode->left_margin); | 
|  | } else if (!strncmp(this_opt, "right:", 6)) { | 
|  | mode->right_margin = simple_strtoul(this_opt+6, NULL, 0); | 
|  | sprintf(s, "right: %u\n", mode->right_margin); | 
|  | } else if (!strncmp(this_opt, "upper:", 6)) { | 
|  | mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0); | 
|  | sprintf(s, "upper: %u\n", mode->upper_margin); | 
|  | } else if (!strncmp(this_opt, "lower:", 6)) { | 
|  | mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0); | 
|  | sprintf(s, "lower: %u\n", mode->lower_margin); | 
|  | } else if (!strncmp(this_opt, "hsynclen:", 9)) { | 
|  | mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0); | 
|  | sprintf(s, "hsynclen: %u\n", mode->hsync_len); | 
|  | } else if (!strncmp(this_opt, "vsynclen:", 9)) { | 
|  | mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0); | 
|  | sprintf(s, "vsynclen: %u\n", mode->vsync_len); | 
|  | } else if (!strncmp(this_opt, "hsync:", 6)) { | 
|  | if (simple_strtoul(this_opt+6, NULL, 0) == 0) { | 
|  | sprintf(s, "hsync: Active Low\n"); | 
|  | mode->sync &= ~FB_SYNC_HOR_HIGH_ACT; | 
|  | } else { | 
|  | sprintf(s, "hsync: Active High\n"); | 
|  | mode->sync |= FB_SYNC_HOR_HIGH_ACT; | 
|  | } | 
|  | } else if (!strncmp(this_opt, "vsync:", 6)) { | 
|  | if (simple_strtoul(this_opt+6, NULL, 0) == 0) { | 
|  | sprintf(s, "vsync: Active Low\n"); | 
|  | mode->sync &= ~FB_SYNC_VERT_HIGH_ACT; | 
|  | } else { | 
|  | sprintf(s, "vsync: Active High\n"); | 
|  | mode->sync |= FB_SYNC_VERT_HIGH_ACT; | 
|  | } | 
|  | } else if (!strncmp(this_opt, "dpc:", 4)) { | 
|  | if (simple_strtoul(this_opt+4, NULL, 0) == 0) { | 
|  | sprintf(s, "double pixel clock: false\n"); | 
|  | inf->lccr3 &= ~LCCR3_DPC; | 
|  | } else { | 
|  | sprintf(s, "double pixel clock: true\n"); | 
|  | inf->lccr3 |= LCCR3_DPC; | 
|  | } | 
|  | } else if (!strncmp(this_opt, "outputen:", 9)) { | 
|  | if (simple_strtoul(this_opt+9, NULL, 0) == 0) { | 
|  | sprintf(s, "output enable: active low\n"); | 
|  | inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; | 
|  | } else { | 
|  | sprintf(s, "output enable: active high\n"); | 
|  | inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; | 
|  | } | 
|  | } else if (!strncmp(this_opt, "pixclockpol:", 12)) { | 
|  | if (simple_strtoul(this_opt+12, NULL, 0) == 0) { | 
|  | sprintf(s, "pixel clock polarity: falling edge\n"); | 
|  | inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; | 
|  | } else { | 
|  | sprintf(s, "pixel clock polarity: rising edge\n"); | 
|  | inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; | 
|  | } | 
|  | } else if (!strncmp(this_opt, "color", 5)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; | 
|  | } else if (!strncmp(this_opt, "mono", 4)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; | 
|  | } else if (!strncmp(this_opt, "active", 6)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; | 
|  | } else if (!strncmp(this_opt, "passive", 7)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; | 
|  | } else if (!strncmp(this_opt, "single", 6)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; | 
|  | } else if (!strncmp(this_opt, "dual", 4)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; | 
|  | } else if (!strncmp(this_opt, "4pix", 4)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; | 
|  | } else if (!strncmp(this_opt, "8pix", 4)) { | 
|  | inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; | 
|  | } else { | 
|  | dev_err(dev, "unknown option: %s\n", this_opt); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (s[0] != '\0') | 
|  | dev_info(dev, "override %s", s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxafb_parse_options(struct device *dev, char *options, | 
|  | struct pxafb_mach_info *inf) | 
|  | { | 
|  | char *this_opt; | 
|  | int ret; | 
|  |  | 
|  | if (!options || !*options) | 
|  | return 0; | 
|  |  | 
|  | dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); | 
|  |  | 
|  | /* could be made table driven or similar?... */ | 
|  | while ((this_opt = strsep(&options, ",")) != NULL) { | 
|  | ret = parse_opt(dev, this_opt, inf); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static char g_options[256] = ""; | 
|  |  | 
|  | #ifndef MODULE | 
|  | static int __init pxafb_setup_options(void) | 
|  | { | 
|  | char *options = NULL; | 
|  |  | 
|  | if (fb_get_options("pxafb", &options)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (options) | 
|  | strlcpy(g_options, options, sizeof(g_options)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define pxafb_setup_options()		(0) | 
|  |  | 
|  | module_param_string(options, g_options, sizeof(g_options), 0); | 
|  | MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); | 
|  | #endif | 
|  |  | 
|  | #else | 
|  | #define pxafb_parse_options(...)	(0) | 
|  | #define pxafb_setup_options()		(0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_VAR | 
|  | /* Check for various illegal bit-combinations. Currently only | 
|  | * a warning is given. */ | 
|  | static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf) | 
|  | { | 
|  | if (inf->lcd_conn) | 
|  | return; | 
|  |  | 
|  | if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) | 
|  | dev_warn(dev, "machine LCCR0 setting contains " | 
|  | "illegal bits: %08x\n", | 
|  | inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); | 
|  | if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) | 
|  | dev_warn(dev, "machine LCCR3 setting contains " | 
|  | "illegal bits: %08x\n", | 
|  | inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); | 
|  | if (inf->lccr0 & LCCR0_DPD && | 
|  | ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || | 
|  | (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || | 
|  | (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) | 
|  | dev_warn(dev, "Double Pixel Data (DPD) mode is " | 
|  | "only valid in passive mono" | 
|  | " single panel mode\n"); | 
|  | if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && | 
|  | (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) | 
|  | dev_warn(dev, "Dual panel only valid in passive mode\n"); | 
|  | if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && | 
|  | (inf->modes->upper_margin || inf->modes->lower_margin)) | 
|  | dev_warn(dev, "Upper and lower margins must be 0 in " | 
|  | "passive mode\n"); | 
|  | } | 
|  | #else | 
|  | #define pxafb_check_options(...)	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | static const char * const lcd_types[] = { | 
|  | "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn", | 
|  | "color-tft", "smart-panel", NULL | 
|  | }; | 
|  |  | 
|  | static int of_get_pxafb_display(struct device *dev, struct device_node *disp, | 
|  | struct pxafb_mach_info *info, u32 bus_width) | 
|  | { | 
|  | struct display_timings *timings; | 
|  | struct videomode vm; | 
|  | int i, ret = -EINVAL; | 
|  | const char *s; | 
|  |  | 
|  | ret = of_property_read_string(disp, "lcd-type", &s); | 
|  | if (ret) | 
|  | s = "color-tft"; | 
|  |  | 
|  | i = match_string(lcd_types, -1, s); | 
|  | if (i < 0) { | 
|  | dev_err(dev, "lcd-type %s is unknown\n", s); | 
|  | return i; | 
|  | } | 
|  | info->lcd_conn |= LCD_CONN_TYPE(i); | 
|  | info->lcd_conn |= LCD_CONN_WIDTH(bus_width); | 
|  |  | 
|  | timings = of_get_display_timings(disp); | 
|  | if (!timings) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | info->modes = devm_kcalloc(dev, timings->num_timings, | 
|  | sizeof(info->modes[0]), | 
|  | GFP_KERNEL); | 
|  | if (!info->modes) | 
|  | goto out; | 
|  | info->num_modes = timings->num_timings; | 
|  |  | 
|  | for (i = 0; i < timings->num_timings; i++) { | 
|  | ret = videomode_from_timings(timings, &vm, i); | 
|  | if (ret) { | 
|  | dev_err(dev, "videomode_from_timings %d failed: %d\n", | 
|  | i, ret); | 
|  | goto out; | 
|  | } | 
|  | if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE) | 
|  | info->lcd_conn |= LCD_PCLK_EDGE_RISE; | 
|  | if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) | 
|  | info->lcd_conn |= LCD_PCLK_EDGE_FALL; | 
|  | if (vm.flags & DISPLAY_FLAGS_DE_HIGH) | 
|  | info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH; | 
|  | if (vm.flags & DISPLAY_FLAGS_DE_LOW) | 
|  | info->lcd_conn |= LCD_BIAS_ACTIVE_LOW; | 
|  | if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH) | 
|  | info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT; | 
|  | if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH) | 
|  | info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT; | 
|  |  | 
|  | info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000); | 
|  | info->modes[i].xres = vm.hactive; | 
|  | info->modes[i].yres = vm.vactive; | 
|  | info->modes[i].hsync_len = vm.hsync_len; | 
|  | info->modes[i].left_margin = vm.hback_porch; | 
|  | info->modes[i].right_margin = vm.hfront_porch; | 
|  | info->modes[i].vsync_len = vm.vsync_len; | 
|  | info->modes[i].upper_margin = vm.vback_porch; | 
|  | info->modes[i].lower_margin = vm.vfront_porch; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | display_timings_release(timings); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int of_get_pxafb_mode_info(struct device *dev, | 
|  | struct pxafb_mach_info *info) | 
|  | { | 
|  | struct device_node *display, *np; | 
|  | u32 bus_width; | 
|  | int ret, i; | 
|  |  | 
|  | np = of_graph_get_next_endpoint(dev->of_node, NULL); | 
|  | if (!np) { | 
|  | dev_err(dev, "could not find endpoint\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = of_property_read_u32(np, "bus-width", &bus_width); | 
|  | if (ret) { | 
|  | dev_err(dev, "no bus-width specified: %d\n", ret); | 
|  | of_node_put(np); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | display = of_graph_get_remote_port_parent(np); | 
|  | of_node_put(np); | 
|  | if (!display) { | 
|  | dev_err(dev, "no display defined\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = of_get_pxafb_display(dev, display, info, bus_width); | 
|  | of_node_put(display); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < info->num_modes; i++) | 
|  | info->modes[i].bpp = bus_width; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev) | 
|  | { | 
|  | int ret; | 
|  | struct pxafb_mach_info *info; | 
|  |  | 
|  | if (!dev->of_node) | 
|  | return NULL; | 
|  | info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | ret = of_get_pxafb_mode_info(dev, info); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | /* | 
|  | * On purpose, neither lccrX registers nor video memory size can be | 
|  | * specified through device-tree, they are considered more a debug hack | 
|  | * available through command line. | 
|  | */ | 
|  | return info; | 
|  | } | 
|  | #else | 
|  | static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int pxafb_probe(struct platform_device *dev) | 
|  | { | 
|  | struct pxafb_info *fbi; | 
|  | struct pxafb_mach_info *inf, *pdata; | 
|  | struct resource *r; | 
|  | int i, irq, ret; | 
|  |  | 
|  | dev_dbg(&dev->dev, "pxafb_probe\n"); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | pdata = dev_get_platdata(&dev->dev); | 
|  | inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL); | 
|  | if (!inf) | 
|  | goto failed; | 
|  |  | 
|  | if (pdata) { | 
|  | *inf = *pdata; | 
|  | inf->modes = | 
|  | devm_kmalloc_array(&dev->dev, pdata->num_modes, | 
|  | sizeof(inf->modes[0]), GFP_KERNEL); | 
|  | if (!inf->modes) | 
|  | goto failed; | 
|  | for (i = 0; i < inf->num_modes; i++) | 
|  | inf->modes[i] = pdata->modes[i]; | 
|  | } | 
|  |  | 
|  | if (!pdata) | 
|  | inf = of_pxafb_of_mach_info(&dev->dev); | 
|  | if (IS_ERR_OR_NULL(inf)) | 
|  | goto failed; | 
|  |  | 
|  | ret = pxafb_parse_options(&dev->dev, g_options, inf); | 
|  | if (ret < 0) | 
|  | goto failed; | 
|  |  | 
|  | pxafb_check_options(&dev->dev, inf); | 
|  |  | 
|  | dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n", | 
|  | inf->modes->xres, | 
|  | inf->modes->yres, | 
|  | inf->modes->bpp); | 
|  | if (inf->modes->xres == 0 || | 
|  | inf->modes->yres == 0 || | 
|  | inf->modes->bpp == 0) { | 
|  | dev_err(&dev->dev, "Invalid resolution or bit depth\n"); | 
|  | ret = -EINVAL; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | fbi = pxafb_init_fbinfo(&dev->dev, inf); | 
|  | if (IS_ERR(fbi)) { | 
|  | dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); | 
|  | ret = PTR_ERR(fbi); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (cpu_is_pxa3xx() && inf->acceleration_enabled) | 
|  | fbi->fb.fix.accel = FB_ACCEL_PXA3XX; | 
|  |  | 
|  | fbi->backlight_power = inf->pxafb_backlight_power; | 
|  | fbi->lcd_power = inf->pxafb_lcd_power; | 
|  |  | 
|  | fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd"); | 
|  | if (IS_ERR(fbi->lcd_supply)) { | 
|  | if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER) | 
|  | return -EPROBE_DEFER; | 
|  |  | 
|  | fbi->lcd_supply = NULL; | 
|  | } | 
|  |  | 
|  | r = platform_get_resource(dev, IORESOURCE_MEM, 0); | 
|  | if (r == NULL) { | 
|  | dev_err(&dev->dev, "no I/O memory resource defined\n"); | 
|  | ret = -ENODEV; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | fbi->mmio_base = devm_ioremap_resource(&dev->dev, r); | 
|  | if (IS_ERR(fbi->mmio_base)) { | 
|  | dev_err(&dev->dev, "failed to get I/O memory\n"); | 
|  | ret = -EBUSY; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff)); | 
|  | fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size, | 
|  | &fbi->dma_buff_phys, GFP_KERNEL); | 
|  | if (fbi->dma_buff == NULL) { | 
|  | dev_err(&dev->dev, "failed to allocate memory for DMA\n"); | 
|  | ret = -ENOMEM; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | ret = pxafb_init_video_memory(fbi); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); | 
|  | ret = -ENOMEM; | 
|  | goto failed_free_dma; | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq(dev, 0); | 
|  | if (irq < 0) { | 
|  | dev_err(&dev->dev, "no IRQ defined\n"); | 
|  | ret = -ENODEV; | 
|  | goto failed_free_mem; | 
|  | } | 
|  |  | 
|  | ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "request_irq failed: %d\n", ret); | 
|  | ret = -EBUSY; | 
|  | goto failed_free_mem; | 
|  | } | 
|  |  | 
|  | ret = pxafb_smart_init(fbi); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "failed to initialize smartpanel\n"); | 
|  | goto failed_free_mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This makes sure that our colour bitfield | 
|  | * descriptors are correctly initialised. | 
|  | */ | 
|  | ret = pxafb_check_var(&fbi->fb.var, &fbi->fb); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "failed to get suitable mode\n"); | 
|  | goto failed_free_mem; | 
|  | } | 
|  |  | 
|  | ret = pxafb_set_par(&fbi->fb); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "Failed to set parameters\n"); | 
|  | goto failed_free_mem; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(dev, fbi); | 
|  |  | 
|  | ret = register_framebuffer(&fbi->fb); | 
|  | if (ret < 0) { | 
|  | dev_err(&dev->dev, | 
|  | "Failed to register framebuffer device: %d\n", ret); | 
|  | goto failed_free_cmap; | 
|  | } | 
|  |  | 
|  | pxafb_overlay_init(fbi); | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | fbi->freq_transition.notifier_call = pxafb_freq_transition; | 
|  | fbi->freq_policy.notifier_call = pxafb_freq_policy; | 
|  | cpufreq_register_notifier(&fbi->freq_transition, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | cpufreq_register_notifier(&fbi->freq_policy, | 
|  | CPUFREQ_POLICY_NOTIFIER); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Ok, now enable the LCD controller | 
|  | */ | 
|  | set_ctrlr_state(fbi, C_ENABLE); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | failed_free_cmap: | 
|  | if (fbi->fb.cmap.len) | 
|  | fb_dealloc_cmap(&fbi->fb.cmap); | 
|  | failed_free_mem: | 
|  | free_pages_exact(fbi->video_mem, fbi->video_mem_size); | 
|  | failed_free_dma: | 
|  | dma_free_coherent(&dev->dev, fbi->dma_buff_size, | 
|  | fbi->dma_buff, fbi->dma_buff_phys); | 
|  | failed: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pxafb_remove(struct platform_device *dev) | 
|  | { | 
|  | struct pxafb_info *fbi = platform_get_drvdata(dev); | 
|  | struct fb_info *info; | 
|  |  | 
|  | if (!fbi) | 
|  | return 0; | 
|  |  | 
|  | info = &fbi->fb; | 
|  |  | 
|  | pxafb_overlay_exit(fbi); | 
|  | unregister_framebuffer(info); | 
|  |  | 
|  | pxafb_disable_controller(fbi); | 
|  |  | 
|  | if (fbi->fb.cmap.len) | 
|  | fb_dealloc_cmap(&fbi->fb.cmap); | 
|  |  | 
|  | free_pages_exact(fbi->video_mem, fbi->video_mem_size); | 
|  |  | 
|  | dma_free_wc(&dev->dev, fbi->dma_buff_size, fbi->dma_buff, | 
|  | fbi->dma_buff_phys); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id pxafb_of_dev_id[] = { | 
|  | { .compatible = "marvell,pxa270-lcdc", }, | 
|  | { .compatible = "marvell,pxa300-lcdc", }, | 
|  | { .compatible = "marvell,pxa2xx-lcdc", }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, pxafb_of_dev_id); | 
|  |  | 
|  | static struct platform_driver pxafb_driver = { | 
|  | .probe		= pxafb_probe, | 
|  | .remove 	= pxafb_remove, | 
|  | .driver		= { | 
|  | .name	= "pxa2xx-fb", | 
|  | .of_match_table = pxafb_of_dev_id, | 
|  | #ifdef CONFIG_PM | 
|  | .pm	= &pxafb_pm_ops, | 
|  | #endif | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init pxafb_init(void) | 
|  | { | 
|  | if (pxafb_setup_options()) | 
|  | return -EINVAL; | 
|  |  | 
|  | return platform_driver_register(&pxafb_driver); | 
|  | } | 
|  |  | 
|  | static void __exit pxafb_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&pxafb_driver); | 
|  | } | 
|  |  | 
|  | module_init(pxafb_init); | 
|  | module_exit(pxafb_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); | 
|  | MODULE_LICENSE("GPL"); |