| /* | 
 |  *  linux/fs/pnode.c | 
 |  * | 
 |  * (C) Copyright IBM Corporation 2005. | 
 |  *	Released under GPL v2. | 
 |  *	Author : Ram Pai (linuxram@us.ibm.com) | 
 |  * | 
 |  */ | 
 | #include <linux/mnt_namespace.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/nsproxy.h> | 
 | #include "internal.h" | 
 | #include "pnode.h" | 
 |  | 
 | /* return the next shared peer mount of @p */ | 
 | static inline struct mount *next_peer(struct mount *p) | 
 | { | 
 | 	return list_entry(p->mnt_share.next, struct mount, mnt_share); | 
 | } | 
 |  | 
 | static inline struct mount *first_slave(struct mount *p) | 
 | { | 
 | 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); | 
 | } | 
 |  | 
 | static inline struct mount *last_slave(struct mount *p) | 
 | { | 
 | 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); | 
 | } | 
 |  | 
 | static inline struct mount *next_slave(struct mount *p) | 
 | { | 
 | 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave); | 
 | } | 
 |  | 
 | static struct mount *get_peer_under_root(struct mount *mnt, | 
 | 					 struct mnt_namespace *ns, | 
 | 					 const struct path *root) | 
 | { | 
 | 	struct mount *m = mnt; | 
 |  | 
 | 	do { | 
 | 		/* Check the namespace first for optimization */ | 
 | 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) | 
 | 			return m; | 
 |  | 
 | 		m = next_peer(m); | 
 | 	} while (m != mnt); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Get ID of closest dominating peer group having a representative | 
 |  * under the given root. | 
 |  * | 
 |  * Caller must hold namespace_sem | 
 |  */ | 
 | int get_dominating_id(struct mount *mnt, const struct path *root) | 
 | { | 
 | 	struct mount *m; | 
 |  | 
 | 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { | 
 | 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); | 
 | 		if (d) | 
 | 			return d->mnt_group_id; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_make_slave(struct mount *mnt) | 
 | { | 
 | 	struct mount *master, *slave_mnt; | 
 |  | 
 | 	if (list_empty(&mnt->mnt_share)) { | 
 | 		if (IS_MNT_SHARED(mnt)) { | 
 | 			mnt_release_group_id(mnt); | 
 | 			CLEAR_MNT_SHARED(mnt); | 
 | 		} | 
 | 		master = mnt->mnt_master; | 
 | 		if (!master) { | 
 | 			struct list_head *p = &mnt->mnt_slave_list; | 
 | 			while (!list_empty(p)) { | 
 | 				slave_mnt = list_first_entry(p, | 
 | 						struct mount, mnt_slave); | 
 | 				list_del_init(&slave_mnt->mnt_slave); | 
 | 				slave_mnt->mnt_master = NULL; | 
 | 			} | 
 | 			return 0; | 
 | 		} | 
 | 	} else { | 
 | 		struct mount *m; | 
 | 		/* | 
 | 		 * slave 'mnt' to a peer mount that has the | 
 | 		 * same root dentry. If none is available then | 
 | 		 * slave it to anything that is available. | 
 | 		 */ | 
 | 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { | 
 | 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) { | 
 | 				master = m; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		list_del_init(&mnt->mnt_share); | 
 | 		mnt->mnt_group_id = 0; | 
 | 		CLEAR_MNT_SHARED(mnt); | 
 | 	} | 
 | 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) | 
 | 		slave_mnt->mnt_master = master; | 
 | 	list_move(&mnt->mnt_slave, &master->mnt_slave_list); | 
 | 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); | 
 | 	INIT_LIST_HEAD(&mnt->mnt_slave_list); | 
 | 	mnt->mnt_master = master; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * vfsmount lock must be held for write | 
 |  */ | 
 | void change_mnt_propagation(struct mount *mnt, int type) | 
 | { | 
 | 	if (type == MS_SHARED) { | 
 | 		set_mnt_shared(mnt); | 
 | 		return; | 
 | 	} | 
 | 	do_make_slave(mnt); | 
 | 	if (type != MS_SLAVE) { | 
 | 		list_del_init(&mnt->mnt_slave); | 
 | 		mnt->mnt_master = NULL; | 
 | 		if (type == MS_UNBINDABLE) | 
 | 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE; | 
 | 		else | 
 | 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * get the next mount in the propagation tree. | 
 |  * @m: the mount seen last | 
 |  * @origin: the original mount from where the tree walk initiated | 
 |  * | 
 |  * Note that peer groups form contiguous segments of slave lists. | 
 |  * We rely on that in get_source() to be able to find out if | 
 |  * vfsmount found while iterating with propagation_next() is | 
 |  * a peer of one we'd found earlier. | 
 |  */ | 
 | static struct mount *propagation_next(struct mount *m, | 
 | 					 struct mount *origin) | 
 | { | 
 | 	/* are there any slaves of this mount? */ | 
 | 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) | 
 | 		return first_slave(m); | 
 |  | 
 | 	while (1) { | 
 | 		struct mount *master = m->mnt_master; | 
 |  | 
 | 		if (master == origin->mnt_master) { | 
 | 			struct mount *next = next_peer(m); | 
 | 			return (next == origin) ? NULL : next; | 
 | 		} else if (m->mnt_slave.next != &master->mnt_slave_list) | 
 | 			return next_slave(m); | 
 |  | 
 | 		/* back at master */ | 
 | 		m = master; | 
 | 	} | 
 | } | 
 |  | 
 | static struct mount *skip_propagation_subtree(struct mount *m, | 
 | 						struct mount *origin) | 
 | { | 
 | 	/* | 
 | 	 * Advance m such that propagation_next will not return | 
 | 	 * the slaves of m. | 
 | 	 */ | 
 | 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) | 
 | 		m = last_slave(m); | 
 |  | 
 | 	return m; | 
 | } | 
 |  | 
 | static struct mount *next_group(struct mount *m, struct mount *origin) | 
 | { | 
 | 	while (1) { | 
 | 		while (1) { | 
 | 			struct mount *next; | 
 | 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) | 
 | 				return first_slave(m); | 
 | 			next = next_peer(m); | 
 | 			if (m->mnt_group_id == origin->mnt_group_id) { | 
 | 				if (next == origin) | 
 | 					return NULL; | 
 | 			} else if (m->mnt_slave.next != &next->mnt_slave) | 
 | 				break; | 
 | 			m = next; | 
 | 		} | 
 | 		/* m is the last peer */ | 
 | 		while (1) { | 
 | 			struct mount *master = m->mnt_master; | 
 | 			if (m->mnt_slave.next != &master->mnt_slave_list) | 
 | 				return next_slave(m); | 
 | 			m = next_peer(master); | 
 | 			if (master->mnt_group_id == origin->mnt_group_id) | 
 | 				break; | 
 | 			if (master->mnt_slave.next == &m->mnt_slave) | 
 | 				break; | 
 | 			m = master; | 
 | 		} | 
 | 		if (m == origin) | 
 | 			return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* all accesses are serialized by namespace_sem */ | 
 | static struct user_namespace *user_ns; | 
 | static struct mount *last_dest, *first_source, *last_source, *dest_master; | 
 | static struct mountpoint *mp; | 
 | static struct hlist_head *list; | 
 |  | 
 | static inline bool peers(struct mount *m1, struct mount *m2) | 
 | { | 
 | 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; | 
 | } | 
 |  | 
 | static int propagate_one(struct mount *m) | 
 | { | 
 | 	struct mount *child; | 
 | 	int type; | 
 | 	/* skip ones added by this propagate_mnt() */ | 
 | 	if (IS_MNT_NEW(m)) | 
 | 		return 0; | 
 | 	/* skip if mountpoint isn't covered by it */ | 
 | 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) | 
 | 		return 0; | 
 | 	if (peers(m, last_dest)) { | 
 | 		type = CL_MAKE_SHARED; | 
 | 	} else { | 
 | 		struct mount *n, *p; | 
 | 		bool done; | 
 | 		for (n = m; ; n = p) { | 
 | 			p = n->mnt_master; | 
 | 			if (p == dest_master || IS_MNT_MARKED(p)) | 
 | 				break; | 
 | 		} | 
 | 		do { | 
 | 			struct mount *parent = last_source->mnt_parent; | 
 | 			if (last_source == first_source) | 
 | 				break; | 
 | 			done = parent->mnt_master == p; | 
 | 			if (done && peers(n, parent)) | 
 | 				break; | 
 | 			last_source = last_source->mnt_master; | 
 | 		} while (!done); | 
 |  | 
 | 		type = CL_SLAVE; | 
 | 		/* beginning of peer group among the slaves? */ | 
 | 		if (IS_MNT_SHARED(m)) | 
 | 			type |= CL_MAKE_SHARED; | 
 | 	} | 
 | 		 | 
 | 	/* Notice when we are propagating across user namespaces */ | 
 | 	if (m->mnt_ns->user_ns != user_ns) | 
 | 		type |= CL_UNPRIVILEGED; | 
 | 	child = copy_tree(last_source, last_source->mnt.mnt_root, type); | 
 | 	if (IS_ERR(child)) | 
 | 		return PTR_ERR(child); | 
 | 	child->mnt.mnt_flags &= ~MNT_LOCKED; | 
 | 	mnt_set_mountpoint(m, mp, child); | 
 | 	last_dest = m; | 
 | 	last_source = child; | 
 | 	if (m->mnt_master != dest_master) { | 
 | 		read_seqlock_excl(&mount_lock); | 
 | 		SET_MNT_MARK(m->mnt_master); | 
 | 		read_sequnlock_excl(&mount_lock); | 
 | 	} | 
 | 	hlist_add_head(&child->mnt_hash, list); | 
 | 	return count_mounts(m->mnt_ns, child); | 
 | } | 
 |  | 
 | /* | 
 |  * mount 'source_mnt' under the destination 'dest_mnt' at | 
 |  * dentry 'dest_dentry'. And propagate that mount to | 
 |  * all the peer and slave mounts of 'dest_mnt'. | 
 |  * Link all the new mounts into a propagation tree headed at | 
 |  * source_mnt. Also link all the new mounts using ->mnt_list | 
 |  * headed at source_mnt's ->mnt_list | 
 |  * | 
 |  * @dest_mnt: destination mount. | 
 |  * @dest_dentry: destination dentry. | 
 |  * @source_mnt: source mount. | 
 |  * @tree_list : list of heads of trees to be attached. | 
 |  */ | 
 | int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, | 
 | 		    struct mount *source_mnt, struct hlist_head *tree_list) | 
 | { | 
 | 	struct mount *m, *n; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * we don't want to bother passing tons of arguments to | 
 | 	 * propagate_one(); everything is serialized by namespace_sem, | 
 | 	 * so globals will do just fine. | 
 | 	 */ | 
 | 	user_ns = current->nsproxy->mnt_ns->user_ns; | 
 | 	last_dest = dest_mnt; | 
 | 	first_source = source_mnt; | 
 | 	last_source = source_mnt; | 
 | 	mp = dest_mp; | 
 | 	list = tree_list; | 
 | 	dest_master = dest_mnt->mnt_master; | 
 |  | 
 | 	/* all peers of dest_mnt, except dest_mnt itself */ | 
 | 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { | 
 | 		ret = propagate_one(n); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* all slave groups */ | 
 | 	for (m = next_group(dest_mnt, dest_mnt); m; | 
 | 			m = next_group(m, dest_mnt)) { | 
 | 		/* everything in that slave group */ | 
 | 		n = m; | 
 | 		do { | 
 | 			ret = propagate_one(n); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			n = next_peer(n); | 
 | 		} while (n != m); | 
 | 	} | 
 | out: | 
 | 	read_seqlock_excl(&mount_lock); | 
 | 	hlist_for_each_entry(n, tree_list, mnt_hash) { | 
 | 		m = n->mnt_parent; | 
 | 		if (m->mnt_master != dest_mnt->mnt_master) | 
 | 			CLEAR_MNT_MARK(m->mnt_master); | 
 | 	} | 
 | 	read_sequnlock_excl(&mount_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct mount *find_topper(struct mount *mnt) | 
 | { | 
 | 	/* If there is exactly one mount covering mnt completely return it. */ | 
 | 	struct mount *child; | 
 |  | 
 | 	if (!list_is_singular(&mnt->mnt_mounts)) | 
 | 		return NULL; | 
 |  | 
 | 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); | 
 | 	if (child->mnt_mountpoint != mnt->mnt.mnt_root) | 
 | 		return NULL; | 
 |  | 
 | 	return child; | 
 | } | 
 |  | 
 | /* | 
 |  * return true if the refcount is greater than count | 
 |  */ | 
 | static inline int do_refcount_check(struct mount *mnt, int count) | 
 | { | 
 | 	return mnt_get_count(mnt) > count; | 
 | } | 
 |  | 
 | /* | 
 |  * check if the mount 'mnt' can be unmounted successfully. | 
 |  * @mnt: the mount to be checked for unmount | 
 |  * NOTE: unmounting 'mnt' would naturally propagate to all | 
 |  * other mounts its parent propagates to. | 
 |  * Check if any of these mounts that **do not have submounts** | 
 |  * have more references than 'refcnt'. If so return busy. | 
 |  * | 
 |  * vfsmount lock must be held for write | 
 |  */ | 
 | int propagate_mount_busy(struct mount *mnt, int refcnt) | 
 | { | 
 | 	struct mount *m, *child, *topper; | 
 | 	struct mount *parent = mnt->mnt_parent; | 
 |  | 
 | 	if (mnt == parent) | 
 | 		return do_refcount_check(mnt, refcnt); | 
 |  | 
 | 	/* | 
 | 	 * quickly check if the current mount can be unmounted. | 
 | 	 * If not, we don't have to go checking for all other | 
 | 	 * mounts | 
 | 	 */ | 
 | 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) | 
 | 		return 1; | 
 |  | 
 | 	for (m = propagation_next(parent, parent); m; | 
 | 	     		m = propagation_next(m, parent)) { | 
 | 		int count = 1; | 
 | 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); | 
 | 		if (!child) | 
 | 			continue; | 
 |  | 
 | 		/* Is there exactly one mount on the child that covers | 
 | 		 * it completely whose reference should be ignored? | 
 | 		 */ | 
 | 		topper = find_topper(child); | 
 | 		if (topper) | 
 | 			count += 1; | 
 | 		else if (!list_empty(&child->mnt_mounts)) | 
 | 			continue; | 
 |  | 
 | 		if (do_refcount_check(child, count)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear MNT_LOCKED when it can be shown to be safe. | 
 |  * | 
 |  * mount_lock lock must be held for write | 
 |  */ | 
 | void propagate_mount_unlock(struct mount *mnt) | 
 | { | 
 | 	struct mount *parent = mnt->mnt_parent; | 
 | 	struct mount *m, *child; | 
 |  | 
 | 	BUG_ON(parent == mnt); | 
 |  | 
 | 	for (m = propagation_next(parent, parent); m; | 
 | 			m = propagation_next(m, parent)) { | 
 | 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); | 
 | 		if (child) | 
 | 			child->mnt.mnt_flags &= ~MNT_LOCKED; | 
 | 	} | 
 | } | 
 |  | 
 | static void umount_one(struct mount *mnt, struct list_head *to_umount) | 
 | { | 
 | 	CLEAR_MNT_MARK(mnt); | 
 | 	mnt->mnt.mnt_flags |= MNT_UMOUNT; | 
 | 	list_del_init(&mnt->mnt_child); | 
 | 	list_del_init(&mnt->mnt_umounting); | 
 | 	list_move_tail(&mnt->mnt_list, to_umount); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its | 
 |  * parent propagates to. | 
 |  */ | 
 | static bool __propagate_umount(struct mount *mnt, | 
 | 			       struct list_head *to_umount, | 
 | 			       struct list_head *to_restore) | 
 | { | 
 | 	bool progress = false; | 
 | 	struct mount *child; | 
 |  | 
 | 	/* | 
 | 	 * The state of the parent won't change if this mount is | 
 | 	 * already unmounted or marked as without children. | 
 | 	 */ | 
 | 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) | 
 | 		goto out; | 
 |  | 
 | 	/* Verify topper is the only grandchild that has not been | 
 | 	 * speculatively unmounted. | 
 | 	 */ | 
 | 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { | 
 | 		if (child->mnt_mountpoint == mnt->mnt.mnt_root) | 
 | 			continue; | 
 | 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) | 
 | 			continue; | 
 | 		/* Found a mounted child */ | 
 | 		goto children; | 
 | 	} | 
 |  | 
 | 	/* Mark mounts that can be unmounted if not locked */ | 
 | 	SET_MNT_MARK(mnt); | 
 | 	progress = true; | 
 |  | 
 | 	/* If a mount is without children and not locked umount it. */ | 
 | 	if (!IS_MNT_LOCKED(mnt)) { | 
 | 		umount_one(mnt, to_umount); | 
 | 	} else { | 
 | children: | 
 | 		list_move_tail(&mnt->mnt_umounting, to_restore); | 
 | 	} | 
 | out: | 
 | 	return progress; | 
 | } | 
 |  | 
 | static void umount_list(struct list_head *to_umount, | 
 | 			struct list_head *to_restore) | 
 | { | 
 | 	struct mount *mnt, *child, *tmp; | 
 | 	list_for_each_entry(mnt, to_umount, mnt_list) { | 
 | 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { | 
 | 			/* topper? */ | 
 | 			if (child->mnt_mountpoint == mnt->mnt.mnt_root) | 
 | 				list_move_tail(&child->mnt_umounting, to_restore); | 
 | 			else | 
 | 				umount_one(child, to_umount); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void restore_mounts(struct list_head *to_restore) | 
 | { | 
 | 	/* Restore mounts to a clean working state */ | 
 | 	while (!list_empty(to_restore)) { | 
 | 		struct mount *mnt, *parent; | 
 | 		struct mountpoint *mp; | 
 |  | 
 | 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting); | 
 | 		CLEAR_MNT_MARK(mnt); | 
 | 		list_del_init(&mnt->mnt_umounting); | 
 |  | 
 | 		/* Should this mount be reparented? */ | 
 | 		mp = mnt->mnt_mp; | 
 | 		parent = mnt->mnt_parent; | 
 | 		while (parent->mnt.mnt_flags & MNT_UMOUNT) { | 
 | 			mp = parent->mnt_mp; | 
 | 			parent = parent->mnt_parent; | 
 | 		} | 
 | 		if (parent != mnt->mnt_parent) | 
 | 			mnt_change_mountpoint(parent, mp, mnt); | 
 | 	} | 
 | } | 
 |  | 
 | static void cleanup_umount_visitations(struct list_head *visited) | 
 | { | 
 | 	while (!list_empty(visited)) { | 
 | 		struct mount *mnt = | 
 | 			list_first_entry(visited, struct mount, mnt_umounting); | 
 | 		list_del_init(&mnt->mnt_umounting); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * collect all mounts that receive propagation from the mount in @list, | 
 |  * and return these additional mounts in the same list. | 
 |  * @list: the list of mounts to be unmounted. | 
 |  * | 
 |  * vfsmount lock must be held for write | 
 |  */ | 
 | int propagate_umount(struct list_head *list) | 
 | { | 
 | 	struct mount *mnt; | 
 | 	LIST_HEAD(to_restore); | 
 | 	LIST_HEAD(to_umount); | 
 | 	LIST_HEAD(visited); | 
 |  | 
 | 	/* Find candidates for unmounting */ | 
 | 	list_for_each_entry_reverse(mnt, list, mnt_list) { | 
 | 		struct mount *parent = mnt->mnt_parent; | 
 | 		struct mount *m; | 
 |  | 
 | 		/* | 
 | 		 * If this mount has already been visited it is known that it's | 
 | 		 * entire peer group and all of their slaves in the propagation | 
 | 		 * tree for the mountpoint has already been visited and there is | 
 | 		 * no need to visit them again. | 
 | 		 */ | 
 | 		if (!list_empty(&mnt->mnt_umounting)) | 
 | 			continue; | 
 |  | 
 | 		list_add_tail(&mnt->mnt_umounting, &visited); | 
 | 		for (m = propagation_next(parent, parent); m; | 
 | 		     m = propagation_next(m, parent)) { | 
 | 			struct mount *child = __lookup_mnt(&m->mnt, | 
 | 							   mnt->mnt_mountpoint); | 
 | 			if (!child) | 
 | 				continue; | 
 |  | 
 | 			if (!list_empty(&child->mnt_umounting)) { | 
 | 				/* | 
 | 				 * If the child has already been visited it is | 
 | 				 * know that it's entire peer group and all of | 
 | 				 * their slaves in the propgation tree for the | 
 | 				 * mountpoint has already been visited and there | 
 | 				 * is no need to visit this subtree again. | 
 | 				 */ | 
 | 				m = skip_propagation_subtree(m, parent); | 
 | 				continue; | 
 | 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) { | 
 | 				/* | 
 | 				 * We have come accross an partially unmounted | 
 | 				 * mount in list that has not been visited yet. | 
 | 				 * Remember it has been visited and continue | 
 | 				 * about our merry way. | 
 | 				 */ | 
 | 				list_add_tail(&child->mnt_umounting, &visited); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* Check the child and parents while progress is made */ | 
 | 			while (__propagate_umount(child, | 
 | 						  &to_umount, &to_restore)) { | 
 | 				/* Is the parent a umount candidate? */ | 
 | 				child = child->mnt_parent; | 
 | 				if (list_empty(&child->mnt_umounting)) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	umount_list(&to_umount, &to_restore); | 
 | 	restore_mounts(&to_restore); | 
 | 	cleanup_umount_visitations(&visited); | 
 | 	list_splice_tail(&to_umount, list); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void propagate_remount(struct mount *mnt) | 
 | { | 
 | 	struct mount *parent = mnt->mnt_parent; | 
 | 	struct mount *p = mnt, *m; | 
 | 	struct super_block *sb = mnt->mnt.mnt_sb; | 
 |  | 
 | 	if (!sb->s_op->copy_mnt_data) | 
 | 		return; | 
 | 	for (p = propagation_next(parent, parent); p; | 
 | 				p = propagation_next(p, parent)) { | 
 | 		m = __lookup_mnt(&p->mnt, mnt->mnt_mountpoint); | 
 | 		if (m) | 
 | 			sb->s_op->copy_mnt_data(m->mnt.data, mnt->mnt.data); | 
 | 	} | 
 | } |