|  | #ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG | 
|  | #include <linux/bootmem.h> | 
|  | #endif | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <xen/features.h> | 
|  | #include <xen/page.h> | 
|  |  | 
|  | #include <asm/xen/hypercall.h> | 
|  | #include <asm/xen/hypervisor.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/e820/api.h> | 
|  |  | 
|  | #include "xen-ops.h" | 
|  | #include "smp.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(hypercall_page); | 
|  |  | 
|  | /* | 
|  | * Pointer to the xen_vcpu_info structure or | 
|  | * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info | 
|  | * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info | 
|  | * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point | 
|  | * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to | 
|  | * acknowledge pending events. | 
|  | * Also more subtly it is used by the patched version of irq enable/disable | 
|  | * e.g. xen_irq_enable_direct and xen_iret in PV mode. | 
|  | * | 
|  | * The desire to be able to do those mask/unmask operations as a single | 
|  | * instruction by using the per-cpu offset held in %gs is the real reason | 
|  | * vcpu info is in a per-cpu pointer and the original reason for this | 
|  | * hypercall. | 
|  | * | 
|  | */ | 
|  | DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); | 
|  |  | 
|  | /* | 
|  | * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info | 
|  | * hypercall. This can be used both in PV and PVHVM mode. The structure | 
|  | * overrides the default per_cpu(xen_vcpu, cpu) value. | 
|  | */ | 
|  | DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); | 
|  |  | 
|  | /* Linux <-> Xen vCPU id mapping */ | 
|  | DEFINE_PER_CPU(uint32_t, xen_vcpu_id); | 
|  | EXPORT_PER_CPU_SYMBOL(xen_vcpu_id); | 
|  |  | 
|  | enum xen_domain_type xen_domain_type = XEN_NATIVE; | 
|  | EXPORT_SYMBOL_GPL(xen_domain_type); | 
|  |  | 
|  | unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; | 
|  | EXPORT_SYMBOL(machine_to_phys_mapping); | 
|  | unsigned long  machine_to_phys_nr; | 
|  | EXPORT_SYMBOL(machine_to_phys_nr); | 
|  |  | 
|  | struct start_info *xen_start_info; | 
|  | EXPORT_SYMBOL_GPL(xen_start_info); | 
|  |  | 
|  | struct shared_info xen_dummy_shared_info; | 
|  |  | 
|  | __read_mostly int xen_have_vector_callback; | 
|  | EXPORT_SYMBOL_GPL(xen_have_vector_callback); | 
|  |  | 
|  | /* | 
|  | * NB: needs to live in .data because it's used by xen_prepare_pvh which runs | 
|  | * before clearing the bss. | 
|  | */ | 
|  | uint32_t xen_start_flags __attribute__((section(".data"))) = 0; | 
|  | EXPORT_SYMBOL(xen_start_flags); | 
|  |  | 
|  | /* | 
|  | * Point at some empty memory to start with. We map the real shared_info | 
|  | * page as soon as fixmap is up and running. | 
|  | */ | 
|  | struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info; | 
|  |  | 
|  | /* | 
|  | * Flag to determine whether vcpu info placement is available on all | 
|  | * VCPUs.  We assume it is to start with, and then set it to zero on | 
|  | * the first failure.  This is because it can succeed on some VCPUs | 
|  | * and not others, since it can involve hypervisor memory allocation, | 
|  | * or because the guest failed to guarantee all the appropriate | 
|  | * constraints on all VCPUs (ie buffer can't cross a page boundary). | 
|  | * | 
|  | * Note that any particular CPU may be using a placed vcpu structure, | 
|  | * but we can only optimise if the all are. | 
|  | * | 
|  | * 0: not available, 1: available | 
|  | */ | 
|  | int xen_have_vcpu_info_placement = 1; | 
|  |  | 
|  | static int xen_cpu_up_online(unsigned int cpu) | 
|  | { | 
|  | xen_init_lock_cpu(cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int), | 
|  | int (*cpu_dead_cb)(unsigned int)) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE, | 
|  | "x86/xen/guest:prepare", | 
|  | cpu_up_prepare_cb, cpu_dead_cb); | 
|  | if (rc >= 0) { | 
|  | rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
|  | "x86/xen/guest:online", | 
|  | xen_cpu_up_online, NULL); | 
|  | if (rc < 0) | 
|  | cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE); | 
|  | } | 
|  |  | 
|  | return rc >= 0 ? 0 : rc; | 
|  | } | 
|  |  | 
|  | static int xen_vcpu_setup_restore(int cpu) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | /* Any per_cpu(xen_vcpu) is stale, so reset it */ | 
|  | xen_vcpu_info_reset(cpu); | 
|  |  | 
|  | /* | 
|  | * For PVH and PVHVM, setup online VCPUs only. The rest will | 
|  | * be handled by hotplug. | 
|  | */ | 
|  | if (xen_pv_domain() || | 
|  | (xen_hvm_domain() && cpu_online(cpu))) { | 
|  | rc = xen_vcpu_setup(cpu); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On restore, set the vcpu placement up again. | 
|  | * If it fails, then we're in a bad state, since | 
|  | * we can't back out from using it... | 
|  | */ | 
|  | void xen_vcpu_restore(void) | 
|  | { | 
|  | int cpu, rc; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | bool other_cpu = (cpu != smp_processor_id()); | 
|  | bool is_up; | 
|  |  | 
|  | if (xen_vcpu_nr(cpu) == XEN_VCPU_ID_INVALID) | 
|  | continue; | 
|  |  | 
|  | /* Only Xen 4.5 and higher support this. */ | 
|  | is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, | 
|  | xen_vcpu_nr(cpu), NULL) > 0; | 
|  |  | 
|  | if (other_cpu && is_up && | 
|  | HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL)) | 
|  | BUG(); | 
|  |  | 
|  | if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock)) | 
|  | xen_setup_runstate_info(cpu); | 
|  |  | 
|  | rc = xen_vcpu_setup_restore(cpu); | 
|  | if (rc) | 
|  | pr_emerg_once("vcpu restore failed for cpu=%d err=%d. " | 
|  | "System will hang.\n", cpu, rc); | 
|  | /* | 
|  | * In case xen_vcpu_setup_restore() fails, do not bring up the | 
|  | * VCPU. This helps us avoid the resulting OOPS when the VCPU | 
|  | * accesses pvclock_vcpu_time via xen_vcpu (which is NULL.) | 
|  | * Note that this does not improve the situation much -- now the | 
|  | * VM hangs instead of OOPSing -- with the VCPUs that did not | 
|  | * fail, spinning in stop_machine(), waiting for the failed | 
|  | * VCPUs to come up. | 
|  | */ | 
|  | if (other_cpu && is_up && (rc == 0) && | 
|  | HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xen_vcpu_info_reset(int cpu) | 
|  | { | 
|  | if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) { | 
|  | per_cpu(xen_vcpu, cpu) = | 
|  | &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)]; | 
|  | } else { | 
|  | /* Set to NULL so that if somebody accesses it we get an OOPS */ | 
|  | per_cpu(xen_vcpu, cpu) = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int xen_vcpu_setup(int cpu) | 
|  | { | 
|  | struct vcpu_register_vcpu_info info; | 
|  | int err; | 
|  | struct vcpu_info *vcpup; | 
|  |  | 
|  | BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); | 
|  |  | 
|  | /* | 
|  | * This path is called on PVHVM at bootup (xen_hvm_smp_prepare_boot_cpu) | 
|  | * and at restore (xen_vcpu_restore). Also called for hotplugged | 
|  | * VCPUs (cpu_init -> xen_hvm_cpu_prepare_hvm). | 
|  | * However, the hypercall can only be done once (see below) so if a VCPU | 
|  | * is offlined and comes back online then let's not redo the hypercall. | 
|  | * | 
|  | * For PV it is called during restore (xen_vcpu_restore) and bootup | 
|  | * (xen_setup_vcpu_info_placement). The hotplug mechanism does not | 
|  | * use this function. | 
|  | */ | 
|  | if (xen_hvm_domain()) { | 
|  | if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (xen_have_vcpu_info_placement) { | 
|  | vcpup = &per_cpu(xen_vcpu_info, cpu); | 
|  | info.mfn = arbitrary_virt_to_mfn(vcpup); | 
|  | info.offset = offset_in_page(vcpup); | 
|  |  | 
|  | /* | 
|  | * Check to see if the hypervisor will put the vcpu_info | 
|  | * structure where we want it, which allows direct access via | 
|  | * a percpu-variable. | 
|  | * N.B. This hypercall can _only_ be called once per CPU. | 
|  | * Subsequent calls will error out with -EINVAL. This is due to | 
|  | * the fact that hypervisor has no unregister variant and this | 
|  | * hypercall does not allow to over-write info.mfn and | 
|  | * info.offset. | 
|  | */ | 
|  | err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, | 
|  | xen_vcpu_nr(cpu), &info); | 
|  |  | 
|  | if (err) { | 
|  | pr_warn_once("register_vcpu_info failed: cpu=%d err=%d\n", | 
|  | cpu, err); | 
|  | xen_have_vcpu_info_placement = 0; | 
|  | } else { | 
|  | /* | 
|  | * This cpu is using the registered vcpu info, even if | 
|  | * later ones fail to. | 
|  | */ | 
|  | per_cpu(xen_vcpu, cpu) = vcpup; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!xen_have_vcpu_info_placement) | 
|  | xen_vcpu_info_reset(cpu); | 
|  |  | 
|  | return ((per_cpu(xen_vcpu, cpu) == NULL) ? -ENODEV : 0); | 
|  | } | 
|  |  | 
|  | void xen_reboot(int reason) | 
|  | { | 
|  | struct sched_shutdown r = { .reason = reason }; | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | xen_pmu_finish(cpu); | 
|  |  | 
|  | if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static int reboot_reason = SHUTDOWN_reboot; | 
|  | static bool xen_legacy_crash; | 
|  | void xen_emergency_restart(void) | 
|  | { | 
|  | xen_reboot(reboot_reason); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) | 
|  | { | 
|  | if (!kexec_crash_loaded()) { | 
|  | if (xen_legacy_crash) | 
|  | xen_reboot(SHUTDOWN_crash); | 
|  |  | 
|  | reboot_reason = SHUTDOWN_crash; | 
|  |  | 
|  | /* | 
|  | * If panic_timeout==0 then we are supposed to wait forever. | 
|  | * However, to preserve original dom0 behavior we have to drop | 
|  | * into hypervisor. (domU behavior is controlled by its | 
|  | * config file) | 
|  | */ | 
|  | if (panic_timeout == 0) | 
|  | panic_timeout = -1; | 
|  | } | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static int __init parse_xen_legacy_crash(char *arg) | 
|  | { | 
|  | xen_legacy_crash = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("xen_legacy_crash", parse_xen_legacy_crash); | 
|  |  | 
|  | static struct notifier_block xen_panic_block = { | 
|  | .notifier_call = xen_panic_event, | 
|  | .priority = INT_MIN | 
|  | }; | 
|  |  | 
|  | int xen_panic_handler_init(void) | 
|  | { | 
|  | atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void xen_pin_vcpu(int cpu) | 
|  | { | 
|  | static bool disable_pinning; | 
|  | struct sched_pin_override pin_override; | 
|  | int ret; | 
|  |  | 
|  | if (disable_pinning) | 
|  | return; | 
|  |  | 
|  | pin_override.pcpu = cpu; | 
|  | ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override); | 
|  |  | 
|  | /* Ignore errors when removing override. */ | 
|  | if (cpu < 0) | 
|  | return; | 
|  |  | 
|  | switch (ret) { | 
|  | case -ENOSYS: | 
|  | pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n", | 
|  | cpu); | 
|  | disable_pinning = true; | 
|  | break; | 
|  | case -EPERM: | 
|  | WARN(1, "Trying to pin vcpu without having privilege to do so\n"); | 
|  | disable_pinning = true; | 
|  | break; | 
|  | case -EINVAL: | 
|  | case -EBUSY: | 
|  | pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n", | 
|  | cpu); | 
|  | break; | 
|  | case 0: | 
|  | break; | 
|  | default: | 
|  | WARN(1, "rc %d while trying to pin vcpu\n", ret); | 
|  | disable_pinning = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | void xen_arch_register_cpu(int num) | 
|  | { | 
|  | arch_register_cpu(num); | 
|  | } | 
|  | EXPORT_SYMBOL(xen_arch_register_cpu); | 
|  |  | 
|  | void xen_arch_unregister_cpu(int num) | 
|  | { | 
|  | arch_unregister_cpu(num); | 
|  | } | 
|  | EXPORT_SYMBOL(xen_arch_unregister_cpu); | 
|  | #endif |