| #include "amd64_edac.h" | 
 | #include <asm/amd_nb.h> | 
 |  | 
 | static struct edac_pci_ctl_info *pci_ctl; | 
 |  | 
 | static int report_gart_errors; | 
 | module_param(report_gart_errors, int, 0644); | 
 |  | 
 | /* | 
 |  * Set by command line parameter. If BIOS has enabled the ECC, this override is | 
 |  * cleared to prevent re-enabling the hardware by this driver. | 
 |  */ | 
 | static int ecc_enable_override; | 
 | module_param(ecc_enable_override, int, 0644); | 
 |  | 
 | static struct msr __percpu *msrs; | 
 |  | 
 | /* Per-node stuff */ | 
 | static struct ecc_settings **ecc_stngs; | 
 |  | 
 | /* | 
 |  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing | 
 |  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- | 
 |  * or higher value'. | 
 |  * | 
 |  *FIXME: Produce a better mapping/linearisation. | 
 |  */ | 
 | static const struct scrubrate { | 
 |        u32 scrubval;           /* bit pattern for scrub rate */ | 
 |        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */ | 
 | } scrubrates[] = { | 
 | 	{ 0x01, 1600000000UL}, | 
 | 	{ 0x02, 800000000UL}, | 
 | 	{ 0x03, 400000000UL}, | 
 | 	{ 0x04, 200000000UL}, | 
 | 	{ 0x05, 100000000UL}, | 
 | 	{ 0x06, 50000000UL}, | 
 | 	{ 0x07, 25000000UL}, | 
 | 	{ 0x08, 12284069UL}, | 
 | 	{ 0x09, 6274509UL}, | 
 | 	{ 0x0A, 3121951UL}, | 
 | 	{ 0x0B, 1560975UL}, | 
 | 	{ 0x0C, 781440UL}, | 
 | 	{ 0x0D, 390720UL}, | 
 | 	{ 0x0E, 195300UL}, | 
 | 	{ 0x0F, 97650UL}, | 
 | 	{ 0x10, 48854UL}, | 
 | 	{ 0x11, 24427UL}, | 
 | 	{ 0x12, 12213UL}, | 
 | 	{ 0x13, 6101UL}, | 
 | 	{ 0x14, 3051UL}, | 
 | 	{ 0x15, 1523UL}, | 
 | 	{ 0x16, 761UL}, | 
 | 	{ 0x00, 0UL},        /* scrubbing off */ | 
 | }; | 
 |  | 
 | int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, | 
 | 			       u32 *val, const char *func) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	err = pci_read_config_dword(pdev, offset, val); | 
 | 	if (err) | 
 | 		amd64_warn("%s: error reading F%dx%03x.\n", | 
 | 			   func, PCI_FUNC(pdev->devfn), offset); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, | 
 | 				u32 val, const char *func) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	err = pci_write_config_dword(pdev, offset, val); | 
 | 	if (err) | 
 | 		amd64_warn("%s: error writing to F%dx%03x.\n", | 
 | 			   func, PCI_FUNC(pdev->devfn), offset); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Select DCT to which PCI cfg accesses are routed | 
 |  */ | 
 | static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) | 
 | { | 
 | 	u32 reg = 0; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); | 
 | 	reg &= (pvt->model == 0x30) ? ~3 : ~1; | 
 | 	reg |= dct; | 
 | 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); | 
 | } | 
 |  | 
 | /* | 
 |  * | 
 |  * Depending on the family, F2 DCT reads need special handling: | 
 |  * | 
 |  * K8: has a single DCT only and no address offsets >= 0x100 | 
 |  * | 
 |  * F10h: each DCT has its own set of regs | 
 |  *	DCT0 -> F2x040.. | 
 |  *	DCT1 -> F2x140.. | 
 |  * | 
 |  * F16h: has only 1 DCT | 
 |  * | 
 |  * F15h: we select which DCT we access using F1x10C[DctCfgSel] | 
 |  */ | 
 | static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, | 
 | 					 int offset, u32 *val) | 
 | { | 
 | 	switch (pvt->fam) { | 
 | 	case 0xf: | 
 | 		if (dct || offset >= 0x100) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	case 0x10: | 
 | 		if (dct) { | 
 | 			/* | 
 | 			 * Note: If ganging is enabled, barring the regs | 
 | 			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx | 
 | 			 * return 0. (cf. Section 2.8.1 F10h BKDG) | 
 | 			 */ | 
 | 			if (dct_ganging_enabled(pvt)) | 
 | 				return 0; | 
 |  | 
 | 			offset += 0x100; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 0x15: | 
 | 		/* | 
 | 		 * F15h: F2x1xx addresses do not map explicitly to DCT1. | 
 | 		 * We should select which DCT we access using F1x10C[DctCfgSel] | 
 | 		 */ | 
 | 		dct = (dct && pvt->model == 0x30) ? 3 : dct; | 
 | 		f15h_select_dct(pvt, dct); | 
 | 		break; | 
 |  | 
 | 	case 0x16: | 
 | 		if (dct) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return amd64_read_pci_cfg(pvt->F2, offset, val); | 
 | } | 
 |  | 
 | /* | 
 |  * Memory scrubber control interface. For K8, memory scrubbing is handled by | 
 |  * hardware and can involve L2 cache, dcache as well as the main memory. With | 
 |  * F10, this is extended to L3 cache scrubbing on CPU models sporting that | 
 |  * functionality. | 
 |  * | 
 |  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks | 
 |  * (dram) over to cache lines. This is nasty, so we will use bandwidth in | 
 |  * bytes/sec for the setting. | 
 |  * | 
 |  * Currently, we only do dram scrubbing. If the scrubbing is done in software on | 
 |  * other archs, we might not have access to the caches directly. | 
 |  */ | 
 |  | 
 | static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval) | 
 | { | 
 | 	/* | 
 | 	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values | 
 | 	 * are shifted down by 0x5, so scrubval 0x5 is written to the register | 
 | 	 * as 0x0, scrubval 0x6 as 0x1, etc. | 
 | 	 */ | 
 | 	if (scrubval >= 0x5 && scrubval <= 0x14) { | 
 | 		scrubval -= 0x5; | 
 | 		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF); | 
 | 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1); | 
 | 	} else { | 
 | 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1); | 
 | 	} | 
 | } | 
 | /* | 
 |  * Scan the scrub rate mapping table for a close or matching bandwidth value to | 
 |  * issue. If requested is too big, then use last maximum value found. | 
 |  */ | 
 | static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) | 
 | { | 
 | 	u32 scrubval; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * map the configured rate (new_bw) to a value specific to the AMD64 | 
 | 	 * memory controller and apply to register. Search for the first | 
 | 	 * bandwidth entry that is greater or equal than the setting requested | 
 | 	 * and program that. If at last entry, turn off DRAM scrubbing. | 
 | 	 * | 
 | 	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely | 
 | 	 * by falling back to the last element in scrubrates[]. | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { | 
 | 		/* | 
 | 		 * skip scrub rates which aren't recommended | 
 | 		 * (see F10 BKDG, F3x58) | 
 | 		 */ | 
 | 		if (scrubrates[i].scrubval < min_rate) | 
 | 			continue; | 
 |  | 
 | 		if (scrubrates[i].bandwidth <= new_bw) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	scrubval = scrubrates[i].scrubval; | 
 |  | 
 | 	if (pvt->fam == 0x17) { | 
 | 		__f17h_set_scrubval(pvt, scrubval); | 
 | 	} else if (pvt->fam == 0x15 && pvt->model == 0x60) { | 
 | 		f15h_select_dct(pvt, 0); | 
 | 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); | 
 | 		f15h_select_dct(pvt, 1); | 
 | 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); | 
 | 	} else { | 
 | 		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); | 
 | 	} | 
 |  | 
 | 	if (scrubval) | 
 | 		return scrubrates[i].bandwidth; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	u32 min_scrubrate = 0x5; | 
 |  | 
 | 	if (pvt->fam == 0xf) | 
 | 		min_scrubrate = 0x0; | 
 |  | 
 | 	if (pvt->fam == 0x15) { | 
 | 		/* Erratum #505 */ | 
 | 		if (pvt->model < 0x10) | 
 | 			f15h_select_dct(pvt, 0); | 
 |  | 
 | 		if (pvt->model == 0x60) | 
 | 			min_scrubrate = 0x6; | 
 | 	} | 
 | 	return __set_scrub_rate(pvt, bw, min_scrubrate); | 
 | } | 
 |  | 
 | static int get_scrub_rate(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	int i, retval = -EINVAL; | 
 | 	u32 scrubval = 0; | 
 |  | 
 | 	switch (pvt->fam) { | 
 | 	case 0x15: | 
 | 		/* Erratum #505 */ | 
 | 		if (pvt->model < 0x10) | 
 | 			f15h_select_dct(pvt, 0); | 
 |  | 
 | 		if (pvt->model == 0x60) | 
 | 			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); | 
 | 		break; | 
 |  | 
 | 	case 0x17: | 
 | 		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval); | 
 | 		if (scrubval & BIT(0)) { | 
 | 			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval); | 
 | 			scrubval &= 0xF; | 
 | 			scrubval += 0x5; | 
 | 		} else { | 
 | 			scrubval = 0; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	scrubval = scrubval & 0x001F; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | 
 | 		if (scrubrates[i].scrubval == scrubval) { | 
 | 			retval = scrubrates[i].bandwidth; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * returns true if the SysAddr given by sys_addr matches the | 
 |  * DRAM base/limit associated with node_id | 
 |  */ | 
 | static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) | 
 | { | 
 | 	u64 addr; | 
 |  | 
 | 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be | 
 | 	 * all ones if the most significant implemented address bit is 1. | 
 | 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication | 
 | 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 | 
 | 	 * Application Programming. | 
 | 	 */ | 
 | 	addr = sys_addr & 0x000000ffffffffffull; | 
 |  | 
 | 	return ((addr >= get_dram_base(pvt, nid)) && | 
 | 		(addr <= get_dram_limit(pvt, nid))); | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to map a SysAddr to a node. On success, return a pointer to the | 
 |  * mem_ctl_info structure for the node that the SysAddr maps to. | 
 |  * | 
 |  * On failure, return NULL. | 
 |  */ | 
 | static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, | 
 | 						u64 sys_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt; | 
 | 	u8 node_id; | 
 | 	u32 intlv_en, bits; | 
 |  | 
 | 	/* | 
 | 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section | 
 | 	 * 3.4.4.2) registers to map the SysAddr to a node ID. | 
 | 	 */ | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * The value of this field should be the same for all DRAM Base | 
 | 	 * registers.  Therefore we arbitrarily choose to read it from the | 
 | 	 * register for node 0. | 
 | 	 */ | 
 | 	intlv_en = dram_intlv_en(pvt, 0); | 
 |  | 
 | 	if (intlv_en == 0) { | 
 | 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) { | 
 | 			if (base_limit_match(pvt, sys_addr, node_id)) | 
 | 				goto found; | 
 | 		} | 
 | 		goto err_no_match; | 
 | 	} | 
 |  | 
 | 	if (unlikely((intlv_en != 0x01) && | 
 | 		     (intlv_en != 0x03) && | 
 | 		     (intlv_en != 0x07))) { | 
 | 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	bits = (((u32) sys_addr) >> 12) & intlv_en; | 
 |  | 
 | 	for (node_id = 0; ; ) { | 
 | 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) | 
 | 			break;	/* intlv_sel field matches */ | 
 |  | 
 | 		if (++node_id >= DRAM_RANGES) | 
 | 			goto err_no_match; | 
 | 	} | 
 |  | 
 | 	/* sanity test for sys_addr */ | 
 | 	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { | 
 | 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" | 
 | 			   "range for node %d with node interleaving enabled.\n", | 
 | 			   __func__, sys_addr, node_id); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | found: | 
 | 	return edac_mc_find((int)node_id); | 
 |  | 
 | err_no_match: | 
 | 	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", | 
 | 		 (unsigned long)sys_addr); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * compute the CS base address of the @csrow on the DRAM controller @dct. | 
 |  * For details see F2x[5C:40] in the processor's BKDG | 
 |  */ | 
 | static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, | 
 | 				 u64 *base, u64 *mask) | 
 | { | 
 | 	u64 csbase, csmask, base_bits, mask_bits; | 
 | 	u8 addr_shift; | 
 |  | 
 | 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { | 
 | 		csbase		= pvt->csels[dct].csbases[csrow]; | 
 | 		csmask		= pvt->csels[dct].csmasks[csrow]; | 
 | 		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); | 
 | 		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); | 
 | 		addr_shift	= 4; | 
 |  | 
 | 	/* | 
 | 	 * F16h and F15h, models 30h and later need two addr_shift values: | 
 | 	 * 8 for high and 6 for low (cf. F16h BKDG). | 
 | 	 */ | 
 | 	} else if (pvt->fam == 0x16 || | 
 | 		  (pvt->fam == 0x15 && pvt->model >= 0x30)) { | 
 | 		csbase          = pvt->csels[dct].csbases[csrow]; | 
 | 		csmask          = pvt->csels[dct].csmasks[csrow >> 1]; | 
 |  | 
 | 		*base  = (csbase & GENMASK_ULL(15,  5)) << 6; | 
 | 		*base |= (csbase & GENMASK_ULL(30, 19)) << 8; | 
 |  | 
 | 		*mask = ~0ULL; | 
 | 		/* poke holes for the csmask */ | 
 | 		*mask &= ~((GENMASK_ULL(15, 5)  << 6) | | 
 | 			   (GENMASK_ULL(30, 19) << 8)); | 
 |  | 
 | 		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6; | 
 | 		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8; | 
 |  | 
 | 		return; | 
 | 	} else { | 
 | 		csbase		= pvt->csels[dct].csbases[csrow]; | 
 | 		csmask		= pvt->csels[dct].csmasks[csrow >> 1]; | 
 | 		addr_shift	= 8; | 
 |  | 
 | 		if (pvt->fam == 0x15) | 
 | 			base_bits = mask_bits = | 
 | 				GENMASK_ULL(30,19) | GENMASK_ULL(13,5); | 
 | 		else | 
 | 			base_bits = mask_bits = | 
 | 				GENMASK_ULL(28,19) | GENMASK_ULL(13,5); | 
 | 	} | 
 |  | 
 | 	*base  = (csbase & base_bits) << addr_shift; | 
 |  | 
 | 	*mask  = ~0ULL; | 
 | 	/* poke holes for the csmask */ | 
 | 	*mask &= ~(mask_bits << addr_shift); | 
 | 	/* OR them in */ | 
 | 	*mask |= (csmask & mask_bits) << addr_shift; | 
 | } | 
 |  | 
 | #define for_each_chip_select(i, dct, pvt) \ | 
 | 	for (i = 0; i < pvt->csels[dct].b_cnt; i++) | 
 |  | 
 | #define chip_select_base(i, dct, pvt) \ | 
 | 	pvt->csels[dct].csbases[i] | 
 |  | 
 | #define for_each_chip_select_mask(i, dct, pvt) \ | 
 | 	for (i = 0; i < pvt->csels[dct].m_cnt; i++) | 
 |  | 
 | /* | 
 |  * @input_addr is an InputAddr associated with the node given by mci. Return the | 
 |  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). | 
 |  */ | 
 | static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt; | 
 | 	int csrow; | 
 | 	u64 base, mask; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	for_each_chip_select(csrow, 0, pvt) { | 
 | 		if (!csrow_enabled(csrow, 0, pvt)) | 
 | 			continue; | 
 |  | 
 | 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); | 
 |  | 
 | 		mask = ~mask; | 
 |  | 
 | 		if ((input_addr & mask) == (base & mask)) { | 
 | 			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", | 
 | 				 (unsigned long)input_addr, csrow, | 
 | 				 pvt->mc_node_id); | 
 |  | 
 | 			return csrow; | 
 | 		} | 
 | 	} | 
 | 	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", | 
 | 		 (unsigned long)input_addr, pvt->mc_node_id); | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) | 
 |  * for the node represented by mci. Info is passed back in *hole_base, | 
 |  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if | 
 |  * info is invalid. Info may be invalid for either of the following reasons: | 
 |  * | 
 |  * - The revision of the node is not E or greater.  In this case, the DRAM Hole | 
 |  *   Address Register does not exist. | 
 |  * | 
 |  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, | 
 |  *   indicating that its contents are not valid. | 
 |  * | 
 |  * The values passed back in *hole_base, *hole_offset, and *hole_size are | 
 |  * complete 32-bit values despite the fact that the bitfields in the DHAR | 
 |  * only represent bits 31-24 of the base and offset values. | 
 |  */ | 
 | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, | 
 | 			     u64 *hole_offset, u64 *hole_size) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	/* only revE and later have the DRAM Hole Address Register */ | 
 | 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { | 
 | 		edac_dbg(1, "  revision %d for node %d does not support DHAR\n", | 
 | 			 pvt->ext_model, pvt->mc_node_id); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* valid for Fam10h and above */ | 
 | 	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { | 
 | 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!dhar_valid(pvt)) { | 
 | 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n", | 
 | 			 pvt->mc_node_id); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* This node has Memory Hoisting */ | 
 |  | 
 | 	/* +------------------+--------------------+--------------------+----- | 
 | 	 * | memory           | DRAM hole          | relocated          | | 
 | 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     | | 
 | 	 * |                  |                    | DRAM hole          | | 
 | 	 * |                  |                    | [0x100000000,      | | 
 | 	 * |                  |                    |  (0x100000000+     | | 
 | 	 * |                  |                    |   (0xffffffff-x))] | | 
 | 	 * +------------------+--------------------+--------------------+----- | 
 | 	 * | 
 | 	 * Above is a diagram of physical memory showing the DRAM hole and the | 
 | 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole | 
 | 	 * starts at address x (the base address) and extends through address | 
 | 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the | 
 | 	 * addresses in the hole so that they start at 0x100000000. | 
 | 	 */ | 
 |  | 
 | 	*hole_base = dhar_base(pvt); | 
 | 	*hole_size = (1ULL << 32) - *hole_base; | 
 |  | 
 | 	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) | 
 | 					: k8_dhar_offset(pvt); | 
 |  | 
 | 	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", | 
 | 		 pvt->mc_node_id, (unsigned long)*hole_base, | 
 | 		 (unsigned long)*hole_offset, (unsigned long)*hole_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); | 
 |  | 
 | /* | 
 |  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is | 
 |  * assumed that sys_addr maps to the node given by mci. | 
 |  * | 
 |  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section | 
 |  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a | 
 |  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, | 
 |  * then it is also involved in translating a SysAddr to a DramAddr. Sections | 
 |  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. | 
 |  * These parts of the documentation are unclear. I interpret them as follows: | 
 |  * | 
 |  * When node n receives a SysAddr, it processes the SysAddr as follows: | 
 |  * | 
 |  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM | 
 |  *    Limit registers for node n. If the SysAddr is not within the range | 
 |  *    specified by the base and limit values, then node n ignores the Sysaddr | 
 |  *    (since it does not map to node n). Otherwise continue to step 2 below. | 
 |  * | 
 |  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is | 
 |  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within | 
 |  *    the range of relocated addresses (starting at 0x100000000) from the DRAM | 
 |  *    hole. If not, skip to step 3 below. Else get the value of the | 
 |  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the | 
 |  *    offset defined by this value from the SysAddr. | 
 |  * | 
 |  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM | 
 |  *    Base register for node n. To obtain the DramAddr, subtract the base | 
 |  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70). | 
 |  */ | 
 | static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; | 
 | 	int ret; | 
 |  | 
 | 	dram_base = get_dram_base(pvt, pvt->mc_node_id); | 
 |  | 
 | 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | 
 | 				      &hole_size); | 
 | 	if (!ret) { | 
 | 		if ((sys_addr >= (1ULL << 32)) && | 
 | 		    (sys_addr < ((1ULL << 32) + hole_size))) { | 
 | 			/* use DHAR to translate SysAddr to DramAddr */ | 
 | 			dram_addr = sys_addr - hole_offset; | 
 |  | 
 | 			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", | 
 | 				 (unsigned long)sys_addr, | 
 | 				 (unsigned long)dram_addr); | 
 |  | 
 | 			return dram_addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Translate the SysAddr to a DramAddr as shown near the start of | 
 | 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8 | 
 | 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of | 
 | 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we | 
 | 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See | 
 | 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture | 
 | 	 * Programmer's Manual Volume 1 Application Programming. | 
 | 	 */ | 
 | 	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; | 
 |  | 
 | 	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", | 
 | 		 (unsigned long)sys_addr, (unsigned long)dram_addr); | 
 | 	return dram_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * @intlv_en is the value of the IntlvEn field from a DRAM Base register | 
 |  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used | 
 |  * for node interleaving. | 
 |  */ | 
 | static int num_node_interleave_bits(unsigned intlv_en) | 
 | { | 
 | 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; | 
 | 	int n; | 
 |  | 
 | 	BUG_ON(intlv_en > 7); | 
 | 	n = intlv_shift_table[intlv_en]; | 
 | 	return n; | 
 | } | 
 |  | 
 | /* Translate the DramAddr given by @dram_addr to an InputAddr. */ | 
 | static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt; | 
 | 	int intlv_shift; | 
 | 	u64 input_addr; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | 
 | 	 * concerning translating a DramAddr to an InputAddr. | 
 | 	 */ | 
 | 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); | 
 | 	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + | 
 | 		      (dram_addr & 0xfff); | 
 |  | 
 | 	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", | 
 | 		 intlv_shift, (unsigned long)dram_addr, | 
 | 		 (unsigned long)input_addr); | 
 |  | 
 | 	return input_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is | 
 |  * assumed that @sys_addr maps to the node given by mci. | 
 |  */ | 
 | static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
 | { | 
 | 	u64 input_addr; | 
 |  | 
 | 	input_addr = | 
 | 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); | 
 |  | 
 | 	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n", | 
 | 		 (unsigned long)sys_addr, (unsigned long)input_addr); | 
 |  | 
 | 	return input_addr; | 
 | } | 
 |  | 
 | /* Map the Error address to a PAGE and PAGE OFFSET. */ | 
 | static inline void error_address_to_page_and_offset(u64 error_address, | 
 | 						    struct err_info *err) | 
 | { | 
 | 	err->page = (u32) (error_address >> PAGE_SHIFT); | 
 | 	err->offset = ((u32) error_address) & ~PAGE_MASK; | 
 | } | 
 |  | 
 | /* | 
 |  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address | 
 |  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers | 
 |  * of a node that detected an ECC memory error.  mci represents the node that | 
 |  * the error address maps to (possibly different from the node that detected | 
 |  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on | 
 |  * error. | 
 |  */ | 
 | static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) | 
 | { | 
 | 	int csrow; | 
 |  | 
 | 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); | 
 |  | 
 | 	if (csrow == -1) | 
 | 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " | 
 | 				  "address 0x%lx\n", (unsigned long)sys_addr); | 
 | 	return csrow; | 
 | } | 
 |  | 
 | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); | 
 |  | 
 | /* | 
 |  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs | 
 |  * are ECC capable. | 
 |  */ | 
 | static unsigned long determine_edac_cap(struct amd64_pvt *pvt) | 
 | { | 
 | 	unsigned long edac_cap = EDAC_FLAG_NONE; | 
 | 	u8 bit; | 
 |  | 
 | 	if (pvt->umc) { | 
 | 		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0; | 
 |  | 
 | 		for (i = 0; i < NUM_UMCS; i++) { | 
 | 			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT)) | 
 | 				continue; | 
 |  | 
 | 			umc_en_mask |= BIT(i); | 
 |  | 
 | 			/* UMC Configuration bit 12 (DimmEccEn) */ | 
 | 			if (pvt->umc[i].umc_cfg & BIT(12)) | 
 | 				dimm_ecc_en_mask |= BIT(i); | 
 | 		} | 
 |  | 
 | 		if (umc_en_mask == dimm_ecc_en_mask) | 
 | 			edac_cap = EDAC_FLAG_SECDED; | 
 | 	} else { | 
 | 		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) | 
 | 			? 19 | 
 | 			: 17; | 
 |  | 
 | 		if (pvt->dclr0 & BIT(bit)) | 
 | 			edac_cap = EDAC_FLAG_SECDED; | 
 | 	} | 
 |  | 
 | 	return edac_cap; | 
 | } | 
 |  | 
 | static void debug_display_dimm_sizes(struct amd64_pvt *, u8); | 
 |  | 
 | static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) | 
 | { | 
 | 	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); | 
 |  | 
 | 	if (pvt->dram_type == MEM_LRDDR3) { | 
 | 		u32 dcsm = pvt->csels[chan].csmasks[0]; | 
 | 		/* | 
 | 		 * It's assumed all LRDIMMs in a DCT are going to be of | 
 | 		 * same 'type' until proven otherwise. So, use a cs | 
 | 		 * value of '0' here to get dcsm value. | 
 | 		 */ | 
 | 		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "All DIMMs support ECC:%s\n", | 
 | 		    (dclr & BIT(19)) ? "yes" : "no"); | 
 |  | 
 |  | 
 | 	edac_dbg(1, "  PAR/ERR parity: %s\n", | 
 | 		 (dclr & BIT(8)) ?  "enabled" : "disabled"); | 
 |  | 
 | 	if (pvt->fam == 0x10) | 
 | 		edac_dbg(1, "  DCT 128bit mode width: %s\n", | 
 | 			 (dclr & BIT(11)) ?  "128b" : "64b"); | 
 |  | 
 | 	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", | 
 | 		 (dclr & BIT(12)) ?  "yes" : "no", | 
 | 		 (dclr & BIT(13)) ?  "yes" : "no", | 
 | 		 (dclr & BIT(14)) ?  "yes" : "no", | 
 | 		 (dclr & BIT(15)) ?  "yes" : "no"); | 
 | } | 
 |  | 
 | static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl) | 
 | { | 
 | 	int dimm, size0, size1, cs0, cs1; | 
 |  | 
 | 	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); | 
 |  | 
 | 	for (dimm = 0; dimm < 4; dimm++) { | 
 | 		size0 = 0; | 
 | 		cs0 = dimm * 2; | 
 |  | 
 | 		if (csrow_enabled(cs0, ctrl, pvt)) | 
 | 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0); | 
 |  | 
 | 		size1 = 0; | 
 | 		cs1 = dimm * 2 + 1; | 
 |  | 
 | 		if (csrow_enabled(cs1, ctrl, pvt)) | 
 | 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1); | 
 |  | 
 | 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", | 
 | 				cs0,	size0, | 
 | 				cs1,	size1); | 
 | 	} | 
 | } | 
 |  | 
 | static void __dump_misc_regs_df(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i, tmp, umc_base; | 
 |  | 
 | 	for (i = 0; i < NUM_UMCS; i++) { | 
 | 		umc_base = get_umc_base(i); | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg); | 
 | 		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); | 
 | 		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); | 
 | 		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); | 
 |  | 
 | 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp); | 
 | 		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp); | 
 |  | 
 | 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp); | 
 | 		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp); | 
 | 		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi); | 
 |  | 
 | 		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n", | 
 | 				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no", | 
 | 				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no"); | 
 | 		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n", | 
 | 				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no"); | 
 | 		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n", | 
 | 				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no"); | 
 | 		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n", | 
 | 				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no"); | 
 |  | 
 | 		if (pvt->dram_type == MEM_LRDDR4) { | 
 | 			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp); | 
 | 			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n", | 
 | 					i, 1 << ((tmp >> 4) & 0x3)); | 
 | 		} | 
 |  | 
 | 		debug_display_dimm_sizes_df(pvt, i); | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n", | 
 | 		 pvt->dhar, dhar_base(pvt)); | 
 | } | 
 |  | 
 | /* Display and decode various NB registers for debug purposes. */ | 
 | static void __dump_misc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); | 
 |  | 
 | 	edac_dbg(1, "  NB two channel DRAM capable: %s\n", | 
 | 		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); | 
 |  | 
 | 	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n", | 
 | 		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", | 
 | 		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); | 
 |  | 
 | 	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); | 
 |  | 
 | 	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); | 
 |  | 
 | 	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", | 
 | 		 pvt->dhar, dhar_base(pvt), | 
 | 		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) | 
 | 				   : f10_dhar_offset(pvt)); | 
 |  | 
 | 	debug_display_dimm_sizes(pvt, 0); | 
 |  | 
 | 	/* everything below this point is Fam10h and above */ | 
 | 	if (pvt->fam == 0xf) | 
 | 		return; | 
 |  | 
 | 	debug_display_dimm_sizes(pvt, 1); | 
 |  | 
 | 	/* Only if NOT ganged does dclr1 have valid info */ | 
 | 	if (!dct_ganging_enabled(pvt)) | 
 | 		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); | 
 | } | 
 |  | 
 | /* Display and decode various NB registers for debug purposes. */ | 
 | static void dump_misc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	if (pvt->umc) | 
 | 		__dump_misc_regs_df(pvt); | 
 | 	else | 
 | 		__dump_misc_regs(pvt); | 
 |  | 
 | 	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); | 
 |  | 
 | 	amd64_info("using %s syndromes.\n", | 
 | 			((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); | 
 | } | 
 |  | 
 | /* | 
 |  * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] | 
 |  */ | 
 | static void prep_chip_selects(struct amd64_pvt *pvt) | 
 | { | 
 | 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { | 
 | 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; | 
 | 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; | 
 | 	} else if (pvt->fam == 0x15 && pvt->model == 0x30) { | 
 | 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; | 
 | 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; | 
 | 	} else { | 
 | 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; | 
 | 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers | 
 |  */ | 
 | static void read_dct_base_mask(struct amd64_pvt *pvt) | 
 | { | 
 | 	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs; | 
 |  | 
 | 	prep_chip_selects(pvt); | 
 |  | 
 | 	if (pvt->umc) { | 
 | 		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR; | 
 | 		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR; | 
 | 		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK; | 
 | 		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK; | 
 | 	} else { | 
 | 		base_reg0 = DCSB0; | 
 | 		base_reg1 = DCSB1; | 
 | 		mask_reg0 = DCSM0; | 
 | 		mask_reg1 = DCSM1; | 
 | 	} | 
 |  | 
 | 	for_each_chip_select(cs, 0, pvt) { | 
 | 		int reg0   = base_reg0 + (cs * 4); | 
 | 		int reg1   = base_reg1 + (cs * 4); | 
 | 		u32 *base0 = &pvt->csels[0].csbases[cs]; | 
 | 		u32 *base1 = &pvt->csels[1].csbases[cs]; | 
 |  | 
 | 		if (pvt->umc) { | 
 | 			if (!amd_smn_read(pvt->mc_node_id, reg0, base0)) | 
 | 				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n", | 
 | 					 cs, *base0, reg0); | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, reg1, base1)) | 
 | 				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n", | 
 | 					 cs, *base1, reg1); | 
 | 		} else { | 
 | 			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) | 
 | 				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n", | 
 | 					 cs, *base0, reg0); | 
 |  | 
 | 			if (pvt->fam == 0xf) | 
 | 				continue; | 
 |  | 
 | 			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) | 
 | 				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n", | 
 | 					 cs, *base1, (pvt->fam == 0x10) ? reg1 | 
 | 								: reg0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_chip_select_mask(cs, 0, pvt) { | 
 | 		int reg0   = mask_reg0 + (cs * 4); | 
 | 		int reg1   = mask_reg1 + (cs * 4); | 
 | 		u32 *mask0 = &pvt->csels[0].csmasks[cs]; | 
 | 		u32 *mask1 = &pvt->csels[1].csmasks[cs]; | 
 |  | 
 | 		if (pvt->umc) { | 
 | 			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0)) | 
 | 				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n", | 
 | 					 cs, *mask0, reg0); | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1)) | 
 | 				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n", | 
 | 					 cs, *mask1, reg1); | 
 | 		} else { | 
 | 			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) | 
 | 				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n", | 
 | 					 cs, *mask0, reg0); | 
 |  | 
 | 			if (pvt->fam == 0xf) | 
 | 				continue; | 
 |  | 
 | 			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) | 
 | 				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n", | 
 | 					 cs, *mask1, (pvt->fam == 0x10) ? reg1 | 
 | 								: reg0); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void determine_memory_type(struct amd64_pvt *pvt) | 
 | { | 
 | 	u32 dram_ctrl, dcsm; | 
 |  | 
 | 	switch (pvt->fam) { | 
 | 	case 0xf: | 
 | 		if (pvt->ext_model >= K8_REV_F) | 
 | 			goto ddr3; | 
 |  | 
 | 		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; | 
 | 		return; | 
 |  | 
 | 	case 0x10: | 
 | 		if (pvt->dchr0 & DDR3_MODE) | 
 | 			goto ddr3; | 
 |  | 
 | 		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; | 
 | 		return; | 
 |  | 
 | 	case 0x15: | 
 | 		if (pvt->model < 0x60) | 
 | 			goto ddr3; | 
 |  | 
 | 		/* | 
 | 		 * Model 0x60h needs special handling: | 
 | 		 * | 
 | 		 * We use a Chip Select value of '0' to obtain dcsm. | 
 | 		 * Theoretically, it is possible to populate LRDIMMs of different | 
 | 		 * 'Rank' value on a DCT. But this is not the common case. So, | 
 | 		 * it's reasonable to assume all DIMMs are going to be of same | 
 | 		 * 'type' until proven otherwise. | 
 | 		 */ | 
 | 		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); | 
 | 		dcsm = pvt->csels[0].csmasks[0]; | 
 |  | 
 | 		if (((dram_ctrl >> 8) & 0x7) == 0x2) | 
 | 			pvt->dram_type = MEM_DDR4; | 
 | 		else if (pvt->dclr0 & BIT(16)) | 
 | 			pvt->dram_type = MEM_DDR3; | 
 | 		else if (dcsm & 0x3) | 
 | 			pvt->dram_type = MEM_LRDDR3; | 
 | 		else | 
 | 			pvt->dram_type = MEM_RDDR3; | 
 |  | 
 | 		return; | 
 |  | 
 | 	case 0x16: | 
 | 		goto ddr3; | 
 |  | 
 | 	case 0x17: | 
 | 		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5)) | 
 | 			pvt->dram_type = MEM_LRDDR4; | 
 | 		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4)) | 
 | 			pvt->dram_type = MEM_RDDR4; | 
 | 		else | 
 | 			pvt->dram_type = MEM_DDR4; | 
 | 		return; | 
 |  | 
 | 	default: | 
 | 		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); | 
 | 		pvt->dram_type = MEM_EMPTY; | 
 | 	} | 
 | 	return; | 
 |  | 
 | ddr3: | 
 | 	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; | 
 | } | 
 |  | 
 | /* Get the number of DCT channels the memory controller is using. */ | 
 | static int k8_early_channel_count(struct amd64_pvt *pvt) | 
 | { | 
 | 	int flag; | 
 |  | 
 | 	if (pvt->ext_model >= K8_REV_F) | 
 | 		/* RevF (NPT) and later */ | 
 | 		flag = pvt->dclr0 & WIDTH_128; | 
 | 	else | 
 | 		/* RevE and earlier */ | 
 | 		flag = pvt->dclr0 & REVE_WIDTH_128; | 
 |  | 
 | 	/* not used */ | 
 | 	pvt->dclr1 = 0; | 
 |  | 
 | 	return (flag) ? 2 : 1; | 
 | } | 
 |  | 
 | /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ | 
 | static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) | 
 | { | 
 | 	u16 mce_nid = amd_get_nb_id(m->extcpu); | 
 | 	struct mem_ctl_info *mci; | 
 | 	u8 start_bit = 1; | 
 | 	u8 end_bit   = 47; | 
 | 	u64 addr; | 
 |  | 
 | 	mci = edac_mc_find(mce_nid); | 
 | 	if (!mci) | 
 | 		return 0; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	if (pvt->fam == 0xf) { | 
 | 		start_bit = 3; | 
 | 		end_bit   = 39; | 
 | 	} | 
 |  | 
 | 	addr = m->addr & GENMASK_ULL(end_bit, start_bit); | 
 |  | 
 | 	/* | 
 | 	 * Erratum 637 workaround | 
 | 	 */ | 
 | 	if (pvt->fam == 0x15) { | 
 | 		u64 cc6_base, tmp_addr; | 
 | 		u32 tmp; | 
 | 		u8 intlv_en; | 
 |  | 
 | 		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) | 
 | 			return addr; | 
 |  | 
 |  | 
 | 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); | 
 | 		intlv_en = tmp >> 21 & 0x7; | 
 |  | 
 | 		/* add [47:27] + 3 trailing bits */ | 
 | 		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3; | 
 |  | 
 | 		/* reverse and add DramIntlvEn */ | 
 | 		cc6_base |= intlv_en ^ 0x7; | 
 |  | 
 | 		/* pin at [47:24] */ | 
 | 		cc6_base <<= 24; | 
 |  | 
 | 		if (!intlv_en) | 
 | 			return cc6_base | (addr & GENMASK_ULL(23, 0)); | 
 |  | 
 | 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); | 
 |  | 
 | 							/* faster log2 */ | 
 | 		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); | 
 |  | 
 | 		/* OR DramIntlvSel into bits [14:12] */ | 
 | 		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; | 
 |  | 
 | 		/* add remaining [11:0] bits from original MC4_ADDR */ | 
 | 		tmp_addr |= addr & GENMASK_ULL(11, 0); | 
 |  | 
 | 		return cc6_base | tmp_addr; | 
 | 	} | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static struct pci_dev *pci_get_related_function(unsigned int vendor, | 
 | 						unsigned int device, | 
 | 						struct pci_dev *related) | 
 | { | 
 | 	struct pci_dev *dev = NULL; | 
 |  | 
 | 	while ((dev = pci_get_device(vendor, device, dev))) { | 
 | 		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && | 
 | 		    (dev->bus->number == related->bus->number) && | 
 | 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return dev; | 
 | } | 
 |  | 
 | static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) | 
 | { | 
 | 	struct amd_northbridge *nb; | 
 | 	struct pci_dev *f1 = NULL; | 
 | 	unsigned int pci_func; | 
 | 	int off = range << 3; | 
 | 	u32 llim; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo); | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); | 
 |  | 
 | 	if (pvt->fam == 0xf) | 
 | 		return; | 
 |  | 
 | 	if (!dram_rw(pvt, range)) | 
 | 		return; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi); | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); | 
 |  | 
 | 	/* F15h: factor in CC6 save area by reading dst node's limit reg */ | 
 | 	if (pvt->fam != 0x15) | 
 | 		return; | 
 |  | 
 | 	nb = node_to_amd_nb(dram_dst_node(pvt, range)); | 
 | 	if (WARN_ON(!nb)) | 
 | 		return; | 
 |  | 
 | 	if (pvt->model == 0x60) | 
 | 		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; | 
 | 	else if (pvt->model == 0x30) | 
 | 		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; | 
 | 	else | 
 | 		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; | 
 |  | 
 | 	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); | 
 | 	if (WARN_ON(!f1)) | 
 | 		return; | 
 |  | 
 | 	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); | 
 |  | 
 | 	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); | 
 |  | 
 | 				    /* {[39:27],111b} */ | 
 | 	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; | 
 |  | 
 | 	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); | 
 |  | 
 | 				    /* [47:40] */ | 
 | 	pvt->ranges[range].lim.hi |= llim >> 13; | 
 |  | 
 | 	pci_dev_put(f1); | 
 | } | 
 |  | 
 | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, | 
 | 				    struct err_info *err) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	error_address_to_page_and_offset(sys_addr, err); | 
 |  | 
 | 	/* | 
 | 	 * Find out which node the error address belongs to. This may be | 
 | 	 * different from the node that detected the error. | 
 | 	 */ | 
 | 	err->src_mci = find_mc_by_sys_addr(mci, sys_addr); | 
 | 	if (!err->src_mci) { | 
 | 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", | 
 | 			     (unsigned long)sys_addr); | 
 | 		err->err_code = ERR_NODE; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Now map the sys_addr to a CSROW */ | 
 | 	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); | 
 | 	if (err->csrow < 0) { | 
 | 		err->err_code = ERR_CSROW; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* CHIPKILL enabled */ | 
 | 	if (pvt->nbcfg & NBCFG_CHIPKILL) { | 
 | 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); | 
 | 		if (err->channel < 0) { | 
 | 			/* | 
 | 			 * Syndrome didn't map, so we don't know which of the | 
 | 			 * 2 DIMMs is in error. So we need to ID 'both' of them | 
 | 			 * as suspect. | 
 | 			 */ | 
 | 			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " | 
 | 				      "possible error reporting race\n", | 
 | 				      err->syndrome); | 
 | 			err->err_code = ERR_CHANNEL; | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * non-chipkill ecc mode | 
 | 		 * | 
 | 		 * The k8 documentation is unclear about how to determine the | 
 | 		 * channel number when using non-chipkill memory.  This method | 
 | 		 * was obtained from email communication with someone at AMD. | 
 | 		 * (Wish the email was placed in this comment - norsk) | 
 | 		 */ | 
 | 		err->channel = ((sys_addr & BIT(3)) != 0); | 
 | 	} | 
 | } | 
 |  | 
 | static int ddr2_cs_size(unsigned i, bool dct_width) | 
 | { | 
 | 	unsigned shift = 0; | 
 |  | 
 | 	if (i <= 2) | 
 | 		shift = i; | 
 | 	else if (!(i & 0x1)) | 
 | 		shift = i >> 1; | 
 | 	else | 
 | 		shift = (i + 1) >> 1; | 
 |  | 
 | 	return 128 << (shift + !!dct_width); | 
 | } | 
 |  | 
 | static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				  unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; | 
 |  | 
 | 	if (pvt->ext_model >= K8_REV_F) { | 
 | 		WARN_ON(cs_mode > 11); | 
 | 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128); | 
 | 	} | 
 | 	else if (pvt->ext_model >= K8_REV_D) { | 
 | 		unsigned diff; | 
 | 		WARN_ON(cs_mode > 10); | 
 |  | 
 | 		/* | 
 | 		 * the below calculation, besides trying to win an obfuscated C | 
 | 		 * contest, maps cs_mode values to DIMM chip select sizes. The | 
 | 		 * mappings are: | 
 | 		 * | 
 | 		 * cs_mode	CS size (mb) | 
 | 		 * =======	============ | 
 | 		 * 0		32 | 
 | 		 * 1		64 | 
 | 		 * 2		128 | 
 | 		 * 3		128 | 
 | 		 * 4		256 | 
 | 		 * 5		512 | 
 | 		 * 6		256 | 
 | 		 * 7		512 | 
 | 		 * 8		1024 | 
 | 		 * 9		1024 | 
 | 		 * 10		2048 | 
 | 		 * | 
 | 		 * Basically, it calculates a value with which to shift the | 
 | 		 * smallest CS size of 32MB. | 
 | 		 * | 
 | 		 * ddr[23]_cs_size have a similar purpose. | 
 | 		 */ | 
 | 		diff = cs_mode/3 + (unsigned)(cs_mode > 5); | 
 |  | 
 | 		return 32 << (cs_mode - diff); | 
 | 	} | 
 | 	else { | 
 | 		WARN_ON(cs_mode > 6); | 
 | 		return 32 << cs_mode; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Get the number of DCT channels in use. | 
 |  * | 
 |  * Return: | 
 |  *	number of Memory Channels in operation | 
 |  * Pass back: | 
 |  *	contents of the DCL0_LOW register | 
 |  */ | 
 | static int f1x_early_channel_count(struct amd64_pvt *pvt) | 
 | { | 
 | 	int i, j, channels = 0; | 
 |  | 
 | 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */ | 
 | 	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) | 
 | 		return 2; | 
 |  | 
 | 	/* | 
 | 	 * Need to check if in unganged mode: In such, there are 2 channels, | 
 | 	 * but they are not in 128 bit mode and thus the above 'dclr0' status | 
 | 	 * bit will be OFF. | 
 | 	 * | 
 | 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has | 
 | 	 * their CSEnable bit on. If so, then SINGLE DIMM case. | 
 | 	 */ | 
 | 	edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); | 
 |  | 
 | 	/* | 
 | 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there | 
 | 	 * is more than just one DIMM present in unganged mode. Need to check | 
 | 	 * both controllers since DIMMs can be placed in either one. | 
 | 	 */ | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); | 
 |  | 
 | 		for (j = 0; j < 4; j++) { | 
 | 			if (DBAM_DIMM(j, dbam) > 0) { | 
 | 				channels++; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (channels > 2) | 
 | 		channels = 2; | 
 |  | 
 | 	amd64_info("MCT channel count: %d\n", channels); | 
 |  | 
 | 	return channels; | 
 | } | 
 |  | 
 | static int f17_early_channel_count(struct amd64_pvt *pvt) | 
 | { | 
 | 	int i, channels = 0; | 
 |  | 
 | 	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */ | 
 | 	for (i = 0; i < NUM_UMCS; i++) | 
 | 		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT); | 
 |  | 
 | 	amd64_info("MCT channel count: %d\n", channels); | 
 |  | 
 | 	return channels; | 
 | } | 
 |  | 
 | static int ddr3_cs_size(unsigned i, bool dct_width) | 
 | { | 
 | 	unsigned shift = 0; | 
 | 	int cs_size = 0; | 
 |  | 
 | 	if (i == 0 || i == 3 || i == 4) | 
 | 		cs_size = -1; | 
 | 	else if (i <= 2) | 
 | 		shift = i; | 
 | 	else if (i == 12) | 
 | 		shift = 7; | 
 | 	else if (!(i & 0x1)) | 
 | 		shift = i >> 1; | 
 | 	else | 
 | 		shift = (i + 1) >> 1; | 
 |  | 
 | 	if (cs_size != -1) | 
 | 		cs_size = (128 * (1 << !!dct_width)) << shift; | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) | 
 | { | 
 | 	unsigned shift = 0; | 
 | 	int cs_size = 0; | 
 |  | 
 | 	if (i < 4 || i == 6) | 
 | 		cs_size = -1; | 
 | 	else if (i == 12) | 
 | 		shift = 7; | 
 | 	else if (!(i & 0x1)) | 
 | 		shift = i >> 1; | 
 | 	else | 
 | 		shift = (i + 1) >> 1; | 
 |  | 
 | 	if (cs_size != -1) | 
 | 		cs_size = rank_multiply * (128 << shift); | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | static int ddr4_cs_size(unsigned i) | 
 | { | 
 | 	int cs_size = 0; | 
 |  | 
 | 	if (i == 0) | 
 | 		cs_size = -1; | 
 | 	else if (i == 1) | 
 | 		cs_size = 1024; | 
 | 	else | 
 | 		/* Min cs_size = 1G */ | 
 | 		cs_size = 1024 * (1 << (i >> 1)); | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				   unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; | 
 |  | 
 | 	WARN_ON(cs_mode > 11); | 
 |  | 
 | 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) | 
 | 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128); | 
 | 	else | 
 | 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128); | 
 | } | 
 |  | 
 | /* | 
 |  * F15h supports only 64bit DCT interfaces | 
 |  */ | 
 | static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				   unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	WARN_ON(cs_mode > 12); | 
 |  | 
 | 	return ddr3_cs_size(cs_mode, false); | 
 | } | 
 |  | 
 | /* F15h M60h supports DDR4 mapping as well.. */ | 
 | static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 					unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	int cs_size; | 
 | 	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; | 
 |  | 
 | 	WARN_ON(cs_mode > 12); | 
 |  | 
 | 	if (pvt->dram_type == MEM_DDR4) { | 
 | 		if (cs_mode > 9) | 
 | 			return -1; | 
 |  | 
 | 		cs_size = ddr4_cs_size(cs_mode); | 
 | 	} else if (pvt->dram_type == MEM_LRDDR3) { | 
 | 		unsigned rank_multiply = dcsm & 0xf; | 
 |  | 
 | 		if (rank_multiply == 3) | 
 | 			rank_multiply = 4; | 
 | 		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); | 
 | 	} else { | 
 | 		/* Minimum cs size is 512mb for F15hM60h*/ | 
 | 		if (cs_mode == 0x1) | 
 | 			return -1; | 
 |  | 
 | 		cs_size = ddr3_cs_size(cs_mode, false); | 
 | 	} | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | /* | 
 |  * F16h and F15h model 30h have only limited cs_modes. | 
 |  */ | 
 | static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	WARN_ON(cs_mode > 12); | 
 |  | 
 | 	if (cs_mode == 6 || cs_mode == 8 || | 
 | 	    cs_mode == 9 || cs_mode == 12) | 
 | 		return -1; | 
 | 	else | 
 | 		return ddr3_cs_size(cs_mode, false); | 
 | } | 
 |  | 
 | static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc, | 
 | 				    unsigned int cs_mode, int csrow_nr) | 
 | { | 
 | 	u32 base_addr = pvt->csels[umc].csbases[csrow_nr]; | 
 |  | 
 | 	/*  Each mask is used for every two base addresses. */ | 
 | 	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1]; | 
 |  | 
 | 	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */ | 
 | 	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1; | 
 |  | 
 | 	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask); | 
 |  | 
 | 	/* Return size in MBs. */ | 
 | 	return size >> 10; | 
 | } | 
 |  | 
 | static void read_dram_ctl_register(struct amd64_pvt *pvt) | 
 | { | 
 |  | 
 | 	if (pvt->fam == 0xf) | 
 | 		return; | 
 |  | 
 | 	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { | 
 | 		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", | 
 | 			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); | 
 |  | 
 | 		edac_dbg(0, "  DCTs operate in %s mode\n", | 
 | 			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); | 
 |  | 
 | 		if (!dct_ganging_enabled(pvt)) | 
 | 			edac_dbg(0, "  Address range split per DCT: %s\n", | 
 | 				 (dct_high_range_enabled(pvt) ? "yes" : "no")); | 
 |  | 
 | 		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", | 
 | 			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), | 
 | 			 (dct_memory_cleared(pvt) ? "yes" : "no")); | 
 |  | 
 | 		edac_dbg(0, "  channel interleave: %s, " | 
 | 			 "interleave bits selector: 0x%x\n", | 
 | 			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), | 
 | 			 dct_sel_interleave_addr(pvt)); | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); | 
 | } | 
 |  | 
 | /* | 
 |  * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, | 
 |  * 2.10.12 Memory Interleaving Modes). | 
 |  */ | 
 | static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | 
 | 				     u8 intlv_en, int num_dcts_intlv, | 
 | 				     u32 dct_sel) | 
 | { | 
 | 	u8 channel = 0; | 
 | 	u8 select; | 
 |  | 
 | 	if (!(intlv_en)) | 
 | 		return (u8)(dct_sel); | 
 |  | 
 | 	if (num_dcts_intlv == 2) { | 
 | 		select = (sys_addr >> 8) & 0x3; | 
 | 		channel = select ? 0x3 : 0; | 
 | 	} else if (num_dcts_intlv == 4) { | 
 | 		u8 intlv_addr = dct_sel_interleave_addr(pvt); | 
 | 		switch (intlv_addr) { | 
 | 		case 0x4: | 
 | 			channel = (sys_addr >> 8) & 0x3; | 
 | 			break; | 
 | 		case 0x5: | 
 | 			channel = (sys_addr >> 9) & 0x3; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return channel; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory | 
 |  * Interleaving Modes. | 
 |  */ | 
 | static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | 
 | 				bool hi_range_sel, u8 intlv_en) | 
 | { | 
 | 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; | 
 |  | 
 | 	if (dct_ganging_enabled(pvt)) | 
 | 		return 0; | 
 |  | 
 | 	if (hi_range_sel) | 
 | 		return dct_sel_high; | 
 |  | 
 | 	/* | 
 | 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode | 
 | 	 */ | 
 | 	if (dct_interleave_enabled(pvt)) { | 
 | 		u8 intlv_addr = dct_sel_interleave_addr(pvt); | 
 |  | 
 | 		/* return DCT select function: 0=DCT0, 1=DCT1 */ | 
 | 		if (!intlv_addr) | 
 | 			return sys_addr >> 6 & 1; | 
 |  | 
 | 		if (intlv_addr & 0x2) { | 
 | 			u8 shift = intlv_addr & 0x1 ? 9 : 6; | 
 | 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1; | 
 |  | 
 | 			return ((sys_addr >> shift) & 1) ^ temp; | 
 | 		} | 
 |  | 
 | 		if (intlv_addr & 0x4) { | 
 | 			u8 shift = intlv_addr & 0x1 ? 9 : 8; | 
 |  | 
 | 			return (sys_addr >> shift) & 1; | 
 | 		} | 
 |  | 
 | 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1; | 
 | 	} | 
 |  | 
 | 	if (dct_high_range_enabled(pvt)) | 
 | 		return ~dct_sel_high & 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Convert the sys_addr to the normalized DCT address */ | 
 | static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, | 
 | 				 u64 sys_addr, bool hi_rng, | 
 | 				 u32 dct_sel_base_addr) | 
 | { | 
 | 	u64 chan_off; | 
 | 	u64 dram_base		= get_dram_base(pvt, range); | 
 | 	u64 hole_off		= f10_dhar_offset(pvt); | 
 | 	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16; | 
 |  | 
 | 	if (hi_rng) { | 
 | 		/* | 
 | 		 * if | 
 | 		 * base address of high range is below 4Gb | 
 | 		 * (bits [47:27] at [31:11]) | 
 | 		 * DRAM address space on this DCT is hoisted above 4Gb	&& | 
 | 		 * sys_addr > 4Gb | 
 | 		 * | 
 | 		 *	remove hole offset from sys_addr | 
 | 		 * else | 
 | 		 *	remove high range offset from sys_addr | 
 | 		 */ | 
 | 		if ((!(dct_sel_base_addr >> 16) || | 
 | 		     dct_sel_base_addr < dhar_base(pvt)) && | 
 | 		    dhar_valid(pvt) && | 
 | 		    (sys_addr >= BIT_64(32))) | 
 | 			chan_off = hole_off; | 
 | 		else | 
 | 			chan_off = dct_sel_base_off; | 
 | 	} else { | 
 | 		/* | 
 | 		 * if | 
 | 		 * we have a valid hole		&& | 
 | 		 * sys_addr > 4Gb | 
 | 		 * | 
 | 		 *	remove hole | 
 | 		 * else | 
 | 		 *	remove dram base to normalize to DCT address | 
 | 		 */ | 
 | 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) | 
 | 			chan_off = hole_off; | 
 | 		else | 
 | 			chan_off = dram_base; | 
 | 	} | 
 |  | 
 | 	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); | 
 | } | 
 |  | 
 | /* | 
 |  * checks if the csrow passed in is marked as SPARED, if so returns the new | 
 |  * spare row | 
 |  */ | 
 | static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) | 
 | { | 
 | 	int tmp_cs; | 
 |  | 
 | 	if (online_spare_swap_done(pvt, dct) && | 
 | 	    csrow == online_spare_bad_dramcs(pvt, dct)) { | 
 |  | 
 | 		for_each_chip_select(tmp_cs, dct, pvt) { | 
 | 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { | 
 | 				csrow = tmp_cs; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return csrow; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate over the DRAM DCT "base" and "mask" registers looking for a | 
 |  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' | 
 |  * | 
 |  * Return: | 
 |  *	-EINVAL:  NOT FOUND | 
 |  *	0..csrow = Chip-Select Row | 
 |  */ | 
 | static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 | 	u64 cs_base, cs_mask; | 
 | 	int cs_found = -EINVAL; | 
 | 	int csrow; | 
 |  | 
 | 	mci = edac_mc_find(nid); | 
 | 	if (!mci) | 
 | 		return cs_found; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); | 
 |  | 
 | 	for_each_chip_select(csrow, dct, pvt) { | 
 | 		if (!csrow_enabled(csrow, dct, pvt)) | 
 | 			continue; | 
 |  | 
 | 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); | 
 |  | 
 | 		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", | 
 | 			 csrow, cs_base, cs_mask); | 
 |  | 
 | 		cs_mask = ~cs_mask; | 
 |  | 
 | 		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", | 
 | 			 (in_addr & cs_mask), (cs_base & cs_mask)); | 
 |  | 
 | 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) { | 
 | 			if (pvt->fam == 0x15 && pvt->model >= 0x30) { | 
 | 				cs_found =  csrow; | 
 | 				break; | 
 | 			} | 
 | 			cs_found = f10_process_possible_spare(pvt, dct, csrow); | 
 |  | 
 | 			edac_dbg(1, " MATCH csrow=%d\n", cs_found); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | /* | 
 |  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is | 
 |  * swapped with a region located at the bottom of memory so that the GPU can use | 
 |  * the interleaved region and thus two channels. | 
 |  */ | 
 | static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) | 
 | { | 
 | 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; | 
 |  | 
 | 	if (pvt->fam == 0x10) { | 
 | 		/* only revC3 and revE have that feature */ | 
 | 		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) | 
 | 			return sys_addr; | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); | 
 |  | 
 | 	if (!(swap_reg & 0x1)) | 
 | 		return sys_addr; | 
 |  | 
 | 	swap_base	= (swap_reg >> 3) & 0x7f; | 
 | 	swap_limit	= (swap_reg >> 11) & 0x7f; | 
 | 	rgn_size	= (swap_reg >> 20) & 0x7f; | 
 | 	tmp_addr	= sys_addr >> 27; | 
 |  | 
 | 	if (!(sys_addr >> 34) && | 
 | 	    (((tmp_addr >= swap_base) && | 
 | 	     (tmp_addr <= swap_limit)) || | 
 | 	     (tmp_addr < rgn_size))) | 
 | 		return sys_addr ^ (u64)swap_base << 27; | 
 |  | 
 | 	return sys_addr; | 
 | } | 
 |  | 
 | /* For a given @dram_range, check if @sys_addr falls within it. */ | 
 | static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, | 
 | 				  u64 sys_addr, int *chan_sel) | 
 | { | 
 | 	int cs_found = -EINVAL; | 
 | 	u64 chan_addr; | 
 | 	u32 dct_sel_base; | 
 | 	u8 channel; | 
 | 	bool high_range = false; | 
 |  | 
 | 	u8 node_id    = dram_dst_node(pvt, range); | 
 | 	u8 intlv_en   = dram_intlv_en(pvt, range); | 
 | 	u32 intlv_sel = dram_intlv_sel(pvt, range); | 
 |  | 
 | 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", | 
 | 		 range, sys_addr, get_dram_limit(pvt, range)); | 
 |  | 
 | 	if (dhar_valid(pvt) && | 
 | 	    dhar_base(pvt) <= sys_addr && | 
 | 	    sys_addr < BIT_64(32)) { | 
 | 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", | 
 | 			    sys_addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); | 
 |  | 
 | 	dct_sel_base = dct_sel_baseaddr(pvt); | 
 |  | 
 | 	/* | 
 | 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to | 
 | 	 * select between DCT0 and DCT1. | 
 | 	 */ | 
 | 	if (dct_high_range_enabled(pvt) && | 
 | 	   !dct_ganging_enabled(pvt) && | 
 | 	   ((sys_addr >> 27) >= (dct_sel_base >> 11))) | 
 | 		high_range = true; | 
 |  | 
 | 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); | 
 |  | 
 | 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, | 
 | 					  high_range, dct_sel_base); | 
 |  | 
 | 	/* Remove node interleaving, see F1x120 */ | 
 | 	if (intlv_en) | 
 | 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | | 
 | 			    (chan_addr & 0xfff); | 
 |  | 
 | 	/* remove channel interleave */ | 
 | 	if (dct_interleave_enabled(pvt) && | 
 | 	   !dct_high_range_enabled(pvt) && | 
 | 	   !dct_ganging_enabled(pvt)) { | 
 |  | 
 | 		if (dct_sel_interleave_addr(pvt) != 1) { | 
 | 			if (dct_sel_interleave_addr(pvt) == 0x3) | 
 | 				/* hash 9 */ | 
 | 				chan_addr = ((chan_addr >> 10) << 9) | | 
 | 					     (chan_addr & 0x1ff); | 
 | 			else | 
 | 				/* A[6] or hash 6 */ | 
 | 				chan_addr = ((chan_addr >> 7) << 6) | | 
 | 					     (chan_addr & 0x3f); | 
 | 		} else | 
 | 			/* A[12] */ | 
 | 			chan_addr = ((chan_addr >> 13) << 12) | | 
 | 				     (chan_addr & 0xfff); | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr); | 
 |  | 
 | 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); | 
 |  | 
 | 	if (cs_found >= 0) | 
 | 		*chan_sel = channel; | 
 |  | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, | 
 | 					u64 sys_addr, int *chan_sel) | 
 | { | 
 | 	int cs_found = -EINVAL; | 
 | 	int num_dcts_intlv = 0; | 
 | 	u64 chan_addr, chan_offset; | 
 | 	u64 dct_base, dct_limit; | 
 | 	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; | 
 | 	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; | 
 |  | 
 | 	u64 dhar_offset		= f10_dhar_offset(pvt); | 
 | 	u8 intlv_addr		= dct_sel_interleave_addr(pvt); | 
 | 	u8 node_id		= dram_dst_node(pvt, range); | 
 | 	u8 intlv_en		= dram_intlv_en(pvt, range); | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); | 
 |  | 
 | 	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0)); | 
 | 	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7); | 
 |  | 
 | 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", | 
 | 		 range, sys_addr, get_dram_limit(pvt, range)); | 
 |  | 
 | 	if (!(get_dram_base(pvt, range)  <= sys_addr) && | 
 | 	    !(get_dram_limit(pvt, range) >= sys_addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (dhar_valid(pvt) && | 
 | 	    dhar_base(pvt) <= sys_addr && | 
 | 	    sys_addr < BIT_64(32)) { | 
 | 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", | 
 | 			    sys_addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Verify sys_addr is within DCT Range. */ | 
 | 	dct_base = (u64) dct_sel_baseaddr(pvt); | 
 | 	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; | 
 |  | 
 | 	if (!(dct_cont_base_reg & BIT(0)) && | 
 | 	    !(dct_base <= (sys_addr >> 27) && | 
 | 	      dct_limit >= (sys_addr >> 27))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Verify number of dct's that participate in channel interleaving. */ | 
 | 	num_dcts_intlv = (int) hweight8(intlv_en); | 
 |  | 
 | 	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pvt->model >= 0x60) | 
 | 		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en); | 
 | 	else | 
 | 		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, | 
 | 						     num_dcts_intlv, dct_sel); | 
 |  | 
 | 	/* Verify we stay within the MAX number of channels allowed */ | 
 | 	if (channel > 3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); | 
 |  | 
 | 	/* Get normalized DCT addr */ | 
 | 	if (leg_mmio_hole && (sys_addr >= BIT_64(32))) | 
 | 		chan_offset = dhar_offset; | 
 | 	else | 
 | 		chan_offset = dct_base << 27; | 
 |  | 
 | 	chan_addr = sys_addr - chan_offset; | 
 |  | 
 | 	/* remove channel interleave */ | 
 | 	if (num_dcts_intlv == 2) { | 
 | 		if (intlv_addr == 0x4) | 
 | 			chan_addr = ((chan_addr >> 9) << 8) | | 
 | 						(chan_addr & 0xff); | 
 | 		else if (intlv_addr == 0x5) | 
 | 			chan_addr = ((chan_addr >> 10) << 9) | | 
 | 						(chan_addr & 0x1ff); | 
 | 		else | 
 | 			return -EINVAL; | 
 |  | 
 | 	} else if (num_dcts_intlv == 4) { | 
 | 		if (intlv_addr == 0x4) | 
 | 			chan_addr = ((chan_addr >> 10) << 8) | | 
 | 							(chan_addr & 0xff); | 
 | 		else if (intlv_addr == 0x5) | 
 | 			chan_addr = ((chan_addr >> 11) << 9) | | 
 | 							(chan_addr & 0x1ff); | 
 | 		else | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (dct_offset_en) { | 
 | 		amd64_read_pci_cfg(pvt->F1, | 
 | 				   DRAM_CONT_HIGH_OFF + (int) channel * 4, | 
 | 				   &tmp); | 
 | 		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27; | 
 | 	} | 
 |  | 
 | 	f15h_select_dct(pvt, channel); | 
 |  | 
 | 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr); | 
 |  | 
 | 	/* | 
 | 	 * Find Chip select: | 
 | 	 * if channel = 3, then alias it to 1. This is because, in F15 M30h, | 
 | 	 * there is support for 4 DCT's, but only 2 are currently functional. | 
 | 	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into | 
 | 	 * pvt->csels[1]. So we need to use '1' here to get correct info. | 
 | 	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. | 
 | 	 */ | 
 | 	alias_channel =  (channel == 3) ? 1 : channel; | 
 |  | 
 | 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); | 
 |  | 
 | 	if (cs_found >= 0) | 
 | 		*chan_sel = alias_channel; | 
 |  | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, | 
 | 					u64 sys_addr, | 
 | 					int *chan_sel) | 
 | { | 
 | 	int cs_found = -EINVAL; | 
 | 	unsigned range; | 
 |  | 
 | 	for (range = 0; range < DRAM_RANGES; range++) { | 
 | 		if (!dram_rw(pvt, range)) | 
 | 			continue; | 
 |  | 
 | 		if (pvt->fam == 0x15 && pvt->model >= 0x30) | 
 | 			cs_found = f15_m30h_match_to_this_node(pvt, range, | 
 | 							       sys_addr, | 
 | 							       chan_sel); | 
 |  | 
 | 		else if ((get_dram_base(pvt, range)  <= sys_addr) && | 
 | 			 (get_dram_limit(pvt, range) >= sys_addr)) { | 
 | 			cs_found = f1x_match_to_this_node(pvt, range, | 
 | 							  sys_addr, chan_sel); | 
 | 			if (cs_found >= 0) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | /* | 
 |  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps | 
 |  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). | 
 |  * | 
 |  * The @sys_addr is usually an error address received from the hardware | 
 |  * (MCX_ADDR). | 
 |  */ | 
 | static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, | 
 | 				     struct err_info *err) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	error_address_to_page_and_offset(sys_addr, err); | 
 |  | 
 | 	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); | 
 | 	if (err->csrow < 0) { | 
 | 		err->err_code = ERR_CSROW; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need the syndromes for channel detection only when we're | 
 | 	 * ganged. Otherwise @chan should already contain the channel at | 
 | 	 * this point. | 
 | 	 */ | 
 | 	if (dct_ganging_enabled(pvt)) | 
 | 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); | 
 | } | 
 |  | 
 | /* | 
 |  * debug routine to display the memory sizes of all logical DIMMs and its | 
 |  * CSROWs | 
 |  */ | 
 | static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) | 
 | { | 
 | 	int dimm, size0, size1; | 
 | 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; | 
 | 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0; | 
 |  | 
 | 	if (pvt->fam == 0xf) { | 
 | 		/* K8 families < revF not supported yet */ | 
 | 	       if (pvt->ext_model < K8_REV_F) | 
 | 			return; | 
 | 	       else | 
 | 		       WARN_ON(ctrl != 0); | 
 | 	} | 
 |  | 
 | 	if (pvt->fam == 0x10) { | 
 | 		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 | 
 | 							   : pvt->dbam0; | 
 | 		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? | 
 | 				 pvt->csels[1].csbases : | 
 | 				 pvt->csels[0].csbases; | 
 | 	} else if (ctrl) { | 
 | 		dbam = pvt->dbam0; | 
 | 		dcsb = pvt->csels[1].csbases; | 
 | 	} | 
 | 	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", | 
 | 		 ctrl, dbam); | 
 |  | 
 | 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); | 
 |  | 
 | 	/* Dump memory sizes for DIMM and its CSROWs */ | 
 | 	for (dimm = 0; dimm < 4; dimm++) { | 
 |  | 
 | 		size0 = 0; | 
 | 		if (dcsb[dimm*2] & DCSB_CS_ENABLE) | 
 | 			/* | 
 | 			 * For F15m60h, we need multiplier for LRDIMM cs_size | 
 | 			 * calculation. We pass dimm value to the dbam_to_cs | 
 | 			 * mapper so we can find the multiplier from the | 
 | 			 * corresponding DCSM. | 
 | 			 */ | 
 | 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, | 
 | 						     DBAM_DIMM(dimm, dbam), | 
 | 						     dimm); | 
 |  | 
 | 		size1 = 0; | 
 | 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) | 
 | 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, | 
 | 						     DBAM_DIMM(dimm, dbam), | 
 | 						     dimm); | 
 |  | 
 | 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", | 
 | 				dimm * 2,     size0, | 
 | 				dimm * 2 + 1, size1); | 
 | 	} | 
 | } | 
 |  | 
 | static struct amd64_family_type family_types[] = { | 
 | 	[K8_CPUS] = { | 
 | 		.ctl_name = "K8", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, | 
 | 		.ops = { | 
 | 			.early_channel_count	= k8_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= k8_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F10_CPUS] = { | 
 | 		.ctl_name = "F10h", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f1x_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= f10_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F15_CPUS] = { | 
 | 		.ctl_name = "F15h", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f1x_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= f15_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F15_M30H_CPUS] = { | 
 | 		.ctl_name = "F15h_M30h", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f1x_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= f16_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F15_M60H_CPUS] = { | 
 | 		.ctl_name = "F15h_M60h", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f1x_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= f15_m60h_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F16_CPUS] = { | 
 | 		.ctl_name = "F16h", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f1x_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= f16_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F16_M30H_CPUS] = { | 
 | 		.ctl_name = "F16h_M30h", | 
 | 		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, | 
 | 		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f1x_early_channel_count, | 
 | 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
 | 			.dbam_to_cs		= f16_dbam_to_chip_select, | 
 | 		} | 
 | 	}, | 
 | 	[F17_CPUS] = { | 
 | 		.ctl_name = "F17h", | 
 | 		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0, | 
 | 		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f17_early_channel_count, | 
 | 			.dbam_to_cs		= f17_base_addr_to_cs_size, | 
 | 		} | 
 | 	}, | 
 | 	[F17_M10H_CPUS] = { | 
 | 		.ctl_name = "F17h_M10h", | 
 | 		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0, | 
 | 		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6, | 
 | 		.ops = { | 
 | 			.early_channel_count	= f17_early_channel_count, | 
 | 			.dbam_to_cs		= f17_base_addr_to_cs_size, | 
 | 		} | 
 | 	}, | 
 | }; | 
 |  | 
 | /* | 
 |  * These are tables of eigenvectors (one per line) which can be used for the | 
 |  * construction of the syndrome tables. The modified syndrome search algorithm | 
 |  * uses those to find the symbol in error and thus the DIMM. | 
 |  * | 
 |  * Algorithm courtesy of Ross LaFetra from AMD. | 
 |  */ | 
 | static const u16 x4_vectors[] = { | 
 | 	0x2f57, 0x1afe, 0x66cc, 0xdd88, | 
 | 	0x11eb, 0x3396, 0x7f4c, 0xeac8, | 
 | 	0x0001, 0x0002, 0x0004, 0x0008, | 
 | 	0x1013, 0x3032, 0x4044, 0x8088, | 
 | 	0x106b, 0x30d6, 0x70fc, 0xe0a8, | 
 | 	0x4857, 0xc4fe, 0x13cc, 0x3288, | 
 | 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8, | 
 | 	0x1f39, 0x251e, 0xbd6c, 0x6bd8, | 
 | 	0x15c1, 0x2a42, 0x89ac, 0x4758, | 
 | 	0x2b03, 0x1602, 0x4f0c, 0xca08, | 
 | 	0x1f07, 0x3a0e, 0x6b04, 0xbd08, | 
 | 	0x8ba7, 0x465e, 0x244c, 0x1cc8, | 
 | 	0x2b87, 0x164e, 0x642c, 0xdc18, | 
 | 	0x40b9, 0x80de, 0x1094, 0x20e8, | 
 | 	0x27db, 0x1eb6, 0x9dac, 0x7b58, | 
 | 	0x11c1, 0x2242, 0x84ac, 0x4c58, | 
 | 	0x1be5, 0x2d7a, 0x5e34, 0xa718, | 
 | 	0x4b39, 0x8d1e, 0x14b4, 0x28d8, | 
 | 	0x4c97, 0xc87e, 0x11fc, 0x33a8, | 
 | 	0x8e97, 0x497e, 0x2ffc, 0x1aa8, | 
 | 	0x16b3, 0x3d62, 0x4f34, 0x8518, | 
 | 	0x1e2f, 0x391a, 0x5cac, 0xf858, | 
 | 	0x1d9f, 0x3b7a, 0x572c, 0xfe18, | 
 | 	0x15f5, 0x2a5a, 0x5264, 0xa3b8, | 
 | 	0x1dbb, 0x3b66, 0x715c, 0xe3f8, | 
 | 	0x4397, 0xc27e, 0x17fc, 0x3ea8, | 
 | 	0x1617, 0x3d3e, 0x6464, 0xb8b8, | 
 | 	0x23ff, 0x12aa, 0xab6c, 0x56d8, | 
 | 	0x2dfb, 0x1ba6, 0x913c, 0x7328, | 
 | 	0x185d, 0x2ca6, 0x7914, 0x9e28, | 
 | 	0x171b, 0x3e36, 0x7d7c, 0xebe8, | 
 | 	0x4199, 0x82ee, 0x19f4, 0x2e58, | 
 | 	0x4807, 0xc40e, 0x130c, 0x3208, | 
 | 	0x1905, 0x2e0a, 0x5804, 0xac08, | 
 | 	0x213f, 0x132a, 0xadfc, 0x5ba8, | 
 | 	0x19a9, 0x2efe, 0xb5cc, 0x6f88, | 
 | }; | 
 |  | 
 | static const u16 x8_vectors[] = { | 
 | 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, | 
 | 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, | 
 | 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, | 
 | 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, | 
 | 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, | 
 | 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, | 
 | 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, | 
 | 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, | 
 | 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, | 
 | 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, | 
 | 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, | 
 | 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, | 
 | 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, | 
 | 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, | 
 | 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, | 
 | 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, | 
 | 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, | 
 | 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
 | 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, | 
 | }; | 
 |  | 
 | static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, | 
 | 			   unsigned v_dim) | 
 | { | 
 | 	unsigned int i, err_sym; | 
 |  | 
 | 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { | 
 | 		u16 s = syndrome; | 
 | 		unsigned v_idx =  err_sym * v_dim; | 
 | 		unsigned v_end = (err_sym + 1) * v_dim; | 
 |  | 
 | 		/* walk over all 16 bits of the syndrome */ | 
 | 		for (i = 1; i < (1U << 16); i <<= 1) { | 
 |  | 
 | 			/* if bit is set in that eigenvector... */ | 
 | 			if (v_idx < v_end && vectors[v_idx] & i) { | 
 | 				u16 ev_comp = vectors[v_idx++]; | 
 |  | 
 | 				/* ... and bit set in the modified syndrome, */ | 
 | 				if (s & i) { | 
 | 					/* remove it. */ | 
 | 					s ^= ev_comp; | 
 |  | 
 | 					if (!s) | 
 | 						return err_sym; | 
 | 				} | 
 |  | 
 | 			} else if (s & i) | 
 | 				/* can't get to zero, move to next symbol */ | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "syndrome(%x) not found\n", syndrome); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int map_err_sym_to_channel(int err_sym, int sym_size) | 
 | { | 
 | 	if (sym_size == 4) | 
 | 		switch (err_sym) { | 
 | 		case 0x20: | 
 | 		case 0x21: | 
 | 			return 0; | 
 | 			break; | 
 | 		case 0x22: | 
 | 		case 0x23: | 
 | 			return 1; | 
 | 			break; | 
 | 		default: | 
 | 			return err_sym >> 4; | 
 | 			break; | 
 | 		} | 
 | 	/* x8 symbols */ | 
 | 	else | 
 | 		switch (err_sym) { | 
 | 		/* imaginary bits not in a DIMM */ | 
 | 		case 0x10: | 
 | 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", | 
 | 					  err_sym); | 
 | 			return -1; | 
 | 			break; | 
 |  | 
 | 		case 0x11: | 
 | 			return 0; | 
 | 			break; | 
 | 		case 0x12: | 
 | 			return 1; | 
 | 			break; | 
 | 		default: | 
 | 			return err_sym >> 3; | 
 | 			break; | 
 | 		} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	int err_sym = -1; | 
 |  | 
 | 	if (pvt->ecc_sym_sz == 8) | 
 | 		err_sym = decode_syndrome(syndrome, x8_vectors, | 
 | 					  ARRAY_SIZE(x8_vectors), | 
 | 					  pvt->ecc_sym_sz); | 
 | 	else if (pvt->ecc_sym_sz == 4) | 
 | 		err_sym = decode_syndrome(syndrome, x4_vectors, | 
 | 					  ARRAY_SIZE(x4_vectors), | 
 | 					  pvt->ecc_sym_sz); | 
 | 	else { | 
 | 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); | 
 | 		return err_sym; | 
 | 	} | 
 |  | 
 | 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); | 
 | } | 
 |  | 
 | static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err, | 
 | 			    u8 ecc_type) | 
 | { | 
 | 	enum hw_event_mc_err_type err_type; | 
 | 	const char *string; | 
 |  | 
 | 	if (ecc_type == 2) | 
 | 		err_type = HW_EVENT_ERR_CORRECTED; | 
 | 	else if (ecc_type == 1) | 
 | 		err_type = HW_EVENT_ERR_UNCORRECTED; | 
 | 	else if (ecc_type == 3) | 
 | 		err_type = HW_EVENT_ERR_DEFERRED; | 
 | 	else { | 
 | 		WARN(1, "Something is rotten in the state of Denmark.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (err->err_code) { | 
 | 	case DECODE_OK: | 
 | 		string = ""; | 
 | 		break; | 
 | 	case ERR_NODE: | 
 | 		string = "Failed to map error addr to a node"; | 
 | 		break; | 
 | 	case ERR_CSROW: | 
 | 		string = "Failed to map error addr to a csrow"; | 
 | 		break; | 
 | 	case ERR_CHANNEL: | 
 | 		string = "Unknown syndrome - possible error reporting race"; | 
 | 		break; | 
 | 	case ERR_SYND: | 
 | 		string = "MCA_SYND not valid - unknown syndrome and csrow"; | 
 | 		break; | 
 | 	case ERR_NORM_ADDR: | 
 | 		string = "Cannot decode normalized address"; | 
 | 		break; | 
 | 	default: | 
 | 		string = "WTF error"; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	edac_mc_handle_error(err_type, mci, 1, | 
 | 			     err->page, err->offset, err->syndrome, | 
 | 			     err->csrow, err->channel, -1, | 
 | 			     string, ""); | 
 | } | 
 |  | 
 | static inline void decode_bus_error(int node_id, struct mce *m) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 | 	u8 ecc_type = (m->status >> 45) & 0x3; | 
 | 	u8 xec = XEC(m->status, 0x1f); | 
 | 	u16 ec = EC(m->status); | 
 | 	u64 sys_addr; | 
 | 	struct err_info err; | 
 |  | 
 | 	mci = edac_mc_find(node_id); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* Bail out early if this was an 'observed' error */ | 
 | 	if (PP(ec) == NBSL_PP_OBS) | 
 | 		return; | 
 |  | 
 | 	/* Do only ECC errors */ | 
 | 	if (xec && xec != F10_NBSL_EXT_ERR_ECC) | 
 | 		return; | 
 |  | 
 | 	memset(&err, 0, sizeof(err)); | 
 |  | 
 | 	sys_addr = get_error_address(pvt, m); | 
 |  | 
 | 	if (ecc_type == 2) | 
 | 		err.syndrome = extract_syndrome(m->status); | 
 |  | 
 | 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); | 
 |  | 
 | 	__log_ecc_error(mci, &err, ecc_type); | 
 | } | 
 |  | 
 | /* | 
 |  * To find the UMC channel represented by this bank we need to match on its | 
 |  * instance_id. The instance_id of a bank is held in the lower 32 bits of its | 
 |  * IPID. | 
 |  */ | 
 | static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m) | 
 | { | 
 | 	u32 umc_instance_id[] = {0x50f00, 0x150f00}; | 
 | 	u32 instance_id = m->ipid & GENMASK(31, 0); | 
 | 	int i, channel = -1; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++) | 
 | 		if (umc_instance_id[i] == instance_id) | 
 | 			channel = i; | 
 |  | 
 | 	return channel; | 
 | } | 
 |  | 
 | static void decode_umc_error(int node_id, struct mce *m) | 
 | { | 
 | 	u8 ecc_type = (m->status >> 45) & 0x3; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 | 	struct err_info err; | 
 | 	u64 sys_addr; | 
 |  | 
 | 	mci = edac_mc_find(node_id); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	memset(&err, 0, sizeof(err)); | 
 |  | 
 | 	if (m->status & MCI_STATUS_DEFERRED) | 
 | 		ecc_type = 3; | 
 |  | 
 | 	err.channel = find_umc_channel(pvt, m); | 
 | 	if (err.channel < 0) { | 
 | 		err.err_code = ERR_CHANNEL; | 
 | 		goto log_error; | 
 | 	} | 
 |  | 
 | 	if (!(m->status & MCI_STATUS_SYNDV)) { | 
 | 		err.err_code = ERR_SYND; | 
 | 		goto log_error; | 
 | 	} | 
 |  | 
 | 	if (ecc_type == 2) { | 
 | 		u8 length = (m->synd >> 18) & 0x3f; | 
 |  | 
 | 		if (length) | 
 | 			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0); | 
 | 		else | 
 | 			err.err_code = ERR_CHANNEL; | 
 | 	} | 
 |  | 
 | 	err.csrow = m->synd & 0x7; | 
 |  | 
 | 	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) { | 
 | 		err.err_code = ERR_NORM_ADDR; | 
 | 		goto log_error; | 
 | 	} | 
 |  | 
 | 	error_address_to_page_and_offset(sys_addr, &err); | 
 |  | 
 | log_error: | 
 | 	__log_ecc_error(mci, &err, ecc_type); | 
 | } | 
 |  | 
 | /* | 
 |  * Use pvt->F3 which contains the F3 CPU PCI device to get the related | 
 |  * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error. | 
 |  * Reserve F0 and F6 on systems with a UMC. | 
 |  */ | 
 | static int | 
 | reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2) | 
 | { | 
 | 	if (pvt->umc) { | 
 | 		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); | 
 | 		if (!pvt->F0) { | 
 | 			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1); | 
 | 			return -ENODEV; | 
 | 		} | 
 |  | 
 | 		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); | 
 | 		if (!pvt->F6) { | 
 | 			pci_dev_put(pvt->F0); | 
 | 			pvt->F0 = NULL; | 
 |  | 
 | 			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2); | 
 | 			return -ENODEV; | 
 | 		} | 
 |  | 
 | 		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0)); | 
 | 		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); | 
 | 		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6)); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Reserve the ADDRESS MAP Device */ | 
 | 	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); | 
 | 	if (!pvt->F1) { | 
 | 		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Reserve the DCT Device */ | 
 | 	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); | 
 | 	if (!pvt->F2) { | 
 | 		pci_dev_put(pvt->F1); | 
 | 		pvt->F1 = NULL; | 
 |  | 
 | 		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); | 
 | 	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); | 
 | 	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_mc_sibling_devs(struct amd64_pvt *pvt) | 
 | { | 
 | 	if (pvt->umc) { | 
 | 		pci_dev_put(pvt->F0); | 
 | 		pci_dev_put(pvt->F6); | 
 | 	} else { | 
 | 		pci_dev_put(pvt->F1); | 
 | 		pci_dev_put(pvt->F2); | 
 | 	} | 
 | } | 
 |  | 
 | static void determine_ecc_sym_sz(struct amd64_pvt *pvt) | 
 | { | 
 | 	pvt->ecc_sym_sz = 4; | 
 |  | 
 | 	if (pvt->umc) { | 
 | 		u8 i; | 
 |  | 
 | 		for (i = 0; i < NUM_UMCS; i++) { | 
 | 			/* Check enabled channels only: */ | 
 | 			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) && | 
 | 			    (pvt->umc[i].ecc_ctrl & BIT(7))) { | 
 | 				pvt->ecc_sym_sz = 8; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (pvt->fam >= 0x10) { | 
 | 		u32 tmp; | 
 |  | 
 | 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); | 
 | 		/* F16h has only DCT0, so no need to read dbam1. */ | 
 | 		if (pvt->fam != 0x16) | 
 | 			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); | 
 |  | 
 | 		/* F10h, revD and later can do x8 ECC too. */ | 
 | 		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) | 
 | 			pvt->ecc_sym_sz = 8; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the hardware registers of the memory controller. | 
 |  */ | 
 | static void __read_mc_regs_df(struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 nid = pvt->mc_node_id; | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i, umc_base; | 
 |  | 
 | 	/* Read registers from each UMC */ | 
 | 	for (i = 0; i < NUM_UMCS; i++) { | 
 |  | 
 | 		umc_base = get_umc_base(i); | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg); | 
 | 		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg); | 
 | 		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl); | 
 | 		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl); | 
 | 		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the hardware registers of the memory controller (this includes the | 
 |  * 'Address Map' and 'Misc' device regs) | 
 |  */ | 
 | static void read_mc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	unsigned int range; | 
 | 	u64 msr_val; | 
 |  | 
 | 	/* | 
 | 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since | 
 | 	 * those are Read-As-Zero. | 
 | 	 */ | 
 | 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); | 
 | 	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem); | 
 |  | 
 | 	/* Check first whether TOP_MEM2 is enabled: */ | 
 | 	rdmsrl(MSR_K8_SYSCFG, msr_val); | 
 | 	if (msr_val & BIT(21)) { | 
 | 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); | 
 | 		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2); | 
 | 	} else { | 
 | 		edac_dbg(0, "  TOP_MEM2 disabled\n"); | 
 | 	} | 
 |  | 
 | 	if (pvt->umc) { | 
 | 		__read_mc_regs_df(pvt); | 
 | 		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar); | 
 |  | 
 | 		goto skip; | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); | 
 |  | 
 | 	read_dram_ctl_register(pvt); | 
 |  | 
 | 	for (range = 0; range < DRAM_RANGES; range++) { | 
 | 		u8 rw; | 
 |  | 
 | 		/* read settings for this DRAM range */ | 
 | 		read_dram_base_limit_regs(pvt, range); | 
 |  | 
 | 		rw = dram_rw(pvt, range); | 
 | 		if (!rw) | 
 | 			continue; | 
 |  | 
 | 		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", | 
 | 			 range, | 
 | 			 get_dram_base(pvt, range), | 
 | 			 get_dram_limit(pvt, range)); | 
 |  | 
 | 		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", | 
 | 			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", | 
 | 			 (rw & 0x1) ? "R" : "-", | 
 | 			 (rw & 0x2) ? "W" : "-", | 
 | 			 dram_intlv_sel(pvt, range), | 
 | 			 dram_dst_node(pvt, range)); | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); | 
 | 	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); | 
 |  | 
 | 	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); | 
 | 	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); | 
 |  | 
 | 	if (!dct_ganging_enabled(pvt)) { | 
 | 		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); | 
 | 		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); | 
 | 	} | 
 |  | 
 | skip: | 
 | 	read_dct_base_mask(pvt); | 
 |  | 
 | 	determine_memory_type(pvt); | 
 | 	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]); | 
 |  | 
 | 	determine_ecc_sym_sz(pvt); | 
 |  | 
 | 	dump_misc_regs(pvt); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: CPU Revision Dependent code | 
 |  * | 
 |  * Input: | 
 |  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) | 
 |  *	k8 private pointer to --> | 
 |  *			DRAM Bank Address mapping register | 
 |  *			node_id | 
 |  *			DCL register where dual_channel_active is | 
 |  * | 
 |  * The DBAM register consists of 4 sets of 4 bits each definitions: | 
 |  * | 
 |  * Bits:	CSROWs | 
 |  * 0-3		CSROWs 0 and 1 | 
 |  * 4-7		CSROWs 2 and 3 | 
 |  * 8-11		CSROWs 4 and 5 | 
 |  * 12-15	CSROWs 6 and 7 | 
 |  * | 
 |  * Values range from: 0 to 15 | 
 |  * The meaning of the values depends on CPU revision and dual-channel state, | 
 |  * see relevant BKDG more info. | 
 |  * | 
 |  * The memory controller provides for total of only 8 CSROWs in its current | 
 |  * architecture. Each "pair" of CSROWs normally represents just one DIMM in | 
 |  * single channel or two (2) DIMMs in dual channel mode. | 
 |  * | 
 |  * The following code logic collapses the various tables for CSROW based on CPU | 
 |  * revision. | 
 |  * | 
 |  * Returns: | 
 |  *	The number of PAGE_SIZE pages on the specified CSROW number it | 
 |  *	encompasses | 
 |  * | 
 |  */ | 
 | static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig) | 
 | { | 
 | 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; | 
 | 	int csrow_nr = csrow_nr_orig; | 
 | 	u32 cs_mode, nr_pages; | 
 |  | 
 | 	if (!pvt->umc) | 
 | 		csrow_nr >>= 1; | 
 |  | 
 | 	cs_mode = DBAM_DIMM(csrow_nr, dbam); | 
 |  | 
 | 	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr); | 
 | 	nr_pages <<= 20 - PAGE_SHIFT; | 
 |  | 
 | 	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", | 
 | 		    csrow_nr_orig, dct,  cs_mode); | 
 | 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); | 
 |  | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the array of csrow attribute instances, based on the values | 
 |  * from pci config hardware registers. | 
 |  */ | 
 | static int init_csrows(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	enum edac_type edac_mode = EDAC_NONE; | 
 | 	struct csrow_info *csrow; | 
 | 	struct dimm_info *dimm; | 
 | 	int i, j, empty = 1; | 
 | 	int nr_pages = 0; | 
 | 	u32 val; | 
 |  | 
 | 	if (!pvt->umc) { | 
 | 		amd64_read_pci_cfg(pvt->F3, NBCFG, &val); | 
 |  | 
 | 		pvt->nbcfg = val; | 
 |  | 
 | 		edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", | 
 | 			 pvt->mc_node_id, val, | 
 | 			 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. | 
 | 	 */ | 
 | 	for_each_chip_select(i, 0, pvt) { | 
 | 		bool row_dct0 = !!csrow_enabled(i, 0, pvt); | 
 | 		bool row_dct1 = false; | 
 |  | 
 | 		if (pvt->fam != 0xf) | 
 | 			row_dct1 = !!csrow_enabled(i, 1, pvt); | 
 |  | 
 | 		if (!row_dct0 && !row_dct1) | 
 | 			continue; | 
 |  | 
 | 		csrow = mci->csrows[i]; | 
 | 		empty = 0; | 
 |  | 
 | 		edac_dbg(1, "MC node: %d, csrow: %d\n", | 
 | 			    pvt->mc_node_id, i); | 
 |  | 
 | 		if (row_dct0) { | 
 | 			nr_pages = get_csrow_nr_pages(pvt, 0, i); | 
 | 			csrow->channels[0]->dimm->nr_pages = nr_pages; | 
 | 		} | 
 |  | 
 | 		/* K8 has only one DCT */ | 
 | 		if (pvt->fam != 0xf && row_dct1) { | 
 | 			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); | 
 |  | 
 | 			csrow->channels[1]->dimm->nr_pages = row_dct1_pages; | 
 | 			nr_pages += row_dct1_pages; | 
 | 		} | 
 |  | 
 | 		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); | 
 |  | 
 | 		/* Determine DIMM ECC mode: */ | 
 | 		if (pvt->umc) { | 
 | 			if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) | 
 | 				edac_mode = EDAC_S4ECD4ED; | 
 | 			else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) | 
 | 				edac_mode = EDAC_SECDED; | 
 |  | 
 | 		} else if (pvt->nbcfg & NBCFG_ECC_ENABLE) { | 
 | 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) | 
 | 					? EDAC_S4ECD4ED | 
 | 					: EDAC_SECDED; | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < pvt->channel_count; j++) { | 
 | 			dimm = csrow->channels[j]->dimm; | 
 | 			dimm->mtype = pvt->dram_type; | 
 | 			dimm->edac_mode = edac_mode; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return empty; | 
 | } | 
 |  | 
 | /* get all cores on this DCT */ | 
 | static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		if (amd_get_nb_id(cpu) == nid) | 
 | 			cpumask_set_cpu(cpu, mask); | 
 | } | 
 |  | 
 | /* check MCG_CTL on all the cpus on this node */ | 
 | static bool nb_mce_bank_enabled_on_node(u16 nid) | 
 | { | 
 | 	cpumask_var_t mask; | 
 | 	int cpu, nbe; | 
 | 	bool ret = false; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { | 
 | 		amd64_warn("%s: Error allocating mask\n", __func__); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	get_cpus_on_this_dct_cpumask(mask, nid); | 
 |  | 
 | 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); | 
 |  | 
 | 	for_each_cpu(cpu, mask) { | 
 | 		struct msr *reg = per_cpu_ptr(msrs, cpu); | 
 | 		nbe = reg->l & MSR_MCGCTL_NBE; | 
 |  | 
 | 		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", | 
 | 			 cpu, reg->q, | 
 | 			 (nbe ? "enabled" : "disabled")); | 
 |  | 
 | 		if (!nbe) | 
 | 			goto out; | 
 | 	} | 
 | 	ret = true; | 
 |  | 
 | out: | 
 | 	free_cpumask_var(mask); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) | 
 | { | 
 | 	cpumask_var_t cmask; | 
 | 	int cpu; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { | 
 | 		amd64_warn("%s: error allocating mask\n", __func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	get_cpus_on_this_dct_cpumask(cmask, nid); | 
 |  | 
 | 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
 |  | 
 | 	for_each_cpu(cpu, cmask) { | 
 |  | 
 | 		struct msr *reg = per_cpu_ptr(msrs, cpu); | 
 |  | 
 | 		if (on) { | 
 | 			if (reg->l & MSR_MCGCTL_NBE) | 
 | 				s->flags.nb_mce_enable = 1; | 
 |  | 
 | 			reg->l |= MSR_MCGCTL_NBE; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Turn off NB MCE reporting only when it was off before | 
 | 			 */ | 
 | 			if (!s->flags.nb_mce_enable) | 
 | 				reg->l &= ~MSR_MCGCTL_NBE; | 
 | 		} | 
 | 	} | 
 | 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
 |  | 
 | 	free_cpumask_var(cmask); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, | 
 | 				       struct pci_dev *F3) | 
 | { | 
 | 	bool ret = true; | 
 | 	u32 value, mask = 0x3;		/* UECC/CECC enable */ | 
 |  | 
 | 	if (toggle_ecc_err_reporting(s, nid, ON)) { | 
 | 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(F3, NBCTL, &value); | 
 |  | 
 | 	s->old_nbctl   = value & mask; | 
 | 	s->nbctl_valid = true; | 
 |  | 
 | 	value |= mask; | 
 | 	amd64_write_pci_cfg(F3, NBCTL, value); | 
 |  | 
 | 	amd64_read_pci_cfg(F3, NBCFG, &value); | 
 |  | 
 | 	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", | 
 | 		 nid, value, !!(value & NBCFG_ECC_ENABLE)); | 
 |  | 
 | 	if (!(value & NBCFG_ECC_ENABLE)) { | 
 | 		amd64_warn("DRAM ECC disabled on this node, enabling...\n"); | 
 |  | 
 | 		s->flags.nb_ecc_prev = 0; | 
 |  | 
 | 		/* Attempt to turn on DRAM ECC Enable */ | 
 | 		value |= NBCFG_ECC_ENABLE; | 
 | 		amd64_write_pci_cfg(F3, NBCFG, value); | 
 |  | 
 | 		amd64_read_pci_cfg(F3, NBCFG, &value); | 
 |  | 
 | 		if (!(value & NBCFG_ECC_ENABLE)) { | 
 | 			amd64_warn("Hardware rejected DRAM ECC enable," | 
 | 				   "check memory DIMM configuration.\n"); | 
 | 			ret = false; | 
 | 		} else { | 
 | 			amd64_info("Hardware accepted DRAM ECC Enable\n"); | 
 | 		} | 
 | 	} else { | 
 | 		s->flags.nb_ecc_prev = 1; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", | 
 | 		 nid, value, !!(value & NBCFG_ECC_ENABLE)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, | 
 | 					struct pci_dev *F3) | 
 | { | 
 | 	u32 value, mask = 0x3;		/* UECC/CECC enable */ | 
 |  | 
 | 	if (!s->nbctl_valid) | 
 | 		return; | 
 |  | 
 | 	amd64_read_pci_cfg(F3, NBCTL, &value); | 
 | 	value &= ~mask; | 
 | 	value |= s->old_nbctl; | 
 |  | 
 | 	amd64_write_pci_cfg(F3, NBCTL, value); | 
 |  | 
 | 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */ | 
 | 	if (!s->flags.nb_ecc_prev) { | 
 | 		amd64_read_pci_cfg(F3, NBCFG, &value); | 
 | 		value &= ~NBCFG_ECC_ENABLE; | 
 | 		amd64_write_pci_cfg(F3, NBCFG, value); | 
 | 	} | 
 |  | 
 | 	/* restore the NB Enable MCGCTL bit */ | 
 | 	if (toggle_ecc_err_reporting(s, nid, OFF)) | 
 | 		amd64_warn("Error restoring NB MCGCTL settings!\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * EDAC requires that the BIOS have ECC enabled before | 
 |  * taking over the processing of ECC errors. A command line | 
 |  * option allows to force-enable hardware ECC later in | 
 |  * enable_ecc_error_reporting(). | 
 |  */ | 
 | static const char *ecc_msg = | 
 | 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n" | 
 | 	" Either enable ECC checking or force module loading by setting " | 
 | 	"'ecc_enable_override'.\n" | 
 | 	" (Note that use of the override may cause unknown side effects.)\n"; | 
 |  | 
 | static bool ecc_enabled(struct pci_dev *F3, u16 nid) | 
 | { | 
 | 	bool nb_mce_en = false; | 
 | 	u8 ecc_en = 0, i; | 
 | 	u32 value; | 
 |  | 
 | 	if (boot_cpu_data.x86 >= 0x17) { | 
 | 		u8 umc_en_mask = 0, ecc_en_mask = 0; | 
 |  | 
 | 		for (i = 0; i < NUM_UMCS; i++) { | 
 | 			u32 base = get_umc_base(i); | 
 |  | 
 | 			/* Only check enabled UMCs. */ | 
 | 			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value)) | 
 | 				continue; | 
 |  | 
 | 			if (!(value & UMC_SDP_INIT)) | 
 | 				continue; | 
 |  | 
 | 			umc_en_mask |= BIT(i); | 
 |  | 
 | 			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value)) | 
 | 				continue; | 
 |  | 
 | 			if (value & UMC_ECC_ENABLED) | 
 | 				ecc_en_mask |= BIT(i); | 
 | 		} | 
 |  | 
 | 		/* Check whether at least one UMC is enabled: */ | 
 | 		if (umc_en_mask) | 
 | 			ecc_en = umc_en_mask == ecc_en_mask; | 
 | 		else | 
 | 			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid); | 
 |  | 
 | 		/* Assume UMC MCA banks are enabled. */ | 
 | 		nb_mce_en = true; | 
 | 	} else { | 
 | 		amd64_read_pci_cfg(F3, NBCFG, &value); | 
 |  | 
 | 		ecc_en = !!(value & NBCFG_ECC_ENABLE); | 
 |  | 
 | 		nb_mce_en = nb_mce_bank_enabled_on_node(nid); | 
 | 		if (!nb_mce_en) | 
 | 			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n", | 
 | 				     MSR_IA32_MCG_CTL, nid); | 
 | 	} | 
 |  | 
 | 	amd64_info("Node %d: DRAM ECC %s.\n", | 
 | 		   nid, (ecc_en ? "enabled" : "disabled")); | 
 |  | 
 | 	if (!ecc_en || !nb_mce_en) { | 
 | 		amd64_info("%s", ecc_msg); | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void | 
 | f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1; | 
 |  | 
 | 	for (i = 0; i < NUM_UMCS; i++) { | 
 | 		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { | 
 | 			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED); | 
 | 			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP); | 
 |  | 
 | 			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6)); | 
 | 			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Set chipkill only if ECC is enabled: */ | 
 | 	if (ecc_en) { | 
 | 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | 
 |  | 
 | 		if (!cpk_en) | 
 | 			return; | 
 |  | 
 | 		if (dev_x4) | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | 
 | 		else if (dev_x16) | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED; | 
 | 		else | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED; | 
 | 	} | 
 | } | 
 |  | 
 | static void setup_mci_misc_attrs(struct mem_ctl_info *mci, | 
 | 				 struct amd64_family_type *fam) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; | 
 | 	mci->edac_ctl_cap	= EDAC_FLAG_NONE; | 
 |  | 
 | 	if (pvt->umc) { | 
 | 		f17h_determine_edac_ctl_cap(mci, pvt); | 
 | 	} else { | 
 | 		if (pvt->nbcap & NBCAP_SECDED) | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | 
 |  | 
 | 		if (pvt->nbcap & NBCAP_CHIPKILL) | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | 
 | 	} | 
 |  | 
 | 	mci->edac_cap		= determine_edac_cap(pvt); | 
 | 	mci->mod_name		= EDAC_MOD_STR; | 
 | 	mci->ctl_name		= fam->ctl_name; | 
 | 	mci->dev_name		= pci_name(pvt->F3); | 
 | 	mci->ctl_page_to_phys	= NULL; | 
 |  | 
 | 	/* memory scrubber interface */ | 
 | 	mci->set_sdram_scrub_rate = set_scrub_rate; | 
 | 	mci->get_sdram_scrub_rate = get_scrub_rate; | 
 | } | 
 |  | 
 | /* | 
 |  * returns a pointer to the family descriptor on success, NULL otherwise. | 
 |  */ | 
 | static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct amd64_family_type *fam_type = NULL; | 
 |  | 
 | 	pvt->ext_model  = boot_cpu_data.x86_model >> 4; | 
 | 	pvt->stepping	= boot_cpu_data.x86_stepping; | 
 | 	pvt->model	= boot_cpu_data.x86_model; | 
 | 	pvt->fam	= boot_cpu_data.x86; | 
 |  | 
 | 	switch (pvt->fam) { | 
 | 	case 0xf: | 
 | 		fam_type	= &family_types[K8_CPUS]; | 
 | 		pvt->ops	= &family_types[K8_CPUS].ops; | 
 | 		break; | 
 |  | 
 | 	case 0x10: | 
 | 		fam_type	= &family_types[F10_CPUS]; | 
 | 		pvt->ops	= &family_types[F10_CPUS].ops; | 
 | 		break; | 
 |  | 
 | 	case 0x15: | 
 | 		if (pvt->model == 0x30) { | 
 | 			fam_type = &family_types[F15_M30H_CPUS]; | 
 | 			pvt->ops = &family_types[F15_M30H_CPUS].ops; | 
 | 			break; | 
 | 		} else if (pvt->model == 0x60) { | 
 | 			fam_type = &family_types[F15_M60H_CPUS]; | 
 | 			pvt->ops = &family_types[F15_M60H_CPUS].ops; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		fam_type	= &family_types[F15_CPUS]; | 
 | 		pvt->ops	= &family_types[F15_CPUS].ops; | 
 | 		break; | 
 |  | 
 | 	case 0x16: | 
 | 		if (pvt->model == 0x30) { | 
 | 			fam_type = &family_types[F16_M30H_CPUS]; | 
 | 			pvt->ops = &family_types[F16_M30H_CPUS].ops; | 
 | 			break; | 
 | 		} | 
 | 		fam_type	= &family_types[F16_CPUS]; | 
 | 		pvt->ops	= &family_types[F16_CPUS].ops; | 
 | 		break; | 
 |  | 
 | 	case 0x17: | 
 | 		if (pvt->model >= 0x10 && pvt->model <= 0x2f) { | 
 | 			fam_type = &family_types[F17_M10H_CPUS]; | 
 | 			pvt->ops = &family_types[F17_M10H_CPUS].ops; | 
 | 			break; | 
 | 		} | 
 | 		fam_type	= &family_types[F17_CPUS]; | 
 | 		pvt->ops	= &family_types[F17_CPUS].ops; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		amd64_err("Unsupported family!\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, | 
 | 		     (pvt->fam == 0xf ? | 
 | 				(pvt->ext_model >= K8_REV_F  ? "revF or later " | 
 | 							     : "revE or earlier ") | 
 | 				 : ""), pvt->mc_node_id); | 
 | 	return fam_type; | 
 | } | 
 |  | 
 | static const struct attribute_group *amd64_edac_attr_groups[] = { | 
 | #ifdef CONFIG_EDAC_DEBUG | 
 | 	&amd64_edac_dbg_group, | 
 | #endif | 
 | #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION | 
 | 	&amd64_edac_inj_group, | 
 | #endif | 
 | 	NULL | 
 | }; | 
 |  | 
 | static int init_one_instance(unsigned int nid) | 
 | { | 
 | 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
 | 	struct amd64_family_type *fam_type = NULL; | 
 | 	struct mem_ctl_info *mci = NULL; | 
 | 	struct edac_mc_layer layers[2]; | 
 | 	struct amd64_pvt *pvt = NULL; | 
 | 	u16 pci_id1, pci_id2; | 
 | 	int err = 0, ret; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); | 
 | 	if (!pvt) | 
 | 		goto err_ret; | 
 |  | 
 | 	pvt->mc_node_id	= nid; | 
 | 	pvt->F3 = F3; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	fam_type = per_family_init(pvt); | 
 | 	if (!fam_type) | 
 | 		goto err_free; | 
 |  | 
 | 	if (pvt->fam >= 0x17) { | 
 | 		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL); | 
 | 		if (!pvt->umc) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err_free; | 
 | 		} | 
 |  | 
 | 		pci_id1 = fam_type->f0_id; | 
 | 		pci_id2 = fam_type->f6_id; | 
 | 	} else { | 
 | 		pci_id1 = fam_type->f1_id; | 
 | 		pci_id2 = fam_type->f2_id; | 
 | 	} | 
 |  | 
 | 	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2); | 
 | 	if (err) | 
 | 		goto err_post_init; | 
 |  | 
 | 	read_mc_regs(pvt); | 
 |  | 
 | 	/* | 
 | 	 * We need to determine how many memory channels there are. Then use | 
 | 	 * that information for calculating the size of the dynamic instance | 
 | 	 * tables in the 'mci' structure. | 
 | 	 */ | 
 | 	ret = -EINVAL; | 
 | 	pvt->channel_count = pvt->ops->early_channel_count(pvt); | 
 | 	if (pvt->channel_count < 0) | 
 | 		goto err_siblings; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; | 
 | 	layers[0].size = pvt->csels[0].b_cnt; | 
 | 	layers[0].is_virt_csrow = true; | 
 | 	layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
 |  | 
 | 	/* | 
 | 	 * Always allocate two channels since we can have setups with DIMMs on | 
 | 	 * only one channel. Also, this simplifies handling later for the price | 
 | 	 * of a couple of KBs tops. | 
 | 	 */ | 
 | 	layers[1].size = 2; | 
 | 	layers[1].is_virt_csrow = false; | 
 |  | 
 | 	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); | 
 | 	if (!mci) | 
 | 		goto err_siblings; | 
 |  | 
 | 	mci->pvt_info = pvt; | 
 | 	mci->pdev = &pvt->F3->dev; | 
 |  | 
 | 	setup_mci_misc_attrs(mci, fam_type); | 
 |  | 
 | 	if (init_csrows(mci)) | 
 | 		mci->edac_cap = EDAC_FLAG_NONE; | 
 |  | 
 | 	ret = -ENODEV; | 
 | 	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) { | 
 | 		edac_dbg(1, "failed edac_mc_add_mc()\n"); | 
 | 		goto err_add_mc; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_add_mc: | 
 | 	edac_mc_free(mci); | 
 |  | 
 | err_siblings: | 
 | 	free_mc_sibling_devs(pvt); | 
 |  | 
 | err_post_init: | 
 | 	if (pvt->fam >= 0x17) | 
 | 		kfree(pvt->umc); | 
 |  | 
 | err_free: | 
 | 	kfree(pvt); | 
 |  | 
 | err_ret: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int probe_one_instance(unsigned int nid) | 
 | { | 
 | 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
 | 	struct ecc_settings *s; | 
 | 	int ret; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); | 
 | 	if (!s) | 
 | 		goto err_out; | 
 |  | 
 | 	ecc_stngs[nid] = s; | 
 |  | 
 | 	if (!ecc_enabled(F3, nid)) { | 
 | 		ret = 0; | 
 |  | 
 | 		if (!ecc_enable_override) | 
 | 			goto err_enable; | 
 |  | 
 | 		if (boot_cpu_data.x86 >= 0x17) { | 
 | 			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS."); | 
 | 			goto err_enable; | 
 | 		} else | 
 | 			amd64_warn("Forcing ECC on!\n"); | 
 |  | 
 | 		if (!enable_ecc_error_reporting(s, nid, F3)) | 
 | 			goto err_enable; | 
 | 	} | 
 |  | 
 | 	ret = init_one_instance(nid); | 
 | 	if (ret < 0) { | 
 | 		amd64_err("Error probing instance: %d\n", nid); | 
 |  | 
 | 		if (boot_cpu_data.x86 < 0x17) | 
 | 			restore_ecc_error_reporting(s, nid, F3); | 
 |  | 
 | 		goto err_enable; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | err_enable: | 
 | 	kfree(s); | 
 | 	ecc_stngs[nid] = NULL; | 
 |  | 
 | err_out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void remove_one_instance(unsigned int nid) | 
 | { | 
 | 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
 | 	struct ecc_settings *s = ecc_stngs[nid]; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 |  | 
 | 	mci = find_mci_by_dev(&F3->dev); | 
 | 	WARN_ON(!mci); | 
 |  | 
 | 	/* Remove from EDAC CORE tracking list */ | 
 | 	mci = edac_mc_del_mc(&F3->dev); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	restore_ecc_error_reporting(s, nid, F3); | 
 |  | 
 | 	free_mc_sibling_devs(pvt); | 
 |  | 
 | 	kfree(ecc_stngs[nid]); | 
 | 	ecc_stngs[nid] = NULL; | 
 |  | 
 | 	/* Free the EDAC CORE resources */ | 
 | 	mci->pvt_info = NULL; | 
 |  | 
 | 	kfree(pvt); | 
 | 	edac_mc_free(mci); | 
 | } | 
 |  | 
 | static void setup_pci_device(void) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 |  | 
 | 	if (pci_ctl) | 
 | 		return; | 
 |  | 
 | 	mci = edac_mc_find(0); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	if (pvt->umc) | 
 | 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR); | 
 | 	else | 
 | 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); | 
 | 	if (!pci_ctl) { | 
 | 		pr_warn("%s(): Unable to create PCI control\n", __func__); | 
 | 		pr_warn("%s(): PCI error report via EDAC not set\n", __func__); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct x86_cpu_id amd64_cpuids[] = { | 
 | 	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 }, | 
 | 	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 }, | 
 | 	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 }, | 
 | 	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 }, | 
 | 	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids); | 
 |  | 
 | static int __init amd64_edac_init(void) | 
 | { | 
 | 	const char *owner; | 
 | 	int err = -ENODEV; | 
 | 	int i; | 
 |  | 
 | 	owner = edac_get_owner(); | 
 | 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!x86_match_cpu(amd64_cpuids)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (amd_cache_northbridges() < 0) | 
 | 		return -ENODEV; | 
 |  | 
 | 	opstate_init(); | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL); | 
 | 	if (!ecc_stngs) | 
 | 		goto err_free; | 
 |  | 
 | 	msrs = msrs_alloc(); | 
 | 	if (!msrs) | 
 | 		goto err_free; | 
 |  | 
 | 	for (i = 0; i < amd_nb_num(); i++) { | 
 | 		err = probe_one_instance(i); | 
 | 		if (err) { | 
 | 			/* unwind properly */ | 
 | 			while (--i >= 0) | 
 | 				remove_one_instance(i); | 
 |  | 
 | 			goto err_pci; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!edac_has_mcs()) { | 
 | 		err = -ENODEV; | 
 | 		goto err_pci; | 
 | 	} | 
 |  | 
 | 	/* register stuff with EDAC MCE */ | 
 | 	if (report_gart_errors) | 
 | 		amd_report_gart_errors(true); | 
 |  | 
 | 	if (boot_cpu_data.x86 >= 0x17) | 
 | 		amd_register_ecc_decoder(decode_umc_error); | 
 | 	else | 
 | 		amd_register_ecc_decoder(decode_bus_error); | 
 |  | 
 | 	setup_pci_device(); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); | 
 | #endif | 
 |  | 
 | 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_pci: | 
 | 	msrs_free(msrs); | 
 | 	msrs = NULL; | 
 |  | 
 | err_free: | 
 | 	kfree(ecc_stngs); | 
 | 	ecc_stngs = NULL; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit amd64_edac_exit(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (pci_ctl) | 
 | 		edac_pci_release_generic_ctl(pci_ctl); | 
 |  | 
 | 	/* unregister from EDAC MCE */ | 
 | 	amd_report_gart_errors(false); | 
 |  | 
 | 	if (boot_cpu_data.x86 >= 0x17) | 
 | 		amd_unregister_ecc_decoder(decode_umc_error); | 
 | 	else | 
 | 		amd_unregister_ecc_decoder(decode_bus_error); | 
 |  | 
 | 	for (i = 0; i < amd_nb_num(); i++) | 
 | 		remove_one_instance(i); | 
 |  | 
 | 	kfree(ecc_stngs); | 
 | 	ecc_stngs = NULL; | 
 |  | 
 | 	msrs_free(msrs); | 
 | 	msrs = NULL; | 
 | } | 
 |  | 
 | module_init(amd64_edac_init); | 
 | module_exit(amd64_edac_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " | 
 | 		"Dave Peterson, Thayne Harbaugh"); | 
 | MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " | 
 | 		EDAC_AMD64_VERSION); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |