|  | /* Software floating-point emulation. | 
|  | Basic two-word fraction declaration and manipulation. | 
|  | Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Richard Henderson (rth@cygnus.com), | 
|  | Jakub Jelinek (jj@ultra.linux.cz), | 
|  | David S. Miller (davem@redhat.com) and | 
|  | Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Library General Public License as | 
|  | published by the Free Software Foundation; either version 2 of the | 
|  | License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Library General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Library General Public | 
|  | License along with the GNU C Library; see the file COPYING.LIB.  If | 
|  | not, write to the Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */ | 
|  |  | 
|  | #ifndef __MATH_EMU_OP_2_H__ | 
|  | #define __MATH_EMU_OP_2_H__ | 
|  |  | 
|  | #define _FP_FRAC_DECL_2(X)	_FP_W_TYPE X##_f0 = 0, X##_f1 = 0 | 
|  | #define _FP_FRAC_COPY_2(D,S)	(D##_f0 = S##_f0, D##_f1 = S##_f1) | 
|  | #define _FP_FRAC_SET_2(X,I)	__FP_FRAC_SET_2(X, I) | 
|  | #define _FP_FRAC_HIGH_2(X)	(X##_f1) | 
|  | #define _FP_FRAC_LOW_2(X)	(X##_f0) | 
|  | #define _FP_FRAC_WORD_2(X,w)	(X##_f##w) | 
|  |  | 
|  | #define _FP_FRAC_SLL_2(X,N)						\ | 
|  | do {									\ | 
|  | if ((N) < _FP_W_TYPE_SIZE)						\ | 
|  | {									\ | 
|  | if (__builtin_constant_p(N) && (N) == 1) 			\ | 
|  | {								\ | 
|  | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);	\ | 
|  | X##_f0 += X##_f0;						\ | 
|  | }								\ | 
|  | else								\ | 
|  | {								\ | 
|  | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N));	\ | 
|  | X##_f0 <<= (N);						\ | 
|  | }								\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);			\ | 
|  | X##_f0 = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_SRL_2(X,N)						\ | 
|  | do {									\ | 
|  | if ((N) < _FP_W_TYPE_SIZE)						\ | 
|  | {									\ | 
|  | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));	\ | 
|  | X##_f1 >>= (N);							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);			\ | 
|  | X##_f1 = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | /* Right shift with sticky-lsb.  */ | 
|  | #define _FP_FRAC_SRS_2(X,N,sz)						\ | 
|  | do {									\ | 
|  | if ((N) < _FP_W_TYPE_SIZE)						\ | 
|  | {									\ | 
|  | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |	\ | 
|  | (__builtin_constant_p(N) && (N) == 1			\ | 
|  | ? X##_f0 & 1						\ | 
|  | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));	\ | 
|  | X##_f1 >>= (N);							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |			\ | 
|  | (((X##_f1 << (2*_FP_W_TYPE_SIZE - (N))) | X##_f0) != 0)); \ | 
|  | X##_f1 = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_ADDI_2(X,I)	\ | 
|  | __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) | 
|  |  | 
|  | #define _FP_FRAC_ADD_2(R,X,Y)	\ | 
|  | __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  |  | 
|  | #define _FP_FRAC_SUB_2(R,X,Y)	\ | 
|  | __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  |  | 
|  | #define _FP_FRAC_DEC_2(X,Y)	\ | 
|  | __FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  |  | 
|  | #define _FP_FRAC_CLZ_2(R,X)	\ | 
|  | do {				\ | 
|  | if (X##_f1)			\ | 
|  | __FP_CLZ(R,X##_f1);	\ | 
|  | else 			\ | 
|  | {				\ | 
|  | __FP_CLZ(R,X##_f0);	\ | 
|  | R += _FP_W_TYPE_SIZE;	\ | 
|  | }				\ | 
|  | } while(0) | 
|  |  | 
|  | /* Predicates */ | 
|  | #define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE)X##_f1 < 0) | 
|  | #define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0) | 
|  | #define _FP_FRAC_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) | 
|  | #define _FP_FRAC_CLEAR_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) | 
|  | #define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0) | 
|  | #define _FP_FRAC_GT_2(X, Y)	\ | 
|  | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) | 
|  | #define _FP_FRAC_GE_2(X, Y)	\ | 
|  | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) | 
|  |  | 
|  | #define _FP_ZEROFRAC_2		0, 0 | 
|  | #define _FP_MINFRAC_2		0, 1 | 
|  | #define _FP_MAXFRAC_2		(~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) | 
|  |  | 
|  | /* | 
|  | * Internals | 
|  | */ | 
|  |  | 
|  | #define __FP_FRAC_SET_2(X,I1,I0)	(X##_f0 = I0, X##_f1 = I1) | 
|  |  | 
|  | #define __FP_CLZ_2(R, xh, xl)	\ | 
|  | do {				\ | 
|  | if (xh)			\ | 
|  | __FP_CLZ(R,xh);		\ | 
|  | else 			\ | 
|  | {				\ | 
|  | __FP_CLZ(R,xl);		\ | 
|  | R += _FP_W_TYPE_SIZE;	\ | 
|  | }				\ | 
|  | } while(0) | 
|  |  | 
|  | #if 0 | 
|  |  | 
|  | #ifndef __FP_FRAC_ADDI_2 | 
|  | #define __FP_FRAC_ADDI_2(xh, xl, i)	\ | 
|  | (xh += ((xl += i) < i)) | 
|  | #endif | 
|  | #ifndef __FP_FRAC_ADD_2 | 
|  | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl)	\ | 
|  | (rh = xh + yh + ((rl = xl + yl) < xl)) | 
|  | #endif | 
|  | #ifndef __FP_FRAC_SUB_2 | 
|  | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl)	\ | 
|  | (rh = xh - yh - ((rl = xl - yl) > xl)) | 
|  | #endif | 
|  | #ifndef __FP_FRAC_DEC_2 | 
|  | #define __FP_FRAC_DEC_2(xh, xl, yh, yl)	\ | 
|  | do {					\ | 
|  | UWtype _t = xl;			\ | 
|  | xh -= yh + ((xl -= yl) > _t);	\ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | #else | 
|  |  | 
|  | #undef __FP_FRAC_ADDI_2 | 
|  | #define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa(xh, xl, xh, xl, 0, i) | 
|  | #undef __FP_FRAC_ADD_2 | 
|  | #define __FP_FRAC_ADD_2			add_ssaaaa | 
|  | #undef __FP_FRAC_SUB_2 | 
|  | #define __FP_FRAC_SUB_2			sub_ddmmss | 
|  | #undef __FP_FRAC_DEC_2 | 
|  | #define __FP_FRAC_DEC_2(xh, xl, yh, yl)	sub_ddmmss(xh, xl, xh, xl, yh, yl) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Unpack the raw bits of a native fp value.  Do not classify or | 
|  | * normalize the data. | 
|  | */ | 
|  |  | 
|  | #define _FP_UNPACK_RAW_2(fs, X, val)			\ | 
|  | do {							\ | 
|  | union _FP_UNION_##fs _flo; _flo.flt = (val);	\ | 
|  | \ | 
|  | X##_f0 = _flo.bits.frac0;				\ | 
|  | X##_f1 = _flo.bits.frac1;				\ | 
|  | X##_e  = _flo.bits.exp;				\ | 
|  | X##_s  = _flo.bits.sign;				\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_UNPACK_RAW_2_P(fs, X, val)			\ | 
|  | do {							\ | 
|  | union _FP_UNION_##fs *_flo =			\ | 
|  | (union _FP_UNION_##fs *)(val);			\ | 
|  | \ | 
|  | X##_f0 = _flo->bits.frac0;				\ | 
|  | X##_f1 = _flo->bits.frac1;				\ | 
|  | X##_e  = _flo->bits.exp;				\ | 
|  | X##_s  = _flo->bits.sign;				\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Repack the raw bits of a native fp value. | 
|  | */ | 
|  |  | 
|  | #define _FP_PACK_RAW_2(fs, val, X)			\ | 
|  | do {							\ | 
|  | union _FP_UNION_##fs _flo;				\ | 
|  | \ | 
|  | _flo.bits.frac0 = X##_f0;				\ | 
|  | _flo.bits.frac1 = X##_f1;				\ | 
|  | _flo.bits.exp   = X##_e;				\ | 
|  | _flo.bits.sign  = X##_s;				\ | 
|  | \ | 
|  | (val) = _flo.flt;					\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_PACK_RAW_2_P(fs, val, X)			\ | 
|  | do {							\ | 
|  | union _FP_UNION_##fs *_flo =			\ | 
|  | (union _FP_UNION_##fs *)(val);			\ | 
|  | \ | 
|  | _flo->bits.frac0 = X##_f0;				\ | 
|  | _flo->bits.frac1 = X##_f1;				\ | 
|  | _flo->bits.exp   = X##_e;				\ | 
|  | _flo->bits.sign  = X##_s;				\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Multiplication algorithms: | 
|  | */ | 
|  |  | 
|  | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit)			\ | 
|  | do {									\ | 
|  | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\ | 
|  | \ | 
|  | doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);	\ | 
|  | doit(_b_f1, _b_f0, X##_f0, Y##_f1);					\ | 
|  | doit(_c_f1, _c_f0, X##_f1, Y##_f0);					\ | 
|  | doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1);	\ | 
|  | \ | 
|  | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0,		\ | 
|  | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1));				\ | 
|  | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0,		\ | 
|  | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1));				\ | 
|  | \ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\ | 
|  | R##_f0 = _FP_FRAC_WORD_4(_z,0);					\ | 
|  | R##_f1 = _FP_FRAC_WORD_4(_z,1);					\ | 
|  | } while (0) | 
|  |  | 
|  | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. | 
|  | Do only 3 multiplications instead of four. This one is for machines | 
|  | where multiplication is much more expensive than subtraction.  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit)		\ | 
|  | do {									\ | 
|  | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\ | 
|  | _FP_W_TYPE _d;							\ | 
|  | int _c1, _c2;							\ | 
|  | \ | 
|  | _b_f0 = X##_f0 + X##_f1;						\ | 
|  | _c1 = _b_f0 < X##_f0;						\ | 
|  | _b_f1 = Y##_f0 + Y##_f1;						\ | 
|  | _c2 = _b_f1 < Y##_f0;						\ | 
|  | doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);			\ | 
|  | doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1);	\ | 
|  | doit(_c_f1, _c_f0, X##_f1, Y##_f1);					\ | 
|  | \ | 
|  | _b_f0 &= -_c2;							\ | 
|  | _b_f1 &= -_c1;							\ | 
|  | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d,		\ | 
|  | 0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1));	\ | 
|  | __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _b_f0);						\ | 
|  | __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _b_f1);						\ | 
|  | __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1),				\ | 
|  | 0, _d, _FP_FRAC_WORD_4(_z,0));			\ | 
|  | __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0);		\ | 
|  | __FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2),	\ | 
|  | _c_f1, _c_f0,					\ | 
|  | _FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2));	\ | 
|  | \ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\ | 
|  | R##_f0 = _FP_FRAC_WORD_4(_z,0);					\ | 
|  | R##_f1 = _FP_FRAC_WORD_4(_z,1);					\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\ | 
|  | do {									\ | 
|  | _FP_FRAC_DECL_4(_z);						\ | 
|  | _FP_W_TYPE _x[2], _y[2];						\ | 
|  | _x[0] = X##_f0; _x[1] = X##_f1;					\ | 
|  | _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
|  | \ | 
|  | mpn_mul_n(_z_f, _x, _y, 2);						\ | 
|  | \ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\ | 
|  | R##_f0 = _z_f[0];							\ | 
|  | R##_f1 = _z_f[1];							\ | 
|  | } while (0) | 
|  |  | 
|  | /* Do at most 120x120=240 bits multiplication using double floating | 
|  | point multiplication.  This is useful if floating point | 
|  | multiplication has much bigger throughput than integer multiply. | 
|  | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits | 
|  | between 106 and 120 only. | 
|  | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. | 
|  | SETFETZ is a macro which will disable all FPU exceptions and set rounding | 
|  | towards zero,  RESETFE should optionally reset it back.  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe)	\ | 
|  | do {										\ | 
|  | static const double _const[] = {						\ | 
|  | /* 2^-24 */ 5.9604644775390625e-08,					\ | 
|  | /* 2^-48 */ 3.5527136788005009e-15,					\ | 
|  | /* 2^-72 */ 2.1175823681357508e-22,					\ | 
|  | /* 2^-96 */ 1.2621774483536189e-29,					\ | 
|  | /* 2^28 */ 2.68435456e+08,						\ | 
|  | /* 2^4 */ 1.600000e+01,							\ | 
|  | /* 2^-20 */ 9.5367431640625e-07,						\ | 
|  | /* 2^-44 */ 5.6843418860808015e-14,					\ | 
|  | /* 2^-68 */ 3.3881317890172014e-21,					\ | 
|  | /* 2^-92 */ 2.0194839173657902e-28,					\ | 
|  | /* 2^-116 */ 1.2037062152420224e-35};					\ | 
|  | double _a240, _b240, _c240, _d240, _e240, _f240, 				\ | 
|  | _g240, _h240, _i240, _j240, _k240;					\ | 
|  | union { double d; UDItype i; } _l240, _m240, _n240, _o240,			\ | 
|  | _p240, _q240, _r240, _s240;			\ | 
|  | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;			\ | 
|  | \ | 
|  | if (wfracbits < 106 || wfracbits > 120)					\ | 
|  | abort();									\ | 
|  | \ | 
|  | setfetz;									\ | 
|  | \ | 
|  | _e240 = (double)(long)(X##_f0 & 0xffffff);					\ | 
|  | _j240 = (double)(long)(Y##_f0 & 0xffffff);					\ | 
|  | _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff);				\ | 
|  | _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff);				\ | 
|  | _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48));	\ | 
|  | _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48));	\ | 
|  | _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff);				\ | 
|  | _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff);				\ | 
|  | _a240 = (double)(long)(X##_f1 >> 32);					\ | 
|  | _f240 = (double)(long)(Y##_f1 >> 32);					\ | 
|  | _e240 *= _const[3];								\ | 
|  | _j240 *= _const[3];								\ | 
|  | _d240 *= _const[2];								\ | 
|  | _i240 *= _const[2];								\ | 
|  | _c240 *= _const[1];								\ | 
|  | _h240 *= _const[1];								\ | 
|  | _b240 *= _const[0];								\ | 
|  | _g240 *= _const[0];								\ | 
|  | _s240.d =							      _e240*_j240;\ | 
|  | _r240.d =						_d240*_j240 + _e240*_i240;\ | 
|  | _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240;\ | 
|  | _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\ | 
|  | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\ | 
|  | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;		\ | 
|  | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;				\ | 
|  | _l240.d = _a240*_g240 + _b240*_f240;					\ | 
|  | _k240 =   _a240*_f240;							\ | 
|  | _r240.d += _s240.d;								\ | 
|  | _q240.d += _r240.d;								\ | 
|  | _p240.d += _q240.d;								\ | 
|  | _o240.d += _p240.d;								\ | 
|  | _n240.d += _o240.d;								\ | 
|  | _m240.d += _n240.d;								\ | 
|  | _l240.d += _m240.d;								\ | 
|  | _k240 += _l240.d;								\ | 
|  | _s240.d -= ((_const[10]+_s240.d)-_const[10]);				\ | 
|  | _r240.d -= ((_const[9]+_r240.d)-_const[9]);					\ | 
|  | _q240.d -= ((_const[8]+_q240.d)-_const[8]);					\ | 
|  | _p240.d -= ((_const[7]+_p240.d)-_const[7]);					\ | 
|  | _o240.d += _const[7];							\ | 
|  | _n240.d += _const[6];							\ | 
|  | _m240.d += _const[5];							\ | 
|  | _l240.d += _const[4];							\ | 
|  | if (_s240.d != 0.0) _y240 = 1;						\ | 
|  | if (_r240.d != 0.0) _y240 = 1;						\ | 
|  | if (_q240.d != 0.0) _y240 = 1;						\ | 
|  | if (_p240.d != 0.0) _y240 = 1;						\ | 
|  | _t240 = (DItype)_k240;							\ | 
|  | _u240 = _l240.i;								\ | 
|  | _v240 = _m240.i;								\ | 
|  | _w240 = _n240.i;								\ | 
|  | _x240 = _o240.i;								\ | 
|  | R##_f1 = (_t240 << (128 - (wfracbits - 1)))					\ | 
|  | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104));			\ | 
|  | R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1)))			\ | 
|  | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))			\ | 
|  | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))			\ | 
|  | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))			\ | 
|  | | _y240;								\ | 
|  | resetfe;									\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Division algorithms: | 
|  | */ | 
|  |  | 
|  | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0;		\ | 
|  | if (_FP_FRAC_GT_2(X, Y))						\ | 
|  | {									\ | 
|  | _n_f2 = X##_f1 >> 1;						\ | 
|  | _n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\ | 
|  | _n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | R##_e--;							\ | 
|  | _n_f2 = X##_f1;							\ | 
|  | _n_f1 = X##_f0;							\ | 
|  | _n_f0 = 0;							\ | 
|  | }									\ | 
|  | \ | 
|  | /* Normalize, i.e. make the most significant bit of the 		\ | 
|  | denominator set. */						\ | 
|  | _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs);				\ | 
|  | \ | 
|  | udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1);			\ | 
|  | umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0);				\ | 
|  | _r_f0 = _n_f0;							\ | 
|  | if (_FP_FRAC_GT_2(_m, _r))						\ | 
|  | {									\ | 
|  | R##_f1--;							\ | 
|  | _FP_FRAC_ADD_2(_r, Y, _r);					\ | 
|  | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
|  | {								\ | 
|  | R##_f1--;							\ | 
|  | _FP_FRAC_ADD_2(_r, Y, _r);					\ | 
|  | }								\ | 
|  | }									\ | 
|  | _FP_FRAC_DEC_2(_r, _m);						\ | 
|  | \ | 
|  | if (_r_f1 == Y##_f1)						\ | 
|  | {									\ | 
|  | /* This is a special case, not an optimization			\ | 
|  | (_r/Y##_f1 would not fit into UWtype).			\ | 
|  | As _r is guaranteed to be < Y,  R##_f0 can be either		\ | 
|  | (UWtype)-1 or (UWtype)-2.  But as we know what kind		\ | 
|  | of bits it is (sticky, guard, round),  we don't care.	\ | 
|  | We also don't care what the reminder is,  because the	\ | 
|  | guard bit will be set anyway.  -jj */			\ | 
|  | R##_f0 = -1;							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1);		\ | 
|  | umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0);			\ | 
|  | _r_f0 = 0;							\ | 
|  | if (_FP_FRAC_GT_2(_m, _r))					\ | 
|  | {								\ | 
|  | R##_f0--;							\ | 
|  | _FP_FRAC_ADD_2(_r, Y, _r);					\ | 
|  | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
|  | {								\ | 
|  | R##_f0--;						\ | 
|  | _FP_FRAC_ADD_2(_r, Y, _r);				\ | 
|  | }								\ | 
|  | }								\ | 
|  | if (!_FP_FRAC_EQ_2(_r, _m))					\ | 
|  | R##_f0 |= _FP_WORK_STICKY;					\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _x[4], _y[2], _z[4];					\ | 
|  | _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
|  | _x[0] = _x[3] = 0;							\ | 
|  | if (_FP_FRAC_GT_2(X, Y))						\ | 
|  | {									\ | 
|  | R##_e++;							\ | 
|  | _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) |	\ | 
|  | X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
|  | (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE)));	\ | 
|  | _x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE);	\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) |	\ | 
|  | X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
|  | (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE)));	\ | 
|  | _x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE);	\ | 
|  | }									\ | 
|  | \ | 
|  | (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\ | 
|  | R##_f1 = _z[1];							\ | 
|  | R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Square root algorithms: | 
|  | * We have just one right now, maybe Newton approximation | 
|  | * should be added for those machines where division is fast. | 
|  | */ | 
|  |  | 
|  | #define _FP_SQRT_MEAT_2(R, S, T, X, q)			\ | 
|  | do {							\ | 
|  | while (q)						\ | 
|  | {							\ | 
|  | T##_f1 = S##_f1 + q;				\ | 
|  | if (T##_f1 <= X##_f1)				\ | 
|  | {						\ | 
|  | S##_f1 = T##_f1 + q;			\ | 
|  | X##_f1 -= T##_f1;				\ | 
|  | R##_f1 += q;				\ | 
|  | }						\ | 
|  | _FP_FRAC_SLL_2(X, 1);				\ | 
|  | q >>= 1;					\ | 
|  | }							\ | 
|  | q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
|  | while (q != _FP_WORK_ROUND)				\ | 
|  | {							\ | 
|  | T##_f0 = S##_f0 + q;				\ | 
|  | T##_f1 = S##_f1;				\ | 
|  | if (T##_f1 < X##_f1 || 				\ | 
|  | (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\ | 
|  | {						\ | 
|  | S##_f0 = T##_f0 + q;			\ | 
|  | S##_f1 += (T##_f0 > S##_f0);		\ | 
|  | _FP_FRAC_DEC_2(X, T);			\ | 
|  | R##_f0 += q;				\ | 
|  | }						\ | 
|  | _FP_FRAC_SLL_2(X, 1);				\ | 
|  | q >>= 1;					\ | 
|  | }							\ | 
|  | if (X##_f0 | X##_f1)				\ | 
|  | {							\ | 
|  | if (S##_f1 < X##_f1 || 				\ | 
|  | (S##_f1 == X##_f1 && S##_f0 < X##_f0))	\ | 
|  | R##_f0 |= _FP_WORK_ROUND;			\ | 
|  | R##_f0 |= _FP_WORK_STICKY;			\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Assembly/disassembly for converting to/from integral types. | 
|  | * No shifting or overflow handled here. | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\ | 
|  | do {						\ | 
|  | if (rsize <= _FP_W_TYPE_SIZE)		\ | 
|  | r = X##_f0;				\ | 
|  | else					\ | 
|  | {						\ | 
|  | r = X##_f1;				\ | 
|  | r <<= _FP_W_TYPE_SIZE;			\ | 
|  | r += X##_f0;				\ | 
|  | }						\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\ | 
|  | do {									\ | 
|  | X##_f0 = r;								\ | 
|  | X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Convert FP values between word sizes | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\ | 
|  | do {									\ | 
|  | if (S##_c != FP_CLS_NAN)						\ | 
|  | _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\ | 
|  | _FP_WFRACBITS_##sfs);				\ | 
|  | else								\ | 
|  | _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\ | 
|  | D##_f = S##_f0;							\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\ | 
|  | do {									\ | 
|  | D##_f0 = S##_f;							\ | 
|  | D##_f1 = 0;								\ | 
|  | _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\ | 
|  | } while (0) | 
|  |  | 
|  | #endif |