|  | /* | 
|  | * Huffman encoder, part of New Generation Entropy library | 
|  | * Copyright (C) 2013-2016, Yann Collet. | 
|  | * | 
|  | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions are | 
|  | * met: | 
|  | * | 
|  | *   * Redistributions of source code must retain the above copyright | 
|  | * notice, this list of conditions and the following disclaimer. | 
|  | *   * Redistributions in binary form must reproduce the above | 
|  | * copyright notice, this list of conditions and the following disclaimer | 
|  | * in the documentation and/or other materials provided with the | 
|  | * distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it under | 
|  | * the terms of the GNU General Public License version 2 as published by the | 
|  | * Free Software Foundation. This program is dual-licensed; you may select | 
|  | * either version 2 of the GNU General Public License ("GPL") or BSD license | 
|  | * ("BSD"). | 
|  | * | 
|  | * You can contact the author at : | 
|  | * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy | 
|  | */ | 
|  |  | 
|  | /* ************************************************************** | 
|  | *  Includes | 
|  | ****************************************************************/ | 
|  | #include "bitstream.h" | 
|  | #include "fse.h" /* header compression */ | 
|  | #include "huf.h" | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> /* memcpy, memset */ | 
|  |  | 
|  | /* ************************************************************** | 
|  | *  Error Management | 
|  | ****************************************************************/ | 
|  | #define HUF_STATIC_ASSERT(c)                                   \ | 
|  | {                                                      \ | 
|  | enum { HUF_static_assert = 1 / (int)(!!(c)) }; \ | 
|  | } /* use only *after* variable declarations */ | 
|  | #define CHECK_V_F(e, f)     \ | 
|  | size_t const e = f; \ | 
|  | if (ERR_isError(e)) \ | 
|  | return f | 
|  | #define CHECK_F(f)                        \ | 
|  | {                                 \ | 
|  | CHECK_V_F(_var_err__, f); \ | 
|  | } | 
|  |  | 
|  | /* ************************************************************** | 
|  | *  Utils | 
|  | ****************************************************************/ | 
|  | unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) | 
|  | { | 
|  | return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); | 
|  | } | 
|  |  | 
|  | /* ******************************************************* | 
|  | *  HUF : Huffman block compression | 
|  | *********************************************************/ | 
|  | /* HUF_compressWeights() : | 
|  | * Same as FSE_compress(), but dedicated to huff0's weights compression. | 
|  | * The use case needs much less stack memory. | 
|  | * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. | 
|  | */ | 
|  | #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 | 
|  | size_t HUF_compressWeights_wksp(void *dst, size_t dstSize, const void *weightTable, size_t wtSize, void *workspace, size_t workspaceSize) | 
|  | { | 
|  | BYTE *const ostart = (BYTE *)dst; | 
|  | BYTE *op = ostart; | 
|  | BYTE *const oend = ostart + dstSize; | 
|  |  | 
|  | U32 maxSymbolValue = HUF_TABLELOG_MAX; | 
|  | U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; | 
|  |  | 
|  | FSE_CTable *CTable; | 
|  | U32 *count; | 
|  | S16 *norm; | 
|  | size_t spaceUsed32 = 0; | 
|  |  | 
|  | HUF_STATIC_ASSERT(sizeof(FSE_CTable) == sizeof(U32)); | 
|  |  | 
|  | CTable = (FSE_CTable *)((U32 *)workspace + spaceUsed32); | 
|  | spaceUsed32 += FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX); | 
|  | count = (U32 *)workspace + spaceUsed32; | 
|  | spaceUsed32 += HUF_TABLELOG_MAX + 1; | 
|  | norm = (S16 *)((U32 *)workspace + spaceUsed32); | 
|  | spaceUsed32 += ALIGN(sizeof(S16) * (HUF_TABLELOG_MAX + 1), sizeof(U32)) >> 2; | 
|  |  | 
|  | if ((spaceUsed32 << 2) > workspaceSize) | 
|  | return ERROR(tableLog_tooLarge); | 
|  | workspace = (U32 *)workspace + spaceUsed32; | 
|  | workspaceSize -= (spaceUsed32 << 2); | 
|  |  | 
|  | /* init conditions */ | 
|  | if (wtSize <= 1) | 
|  | return 0; /* Not compressible */ | 
|  |  | 
|  | /* Scan input and build symbol stats */ | 
|  | { | 
|  | CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize)); | 
|  | if (maxCount == wtSize) | 
|  | return 1; /* only a single symbol in src : rle */ | 
|  | if (maxCount == 1) | 
|  | return 0; /* each symbol present maximum once => not compressible */ | 
|  | } | 
|  |  | 
|  | tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); | 
|  | CHECK_F(FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue)); | 
|  |  | 
|  | /* Write table description header */ | 
|  | { | 
|  | CHECK_V_F(hSize, FSE_writeNCount(op, oend - op, norm, maxSymbolValue, tableLog)); | 
|  | op += hSize; | 
|  | } | 
|  |  | 
|  | /* Compress */ | 
|  | CHECK_F(FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, workspace, workspaceSize)); | 
|  | { | 
|  | CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable)); | 
|  | if (cSize == 0) | 
|  | return 0; /* not enough space for compressed data */ | 
|  | op += cSize; | 
|  | } | 
|  |  | 
|  | return op - ostart; | 
|  | } | 
|  |  | 
|  | struct HUF_CElt_s { | 
|  | U16 val; | 
|  | BYTE nbBits; | 
|  | }; /* typedef'd to HUF_CElt within "huf.h" */ | 
|  |  | 
|  | /*! HUF_writeCTable_wksp() : | 
|  | `CTable` : Huffman tree to save, using huf representation. | 
|  | @return : size of saved CTable */ | 
|  | size_t HUF_writeCTable_wksp(void *dst, size_t maxDstSize, const HUF_CElt *CTable, U32 maxSymbolValue, U32 huffLog, void *workspace, size_t workspaceSize) | 
|  | { | 
|  | BYTE *op = (BYTE *)dst; | 
|  | U32 n; | 
|  |  | 
|  | BYTE *bitsToWeight; | 
|  | BYTE *huffWeight; | 
|  | size_t spaceUsed32 = 0; | 
|  |  | 
|  | bitsToWeight = (BYTE *)((U32 *)workspace + spaceUsed32); | 
|  | spaceUsed32 += ALIGN(HUF_TABLELOG_MAX + 1, sizeof(U32)) >> 2; | 
|  | huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32); | 
|  | spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX, sizeof(U32)) >> 2; | 
|  |  | 
|  | if ((spaceUsed32 << 2) > workspaceSize) | 
|  | return ERROR(tableLog_tooLarge); | 
|  | workspace = (U32 *)workspace + spaceUsed32; | 
|  | workspaceSize -= (spaceUsed32 << 2); | 
|  |  | 
|  | /* check conditions */ | 
|  | if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) | 
|  | return ERROR(maxSymbolValue_tooLarge); | 
|  |  | 
|  | /* convert to weight */ | 
|  | bitsToWeight[0] = 0; | 
|  | for (n = 1; n < huffLog + 1; n++) | 
|  | bitsToWeight[n] = (BYTE)(huffLog + 1 - n); | 
|  | for (n = 0; n < maxSymbolValue; n++) | 
|  | huffWeight[n] = bitsToWeight[CTable[n].nbBits]; | 
|  |  | 
|  | /* attempt weights compression by FSE */ | 
|  | { | 
|  | CHECK_V_F(hSize, HUF_compressWeights_wksp(op + 1, maxDstSize - 1, huffWeight, maxSymbolValue, workspace, workspaceSize)); | 
|  | if ((hSize > 1) & (hSize < maxSymbolValue / 2)) { /* FSE compressed */ | 
|  | op[0] = (BYTE)hSize; | 
|  | return hSize + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write raw values as 4-bits (max : 15) */ | 
|  | if (maxSymbolValue > (256 - 128)) | 
|  | return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ | 
|  | if (((maxSymbolValue + 1) / 2) + 1 > maxDstSize) | 
|  | return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ | 
|  | op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue - 1)); | 
|  | huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ | 
|  | for (n = 0; n < maxSymbolValue; n += 2) | 
|  | op[(n / 2) + 1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n + 1]); | 
|  | return ((maxSymbolValue + 1) / 2) + 1; | 
|  | } | 
|  |  | 
|  | size_t HUF_readCTable_wksp(HUF_CElt *CTable, U32 maxSymbolValue, const void *src, size_t srcSize, void *workspace, size_t workspaceSize) | 
|  | { | 
|  | U32 *rankVal; | 
|  | BYTE *huffWeight; | 
|  | U32 tableLog = 0; | 
|  | U32 nbSymbols = 0; | 
|  | size_t readSize; | 
|  | size_t spaceUsed32 = 0; | 
|  |  | 
|  | rankVal = (U32 *)workspace + spaceUsed32; | 
|  | spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1; | 
|  | huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32); | 
|  | spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; | 
|  |  | 
|  | if ((spaceUsed32 << 2) > workspaceSize) | 
|  | return ERROR(tableLog_tooLarge); | 
|  | workspace = (U32 *)workspace + spaceUsed32; | 
|  | workspaceSize -= (spaceUsed32 << 2); | 
|  |  | 
|  | /* get symbol weights */ | 
|  | readSize = HUF_readStats_wksp(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize); | 
|  | if (ERR_isError(readSize)) | 
|  | return readSize; | 
|  |  | 
|  | /* check result */ | 
|  | if (tableLog > HUF_TABLELOG_MAX) | 
|  | return ERROR(tableLog_tooLarge); | 
|  | if (nbSymbols > maxSymbolValue + 1) | 
|  | return ERROR(maxSymbolValue_tooSmall); | 
|  |  | 
|  | /* Prepare base value per rank */ | 
|  | { | 
|  | U32 n, nextRankStart = 0; | 
|  | for (n = 1; n <= tableLog; n++) { | 
|  | U32 curr = nextRankStart; | 
|  | nextRankStart += (rankVal[n] << (n - 1)); | 
|  | rankVal[n] = curr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fill nbBits */ | 
|  | { | 
|  | U32 n; | 
|  | for (n = 0; n < nbSymbols; n++) { | 
|  | const U32 w = huffWeight[n]; | 
|  | CTable[n].nbBits = (BYTE)(tableLog + 1 - w); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fill val */ | 
|  | { | 
|  | U16 nbPerRank[HUF_TABLELOG_MAX + 2] = {0}; /* support w=0=>n=tableLog+1 */ | 
|  | U16 valPerRank[HUF_TABLELOG_MAX + 2] = {0}; | 
|  | { | 
|  | U32 n; | 
|  | for (n = 0; n < nbSymbols; n++) | 
|  | nbPerRank[CTable[n].nbBits]++; | 
|  | } | 
|  | /* determine stating value per rank */ | 
|  | valPerRank[tableLog + 1] = 0; /* for w==0 */ | 
|  | { | 
|  | U16 min = 0; | 
|  | U32 n; | 
|  | for (n = tableLog; n > 0; n--) { /* start at n=tablelog <-> w=1 */ | 
|  | valPerRank[n] = min;     /* get starting value within each rank */ | 
|  | min += nbPerRank[n]; | 
|  | min >>= 1; | 
|  | } | 
|  | } | 
|  | /* assign value within rank, symbol order */ | 
|  | { | 
|  | U32 n; | 
|  | for (n = 0; n <= maxSymbolValue; n++) | 
|  | CTable[n].val = valPerRank[CTable[n].nbBits]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return readSize; | 
|  | } | 
|  |  | 
|  | typedef struct nodeElt_s { | 
|  | U32 count; | 
|  | U16 parent; | 
|  | BYTE byte; | 
|  | BYTE nbBits; | 
|  | } nodeElt; | 
|  |  | 
|  | static U32 HUF_setMaxHeight(nodeElt *huffNode, U32 lastNonNull, U32 maxNbBits) | 
|  | { | 
|  | const U32 largestBits = huffNode[lastNonNull].nbBits; | 
|  | if (largestBits <= maxNbBits) | 
|  | return largestBits; /* early exit : no elt > maxNbBits */ | 
|  |  | 
|  | /* there are several too large elements (at least >= 2) */ | 
|  | { | 
|  | int totalCost = 0; | 
|  | const U32 baseCost = 1 << (largestBits - maxNbBits); | 
|  | U32 n = lastNonNull; | 
|  |  | 
|  | while (huffNode[n].nbBits > maxNbBits) { | 
|  | totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); | 
|  | huffNode[n].nbBits = (BYTE)maxNbBits; | 
|  | n--; | 
|  | } /* n stops at huffNode[n].nbBits <= maxNbBits */ | 
|  | while (huffNode[n].nbBits == maxNbBits) | 
|  | n--; /* n end at index of smallest symbol using < maxNbBits */ | 
|  |  | 
|  | /* renorm totalCost */ | 
|  | totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */ | 
|  |  | 
|  | /* repay normalized cost */ | 
|  | { | 
|  | U32 const noSymbol = 0xF0F0F0F0; | 
|  | U32 rankLast[HUF_TABLELOG_MAX + 2]; | 
|  | int pos; | 
|  |  | 
|  | /* Get pos of last (smallest) symbol per rank */ | 
|  | memset(rankLast, 0xF0, sizeof(rankLast)); | 
|  | { | 
|  | U32 currNbBits = maxNbBits; | 
|  | for (pos = n; pos >= 0; pos--) { | 
|  | if (huffNode[pos].nbBits >= currNbBits) | 
|  | continue; | 
|  | currNbBits = huffNode[pos].nbBits; /* < maxNbBits */ | 
|  | rankLast[maxNbBits - currNbBits] = pos; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (totalCost > 0) { | 
|  | U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1; | 
|  | for (; nBitsToDecrease > 1; nBitsToDecrease--) { | 
|  | U32 highPos = rankLast[nBitsToDecrease]; | 
|  | U32 lowPos = rankLast[nBitsToDecrease - 1]; | 
|  | if (highPos == noSymbol) | 
|  | continue; | 
|  | if (lowPos == noSymbol) | 
|  | break; | 
|  | { | 
|  | U32 const highTotal = huffNode[highPos].count; | 
|  | U32 const lowTotal = 2 * huffNode[lowPos].count; | 
|  | if (highTotal <= lowTotal) | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ | 
|  | /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ | 
|  | while ((nBitsToDecrease <= HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) | 
|  | nBitsToDecrease++; | 
|  | totalCost -= 1 << (nBitsToDecrease - 1); | 
|  | if (rankLast[nBitsToDecrease - 1] == noSymbol) | 
|  | rankLast[nBitsToDecrease - 1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */ | 
|  | huffNode[rankLast[nBitsToDecrease]].nbBits++; | 
|  | if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ | 
|  | rankLast[nBitsToDecrease] = noSymbol; | 
|  | else { | 
|  | rankLast[nBitsToDecrease]--; | 
|  | if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits - nBitsToDecrease) | 
|  | rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ | 
|  | } | 
|  | } /* while (totalCost > 0) */ | 
|  |  | 
|  | while (totalCost < 0) {		       /* Sometimes, cost correction overshoot */ | 
|  | if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 | 
|  | (using maxNbBits) */ | 
|  | while (huffNode[n].nbBits == maxNbBits) | 
|  | n--; | 
|  | huffNode[n + 1].nbBits--; | 
|  | rankLast[1] = n + 1; | 
|  | totalCost++; | 
|  | continue; | 
|  | } | 
|  | huffNode[rankLast[1] + 1].nbBits--; | 
|  | rankLast[1]++; | 
|  | totalCost++; | 
|  | } | 
|  | } | 
|  | } /* there are several too large elements (at least >= 2) */ | 
|  |  | 
|  | return maxNbBits; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | U32 base; | 
|  | U32 curr; | 
|  | } rankPos; | 
|  |  | 
|  | static void HUF_sort(nodeElt *huffNode, const U32 *count, U32 maxSymbolValue) | 
|  | { | 
|  | rankPos rank[32]; | 
|  | U32 n; | 
|  |  | 
|  | memset(rank, 0, sizeof(rank)); | 
|  | for (n = 0; n <= maxSymbolValue; n++) { | 
|  | U32 r = BIT_highbit32(count[n] + 1); | 
|  | rank[r].base++; | 
|  | } | 
|  | for (n = 30; n > 0; n--) | 
|  | rank[n - 1].base += rank[n].base; | 
|  | for (n = 0; n < 32; n++) | 
|  | rank[n].curr = rank[n].base; | 
|  | for (n = 0; n <= maxSymbolValue; n++) { | 
|  | U32 const c = count[n]; | 
|  | U32 const r = BIT_highbit32(c + 1) + 1; | 
|  | U32 pos = rank[r].curr++; | 
|  | while ((pos > rank[r].base) && (c > huffNode[pos - 1].count)) | 
|  | huffNode[pos] = huffNode[pos - 1], pos--; | 
|  | huffNode[pos].count = c; | 
|  | huffNode[pos].byte = (BYTE)n; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** HUF_buildCTable_wksp() : | 
|  | *  Same as HUF_buildCTable(), but using externally allocated scratch buffer. | 
|  | *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned. | 
|  | */ | 
|  | #define STARTNODE (HUF_SYMBOLVALUE_MAX + 1) | 
|  | typedef nodeElt huffNodeTable[2 * HUF_SYMBOLVALUE_MAX + 1 + 1]; | 
|  | size_t HUF_buildCTable_wksp(HUF_CElt *tree, const U32 *count, U32 maxSymbolValue, U32 maxNbBits, void *workSpace, size_t wkspSize) | 
|  | { | 
|  | nodeElt *const huffNode0 = (nodeElt *)workSpace; | 
|  | nodeElt *const huffNode = huffNode0 + 1; | 
|  | U32 n, nonNullRank; | 
|  | int lowS, lowN; | 
|  | U16 nodeNb = STARTNODE; | 
|  | U32 nodeRoot; | 
|  |  | 
|  | /* safety checks */ | 
|  | if (wkspSize < sizeof(huffNodeTable)) | 
|  | return ERROR(GENERIC); /* workSpace is not large enough */ | 
|  | if (maxNbBits == 0) | 
|  | maxNbBits = HUF_TABLELOG_DEFAULT; | 
|  | if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) | 
|  | return ERROR(GENERIC); | 
|  | memset(huffNode0, 0, sizeof(huffNodeTable)); | 
|  |  | 
|  | /* sort, decreasing order */ | 
|  | HUF_sort(huffNode, count, maxSymbolValue); | 
|  |  | 
|  | /* init for parents */ | 
|  | nonNullRank = maxSymbolValue; | 
|  | while (huffNode[nonNullRank].count == 0) | 
|  | nonNullRank--; | 
|  | lowS = nonNullRank; | 
|  | nodeRoot = nodeNb + lowS - 1; | 
|  | lowN = nodeNb; | 
|  | huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS - 1].count; | 
|  | huffNode[lowS].parent = huffNode[lowS - 1].parent = nodeNb; | 
|  | nodeNb++; | 
|  | lowS -= 2; | 
|  | for (n = nodeNb; n <= nodeRoot; n++) | 
|  | huffNode[n].count = (U32)(1U << 30); | 
|  | huffNode0[0].count = (U32)(1U << 31); /* fake entry, strong barrier */ | 
|  |  | 
|  | /* create parents */ | 
|  | while (nodeNb <= nodeRoot) { | 
|  | U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; | 
|  | U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; | 
|  | huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; | 
|  | huffNode[n1].parent = huffNode[n2].parent = nodeNb; | 
|  | nodeNb++; | 
|  | } | 
|  |  | 
|  | /* distribute weights (unlimited tree height) */ | 
|  | huffNode[nodeRoot].nbBits = 0; | 
|  | for (n = nodeRoot - 1; n >= STARTNODE; n--) | 
|  | huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1; | 
|  | for (n = 0; n <= nonNullRank; n++) | 
|  | huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1; | 
|  |  | 
|  | /* enforce maxTableLog */ | 
|  | maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits); | 
|  |  | 
|  | /* fill result into tree (val, nbBits) */ | 
|  | { | 
|  | U16 nbPerRank[HUF_TABLELOG_MAX + 1] = {0}; | 
|  | U16 valPerRank[HUF_TABLELOG_MAX + 1] = {0}; | 
|  | if (maxNbBits > HUF_TABLELOG_MAX) | 
|  | return ERROR(GENERIC); /* check fit into table */ | 
|  | for (n = 0; n <= nonNullRank; n++) | 
|  | nbPerRank[huffNode[n].nbBits]++; | 
|  | /* determine stating value per rank */ | 
|  | { | 
|  | U16 min = 0; | 
|  | for (n = maxNbBits; n > 0; n--) { | 
|  | valPerRank[n] = min; /* get starting value within each rank */ | 
|  | min += nbPerRank[n]; | 
|  | min >>= 1; | 
|  | } | 
|  | } | 
|  | for (n = 0; n <= maxSymbolValue; n++) | 
|  | tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */ | 
|  | for (n = 0; n <= maxSymbolValue; n++) | 
|  | tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */ | 
|  | } | 
|  |  | 
|  | return maxNbBits; | 
|  | } | 
|  |  | 
|  | static size_t HUF_estimateCompressedSize(HUF_CElt *CTable, const unsigned *count, unsigned maxSymbolValue) | 
|  | { | 
|  | size_t nbBits = 0; | 
|  | int s; | 
|  | for (s = 0; s <= (int)maxSymbolValue; ++s) { | 
|  | nbBits += CTable[s].nbBits * count[s]; | 
|  | } | 
|  | return nbBits >> 3; | 
|  | } | 
|  |  | 
|  | static int HUF_validateCTable(const HUF_CElt *CTable, const unsigned *count, unsigned maxSymbolValue) | 
|  | { | 
|  | int bad = 0; | 
|  | int s; | 
|  | for (s = 0; s <= (int)maxSymbolValue; ++s) { | 
|  | bad |= (count[s] != 0) & (CTable[s].nbBits == 0); | 
|  | } | 
|  | return !bad; | 
|  | } | 
|  |  | 
|  | static void HUF_encodeSymbol(BIT_CStream_t *bitCPtr, U32 symbol, const HUF_CElt *CTable) | 
|  | { | 
|  | BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits); | 
|  | } | 
|  |  | 
|  | size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } | 
|  |  | 
|  | #define HUF_FLUSHBITS(s)  BIT_flushBits(s) | 
|  |  | 
|  | #define HUF_FLUSHBITS_1(stream)                                            \ | 
|  | if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 2 + 7) \ | 
|  | HUF_FLUSHBITS(stream) | 
|  |  | 
|  | #define HUF_FLUSHBITS_2(stream)                                            \ | 
|  | if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 4 + 7) \ | 
|  | HUF_FLUSHBITS(stream) | 
|  |  | 
|  | size_t HUF_compress1X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable) | 
|  | { | 
|  | const BYTE *ip = (const BYTE *)src; | 
|  | BYTE *const ostart = (BYTE *)dst; | 
|  | BYTE *const oend = ostart + dstSize; | 
|  | BYTE *op = ostart; | 
|  | size_t n; | 
|  | BIT_CStream_t bitC; | 
|  |  | 
|  | /* init */ | 
|  | if (dstSize < 8) | 
|  | return 0; /* not enough space to compress */ | 
|  | { | 
|  | size_t const initErr = BIT_initCStream(&bitC, op, oend - op); | 
|  | if (HUF_isError(initErr)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | n = srcSize & ~3; /* join to mod 4 */ | 
|  | switch (srcSize & 3) { | 
|  | case 3: HUF_encodeSymbol(&bitC, ip[n + 2], CTable); HUF_FLUSHBITS_2(&bitC); | 
|  | case 2: HUF_encodeSymbol(&bitC, ip[n + 1], CTable); HUF_FLUSHBITS_1(&bitC); | 
|  | case 1: HUF_encodeSymbol(&bitC, ip[n + 0], CTable); HUF_FLUSHBITS(&bitC); | 
|  | case 0: | 
|  | default:; | 
|  | } | 
|  |  | 
|  | for (; n > 0; n -= 4) { /* note : n&3==0 at this stage */ | 
|  | HUF_encodeSymbol(&bitC, ip[n - 1], CTable); | 
|  | HUF_FLUSHBITS_1(&bitC); | 
|  | HUF_encodeSymbol(&bitC, ip[n - 2], CTable); | 
|  | HUF_FLUSHBITS_2(&bitC); | 
|  | HUF_encodeSymbol(&bitC, ip[n - 3], CTable); | 
|  | HUF_FLUSHBITS_1(&bitC); | 
|  | HUF_encodeSymbol(&bitC, ip[n - 4], CTable); | 
|  | HUF_FLUSHBITS(&bitC); | 
|  | } | 
|  |  | 
|  | return BIT_closeCStream(&bitC); | 
|  | } | 
|  |  | 
|  | size_t HUF_compress4X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable) | 
|  | { | 
|  | size_t const segmentSize = (srcSize + 3) / 4; /* first 3 segments */ | 
|  | const BYTE *ip = (const BYTE *)src; | 
|  | const BYTE *const iend = ip + srcSize; | 
|  | BYTE *const ostart = (BYTE *)dst; | 
|  | BYTE *const oend = ostart + dstSize; | 
|  | BYTE *op = ostart; | 
|  |  | 
|  | if (dstSize < 6 + 1 + 1 + 1 + 8) | 
|  | return 0; /* minimum space to compress successfully */ | 
|  | if (srcSize < 12) | 
|  | return 0; /* no saving possible : too small input */ | 
|  | op += 6;	  /* jumpTable */ | 
|  |  | 
|  | { | 
|  | CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable)); | 
|  | if (cSize == 0) | 
|  | return 0; | 
|  | ZSTD_writeLE16(ostart, (U16)cSize); | 
|  | op += cSize; | 
|  | } | 
|  |  | 
|  | ip += segmentSize; | 
|  | { | 
|  | CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable)); | 
|  | if (cSize == 0) | 
|  | return 0; | 
|  | ZSTD_writeLE16(ostart + 2, (U16)cSize); | 
|  | op += cSize; | 
|  | } | 
|  |  | 
|  | ip += segmentSize; | 
|  | { | 
|  | CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable)); | 
|  | if (cSize == 0) | 
|  | return 0; | 
|  | ZSTD_writeLE16(ostart + 4, (U16)cSize); | 
|  | op += cSize; | 
|  | } | 
|  |  | 
|  | ip += segmentSize; | 
|  | { | 
|  | CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, iend - ip, CTable)); | 
|  | if (cSize == 0) | 
|  | return 0; | 
|  | op += cSize; | 
|  | } | 
|  |  | 
|  | return op - ostart; | 
|  | } | 
|  |  | 
|  | static size_t HUF_compressCTable_internal(BYTE *const ostart, BYTE *op, BYTE *const oend, const void *src, size_t srcSize, unsigned singleStream, | 
|  | const HUF_CElt *CTable) | 
|  | { | 
|  | size_t const cSize = | 
|  | singleStream ? HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) : HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable); | 
|  | if (HUF_isError(cSize)) { | 
|  | return cSize; | 
|  | } | 
|  | if (cSize == 0) { | 
|  | return 0; | 
|  | } /* uncompressible */ | 
|  | op += cSize; | 
|  | /* check compressibility */ | 
|  | if ((size_t)(op - ostart) >= srcSize - 1) { | 
|  | return 0; | 
|  | } | 
|  | return op - ostart; | 
|  | } | 
|  |  | 
|  | /* `workSpace` must a table of at least 1024 unsigned */ | 
|  | static size_t HUF_compress_internal(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, | 
|  | unsigned singleStream, void *workSpace, size_t wkspSize, HUF_CElt *oldHufTable, HUF_repeat *repeat, int preferRepeat) | 
|  | { | 
|  | BYTE *const ostart = (BYTE *)dst; | 
|  | BYTE *const oend = ostart + dstSize; | 
|  | BYTE *op = ostart; | 
|  |  | 
|  | U32 *count; | 
|  | size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1); | 
|  | HUF_CElt *CTable; | 
|  | size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1); | 
|  |  | 
|  | /* checks & inits */ | 
|  | if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) | 
|  | return ERROR(GENERIC); | 
|  | if (!srcSize) | 
|  | return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */ | 
|  | if (!dstSize) | 
|  | return 0; /* cannot fit within dst budget */ | 
|  | if (srcSize > HUF_BLOCKSIZE_MAX) | 
|  | return ERROR(srcSize_wrong); /* curr block size limit */ | 
|  | if (huffLog > HUF_TABLELOG_MAX) | 
|  | return ERROR(tableLog_tooLarge); | 
|  | if (!maxSymbolValue) | 
|  | maxSymbolValue = HUF_SYMBOLVALUE_MAX; | 
|  | if (!huffLog) | 
|  | huffLog = HUF_TABLELOG_DEFAULT; | 
|  |  | 
|  | count = (U32 *)workSpace; | 
|  | workSpace = (BYTE *)workSpace + countSize; | 
|  | wkspSize -= countSize; | 
|  | CTable = (HUF_CElt *)workSpace; | 
|  | workSpace = (BYTE *)workSpace + CTableSize; | 
|  | wkspSize -= CTableSize; | 
|  |  | 
|  | /* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */ | 
|  | if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { | 
|  | return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable); | 
|  | } | 
|  |  | 
|  | /* Scan input and build symbol stats */ | 
|  | { | 
|  | CHECK_V_F(largest, FSE_count_wksp(count, &maxSymbolValue, (const BYTE *)src, srcSize, (U32 *)workSpace)); | 
|  | if (largest == srcSize) { | 
|  | *ostart = ((const BYTE *)src)[0]; | 
|  | return 1; | 
|  | } /* single symbol, rle */ | 
|  | if (largest <= (srcSize >> 7) + 1) | 
|  | return 0; /* Fast heuristic : not compressible enough */ | 
|  | } | 
|  |  | 
|  | /* Check validity of previous table */ | 
|  | if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) { | 
|  | *repeat = HUF_repeat_none; | 
|  | } | 
|  | /* Heuristic : use existing table for small inputs */ | 
|  | if (preferRepeat && repeat && *repeat != HUF_repeat_none) { | 
|  | return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable); | 
|  | } | 
|  |  | 
|  | /* Build Huffman Tree */ | 
|  | huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); | 
|  | { | 
|  | CHECK_V_F(maxBits, HUF_buildCTable_wksp(CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize)); | 
|  | huffLog = (U32)maxBits; | 
|  | /* Zero the unused symbols so we can check it for validity */ | 
|  | memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt)); | 
|  | } | 
|  |  | 
|  | /* Write table description header */ | 
|  | { | 
|  | CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, CTable, maxSymbolValue, huffLog, workSpace, wkspSize)); | 
|  | /* Check if using the previous table will be beneficial */ | 
|  | if (repeat && *repeat != HUF_repeat_none) { | 
|  | size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue); | 
|  | size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue); | 
|  | if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { | 
|  | return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable); | 
|  | } | 
|  | } | 
|  | /* Use the new table */ | 
|  | if (hSize + 12ul >= srcSize) { | 
|  | return 0; | 
|  | } | 
|  | op += hSize; | 
|  | if (repeat) { | 
|  | *repeat = HUF_repeat_none; | 
|  | } | 
|  | if (oldHufTable) { | 
|  | memcpy(oldHufTable, CTable, CTableSize); | 
|  | } /* Save the new table */ | 
|  | } | 
|  | return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable); | 
|  | } | 
|  |  | 
|  | size_t HUF_compress1X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, | 
|  | size_t wkspSize) | 
|  | { | 
|  | return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0); | 
|  | } | 
|  |  | 
|  | size_t HUF_compress1X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, | 
|  | size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat, int preferRepeat) | 
|  | { | 
|  | return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, | 
|  | preferRepeat); | 
|  | } | 
|  |  | 
|  | size_t HUF_compress4X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, | 
|  | size_t wkspSize) | 
|  | { | 
|  | return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0); | 
|  | } | 
|  |  | 
|  | size_t HUF_compress4X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, | 
|  | size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat, int preferRepeat) | 
|  | { | 
|  | return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, | 
|  | preferRepeat); | 
|  | } |