| /* SCTP kernel implementation | 
 |  * (C) Copyright IBM Corp. 2001, 2004 | 
 |  * Copyright (c) 1999 Cisco, Inc. | 
 |  * Copyright (c) 1999-2001 Motorola, Inc. | 
 |  * | 
 |  * This file is part of the SCTP kernel implementation | 
 |  * | 
 |  * These functions work with the state functions in sctp_sm_statefuns.c | 
 |  * to implement that state operations.  These functions implement the | 
 |  * steps which require modifying existing data structures. | 
 |  * | 
 |  * This SCTP implementation is free software; | 
 |  * you can redistribute it and/or modify it under the terms of | 
 |  * the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * This SCTP implementation is distributed in the hope that it | 
 |  * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
 |  *                 ************************ | 
 |  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
 |  * See the GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with GNU CC; see the file COPYING.  If not, see | 
 |  * <http://www.gnu.org/licenses/>. | 
 |  * | 
 |  * Please send any bug reports or fixes you make to the | 
 |  * email address(es): | 
 |  *    lksctp developers <linux-sctp@vger.kernel.org> | 
 |  * | 
 |  * Written or modified by: | 
 |  *    La Monte H.P. Yarroll <piggy@acm.org> | 
 |  *    Karl Knutson          <karl@athena.chicago.il.us> | 
 |  *    Jon Grimm             <jgrimm@austin.ibm.com> | 
 |  *    Hui Huang		    <hui.huang@nokia.com> | 
 |  *    Dajiang Zhang	    <dajiang.zhang@nokia.com> | 
 |  *    Daisy Chang	    <daisyc@us.ibm.com> | 
 |  *    Sridhar Samudrala	    <sri@us.ibm.com> | 
 |  *    Ardelle Fan	    <ardelle.fan@intel.com> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/skbuff.h> | 
 | #include <linux/types.h> | 
 | #include <linux/socket.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/gfp.h> | 
 | #include <net/sock.h> | 
 | #include <net/sctp/sctp.h> | 
 | #include <net/sctp/sm.h> | 
 | #include <net/sctp/stream_sched.h> | 
 |  | 
 | static int sctp_cmd_interpreter(enum sctp_event event_type, | 
 | 				union sctp_subtype subtype, | 
 | 				enum sctp_state state, | 
 | 				struct sctp_endpoint *ep, | 
 | 				struct sctp_association *asoc, | 
 | 				void *event_arg, | 
 | 				enum sctp_disposition status, | 
 | 				struct sctp_cmd_seq *commands, | 
 | 				gfp_t gfp); | 
 | static int sctp_side_effects(enum sctp_event event_type, | 
 | 			     union sctp_subtype subtype, | 
 | 			     enum sctp_state state, | 
 | 			     struct sctp_endpoint *ep, | 
 | 			     struct sctp_association **asoc, | 
 | 			     void *event_arg, | 
 | 			     enum sctp_disposition status, | 
 | 			     struct sctp_cmd_seq *commands, | 
 | 			     gfp_t gfp); | 
 |  | 
 | /******************************************************************** | 
 |  * Helper functions | 
 |  ********************************************************************/ | 
 |  | 
 | /* A helper function for delayed processing of INET ECN CE bit. */ | 
 | static void sctp_do_ecn_ce_work(struct sctp_association *asoc, | 
 | 				__u32 lowest_tsn) | 
 | { | 
 | 	/* Save the TSN away for comparison when we receive CWR */ | 
 |  | 
 | 	asoc->last_ecne_tsn = lowest_tsn; | 
 | 	asoc->need_ecne = 1; | 
 | } | 
 |  | 
 | /* Helper function for delayed processing of SCTP ECNE chunk.  */ | 
 | /* RFC 2960 Appendix A | 
 |  * | 
 |  * RFC 2481 details a specific bit for a sender to send in | 
 |  * the header of its next outbound TCP segment to indicate to | 
 |  * its peer that it has reduced its congestion window.  This | 
 |  * is termed the CWR bit.  For SCTP the same indication is made | 
 |  * by including the CWR chunk.  This chunk contains one data | 
 |  * element, i.e. the TSN number that was sent in the ECNE chunk. | 
 |  * This element represents the lowest TSN number in the datagram | 
 |  * that was originally marked with the CE bit. | 
 |  */ | 
 | static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, | 
 | 						__u32 lowest_tsn, | 
 | 						struct sctp_chunk *chunk) | 
 | { | 
 | 	struct sctp_chunk *repl; | 
 |  | 
 | 	/* Our previously transmitted packet ran into some congestion | 
 | 	 * so we should take action by reducing cwnd and ssthresh | 
 | 	 * and then ACK our peer that we we've done so by | 
 | 	 * sending a CWR. | 
 | 	 */ | 
 |  | 
 | 	/* First, try to determine if we want to actually lower | 
 | 	 * our cwnd variables.  Only lower them if the ECNE looks more | 
 | 	 * recent than the last response. | 
 | 	 */ | 
 | 	if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { | 
 | 		struct sctp_transport *transport; | 
 |  | 
 | 		/* Find which transport's congestion variables | 
 | 		 * need to be adjusted. | 
 | 		 */ | 
 | 		transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); | 
 |  | 
 | 		/* Update the congestion variables. */ | 
 | 		if (transport) | 
 | 			sctp_transport_lower_cwnd(transport, | 
 | 						  SCTP_LOWER_CWND_ECNE); | 
 | 		asoc->last_cwr_tsn = lowest_tsn; | 
 | 	} | 
 |  | 
 | 	/* Always try to quiet the other end.  In case of lost CWR, | 
 | 	 * resend last_cwr_tsn. | 
 | 	 */ | 
 | 	repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); | 
 |  | 
 | 	/* If we run out of memory, it will look like a lost CWR.  We'll | 
 | 	 * get back in sync eventually. | 
 | 	 */ | 
 | 	return repl; | 
 | } | 
 |  | 
 | /* Helper function to do delayed processing of ECN CWR chunk.  */ | 
 | static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, | 
 | 				 __u32 lowest_tsn) | 
 | { | 
 | 	/* Turn off ECNE getting auto-prepended to every outgoing | 
 | 	 * packet | 
 | 	 */ | 
 | 	asoc->need_ecne = 0; | 
 | } | 
 |  | 
 | /* Generate SACK if necessary.  We call this at the end of a packet.  */ | 
 | static int sctp_gen_sack(struct sctp_association *asoc, int force, | 
 | 			 struct sctp_cmd_seq *commands) | 
 | { | 
 | 	struct sctp_transport *trans = asoc->peer.last_data_from; | 
 | 	__u32 ctsn, max_tsn_seen; | 
 | 	struct sctp_chunk *sack; | 
 | 	int error = 0; | 
 |  | 
 | 	if (force || | 
 | 	    (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || | 
 | 	    (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) | 
 | 		asoc->peer.sack_needed = 1; | 
 |  | 
 | 	ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); | 
 | 	max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); | 
 |  | 
 | 	/* From 12.2 Parameters necessary per association (i.e. the TCB): | 
 | 	 * | 
 | 	 * Ack State : This flag indicates if the next received packet | 
 | 	 * 	     : is to be responded to with a SACK. ... | 
 | 	 *	     : When DATA chunks are out of order, SACK's | 
 | 	 *           : are not delayed (see Section 6). | 
 | 	 * | 
 | 	 * [This is actually not mentioned in Section 6, but we | 
 | 	 * implement it here anyway. --piggy] | 
 | 	 */ | 
 | 	if (max_tsn_seen != ctsn) | 
 | 		asoc->peer.sack_needed = 1; | 
 |  | 
 | 	/* From 6.2  Acknowledgement on Reception of DATA Chunks: | 
 | 	 * | 
 | 	 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, | 
 | 	 * an acknowledgement SHOULD be generated for at least every | 
 | 	 * second packet (not every second DATA chunk) received, and | 
 | 	 * SHOULD be generated within 200 ms of the arrival of any | 
 | 	 * unacknowledged DATA chunk. ... | 
 | 	 */ | 
 | 	if (!asoc->peer.sack_needed) { | 
 | 		asoc->peer.sack_cnt++; | 
 |  | 
 | 		/* Set the SACK delay timeout based on the | 
 | 		 * SACK delay for the last transport | 
 | 		 * data was received from, or the default | 
 | 		 * for the association. | 
 | 		 */ | 
 | 		if (trans) { | 
 | 			/* We will need a SACK for the next packet.  */ | 
 | 			if (asoc->peer.sack_cnt >= trans->sackfreq - 1) | 
 | 				asoc->peer.sack_needed = 1; | 
 |  | 
 | 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = | 
 | 				trans->sackdelay; | 
 | 		} else { | 
 | 			/* We will need a SACK for the next packet.  */ | 
 | 			if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) | 
 | 				asoc->peer.sack_needed = 1; | 
 |  | 
 | 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = | 
 | 				asoc->sackdelay; | 
 | 		} | 
 |  | 
 | 		/* Restart the SACK timer. */ | 
 | 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
 | 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); | 
 | 	} else { | 
 | 		__u32 old_a_rwnd = asoc->a_rwnd; | 
 |  | 
 | 		asoc->a_rwnd = asoc->rwnd; | 
 | 		sack = sctp_make_sack(asoc); | 
 | 		if (!sack) { | 
 | 			asoc->a_rwnd = old_a_rwnd; | 
 | 			goto nomem; | 
 | 		} | 
 |  | 
 | 		asoc->peer.sack_needed = 0; | 
 | 		asoc->peer.sack_cnt = 0; | 
 |  | 
 | 		sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); | 
 |  | 
 | 		/* Stop the SACK timer.  */ | 
 | 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
 | 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | nomem: | 
 | 	error = -ENOMEM; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* When the T3-RTX timer expires, it calls this function to create the | 
 |  * relevant state machine event. | 
 |  */ | 
 | void sctp_generate_t3_rtx_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_transport *transport = | 
 | 		from_timer(transport, t, T3_rtx_timer); | 
 | 	struct sctp_association *asoc = transport->asoc; | 
 | 	struct sock *sk = asoc->base.sk; | 
 | 	struct net *net = sock_net(sk); | 
 | 	int error; | 
 |  | 
 | 	/* Check whether a task is in the sock.  */ | 
 |  | 
 | 	bh_lock_sock(sk); | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		pr_debug("%s: sock is busy\n", __func__); | 
 |  | 
 | 		/* Try again later.  */ | 
 | 		if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) | 
 | 			sctp_transport_hold(transport); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Run through the state machine.  */ | 
 | 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, | 
 | 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), | 
 | 			   asoc->state, | 
 | 			   asoc->ep, asoc, | 
 | 			   transport, GFP_ATOMIC); | 
 |  | 
 | 	if (error) | 
 | 		sk->sk_err = -error; | 
 |  | 
 | out_unlock: | 
 | 	bh_unlock_sock(sk); | 
 | 	sctp_transport_put(transport); | 
 | } | 
 |  | 
 | /* This is a sa interface for producing timeout events.  It works | 
 |  * for timeouts which use the association as their parameter. | 
 |  */ | 
 | static void sctp_generate_timeout_event(struct sctp_association *asoc, | 
 | 					enum sctp_event_timeout timeout_type) | 
 | { | 
 | 	struct sock *sk = asoc->base.sk; | 
 | 	struct net *net = sock_net(sk); | 
 | 	int error = 0; | 
 |  | 
 | 	bh_lock_sock(sk); | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		pr_debug("%s: sock is busy: timer %d\n", __func__, | 
 | 			 timeout_type); | 
 |  | 
 | 		/* Try again later.  */ | 
 | 		if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) | 
 | 			sctp_association_hold(asoc); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Is this association really dead and just waiting around for | 
 | 	 * the timer to let go of the reference? | 
 | 	 */ | 
 | 	if (asoc->base.dead) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Run through the state machine.  */ | 
 | 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, | 
 | 			   SCTP_ST_TIMEOUT(timeout_type), | 
 | 			   asoc->state, asoc->ep, asoc, | 
 | 			   (void *)timeout_type, GFP_ATOMIC); | 
 |  | 
 | 	if (error) | 
 | 		sk->sk_err = -error; | 
 |  | 
 | out_unlock: | 
 | 	bh_unlock_sock(sk); | 
 | 	sctp_association_put(asoc); | 
 | } | 
 |  | 
 | static void sctp_generate_t1_cookie_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_COOKIE]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); | 
 | } | 
 |  | 
 | static void sctp_generate_t1_init_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_INIT]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); | 
 | } | 
 |  | 
 | static void sctp_generate_t2_shutdown_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); | 
 | } | 
 |  | 
 | static void sctp_generate_t4_rto_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T4_RTO]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); | 
 | } | 
 |  | 
 | static void sctp_generate_t5_shutdown_guard_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, | 
 | 			   timers[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, | 
 | 				    SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); | 
 |  | 
 | } /* sctp_generate_t5_shutdown_guard_event() */ | 
 |  | 
 | static void sctp_generate_autoclose_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_AUTOCLOSE]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); | 
 | } | 
 |  | 
 | /* Generate a heart beat event.  If the sock is busy, reschedule.   Make | 
 |  * sure that the transport is still valid. | 
 |  */ | 
 | void sctp_generate_heartbeat_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_transport *transport = from_timer(transport, t, hb_timer); | 
 | 	struct sctp_association *asoc = transport->asoc; | 
 | 	struct sock *sk = asoc->base.sk; | 
 | 	struct net *net = sock_net(sk); | 
 | 	u32 elapsed, timeout; | 
 | 	int error = 0; | 
 |  | 
 | 	bh_lock_sock(sk); | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		pr_debug("%s: sock is busy\n", __func__); | 
 |  | 
 | 		/* Try again later.  */ | 
 | 		if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) | 
 | 			sctp_transport_hold(transport); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Check if we should still send the heartbeat or reschedule */ | 
 | 	elapsed = jiffies - transport->last_time_sent; | 
 | 	timeout = sctp_transport_timeout(transport); | 
 | 	if (elapsed < timeout) { | 
 | 		elapsed = timeout - elapsed; | 
 | 		if (!mod_timer(&transport->hb_timer, jiffies + elapsed)) | 
 | 			sctp_transport_hold(transport); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, | 
 | 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), | 
 | 			   asoc->state, asoc->ep, asoc, | 
 | 			   transport, GFP_ATOMIC); | 
 |  | 
 | 	if (error) | 
 | 		sk->sk_err = -error; | 
 |  | 
 | out_unlock: | 
 | 	bh_unlock_sock(sk); | 
 | 	sctp_transport_put(transport); | 
 | } | 
 |  | 
 | /* Handle the timeout of the ICMP protocol unreachable timer.  Trigger | 
 |  * the correct state machine transition that will close the association. | 
 |  */ | 
 | void sctp_generate_proto_unreach_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_transport *transport = | 
 | 		from_timer(transport, t, proto_unreach_timer); | 
 | 	struct sctp_association *asoc = transport->asoc; | 
 | 	struct sock *sk = asoc->base.sk; | 
 | 	struct net *net = sock_net(sk); | 
 |  | 
 | 	bh_lock_sock(sk); | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		pr_debug("%s: sock is busy\n", __func__); | 
 |  | 
 | 		/* Try again later.  */ | 
 | 		if (!mod_timer(&transport->proto_unreach_timer, | 
 | 				jiffies + (HZ/20))) | 
 | 			sctp_association_hold(asoc); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Is this structure just waiting around for us to actually | 
 | 	 * get destroyed? | 
 | 	 */ | 
 | 	if (asoc->base.dead) | 
 | 		goto out_unlock; | 
 |  | 
 | 	sctp_do_sm(net, SCTP_EVENT_T_OTHER, | 
 | 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), | 
 | 		   asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); | 
 |  | 
 | out_unlock: | 
 | 	bh_unlock_sock(sk); | 
 | 	sctp_association_put(asoc); | 
 | } | 
 |  | 
 |  /* Handle the timeout of the RE-CONFIG timer. */ | 
 | void sctp_generate_reconf_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_transport *transport = | 
 | 		from_timer(transport, t, reconf_timer); | 
 | 	struct sctp_association *asoc = transport->asoc; | 
 | 	struct sock *sk = asoc->base.sk; | 
 | 	struct net *net = sock_net(sk); | 
 | 	int error = 0; | 
 |  | 
 | 	bh_lock_sock(sk); | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		pr_debug("%s: sock is busy\n", __func__); | 
 |  | 
 | 		/* Try again later.  */ | 
 | 		if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20))) | 
 | 			sctp_transport_hold(transport); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, | 
 | 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF), | 
 | 			   asoc->state, asoc->ep, asoc, | 
 | 			   transport, GFP_ATOMIC); | 
 |  | 
 | 	if (error) | 
 | 		sk->sk_err = -error; | 
 |  | 
 | out_unlock: | 
 | 	bh_unlock_sock(sk); | 
 | 	sctp_transport_put(transport); | 
 | } | 
 |  | 
 | /* Inject a SACK Timeout event into the state machine.  */ | 
 | static void sctp_generate_sack_event(struct timer_list *t) | 
 | { | 
 | 	struct sctp_association *asoc = | 
 | 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_SACK]); | 
 |  | 
 | 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); | 
 | } | 
 |  | 
 | sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { | 
 | 	[SCTP_EVENT_TIMEOUT_NONE] =		NULL, | 
 | 	[SCTP_EVENT_TIMEOUT_T1_COOKIE] =	sctp_generate_t1_cookie_event, | 
 | 	[SCTP_EVENT_TIMEOUT_T1_INIT] =		sctp_generate_t1_init_event, | 
 | 	[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] =	sctp_generate_t2_shutdown_event, | 
 | 	[SCTP_EVENT_TIMEOUT_T3_RTX] =		NULL, | 
 | 	[SCTP_EVENT_TIMEOUT_T4_RTO] =		sctp_generate_t4_rto_event, | 
 | 	[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] = | 
 | 					sctp_generate_t5_shutdown_guard_event, | 
 | 	[SCTP_EVENT_TIMEOUT_HEARTBEAT] =	NULL, | 
 | 	[SCTP_EVENT_TIMEOUT_RECONF] =		NULL, | 
 | 	[SCTP_EVENT_TIMEOUT_SACK] =		sctp_generate_sack_event, | 
 | 	[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =	sctp_generate_autoclose_event, | 
 | }; | 
 |  | 
 |  | 
 | /* RFC 2960 8.2 Path Failure Detection | 
 |  * | 
 |  * When its peer endpoint is multi-homed, an endpoint should keep a | 
 |  * error counter for each of the destination transport addresses of the | 
 |  * peer endpoint. | 
 |  * | 
 |  * Each time the T3-rtx timer expires on any address, or when a | 
 |  * HEARTBEAT sent to an idle address is not acknowledged within a RTO, | 
 |  * the error counter of that destination address will be incremented. | 
 |  * When the value in the error counter exceeds the protocol parameter | 
 |  * 'Path.Max.Retrans' of that destination address, the endpoint should | 
 |  * mark the destination transport address as inactive, and a | 
 |  * notification SHOULD be sent to the upper layer. | 
 |  * | 
 |  */ | 
 | static void sctp_do_8_2_transport_strike(struct sctp_cmd_seq *commands, | 
 | 					 struct sctp_association *asoc, | 
 | 					 struct sctp_transport *transport, | 
 | 					 int is_hb) | 
 | { | 
 | 	struct net *net = sock_net(asoc->base.sk); | 
 |  | 
 | 	/* The check for association's overall error counter exceeding the | 
 | 	 * threshold is done in the state function. | 
 | 	 */ | 
 | 	/* We are here due to a timer expiration.  If the timer was | 
 | 	 * not a HEARTBEAT, then normal error tracking is done. | 
 | 	 * If the timer was a heartbeat, we only increment error counts | 
 | 	 * when we already have an outstanding HEARTBEAT that has not | 
 | 	 * been acknowledged. | 
 | 	 * Additionally, some tranport states inhibit error increments. | 
 | 	 */ | 
 | 	if (!is_hb) { | 
 | 		asoc->overall_error_count++; | 
 | 		if (transport->state != SCTP_INACTIVE) | 
 | 			transport->error_count++; | 
 | 	 } else if (transport->hb_sent) { | 
 | 		if (transport->state != SCTP_UNCONFIRMED) | 
 | 			asoc->overall_error_count++; | 
 | 		if (transport->state != SCTP_INACTIVE) | 
 | 			transport->error_count++; | 
 | 	} | 
 |  | 
 | 	/* If the transport error count is greater than the pf_retrans | 
 | 	 * threshold, and less than pathmaxrtx, and if the current state | 
 | 	 * is SCTP_ACTIVE, then mark this transport as Partially Failed, | 
 | 	 * see SCTP Quick Failover Draft, section 5.1 | 
 | 	 */ | 
 | 	if (net->sctp.pf_enable && | 
 | 	   (transport->state == SCTP_ACTIVE) && | 
 | 	   (transport->error_count < transport->pathmaxrxt) && | 
 | 	   (transport->error_count > transport->pf_retrans)) { | 
 |  | 
 | 		sctp_assoc_control_transport(asoc, transport, | 
 | 					     SCTP_TRANSPORT_PF, | 
 | 					     0); | 
 |  | 
 | 		/* Update the hb timer to resend a heartbeat every rto */ | 
 | 		sctp_transport_reset_hb_timer(transport); | 
 | 	} | 
 |  | 
 | 	if (transport->state != SCTP_INACTIVE && | 
 | 	    (transport->error_count > transport->pathmaxrxt)) { | 
 | 		pr_debug("%s: association:%p transport addr:%pISpc failed\n", | 
 | 			 __func__, asoc, &transport->ipaddr.sa); | 
 |  | 
 | 		sctp_assoc_control_transport(asoc, transport, | 
 | 					     SCTP_TRANSPORT_DOWN, | 
 | 					     SCTP_FAILED_THRESHOLD); | 
 | 	} | 
 |  | 
 | 	/* E2) For the destination address for which the timer | 
 | 	 * expires, set RTO <- RTO * 2 ("back off the timer").  The | 
 | 	 * maximum value discussed in rule C7 above (RTO.max) may be | 
 | 	 * used to provide an upper bound to this doubling operation. | 
 | 	 * | 
 | 	 * Special Case:  the first HB doesn't trigger exponential backoff. | 
 | 	 * The first unacknowledged HB triggers it.  We do this with a flag | 
 | 	 * that indicates that we have an outstanding HB. | 
 | 	 */ | 
 | 	if (!is_hb || transport->hb_sent) { | 
 | 		transport->rto = min((transport->rto * 2), transport->asoc->rto_max); | 
 | 		sctp_max_rto(asoc, transport); | 
 | 	} | 
 | } | 
 |  | 
 | /* Worker routine to handle INIT command failure.  */ | 
 | static void sctp_cmd_init_failed(struct sctp_cmd_seq *commands, | 
 | 				 struct sctp_association *asoc, | 
 | 				 unsigned int error) | 
 | { | 
 | 	struct sctp_ulpevent *event; | 
 |  | 
 | 	event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC, | 
 | 						(__u16)error, 0, 0, NULL, | 
 | 						GFP_ATOMIC); | 
 |  | 
 | 	if (event) | 
 | 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
 | 				SCTP_ULPEVENT(event)); | 
 |  | 
 | 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
 | 			SCTP_STATE(SCTP_STATE_CLOSED)); | 
 |  | 
 | 	/* SEND_FAILED sent later when cleaning up the association. */ | 
 | 	asoc->outqueue.error = error; | 
 | 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
 | } | 
 |  | 
 | /* Worker routine to handle SCTP_CMD_ASSOC_FAILED.  */ | 
 | static void sctp_cmd_assoc_failed(struct sctp_cmd_seq *commands, | 
 | 				  struct sctp_association *asoc, | 
 | 				  enum sctp_event event_type, | 
 | 				  union sctp_subtype subtype, | 
 | 				  struct sctp_chunk *chunk, | 
 | 				  unsigned int error) | 
 | { | 
 | 	struct sctp_ulpevent *event; | 
 | 	struct sctp_chunk *abort; | 
 |  | 
 | 	/* Cancel any partial delivery in progress. */ | 
 | 	asoc->stream.si->abort_pd(&asoc->ulpq, GFP_ATOMIC); | 
 |  | 
 | 	if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) | 
 | 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, | 
 | 						(__u16)error, 0, 0, chunk, | 
 | 						GFP_ATOMIC); | 
 | 	else | 
 | 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, | 
 | 						(__u16)error, 0, 0, NULL, | 
 | 						GFP_ATOMIC); | 
 | 	if (event) | 
 | 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
 | 				SCTP_ULPEVENT(event)); | 
 |  | 
 | 	if (asoc->overall_error_count >= asoc->max_retrans) { | 
 | 		abort = sctp_make_violation_max_retrans(asoc, chunk); | 
 | 		if (abort) | 
 | 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
 | 					SCTP_CHUNK(abort)); | 
 | 	} | 
 |  | 
 | 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
 | 			SCTP_STATE(SCTP_STATE_CLOSED)); | 
 |  | 
 | 	/* SEND_FAILED sent later when cleaning up the association. */ | 
 | 	asoc->outqueue.error = error; | 
 | 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
 | } | 
 |  | 
 | /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT | 
 |  * inside the cookie.  In reality, this is only used for INIT-ACK processing | 
 |  * since all other cases use "temporary" associations and can do all | 
 |  * their work in statefuns directly. | 
 |  */ | 
 | static int sctp_cmd_process_init(struct sctp_cmd_seq *commands, | 
 | 				 struct sctp_association *asoc, | 
 | 				 struct sctp_chunk *chunk, | 
 | 				 struct sctp_init_chunk *peer_init, | 
 | 				 gfp_t gfp) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	/* We only process the init as a sideeffect in a single | 
 | 	 * case.   This is when we process the INIT-ACK.   If we | 
 | 	 * fail during INIT processing (due to malloc problems), | 
 | 	 * just return the error and stop processing the stack. | 
 | 	 */ | 
 | 	if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) | 
 | 		error = -ENOMEM; | 
 | 	else | 
 | 		error = 0; | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Helper function to break out starting up of heartbeat timers.  */ | 
 | static void sctp_cmd_hb_timers_start(struct sctp_cmd_seq *cmds, | 
 | 				     struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_transport *t; | 
 |  | 
 | 	/* Start a heartbeat timer for each transport on the association. | 
 | 	 * hold a reference on the transport to make sure none of | 
 | 	 * the needed data structures go away. | 
 | 	 */ | 
 | 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) | 
 | 		sctp_transport_reset_hb_timer(t); | 
 | } | 
 |  | 
 | static void sctp_cmd_hb_timers_stop(struct sctp_cmd_seq *cmds, | 
 | 				    struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_transport *t; | 
 |  | 
 | 	/* Stop all heartbeat timers. */ | 
 |  | 
 | 	list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
 | 			transports) { | 
 | 		if (del_timer(&t->hb_timer)) | 
 | 			sctp_transport_put(t); | 
 | 	} | 
 | } | 
 |  | 
 | /* Helper function to stop any pending T3-RTX timers */ | 
 | static void sctp_cmd_t3_rtx_timers_stop(struct sctp_cmd_seq *cmds, | 
 | 					struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_transport *t; | 
 |  | 
 | 	list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
 | 			transports) { | 
 | 		if (del_timer(&t->T3_rtx_timer)) | 
 | 			sctp_transport_put(t); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Helper function to handle the reception of an HEARTBEAT ACK.  */ | 
 | static void sctp_cmd_transport_on(struct sctp_cmd_seq *cmds, | 
 | 				  struct sctp_association *asoc, | 
 | 				  struct sctp_transport *t, | 
 | 				  struct sctp_chunk *chunk) | 
 | { | 
 | 	struct sctp_sender_hb_info *hbinfo; | 
 | 	int was_unconfirmed = 0; | 
 |  | 
 | 	/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the | 
 | 	 * HEARTBEAT should clear the error counter of the destination | 
 | 	 * transport address to which the HEARTBEAT was sent. | 
 | 	 */ | 
 | 	t->error_count = 0; | 
 |  | 
 | 	/* | 
 | 	 * Although RFC4960 specifies that the overall error count must | 
 | 	 * be cleared when a HEARTBEAT ACK is received, we make an | 
 | 	 * exception while in SHUTDOWN PENDING. If the peer keeps its | 
 | 	 * window shut forever, we may never be able to transmit our | 
 | 	 * outstanding data and rely on the retransmission limit be reached | 
 | 	 * to shutdown the association. | 
 | 	 */ | 
 | 	if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) | 
 | 		t->asoc->overall_error_count = 0; | 
 |  | 
 | 	/* Clear the hb_sent flag to signal that we had a good | 
 | 	 * acknowledgement. | 
 | 	 */ | 
 | 	t->hb_sent = 0; | 
 |  | 
 | 	/* Mark the destination transport address as active if it is not so | 
 | 	 * marked. | 
 | 	 */ | 
 | 	if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { | 
 | 		was_unconfirmed = 1; | 
 | 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, | 
 | 					     SCTP_HEARTBEAT_SUCCESS); | 
 | 	} | 
 |  | 
 | 	if (t->state == SCTP_PF) | 
 | 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, | 
 | 					     SCTP_HEARTBEAT_SUCCESS); | 
 |  | 
 | 	/* HB-ACK was received for a the proper HB.  Consider this | 
 | 	 * forward progress. | 
 | 	 */ | 
 | 	if (t->dst) | 
 | 		sctp_transport_dst_confirm(t); | 
 |  | 
 | 	/* The receiver of the HEARTBEAT ACK should also perform an | 
 | 	 * RTT measurement for that destination transport address | 
 | 	 * using the time value carried in the HEARTBEAT ACK chunk. | 
 | 	 * If the transport's rto_pending variable has been cleared, | 
 | 	 * it was most likely due to a retransmit.  However, we want | 
 | 	 * to re-enable it to properly update the rto. | 
 | 	 */ | 
 | 	if (t->rto_pending == 0) | 
 | 		t->rto_pending = 1; | 
 |  | 
 | 	hbinfo = (struct sctp_sender_hb_info *)chunk->skb->data; | 
 | 	sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); | 
 |  | 
 | 	/* Update the heartbeat timer.  */ | 
 | 	sctp_transport_reset_hb_timer(t); | 
 |  | 
 | 	if (was_unconfirmed && asoc->peer.transport_count == 1) | 
 | 		sctp_transport_immediate_rtx(t); | 
 | } | 
 |  | 
 |  | 
 | /* Helper function to process the process SACK command.  */ | 
 | static int sctp_cmd_process_sack(struct sctp_cmd_seq *cmds, | 
 | 				 struct sctp_association *asoc, | 
 | 				 struct sctp_chunk *chunk) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (sctp_outq_sack(&asoc->outqueue, chunk)) { | 
 | 		struct net *net = sock_net(asoc->base.sk); | 
 |  | 
 | 		/* There are no more TSNs awaiting SACK.  */ | 
 | 		err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, | 
 | 				 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), | 
 | 				 asoc->state, asoc->ep, asoc, NULL, | 
 | 				 GFP_ATOMIC); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set | 
 |  * the transport for a shutdown chunk. | 
 |  */ | 
 | static void sctp_cmd_setup_t2(struct sctp_cmd_seq *cmds, | 
 | 			      struct sctp_association *asoc, | 
 | 			      struct sctp_chunk *chunk) | 
 | { | 
 | 	struct sctp_transport *t; | 
 |  | 
 | 	if (chunk->transport) | 
 | 		t = chunk->transport; | 
 | 	else { | 
 | 		t = sctp_assoc_choose_alter_transport(asoc, | 
 | 					      asoc->shutdown_last_sent_to); | 
 | 		chunk->transport = t; | 
 | 	} | 
 | 	asoc->shutdown_last_sent_to = t; | 
 | 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; | 
 | } | 
 |  | 
 | static void sctp_cmd_assoc_update(struct sctp_cmd_seq *cmds, | 
 | 				  struct sctp_association *asoc, | 
 | 				  struct sctp_association *new) | 
 | { | 
 | 	struct net *net = sock_net(asoc->base.sk); | 
 | 	struct sctp_chunk *abort; | 
 |  | 
 | 	if (!sctp_assoc_update(asoc, new)) | 
 | 		return; | 
 |  | 
 | 	abort = sctp_make_abort(asoc, NULL, sizeof(struct sctp_errhdr)); | 
 | 	if (abort) { | 
 | 		sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0); | 
 | 		sctp_add_cmd_sf(cmds, SCTP_CMD_REPLY, SCTP_CHUNK(abort)); | 
 | 	} | 
 | 	sctp_add_cmd_sf(cmds, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNABORTED)); | 
 | 	sctp_add_cmd_sf(cmds, SCTP_CMD_ASSOC_FAILED, | 
 | 			SCTP_PERR(SCTP_ERROR_RSRC_LOW)); | 
 | 	SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS); | 
 | 	SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB); | 
 | } | 
 |  | 
 | /* Helper function to change the state of an association. */ | 
 | static void sctp_cmd_new_state(struct sctp_cmd_seq *cmds, | 
 | 			       struct sctp_association *asoc, | 
 | 			       enum sctp_state state) | 
 | { | 
 | 	struct sock *sk = asoc->base.sk; | 
 |  | 
 | 	asoc->state = state; | 
 |  | 
 | 	pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); | 
 |  | 
 | 	if (sctp_style(sk, TCP)) { | 
 | 		/* Change the sk->sk_state of a TCP-style socket that has | 
 | 		 * successfully completed a connect() call. | 
 | 		 */ | 
 | 		if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) | 
 | 			inet_sk_set_state(sk, SCTP_SS_ESTABLISHED); | 
 |  | 
 | 		/* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ | 
 | 		if (sctp_state(asoc, SHUTDOWN_RECEIVED) && | 
 | 		    sctp_sstate(sk, ESTABLISHED)) { | 
 | 			inet_sk_set_state(sk, SCTP_SS_CLOSING); | 
 | 			sk->sk_shutdown |= RCV_SHUTDOWN; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sctp_state(asoc, COOKIE_WAIT)) { | 
 | 		/* Reset init timeouts since they may have been | 
 | 		 * increased due to timer expirations. | 
 | 		 */ | 
 | 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = | 
 | 						asoc->rto_initial; | 
 | 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = | 
 | 						asoc->rto_initial; | 
 | 	} | 
 |  | 
 | 	if (sctp_state(asoc, ESTABLISHED)) { | 
 | 		kfree(asoc->peer.cookie); | 
 | 		asoc->peer.cookie = NULL; | 
 | 	} | 
 |  | 
 | 	if (sctp_state(asoc, ESTABLISHED) || | 
 | 	    sctp_state(asoc, CLOSED) || | 
 | 	    sctp_state(asoc, SHUTDOWN_RECEIVED)) { | 
 | 		/* Wake up any processes waiting in the asoc's wait queue in | 
 | 		 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). | 
 | 		 */ | 
 | 		if (waitqueue_active(&asoc->wait)) | 
 | 			wake_up_interruptible(&asoc->wait); | 
 |  | 
 | 		/* Wake up any processes waiting in the sk's sleep queue of | 
 | 		 * a TCP-style or UDP-style peeled-off socket in | 
 | 		 * sctp_wait_for_accept() or sctp_wait_for_packet(). | 
 | 		 * For a UDP-style socket, the waiters are woken up by the | 
 | 		 * notifications. | 
 | 		 */ | 
 | 		if (!sctp_style(sk, UDP)) | 
 | 			sk->sk_state_change(sk); | 
 | 	} | 
 |  | 
 | 	if (sctp_state(asoc, SHUTDOWN_PENDING) && | 
 | 	    !sctp_outq_is_empty(&asoc->outqueue)) | 
 | 		sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC); | 
 | } | 
 |  | 
 | /* Helper function to delete an association. */ | 
 | static void sctp_cmd_delete_tcb(struct sctp_cmd_seq *cmds, | 
 | 				struct sctp_association *asoc) | 
 | { | 
 | 	struct sock *sk = asoc->base.sk; | 
 |  | 
 | 	/* If it is a non-temporary association belonging to a TCP-style | 
 | 	 * listening socket that is not closed, do not free it so that accept() | 
 | 	 * can pick it up later. | 
 | 	 */ | 
 | 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && | 
 | 	    (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) | 
 | 		return; | 
 |  | 
 | 	sctp_association_free(asoc); | 
 | } | 
 |  | 
 | /* | 
 |  * ADDIP Section 4.1 ASCONF Chunk Procedures | 
 |  * A4) Start a T-4 RTO timer, using the RTO value of the selected | 
 |  * destination address (we use active path instead of primary path just | 
 |  * because primary path may be inactive. | 
 |  */ | 
 | static void sctp_cmd_setup_t4(struct sctp_cmd_seq *cmds, | 
 | 			      struct sctp_association *asoc, | 
 | 			      struct sctp_chunk *chunk) | 
 | { | 
 | 	struct sctp_transport *t; | 
 |  | 
 | 	t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); | 
 | 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; | 
 | 	chunk->transport = t; | 
 | } | 
 |  | 
 | /* Process an incoming Operation Error Chunk. */ | 
 | static void sctp_cmd_process_operr(struct sctp_cmd_seq *cmds, | 
 | 				   struct sctp_association *asoc, | 
 | 				   struct sctp_chunk *chunk) | 
 | { | 
 | 	struct sctp_errhdr *err_hdr; | 
 | 	struct sctp_ulpevent *ev; | 
 |  | 
 | 	while (chunk->chunk_end > chunk->skb->data) { | 
 | 		err_hdr = (struct sctp_errhdr *)(chunk->skb->data); | 
 |  | 
 | 		ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, | 
 | 						     GFP_ATOMIC); | 
 | 		if (!ev) | 
 | 			return; | 
 |  | 
 | 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev); | 
 |  | 
 | 		switch (err_hdr->cause) { | 
 | 		case SCTP_ERROR_UNKNOWN_CHUNK: | 
 | 		{ | 
 | 			struct sctp_chunkhdr *unk_chunk_hdr; | 
 |  | 
 | 			unk_chunk_hdr = (struct sctp_chunkhdr *) | 
 | 							err_hdr->variable; | 
 | 			switch (unk_chunk_hdr->type) { | 
 | 			/* ADDIP 4.1 A9) If the peer responds to an ASCONF with | 
 | 			 * an ERROR chunk reporting that it did not recognized | 
 | 			 * the ASCONF chunk type, the sender of the ASCONF MUST | 
 | 			 * NOT send any further ASCONF chunks and MUST stop its | 
 | 			 * T-4 timer. | 
 | 			 */ | 
 | 			case SCTP_CID_ASCONF: | 
 | 				if (asoc->peer.asconf_capable == 0) | 
 | 					break; | 
 |  | 
 | 				asoc->peer.asconf_capable = 0; | 
 | 				sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, | 
 | 					SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
 | 				break; | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Helper function to remove the association non-primary peer | 
 |  * transports. | 
 |  */ | 
 | static void sctp_cmd_del_non_primary(struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_transport *t; | 
 | 	struct list_head *temp; | 
 | 	struct list_head *pos; | 
 |  | 
 | 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { | 
 | 		t = list_entry(pos, struct sctp_transport, transports); | 
 | 		if (!sctp_cmp_addr_exact(&t->ipaddr, | 
 | 					 &asoc->peer.primary_addr)) { | 
 | 			sctp_assoc_rm_peer(asoc, t); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Helper function to set sk_err on a 1-1 style socket. */ | 
 | static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) | 
 | { | 
 | 	struct sock *sk = asoc->base.sk; | 
 |  | 
 | 	if (!sctp_style(sk, UDP)) | 
 | 		sk->sk_err = error; | 
 | } | 
 |  | 
 | /* Helper function to generate an association change event */ | 
 | static void sctp_cmd_assoc_change(struct sctp_cmd_seq *commands, | 
 | 				  struct sctp_association *asoc, | 
 | 				  u8 state) | 
 | { | 
 | 	struct sctp_ulpevent *ev; | 
 |  | 
 | 	ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, | 
 | 					    asoc->c.sinit_num_ostreams, | 
 | 					    asoc->c.sinit_max_instreams, | 
 | 					    NULL, GFP_ATOMIC); | 
 | 	if (ev) | 
 | 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev); | 
 | } | 
 |  | 
 | static void sctp_cmd_peer_no_auth(struct sctp_cmd_seq *commands, | 
 | 				  struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_ulpevent *ev; | 
 |  | 
 | 	ev = sctp_ulpevent_make_authkey(asoc, 0, SCTP_AUTH_NO_AUTH, GFP_ATOMIC); | 
 | 	if (ev) | 
 | 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev); | 
 | } | 
 |  | 
 | /* Helper function to generate an adaptation indication event */ | 
 | static void sctp_cmd_adaptation_ind(struct sctp_cmd_seq *commands, | 
 | 				    struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_ulpevent *ev; | 
 |  | 
 | 	ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); | 
 |  | 
 | 	if (ev) | 
 | 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev); | 
 | } | 
 |  | 
 |  | 
 | static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, | 
 | 				     enum sctp_event_timeout timer, | 
 | 				     char *name) | 
 | { | 
 | 	struct sctp_transport *t; | 
 |  | 
 | 	t = asoc->init_last_sent_to; | 
 | 	asoc->init_err_counter++; | 
 |  | 
 | 	if (t->init_sent_count > (asoc->init_cycle + 1)) { | 
 | 		asoc->timeouts[timer] *= 2; | 
 | 		if (asoc->timeouts[timer] > asoc->max_init_timeo) { | 
 | 			asoc->timeouts[timer] = asoc->max_init_timeo; | 
 | 		} | 
 | 		asoc->init_cycle++; | 
 |  | 
 | 		pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" | 
 | 			 " cycle:%d timeout:%ld\n", __func__, name, | 
 | 			 asoc->init_err_counter, asoc->init_cycle, | 
 | 			 asoc->timeouts[timer]); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* Send the whole message, chunk by chunk, to the outqueue. | 
 |  * This way the whole message is queued up and bundling if | 
 |  * encouraged for small fragments. | 
 |  */ | 
 | static void sctp_cmd_send_msg(struct sctp_association *asoc, | 
 | 			      struct sctp_datamsg *msg, gfp_t gfp) | 
 | { | 
 | 	struct sctp_chunk *chunk; | 
 |  | 
 | 	list_for_each_entry(chunk, &msg->chunks, frag_list) | 
 | 		sctp_outq_tail(&asoc->outqueue, chunk, gfp); | 
 |  | 
 | 	asoc->outqueue.sched->enqueue(&asoc->outqueue, msg); | 
 | } | 
 |  | 
 |  | 
 | /* These three macros allow us to pull the debugging code out of the | 
 |  * main flow of sctp_do_sm() to keep attention focused on the real | 
 |  * functionality there. | 
 |  */ | 
 | #define debug_pre_sfn() \ | 
 | 	pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ | 
 | 		 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype),   \ | 
 | 		 asoc, sctp_state_tbl[state], state_fn->name) | 
 |  | 
 | #define debug_post_sfn() \ | 
 | 	pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ | 
 | 		 sctp_status_tbl[status]) | 
 |  | 
 | #define debug_post_sfx() \ | 
 | 	pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ | 
 | 		 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ | 
 | 		 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) | 
 |  | 
 | /* | 
 |  * This is the master state machine processing function. | 
 |  * | 
 |  * If you want to understand all of lksctp, this is a | 
 |  * good place to start. | 
 |  */ | 
 | int sctp_do_sm(struct net *net, enum sctp_event event_type, | 
 | 	       union sctp_subtype subtype, enum sctp_state state, | 
 | 	       struct sctp_endpoint *ep, struct sctp_association *asoc, | 
 | 	       void *event_arg, gfp_t gfp) | 
 | { | 
 | 	typedef const char *(printfn_t)(union sctp_subtype); | 
 | 	static printfn_t *table[] = { | 
 | 		NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, | 
 | 	}; | 
 | 	printfn_t *debug_fn  __attribute__ ((unused)) = table[event_type]; | 
 | 	const struct sctp_sm_table_entry *state_fn; | 
 | 	struct sctp_cmd_seq commands; | 
 | 	enum sctp_disposition status; | 
 | 	int error = 0; | 
 |  | 
 | 	/* Look up the state function, run it, and then process the | 
 | 	 * side effects.  These three steps are the heart of lksctp. | 
 | 	 */ | 
 | 	state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); | 
 |  | 
 | 	sctp_init_cmd_seq(&commands); | 
 |  | 
 | 	debug_pre_sfn(); | 
 | 	status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands); | 
 | 	debug_post_sfn(); | 
 |  | 
 | 	error = sctp_side_effects(event_type, subtype, state, | 
 | 				  ep, &asoc, event_arg, status, | 
 | 				  &commands, gfp); | 
 | 	debug_post_sfx(); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /***************************************************************** | 
 |  * This the master state function side effect processing function. | 
 |  *****************************************************************/ | 
 | static int sctp_side_effects(enum sctp_event event_type, | 
 | 			     union sctp_subtype subtype, | 
 | 			     enum sctp_state state, | 
 | 			     struct sctp_endpoint *ep, | 
 | 			     struct sctp_association **asoc, | 
 | 			     void *event_arg, | 
 | 			     enum sctp_disposition status, | 
 | 			     struct sctp_cmd_seq *commands, | 
 | 			     gfp_t gfp) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	/* FIXME - Most of the dispositions left today would be categorized | 
 | 	 * as "exceptional" dispositions.  For those dispositions, it | 
 | 	 * may not be proper to run through any of the commands at all. | 
 | 	 * For example, the command interpreter might be run only with | 
 | 	 * disposition SCTP_DISPOSITION_CONSUME. | 
 | 	 */ | 
 | 	if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, | 
 | 					       ep, *asoc, | 
 | 					       event_arg, status, | 
 | 					       commands, gfp))) | 
 | 		goto bail; | 
 |  | 
 | 	switch (status) { | 
 | 	case SCTP_DISPOSITION_DISCARD: | 
 | 		pr_debug("%s: ignored sctp protocol event - state:%d, " | 
 | 			 "event_type:%d, event_id:%d\n", __func__, state, | 
 | 			 event_type, subtype.chunk); | 
 | 		break; | 
 |  | 
 | 	case SCTP_DISPOSITION_NOMEM: | 
 | 		/* We ran out of memory, so we need to discard this | 
 | 		 * packet. | 
 | 		 */ | 
 | 		/* BUG--we should now recover some memory, probably by | 
 | 		 * reneging... | 
 | 		 */ | 
 | 		error = -ENOMEM; | 
 | 		break; | 
 |  | 
 | 	case SCTP_DISPOSITION_DELETE_TCB: | 
 | 	case SCTP_DISPOSITION_ABORT: | 
 | 		/* This should now be a command. */ | 
 | 		*asoc = NULL; | 
 | 		break; | 
 |  | 
 | 	case SCTP_DISPOSITION_CONSUME: | 
 | 		/* | 
 | 		 * We should no longer have much work to do here as the | 
 | 		 * real work has been done as explicit commands above. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case SCTP_DISPOSITION_VIOLATION: | 
 | 		net_err_ratelimited("protocol violation state %d chunkid %d\n", | 
 | 				    state, subtype.chunk); | 
 | 		break; | 
 |  | 
 | 	case SCTP_DISPOSITION_NOT_IMPL: | 
 | 		pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", | 
 | 			state, event_type, subtype.chunk); | 
 | 		break; | 
 |  | 
 | 	case SCTP_DISPOSITION_BUG: | 
 | 		pr_err("bug in state %d, event_type %d, event_id %d\n", | 
 | 		       state, event_type, subtype.chunk); | 
 | 		BUG(); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", | 
 | 		       status, state, event_type, subtype.chunk); | 
 | 		BUG(); | 
 | 		break; | 
 | 	} | 
 |  | 
 | bail: | 
 | 	return error; | 
 | } | 
 |  | 
 | /******************************************************************** | 
 |  * 2nd Level Abstractions | 
 |  ********************************************************************/ | 
 |  | 
 | /* This is the side-effect interpreter.  */ | 
 | static int sctp_cmd_interpreter(enum sctp_event event_type, | 
 | 				union sctp_subtype subtype, | 
 | 				enum sctp_state state, | 
 | 				struct sctp_endpoint *ep, | 
 | 				struct sctp_association *asoc, | 
 | 				void *event_arg, | 
 | 				enum sctp_disposition status, | 
 | 				struct sctp_cmd_seq *commands, | 
 | 				gfp_t gfp) | 
 | { | 
 | 	struct sctp_sock *sp = sctp_sk(ep->base.sk); | 
 | 	struct sctp_chunk *chunk = NULL, *new_obj; | 
 | 	struct sctp_packet *packet; | 
 | 	struct sctp_sackhdr sackh; | 
 | 	struct timer_list *timer; | 
 | 	struct sctp_transport *t; | 
 | 	unsigned long timeout; | 
 | 	struct sctp_cmd *cmd; | 
 | 	int local_cork = 0; | 
 | 	int error = 0; | 
 | 	int force; | 
 |  | 
 | 	if (SCTP_EVENT_T_TIMEOUT != event_type) | 
 | 		chunk = event_arg; | 
 |  | 
 | 	/* Note:  This whole file is a huge candidate for rework. | 
 | 	 * For example, each command could either have its own handler, so | 
 | 	 * the loop would look like: | 
 | 	 *     while (cmds) | 
 | 	 *         cmd->handle(x, y, z) | 
 | 	 * --jgrimm | 
 | 	 */ | 
 | 	while (NULL != (cmd = sctp_next_cmd(commands))) { | 
 | 		switch (cmd->verb) { | 
 | 		case SCTP_CMD_NOP: | 
 | 			/* Do nothing. */ | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_NEW_ASOC: | 
 | 			/* Register a new association.  */ | 
 | 			if (local_cork) { | 
 | 				sctp_outq_uncork(&asoc->outqueue, gfp); | 
 | 				local_cork = 0; | 
 | 			} | 
 |  | 
 | 			/* Register with the endpoint.  */ | 
 | 			asoc = cmd->obj.asoc; | 
 | 			BUG_ON(asoc->peer.primary_path == NULL); | 
 | 			sctp_endpoint_add_asoc(ep, asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_UPDATE_ASSOC: | 
 | 		       sctp_cmd_assoc_update(commands, asoc, cmd->obj.asoc); | 
 | 		       break; | 
 |  | 
 | 		case SCTP_CMD_PURGE_OUTQUEUE: | 
 | 		       sctp_outq_teardown(&asoc->outqueue); | 
 | 		       break; | 
 |  | 
 | 		case SCTP_CMD_DELETE_TCB: | 
 | 			if (local_cork) { | 
 | 				sctp_outq_uncork(&asoc->outqueue, gfp); | 
 | 				local_cork = 0; | 
 | 			} | 
 | 			/* Delete the current association.  */ | 
 | 			sctp_cmd_delete_tcb(commands, asoc); | 
 | 			asoc = NULL; | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_NEW_STATE: | 
 | 			/* Enter a new state.  */ | 
 | 			sctp_cmd_new_state(commands, asoc, cmd->obj.state); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_REPORT_TSN: | 
 | 			/* Record the arrival of a TSN.  */ | 
 | 			error = sctp_tsnmap_mark(&asoc->peer.tsn_map, | 
 | 						 cmd->obj.u32, NULL); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_REPORT_FWDTSN: | 
 | 			asoc->stream.si->report_ftsn(&asoc->ulpq, cmd->obj.u32); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_PROCESS_FWDTSN: | 
 | 			asoc->stream.si->handle_ftsn(&asoc->ulpq, | 
 | 						     cmd->obj.chunk); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_GEN_SACK: | 
 | 			/* Generate a Selective ACK. | 
 | 			 * The argument tells us whether to just count | 
 | 			 * the packet and MAYBE generate a SACK, or | 
 | 			 * force a SACK out. | 
 | 			 */ | 
 | 			force = cmd->obj.i32; | 
 | 			error = sctp_gen_sack(asoc, force, commands); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_PROCESS_SACK: | 
 | 			/* Process an inbound SACK.  */ | 
 | 			error = sctp_cmd_process_sack(commands, asoc, | 
 | 						      cmd->obj.chunk); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_GEN_INIT_ACK: | 
 | 			/* Generate an INIT ACK chunk.  */ | 
 | 			new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, | 
 | 						     0); | 
 | 			if (!new_obj) { | 
 | 				error = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
 | 					SCTP_CHUNK(new_obj)); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_PEER_INIT: | 
 | 			/* Process a unified INIT from the peer. | 
 | 			 * Note: Only used during INIT-ACK processing.  If | 
 | 			 * there is an error just return to the outter | 
 | 			 * layer which will bail. | 
 | 			 */ | 
 | 			error = sctp_cmd_process_init(commands, asoc, chunk, | 
 | 						      cmd->obj.init, gfp); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_GEN_COOKIE_ECHO: | 
 | 			/* Generate a COOKIE ECHO chunk.  */ | 
 | 			new_obj = sctp_make_cookie_echo(asoc, chunk); | 
 | 			if (!new_obj) { | 
 | 				if (cmd->obj.chunk) | 
 | 					sctp_chunk_free(cmd->obj.chunk); | 
 | 				error = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 | 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
 | 					SCTP_CHUNK(new_obj)); | 
 |  | 
 | 			/* If there is an ERROR chunk to be sent along with | 
 | 			 * the COOKIE_ECHO, send it, too. | 
 | 			 */ | 
 | 			if (cmd->obj.chunk) | 
 | 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
 | 						SCTP_CHUNK(cmd->obj.chunk)); | 
 |  | 
 | 			if (new_obj->transport) { | 
 | 				new_obj->transport->init_sent_count++; | 
 | 				asoc->init_last_sent_to = new_obj->transport; | 
 | 			} | 
 |  | 
 | 			/* FIXME - Eventually come up with a cleaner way to | 
 | 			 * enabling COOKIE-ECHO + DATA bundling during | 
 | 			 * multihoming stale cookie scenarios, the following | 
 | 			 * command plays with asoc->peer.retran_path to | 
 | 			 * avoid the problem of sending the COOKIE-ECHO and | 
 | 			 * DATA in different paths, which could result | 
 | 			 * in the association being ABORTed if the DATA chunk | 
 | 			 * is processed first by the server.  Checking the | 
 | 			 * init error counter simply causes this command | 
 | 			 * to be executed only during failed attempts of | 
 | 			 * association establishment. | 
 | 			 */ | 
 | 			if ((asoc->peer.retran_path != | 
 | 			     asoc->peer.primary_path) && | 
 | 			    (asoc->init_err_counter > 0)) { | 
 | 				sctp_add_cmd_sf(commands, | 
 | 						SCTP_CMD_FORCE_PRIM_RETRAN, | 
 | 						SCTP_NULL()); | 
 | 			} | 
 |  | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_GEN_SHUTDOWN: | 
 | 			/* Generate SHUTDOWN when in SHUTDOWN_SENT state. | 
 | 			 * Reset error counts. | 
 | 			 */ | 
 | 			asoc->overall_error_count = 0; | 
 |  | 
 | 			/* Generate a SHUTDOWN chunk.  */ | 
 | 			new_obj = sctp_make_shutdown(asoc, chunk); | 
 | 			if (!new_obj) { | 
 | 				error = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 | 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
 | 					SCTP_CHUNK(new_obj)); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_CHUNK_ULP: | 
 | 			/* Send a chunk to the sockets layer.  */ | 
 | 			pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", | 
 | 				 __func__, cmd->obj.chunk, &asoc->ulpq); | 
 |  | 
 | 			asoc->stream.si->ulpevent_data(&asoc->ulpq, | 
 | 						       cmd->obj.chunk, | 
 | 						       GFP_ATOMIC); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_EVENT_ULP: | 
 | 			/* Send a notification to the sockets layer.  */ | 
 | 			pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", | 
 | 				 __func__, cmd->obj.ulpevent, &asoc->ulpq); | 
 |  | 
 | 			asoc->stream.si->enqueue_event(&asoc->ulpq, | 
 | 						       cmd->obj.ulpevent); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_REPLY: | 
 | 			/* If an caller has not already corked, do cork. */ | 
 | 			if (!asoc->outqueue.cork) { | 
 | 				sctp_outq_cork(&asoc->outqueue); | 
 | 				local_cork = 1; | 
 | 			} | 
 | 			/* Send a chunk to our peer.  */ | 
 | 			sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_SEND_PKT: | 
 | 			/* Send a full packet to our peer.  */ | 
 | 			packet = cmd->obj.packet; | 
 | 			sctp_packet_transmit(packet, gfp); | 
 | 			sctp_ootb_pkt_free(packet); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_T1_RETRAN: | 
 | 			/* Mark a transport for retransmission.  */ | 
 | 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport, | 
 | 					SCTP_RTXR_T1_RTX); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_RETRAN: | 
 | 			/* Mark a transport for retransmission.  */ | 
 | 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport, | 
 | 					SCTP_RTXR_T3_RTX); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_ECN_CE: | 
 | 			/* Do delayed CE processing.   */ | 
 | 			sctp_do_ecn_ce_work(asoc, cmd->obj.u32); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_ECN_ECNE: | 
 | 			/* Do delayed ECNE processing. */ | 
 | 			new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, | 
 | 							chunk); | 
 | 			if (new_obj) | 
 | 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
 | 						SCTP_CHUNK(new_obj)); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_ECN_CWR: | 
 | 			/* Do delayed CWR processing.  */ | 
 | 			sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_SETUP_T2: | 
 | 			sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_TIMER_START_ONCE: | 
 | 			timer = &asoc->timers[cmd->obj.to]; | 
 |  | 
 | 			if (timer_pending(timer)) | 
 | 				break; | 
 | 			/* fall through */ | 
 |  | 
 | 		case SCTP_CMD_TIMER_START: | 
 | 			timer = &asoc->timers[cmd->obj.to]; | 
 | 			timeout = asoc->timeouts[cmd->obj.to]; | 
 | 			BUG_ON(!timeout); | 
 |  | 
 | 			timer->expires = jiffies + timeout; | 
 | 			sctp_association_hold(asoc); | 
 | 			add_timer(timer); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_TIMER_RESTART: | 
 | 			timer = &asoc->timers[cmd->obj.to]; | 
 | 			timeout = asoc->timeouts[cmd->obj.to]; | 
 | 			if (!mod_timer(timer, jiffies + timeout)) | 
 | 				sctp_association_hold(asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_TIMER_STOP: | 
 | 			timer = &asoc->timers[cmd->obj.to]; | 
 | 			if (del_timer(timer)) | 
 | 				sctp_association_put(asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_INIT_CHOOSE_TRANSPORT: | 
 | 			chunk = cmd->obj.chunk; | 
 | 			t = sctp_assoc_choose_alter_transport(asoc, | 
 | 						asoc->init_last_sent_to); | 
 | 			asoc->init_last_sent_to = t; | 
 | 			chunk->transport = t; | 
 | 			t->init_sent_count++; | 
 | 			/* Set the new transport as primary */ | 
 | 			sctp_assoc_set_primary(asoc, t); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_INIT_RESTART: | 
 | 			/* Do the needed accounting and updates | 
 | 			 * associated with restarting an initialization | 
 | 			 * timer. Only multiply the timeout by two if | 
 | 			 * all transports have been tried at the current | 
 | 			 * timeout. | 
 | 			 */ | 
 | 			sctp_cmd_t1_timer_update(asoc, | 
 | 						SCTP_EVENT_TIMEOUT_T1_INIT, | 
 | 						"INIT"); | 
 |  | 
 | 			sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
 | 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_COOKIEECHO_RESTART: | 
 | 			/* Do the needed accounting and updates | 
 | 			 * associated with restarting an initialization | 
 | 			 * timer. Only multiply the timeout by two if | 
 | 			 * all transports have been tried at the current | 
 | 			 * timeout. | 
 | 			 */ | 
 | 			sctp_cmd_t1_timer_update(asoc, | 
 | 						SCTP_EVENT_TIMEOUT_T1_COOKIE, | 
 | 						"COOKIE"); | 
 |  | 
 | 			/* If we've sent any data bundled with | 
 | 			 * COOKIE-ECHO we need to resend. | 
 | 			 */ | 
 | 			list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
 | 					transports) { | 
 | 				sctp_retransmit_mark(&asoc->outqueue, t, | 
 | 					    SCTP_RTXR_T1_RTX); | 
 | 			} | 
 |  | 
 | 			sctp_add_cmd_sf(commands, | 
 | 					SCTP_CMD_TIMER_RESTART, | 
 | 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_INIT_FAILED: | 
 | 			sctp_cmd_init_failed(commands, asoc, cmd->obj.u32); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_ASSOC_FAILED: | 
 | 			sctp_cmd_assoc_failed(commands, asoc, event_type, | 
 | 					      subtype, chunk, cmd->obj.u32); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_INIT_COUNTER_INC: | 
 | 			asoc->init_err_counter++; | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_INIT_COUNTER_RESET: | 
 | 			asoc->init_err_counter = 0; | 
 | 			asoc->init_cycle = 0; | 
 | 			list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
 | 					    transports) { | 
 | 				t->init_sent_count = 0; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_REPORT_DUP: | 
 | 			sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, | 
 | 					     cmd->obj.u32); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_REPORT_BAD_TAG: | 
 | 			pr_debug("%s: vtag mismatch!\n", __func__); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_STRIKE: | 
 | 			/* Mark one strike against a transport.  */ | 
 | 			sctp_do_8_2_transport_strike(commands, asoc, | 
 | 						    cmd->obj.transport, 0); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_TRANSPORT_IDLE: | 
 | 			t = cmd->obj.transport; | 
 | 			sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_TRANSPORT_HB_SENT: | 
 | 			t = cmd->obj.transport; | 
 | 			sctp_do_8_2_transport_strike(commands, asoc, | 
 | 						     t, 1); | 
 | 			t->hb_sent = 1; | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_TRANSPORT_ON: | 
 | 			t = cmd->obj.transport; | 
 | 			sctp_cmd_transport_on(commands, asoc, t, chunk); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_HB_TIMERS_START: | 
 | 			sctp_cmd_hb_timers_start(commands, asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_HB_TIMER_UPDATE: | 
 | 			t = cmd->obj.transport; | 
 | 			sctp_transport_reset_hb_timer(t); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_HB_TIMERS_STOP: | 
 | 			sctp_cmd_hb_timers_stop(commands, asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_REPORT_ERROR: | 
 | 			error = cmd->obj.error; | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_PROCESS_CTSN: | 
 | 			/* Dummy up a SACK for processing. */ | 
 | 			sackh.cum_tsn_ack = cmd->obj.be32; | 
 | 			sackh.a_rwnd = htonl(asoc->peer.rwnd + | 
 | 					     asoc->outqueue.outstanding_bytes); | 
 | 			sackh.num_gap_ack_blocks = 0; | 
 | 			sackh.num_dup_tsns = 0; | 
 | 			chunk->subh.sack_hdr = &sackh; | 
 | 			sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, | 
 | 					SCTP_CHUNK(chunk)); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_DISCARD_PACKET: | 
 | 			/* We need to discard the whole packet. | 
 | 			 * Uncork the queue since there might be | 
 | 			 * responses pending | 
 | 			 */ | 
 | 			chunk->pdiscard = 1; | 
 | 			if (asoc) { | 
 | 				sctp_outq_uncork(&asoc->outqueue, gfp); | 
 | 				local_cork = 0; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_RTO_PENDING: | 
 | 			t = cmd->obj.transport; | 
 | 			t->rto_pending = 1; | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_PART_DELIVER: | 
 | 			asoc->stream.si->start_pd(&asoc->ulpq, GFP_ATOMIC); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_RENEGE: | 
 | 			asoc->stream.si->renege_events(&asoc->ulpq, | 
 | 						       cmd->obj.chunk, | 
 | 						       GFP_ATOMIC); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_SETUP_T4: | 
 | 			sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_PROCESS_OPERR: | 
 | 			sctp_cmd_process_operr(commands, asoc, chunk); | 
 | 			break; | 
 | 		case SCTP_CMD_CLEAR_INIT_TAG: | 
 | 			asoc->peer.i.init_tag = 0; | 
 | 			break; | 
 | 		case SCTP_CMD_DEL_NON_PRIMARY: | 
 | 			sctp_cmd_del_non_primary(asoc); | 
 | 			break; | 
 | 		case SCTP_CMD_T3_RTX_TIMERS_STOP: | 
 | 			sctp_cmd_t3_rtx_timers_stop(commands, asoc); | 
 | 			break; | 
 | 		case SCTP_CMD_FORCE_PRIM_RETRAN: | 
 | 			t = asoc->peer.retran_path; | 
 | 			asoc->peer.retran_path = asoc->peer.primary_path; | 
 | 			sctp_outq_uncork(&asoc->outqueue, gfp); | 
 | 			local_cork = 0; | 
 | 			asoc->peer.retran_path = t; | 
 | 			break; | 
 | 		case SCTP_CMD_SET_SK_ERR: | 
 | 			sctp_cmd_set_sk_err(asoc, cmd->obj.error); | 
 | 			break; | 
 | 		case SCTP_CMD_ASSOC_CHANGE: | 
 | 			sctp_cmd_assoc_change(commands, asoc, | 
 | 					      cmd->obj.u8); | 
 | 			break; | 
 | 		case SCTP_CMD_ADAPTATION_IND: | 
 | 			sctp_cmd_adaptation_ind(commands, asoc); | 
 | 			break; | 
 | 		case SCTP_CMD_PEER_NO_AUTH: | 
 | 			sctp_cmd_peer_no_auth(commands, asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_ASSOC_SHKEY: | 
 | 			error = sctp_auth_asoc_init_active_key(asoc, | 
 | 						GFP_ATOMIC); | 
 | 			break; | 
 | 		case SCTP_CMD_UPDATE_INITTAG: | 
 | 			asoc->peer.i.init_tag = cmd->obj.u32; | 
 | 			break; | 
 | 		case SCTP_CMD_SEND_MSG: | 
 | 			if (!asoc->outqueue.cork) { | 
 | 				sctp_outq_cork(&asoc->outqueue); | 
 | 				local_cork = 1; | 
 | 			} | 
 | 			sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp); | 
 | 			break; | 
 | 		case SCTP_CMD_PURGE_ASCONF_QUEUE: | 
 | 			sctp_asconf_queue_teardown(asoc); | 
 | 			break; | 
 |  | 
 | 		case SCTP_CMD_SET_ASOC: | 
 | 			if (asoc && local_cork) { | 
 | 				sctp_outq_uncork(&asoc->outqueue, gfp); | 
 | 				local_cork = 0; | 
 | 			} | 
 | 			asoc = cmd->obj.asoc; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			pr_warn("Impossible command: %u\n", | 
 | 				cmd->verb); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (error) { | 
 | 			cmd = sctp_next_cmd(commands); | 
 | 			while (cmd) { | 
 | 				if (cmd->verb == SCTP_CMD_REPLY) | 
 | 					sctp_chunk_free(cmd->obj.chunk); | 
 | 				cmd = sctp_next_cmd(commands); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If this is in response to a received chunk, wait until | 
 | 	 * we are done with the packet to open the queue so that we don't | 
 | 	 * send multiple packets in response to a single request. | 
 | 	 */ | 
 | 	if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { | 
 | 		if (chunk->end_of_packet || chunk->singleton) | 
 | 			sctp_outq_uncork(&asoc->outqueue, gfp); | 
 | 	} else if (local_cork) | 
 | 		sctp_outq_uncork(&asoc->outqueue, gfp); | 
 |  | 
 | 	if (sp->data_ready_signalled) | 
 | 		sp->data_ready_signalled = 0; | 
 |  | 
 | 	return error; | 
 | } |