|  | /* | 
|  | * Copyright (C) 2012 - Virtual Open Systems and Columbia University | 
|  | * Authors: Rusty Russell <rusty@rustcorp.com.au> | 
|  | *          Christoffer Dall <c.dall@virtualopensystems.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License, version 2, as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/kvm_arm.h> | 
|  | #include <asm/kvm_host.h> | 
|  | #include <asm/kvm_emulate.h> | 
|  | #include <asm/kvm_coproc.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <trace/events/kvm.h> | 
|  | #include <asm/vfp.h> | 
|  | #include "../vfp/vfpinstr.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "trace.h" | 
|  | #include "coproc.h" | 
|  |  | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Co-processor emulation | 
|  | *****************************************************************************/ | 
|  |  | 
|  | static bool write_to_read_only(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *params) | 
|  | { | 
|  | WARN_ONCE(1, "CP15 write to read-only register\n"); | 
|  | print_cp_instr(params); | 
|  | kvm_inject_undefined(vcpu); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool read_from_write_only(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *params) | 
|  | { | 
|  | WARN_ONCE(1, "CP15 read to write-only register\n"); | 
|  | print_cp_instr(params); | 
|  | kvm_inject_undefined(vcpu); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ | 
|  | static u32 cache_levels; | 
|  |  | 
|  | /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ | 
|  | #define CSSELR_MAX 12 | 
|  |  | 
|  | /* | 
|  | * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some | 
|  | * of cp15 registers can be viewed either as couple of two u32 registers | 
|  | * or one u64 register. Current u64 register encoding is that least | 
|  | * significant u32 word is followed by most significant u32 word. | 
|  | */ | 
|  | static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_reg *r, | 
|  | u64 val) | 
|  | { | 
|  | vcpu_cp15(vcpu, r->reg) = val & 0xffffffff; | 
|  | vcpu_cp15(vcpu, r->reg + 1) = val >> 32; | 
|  | } | 
|  |  | 
|  | static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | val = vcpu_cp15(vcpu, r->reg + 1); | 
|  | val = val << 32; | 
|  | val = val | vcpu_cp15(vcpu, r->reg); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | /* | 
|  | * We can get here, if the host has been built without VFPv3 support, | 
|  | * but the guest attempted a floating point operation. | 
|  | */ | 
|  | kvm_inject_undefined(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) | 
|  | { | 
|  | /* | 
|  | * Compute guest MPIDR. We build a virtual cluster out of the | 
|  | * vcpu_id, but we read the 'U' bit from the underlying | 
|  | * hardware directly. | 
|  | */ | 
|  | vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) | | 
|  | ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) | | 
|  | (vcpu->vcpu_id & 3)); | 
|  | } | 
|  |  | 
|  | /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */ | 
|  | static bool access_actlr(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  |  | 
|  | *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */ | 
|  | static bool access_cbar(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return write_to_read_only(vcpu, p); | 
|  | return read_zero(vcpu, p); | 
|  | } | 
|  |  | 
|  | /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */ | 
|  | static bool access_l2ctlr(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  |  | 
|  | *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) | 
|  | { | 
|  | u32 l2ctlr, ncores; | 
|  |  | 
|  | asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr)); | 
|  | l2ctlr &= ~(3 << 24); | 
|  | ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1; | 
|  | /* How many cores in the current cluster and the next ones */ | 
|  | ncores -= (vcpu->vcpu_id & ~3); | 
|  | /* Cap it to the maximum number of cores in a single cluster */ | 
|  | ncores = min(ncores, 3U); | 
|  | l2ctlr |= (ncores & 3) << 24; | 
|  |  | 
|  | vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr; | 
|  | } | 
|  |  | 
|  | static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) | 
|  | { | 
|  | u32 actlr; | 
|  |  | 
|  | /* ACTLR contains SMP bit: make sure you create all cpus first! */ | 
|  | asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr)); | 
|  | /* Make the SMP bit consistent with the guest configuration */ | 
|  | if (atomic_read(&vcpu->kvm->online_vcpus) > 1) | 
|  | actlr |= 1U << 6; | 
|  | else | 
|  | actlr &= ~(1U << 6); | 
|  |  | 
|  | vcpu_cp15(vcpu, c1_ACTLR) = actlr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TRM entries: A7:4.3.50, A15:4.3.49 | 
|  | * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored). | 
|  | */ | 
|  | static bool access_l2ectlr(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  |  | 
|  | *vcpu_reg(vcpu, p->Rt1) = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). | 
|  | */ | 
|  | static bool access_dcsw(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (!p->is_write) | 
|  | return read_from_write_only(vcpu, p); | 
|  |  | 
|  | kvm_set_way_flush(vcpu); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic accessor for VM registers. Only called as long as HCR_TVM | 
|  | * is set.  If the guest enables the MMU, we stop trapping the VM | 
|  | * sys_regs and leave it in complete control of the caches. | 
|  | * | 
|  | * Used by the cpu-specific code. | 
|  | */ | 
|  | bool access_vm_reg(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | bool was_enabled = vcpu_has_cache_enabled(vcpu); | 
|  |  | 
|  | BUG_ON(!p->is_write); | 
|  |  | 
|  | vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1); | 
|  | if (p->is_64bit) | 
|  | vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2); | 
|  |  | 
|  | kvm_toggle_cache(vcpu, was_enabled); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_gic_sgi(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | u64 reg; | 
|  | bool g1; | 
|  |  | 
|  | if (!p->is_write) | 
|  | return read_from_write_only(vcpu, p); | 
|  |  | 
|  | reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32; | 
|  | reg |= *vcpu_reg(vcpu, p->Rt1) ; | 
|  |  | 
|  | /* | 
|  | * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates | 
|  | * Group0 SGIs only, while ICC_SGI1R can generate either group, | 
|  | * depending on the SGI configuration. ICC_ASGI1R is effectively | 
|  | * equivalent to ICC_SGI0R, as there is no "alternative" secure | 
|  | * group. | 
|  | */ | 
|  | switch (p->Op1) { | 
|  | default:		/* Keep GCC quiet */ | 
|  | case 0:			/* ICC_SGI1R */ | 
|  | g1 = true; | 
|  | break; | 
|  | case 1:			/* ICC_ASGI1R */ | 
|  | case 2:			/* ICC_SGI0R */ | 
|  | g1 = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | vgic_v3_dispatch_sgi(vcpu, reg, g1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_gic_sre(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  |  | 
|  | *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_cntp_tval(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | u64 now = kvm_phys_timer_read(); | 
|  | u64 val; | 
|  |  | 
|  | if (p->is_write) { | 
|  | val = *vcpu_reg(vcpu, p->Rt1); | 
|  | kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now); | 
|  | } else { | 
|  | val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); | 
|  | *vcpu_reg(vcpu, p->Rt1) = val - now; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_cntp_ctl(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (p->is_write) { | 
|  | val = *vcpu_reg(vcpu, p->Rt1); | 
|  | kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val); | 
|  | } else { | 
|  | val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL); | 
|  | *vcpu_reg(vcpu, p->Rt1) = val; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_cntp_cval(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | if (p->is_write) { | 
|  | val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32; | 
|  | val |= *vcpu_reg(vcpu, p->Rt1); | 
|  | kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val); | 
|  | } else { | 
|  | val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); | 
|  | *vcpu_reg(vcpu, p->Rt1) = val; | 
|  | *vcpu_reg(vcpu, p->Rt2) = val >> 32; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We could trap ID_DFR0 and tell the guest we don't support performance | 
|  | * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was | 
|  | * NAKed, so it will read the PMCR anyway. | 
|  | * | 
|  | * Therefore we tell the guest we have 0 counters.  Unfortunately, we | 
|  | * must always support PMCCNTR (the cycle counter): we just RAZ/WI for | 
|  | * all PM registers, which doesn't crash the guest kernel at least. | 
|  | */ | 
|  | static bool trap_raz_wi(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *p, | 
|  | const struct coproc_reg *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  | else | 
|  | return read_zero(vcpu, p); | 
|  | } | 
|  |  | 
|  | #define access_pmcr trap_raz_wi | 
|  | #define access_pmcntenset trap_raz_wi | 
|  | #define access_pmcntenclr trap_raz_wi | 
|  | #define access_pmovsr trap_raz_wi | 
|  | #define access_pmselr trap_raz_wi | 
|  | #define access_pmceid0 trap_raz_wi | 
|  | #define access_pmceid1 trap_raz_wi | 
|  | #define access_pmccntr trap_raz_wi | 
|  | #define access_pmxevtyper trap_raz_wi | 
|  | #define access_pmxevcntr trap_raz_wi | 
|  | #define access_pmuserenr trap_raz_wi | 
|  | #define access_pmintenset trap_raz_wi | 
|  | #define access_pmintenclr trap_raz_wi | 
|  |  | 
|  | /* Architected CP15 registers. | 
|  | * CRn denotes the primary register number, but is copied to the CRm in the | 
|  | * user space API for 64-bit register access in line with the terminology used | 
|  | * in the ARM ARM. | 
|  | * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit | 
|  | *            registers preceding 32-bit ones. | 
|  | */ | 
|  | static const struct coproc_reg cp15_regs[] = { | 
|  | /* MPIDR: we use VMPIDR for guest access. */ | 
|  | { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32, | 
|  | NULL, reset_mpidr, c0_MPIDR }, | 
|  |  | 
|  | /* CSSELR: swapped by interrupt.S. */ | 
|  | { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32, | 
|  | NULL, reset_unknown, c0_CSSELR }, | 
|  |  | 
|  | /* ACTLR: trapped by HCR.TAC bit. */ | 
|  | { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32, | 
|  | access_actlr, reset_actlr, c1_ACTLR }, | 
|  |  | 
|  | /* CPACR: swapped by interrupt.S. */ | 
|  | { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32, | 
|  | NULL, reset_val, c1_CPACR, 0x00000000 }, | 
|  |  | 
|  | /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */ | 
|  | { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 }, | 
|  | { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c2_TTBR0 }, | 
|  | { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32, | 
|  | access_vm_reg, reset_unknown, c2_TTBR1 }, | 
|  | { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32, | 
|  | access_vm_reg, reset_val, c2_TTBCR, 0x00000000 }, | 
|  | { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 }, | 
|  |  | 
|  |  | 
|  | /* DACR: swapped by interrupt.S. */ | 
|  | { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c3_DACR }, | 
|  |  | 
|  | /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */ | 
|  | { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c5_DFSR }, | 
|  | { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32, | 
|  | access_vm_reg, reset_unknown, c5_IFSR }, | 
|  | { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c5_ADFSR }, | 
|  | { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32, | 
|  | access_vm_reg, reset_unknown, c5_AIFSR }, | 
|  |  | 
|  | /* DFAR/IFAR: swapped by interrupt.S. */ | 
|  | { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c6_DFAR }, | 
|  | { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32, | 
|  | access_vm_reg, reset_unknown, c6_IFAR }, | 
|  |  | 
|  | /* PAR swapped by interrupt.S */ | 
|  | { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR }, | 
|  |  | 
|  | /* | 
|  | * DC{C,I,CI}SW operations: | 
|  | */ | 
|  | { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw}, | 
|  | { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw}, | 
|  | { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw}, | 
|  | /* | 
|  | * L2CTLR access (guest wants to know #CPUs). | 
|  | */ | 
|  | { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32, | 
|  | access_l2ctlr, reset_l2ctlr, c9_L2CTLR }, | 
|  | { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr}, | 
|  |  | 
|  | /* | 
|  | * Dummy performance monitor implementation. | 
|  | */ | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr}, | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset}, | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr}, | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr}, | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr}, | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0}, | 
|  | { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1}, | 
|  | { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr}, | 
|  | { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper}, | 
|  | { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr}, | 
|  | { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr}, | 
|  | { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset}, | 
|  | { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr}, | 
|  |  | 
|  | /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */ | 
|  | { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c10_PRRR}, | 
|  | { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32, | 
|  | access_vm_reg, reset_unknown, c10_NMRR}, | 
|  |  | 
|  | /* AMAIR0/AMAIR1: swapped by interrupt.S. */ | 
|  | { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32, | 
|  | access_vm_reg, reset_unknown, c10_AMAIR0}, | 
|  | { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32, | 
|  | access_vm_reg, reset_unknown, c10_AMAIR1}, | 
|  |  | 
|  | /* ICC_SGI1R */ | 
|  | { CRm64(12), Op1( 0), is64, access_gic_sgi}, | 
|  |  | 
|  | /* VBAR: swapped by interrupt.S. */ | 
|  | { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32, | 
|  | NULL, reset_val, c12_VBAR, 0x00000000 }, | 
|  |  | 
|  | /* ICC_ASGI1R */ | 
|  | { CRm64(12), Op1( 1), is64, access_gic_sgi}, | 
|  | /* ICC_SGI0R */ | 
|  | { CRm64(12), Op1( 2), is64, access_gic_sgi}, | 
|  | /* ICC_SRE */ | 
|  | { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre }, | 
|  |  | 
|  | /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */ | 
|  | { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32, | 
|  | access_vm_reg, reset_val, c13_CID, 0x00000000 }, | 
|  | { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32, | 
|  | NULL, reset_unknown, c13_TID_URW }, | 
|  | { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32, | 
|  | NULL, reset_unknown, c13_TID_URO }, | 
|  | { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32, | 
|  | NULL, reset_unknown, c13_TID_PRIV }, | 
|  |  | 
|  | /* CNTP */ | 
|  | { CRm64(14), Op1( 2), is64, access_cntp_cval}, | 
|  |  | 
|  | /* CNTKCTL: swapped by interrupt.S. */ | 
|  | { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32, | 
|  | NULL, reset_val, c14_CNTKCTL, 0x00000000 }, | 
|  |  | 
|  | /* CNTP */ | 
|  | { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval }, | 
|  | { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl }, | 
|  |  | 
|  | /* The Configuration Base Address Register. */ | 
|  | { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar}, | 
|  | }; | 
|  |  | 
|  | static int check_reg_table(const struct coproc_reg *table, unsigned int n) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 1; i < n; i++) { | 
|  | if (cmp_reg(&table[i-1], &table[i]) >= 0) { | 
|  | kvm_err("reg table %p out of order (%d)\n", table, i - 1); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Target specific emulation tables */ | 
|  | static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS]; | 
|  |  | 
|  | void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table) | 
|  | { | 
|  | BUG_ON(check_reg_table(table->table, table->num)); | 
|  | target_tables[table->target] = table; | 
|  | } | 
|  |  | 
|  | /* Get specific register table for this target. */ | 
|  | static const struct coproc_reg *get_target_table(unsigned target, size_t *num) | 
|  | { | 
|  | struct kvm_coproc_target_table *table; | 
|  |  | 
|  | table = target_tables[target]; | 
|  | *num = table->num; | 
|  | return table->table; | 
|  | } | 
|  |  | 
|  | #define reg_to_match_value(x)						\ | 
|  | ({								\ | 
|  | unsigned long val;					\ | 
|  | val  = (x)->CRn << 11;					\ | 
|  | val |= (x)->CRm << 7;					\ | 
|  | val |= (x)->Op1 << 4;					\ | 
|  | val |= (x)->Op2 << 1;					\ | 
|  | val |= !(x)->is_64bit;					\ | 
|  | val;							\ | 
|  | }) | 
|  |  | 
|  | static int match_reg(const void *key, const void *elt) | 
|  | { | 
|  | const unsigned long pval = (unsigned long)key; | 
|  | const struct coproc_reg *r = elt; | 
|  |  | 
|  | return pval - reg_to_match_value(r); | 
|  | } | 
|  |  | 
|  | static const struct coproc_reg *find_reg(const struct coproc_params *params, | 
|  | const struct coproc_reg table[], | 
|  | unsigned int num) | 
|  | { | 
|  | unsigned long pval = reg_to_match_value(params); | 
|  |  | 
|  | return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg); | 
|  | } | 
|  |  | 
|  | static int emulate_cp15(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_params *params) | 
|  | { | 
|  | size_t num; | 
|  | const struct coproc_reg *table, *r; | 
|  |  | 
|  | trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn, | 
|  | params->CRm, params->Op2, params->is_write); | 
|  |  | 
|  | table = get_target_table(vcpu->arch.target, &num); | 
|  |  | 
|  | /* Search target-specific then generic table. */ | 
|  | r = find_reg(params, table, num); | 
|  | if (!r) | 
|  | r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs)); | 
|  |  | 
|  | if (likely(r)) { | 
|  | /* If we don't have an accessor, we should never get here! */ | 
|  | BUG_ON(!r->access); | 
|  |  | 
|  | if (likely(r->access(vcpu, params, r))) { | 
|  | /* Skip instruction, since it was emulated */ | 
|  | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); | 
|  | } | 
|  | } else { | 
|  | /* If access function fails, it should complain. */ | 
|  | kvm_err("Unsupported guest CP15 access at: %08lx\n", | 
|  | *vcpu_pc(vcpu)); | 
|  | print_cp_instr(params); | 
|  | kvm_inject_undefined(vcpu); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct coproc_params params; | 
|  |  | 
|  | params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; | 
|  | params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; | 
|  | params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); | 
|  | params.is_64bit = true; | 
|  |  | 
|  | params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf; | 
|  | params.Op2 = 0; | 
|  | params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; | 
|  | params.CRm = 0; | 
|  |  | 
|  | return params; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access | 
|  | * @vcpu: The VCPU pointer | 
|  | * @run:  The kvm_run struct | 
|  | */ | 
|  | int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | struct coproc_params params = decode_64bit_hsr(vcpu); | 
|  |  | 
|  | return emulate_cp15(vcpu, ¶ms); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access | 
|  | * @vcpu: The VCPU pointer | 
|  | * @run:  The kvm_run struct | 
|  | */ | 
|  | int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | struct coproc_params params = decode_64bit_hsr(vcpu); | 
|  |  | 
|  | /* raz_wi cp14 */ | 
|  | trap_raz_wi(vcpu, ¶ms, NULL); | 
|  |  | 
|  | /* handled */ | 
|  | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void reset_coproc_regs(struct kvm_vcpu *vcpu, | 
|  | const struct coproc_reg *table, size_t num, | 
|  | unsigned long *bmap) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < num; i++) | 
|  | if (table[i].reset) { | 
|  | int reg = table[i].reg; | 
|  |  | 
|  | table[i].reset(vcpu, &table[i]); | 
|  | if (reg > 0 && reg < NR_CP15_REGS) { | 
|  | set_bit(reg, bmap); | 
|  | if (table[i].is_64bit) | 
|  | set_bit(reg + 1, bmap); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct coproc_params params; | 
|  |  | 
|  | params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; | 
|  | params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; | 
|  | params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); | 
|  | params.is_64bit = false; | 
|  |  | 
|  | params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; | 
|  | params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7; | 
|  | params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7; | 
|  | params.Rt2 = 0; | 
|  |  | 
|  | return params; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access | 
|  | * @vcpu: The VCPU pointer | 
|  | * @run:  The kvm_run struct | 
|  | */ | 
|  | int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | struct coproc_params params = decode_32bit_hsr(vcpu); | 
|  | return emulate_cp15(vcpu, ¶ms); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access | 
|  | * @vcpu: The VCPU pointer | 
|  | * @run:  The kvm_run struct | 
|  | */ | 
|  | int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | struct coproc_params params = decode_32bit_hsr(vcpu); | 
|  |  | 
|  | /* raz_wi cp14 */ | 
|  | trap_raz_wi(vcpu, ¶ms, NULL); | 
|  |  | 
|  | /* handled */ | 
|  | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Userspace API | 
|  | *****************************************************************************/ | 
|  |  | 
|  | static bool index_to_params(u64 id, struct coproc_params *params) | 
|  | { | 
|  | switch (id & KVM_REG_SIZE_MASK) { | 
|  | case KVM_REG_SIZE_U32: | 
|  | /* Any unused index bits means it's not valid. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | 
|  | | KVM_REG_ARM_COPROC_MASK | 
|  | | KVM_REG_ARM_32_CRN_MASK | 
|  | | KVM_REG_ARM_CRM_MASK | 
|  | | KVM_REG_ARM_OPC1_MASK | 
|  | | KVM_REG_ARM_32_OPC2_MASK)) | 
|  | return false; | 
|  |  | 
|  | params->is_64bit = false; | 
|  | params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK) | 
|  | >> KVM_REG_ARM_32_CRN_SHIFT); | 
|  | params->CRm = ((id & KVM_REG_ARM_CRM_MASK) | 
|  | >> KVM_REG_ARM_CRM_SHIFT); | 
|  | params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) | 
|  | >> KVM_REG_ARM_OPC1_SHIFT); | 
|  | params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK) | 
|  | >> KVM_REG_ARM_32_OPC2_SHIFT); | 
|  | return true; | 
|  | case KVM_REG_SIZE_U64: | 
|  | /* Any unused index bits means it's not valid. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | 
|  | | KVM_REG_ARM_COPROC_MASK | 
|  | | KVM_REG_ARM_CRM_MASK | 
|  | | KVM_REG_ARM_OPC1_MASK)) | 
|  | return false; | 
|  | params->is_64bit = true; | 
|  | /* CRm to CRn: see cp15_to_index for details */ | 
|  | params->CRn = ((id & KVM_REG_ARM_CRM_MASK) | 
|  | >> KVM_REG_ARM_CRM_SHIFT); | 
|  | params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) | 
|  | >> KVM_REG_ARM_OPC1_SHIFT); | 
|  | params->Op2 = 0; | 
|  | params->CRm = 0; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Decode an index value, and find the cp15 coproc_reg entry. */ | 
|  | static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu, | 
|  | u64 id) | 
|  | { | 
|  | size_t num; | 
|  | const struct coproc_reg *table, *r; | 
|  | struct coproc_params params; | 
|  |  | 
|  | /* We only do cp15 for now. */ | 
|  | if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15) | 
|  | return NULL; | 
|  |  | 
|  | if (!index_to_params(id, ¶ms)) | 
|  | return NULL; | 
|  |  | 
|  | table = get_target_table(vcpu->arch.target, &num); | 
|  | r = find_reg(¶ms, table, num); | 
|  | if (!r) | 
|  | r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); | 
|  |  | 
|  | /* Not saved in the cp15 array? */ | 
|  | if (r && !r->reg) | 
|  | r = NULL; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the invariant cp15 registers: we let the guest see the host | 
|  | * versions of these, so they're part of the guest state. | 
|  | * | 
|  | * A future CPU may provide a mechanism to present different values to | 
|  | * the guest, or a future kvm may trap them. | 
|  | */ | 
|  | /* Unfortunately, there's no register-argument for mrc, so generate. */ | 
|  | #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\ | 
|  | static void get_##name(struct kvm_vcpu *v,			\ | 
|  | const struct coproc_reg *r)		\ | 
|  | {								\ | 
|  | u32 val;						\ | 
|  | \ | 
|  | asm volatile("mrc p15, " __stringify(op1)		\ | 
|  | ", %0, c" __stringify(crn)			\ | 
|  | ", c" __stringify(crm)			\ | 
|  | ", " __stringify(op2) "\n" : "=r" (val));	\ | 
|  | ((struct coproc_reg *)r)->val = val;			\ | 
|  | } | 
|  |  | 
|  | FUNCTION_FOR32(0, 0, 0, 0, MIDR) | 
|  | FUNCTION_FOR32(0, 0, 0, 1, CTR) | 
|  | FUNCTION_FOR32(0, 0, 0, 2, TCMTR) | 
|  | FUNCTION_FOR32(0, 0, 0, 3, TLBTR) | 
|  | FUNCTION_FOR32(0, 0, 0, 6, REVIDR) | 
|  | FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0) | 
|  | FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1) | 
|  | FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0) | 
|  | FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0) | 
|  | FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0) | 
|  | FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1) | 
|  | FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2) | 
|  | FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3) | 
|  | FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0) | 
|  | FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1) | 
|  | FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2) | 
|  | FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3) | 
|  | FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4) | 
|  | FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5) | 
|  | FUNCTION_FOR32(0, 0, 1, 1, CLIDR) | 
|  | FUNCTION_FOR32(0, 0, 1, 7, AIDR) | 
|  |  | 
|  | /* ->val is filled in by kvm_invariant_coproc_table_init() */ | 
|  | static struct coproc_reg invariant_cp15[] = { | 
|  | { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR }, | 
|  | { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR }, | 
|  | { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR }, | 
|  | { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR }, | 
|  | { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR }, | 
|  |  | 
|  | { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR }, | 
|  | { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR }, | 
|  |  | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 }, | 
|  | { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 }, | 
|  |  | 
|  | { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 }, | 
|  | { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 }, | 
|  | { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 }, | 
|  | { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 }, | 
|  | { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 }, | 
|  | { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Reads a register value from a userspace address to a kernel | 
|  | * variable. Make sure that register size matches sizeof(*__val). | 
|  | */ | 
|  | static int reg_from_user(void *val, const void __user *uaddr, u64 id) | 
|  | { | 
|  | if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes a register value to a userspace address from a kernel variable. | 
|  | * Make sure that register size matches sizeof(*__val). | 
|  | */ | 
|  | static int reg_to_user(void __user *uaddr, const void *val, u64 id) | 
|  | { | 
|  | if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_invariant_cp15(u64 id, void __user *uaddr) | 
|  | { | 
|  | struct coproc_params params; | 
|  | const struct coproc_reg *r; | 
|  | int ret; | 
|  |  | 
|  | if (!index_to_params(id, ¶ms)) | 
|  | return -ENOENT; | 
|  |  | 
|  | r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); | 
|  | if (!r) | 
|  | return -ENOENT; | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (KVM_REG_SIZE(id) == 4) { | 
|  | u32 val = r->val; | 
|  |  | 
|  | ret = reg_to_user(uaddr, &val, id); | 
|  | } else if (KVM_REG_SIZE(id) == 8) { | 
|  | ret = reg_to_user(uaddr, &r->val, id); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int set_invariant_cp15(u64 id, void __user *uaddr) | 
|  | { | 
|  | struct coproc_params params; | 
|  | const struct coproc_reg *r; | 
|  | int err; | 
|  | u64 val; | 
|  |  | 
|  | if (!index_to_params(id, ¶ms)) | 
|  | return -ENOENT; | 
|  | r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); | 
|  | if (!r) | 
|  | return -ENOENT; | 
|  |  | 
|  | err = -ENOENT; | 
|  | if (KVM_REG_SIZE(id) == 4) { | 
|  | u32 val32; | 
|  |  | 
|  | err = reg_from_user(&val32, uaddr, id); | 
|  | if (!err) | 
|  | val = val32; | 
|  | } else if (KVM_REG_SIZE(id) == 8) { | 
|  | err = reg_from_user(&val, uaddr, id); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* This is what we mean by invariant: you can't change it. */ | 
|  | if (r->val != val) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_valid_cache(u32 val) | 
|  | { | 
|  | u32 level, ctype; | 
|  |  | 
|  | if (val >= CSSELR_MAX) | 
|  | return false; | 
|  |  | 
|  | /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */ | 
|  | level = (val >> 1); | 
|  | ctype = (cache_levels >> (level * 3)) & 7; | 
|  |  | 
|  | switch (ctype) { | 
|  | case 0: /* No cache */ | 
|  | return false; | 
|  | case 1: /* Instruction cache only */ | 
|  | return (val & 1); | 
|  | case 2: /* Data cache only */ | 
|  | case 4: /* Unified cache */ | 
|  | return !(val & 1); | 
|  | case 3: /* Separate instruction and data caches */ | 
|  | return true; | 
|  | default: /* Reserved: we can't know instruction or data. */ | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Which cache CCSIDR represents depends on CSSELR value. */ | 
|  | static u32 get_ccsidr(u32 csselr) | 
|  | { | 
|  | u32 ccsidr; | 
|  |  | 
|  | /* Make sure noone else changes CSSELR during this! */ | 
|  | local_irq_disable(); | 
|  | /* Put value into CSSELR */ | 
|  | asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr)); | 
|  | isb(); | 
|  | /* Read result out of CCSIDR */ | 
|  | asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr)); | 
|  | local_irq_enable(); | 
|  |  | 
|  | return ccsidr; | 
|  | } | 
|  |  | 
|  | static int demux_c15_get(u64 id, void __user *uaddr) | 
|  | { | 
|  | u32 val; | 
|  | u32 __user *uval = uaddr; | 
|  |  | 
|  | /* Fail if we have unknown bits set. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | 
|  | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { | 
|  | case KVM_REG_ARM_DEMUX_ID_CCSIDR: | 
|  | if (KVM_REG_SIZE(id) != 4) | 
|  | return -ENOENT; | 
|  | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) | 
|  | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; | 
|  | if (!is_valid_cache(val)) | 
|  | return -ENOENT; | 
|  |  | 
|  | return put_user(get_ccsidr(val), uval); | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int demux_c15_set(u64 id, void __user *uaddr) | 
|  | { | 
|  | u32 val, newval; | 
|  | u32 __user *uval = uaddr; | 
|  |  | 
|  | /* Fail if we have unknown bits set. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | 
|  | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { | 
|  | case KVM_REG_ARM_DEMUX_ID_CCSIDR: | 
|  | if (KVM_REG_SIZE(id) != 4) | 
|  | return -ENOENT; | 
|  | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) | 
|  | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; | 
|  | if (!is_valid_cache(val)) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (get_user(newval, uval)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* This is also invariant: you can't change it. */ | 
|  | if (newval != get_ccsidr(val)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VFPv3 | 
|  | static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC, | 
|  | KVM_REG_ARM_VFP_FPSCR, | 
|  | KVM_REG_ARM_VFP_FPINST, | 
|  | KVM_REG_ARM_VFP_FPINST2, | 
|  | KVM_REG_ARM_VFP_MVFR0, | 
|  | KVM_REG_ARM_VFP_MVFR1, | 
|  | KVM_REG_ARM_VFP_FPSID }; | 
|  |  | 
|  | static unsigned int num_fp_regs(void) | 
|  | { | 
|  | if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2) | 
|  | return 32; | 
|  | else | 
|  | return 16; | 
|  | } | 
|  |  | 
|  | static unsigned int num_vfp_regs(void) | 
|  | { | 
|  | /* Normal FP regs + control regs. */ | 
|  | return num_fp_regs() + ARRAY_SIZE(vfp_sysregs); | 
|  | } | 
|  |  | 
|  | static int copy_vfp_regids(u64 __user *uindices) | 
|  | { | 
|  | unsigned int i; | 
|  | const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP; | 
|  | const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | 
|  |  | 
|  | for (i = 0; i < num_fp_regs(); i++) { | 
|  | if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i, | 
|  | uindices)) | 
|  | return -EFAULT; | 
|  | uindices++; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) { | 
|  | if (put_user(u32reg | vfp_sysregs[i], uindices)) | 
|  | return -EFAULT; | 
|  | uindices++; | 
|  | } | 
|  |  | 
|  | return num_vfp_regs(); | 
|  | } | 
|  |  | 
|  | static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) | 
|  | { | 
|  | u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); | 
|  | u32 val; | 
|  |  | 
|  | /* Fail if we have unknown bits set. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | 
|  | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (vfpid < num_fp_regs()) { | 
|  | if (KVM_REG_SIZE(id) != 8) | 
|  | return -ENOENT; | 
|  | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid], | 
|  | id); | 
|  | } | 
|  |  | 
|  | /* FP control registers are all 32 bit. */ | 
|  | if (KVM_REG_SIZE(id) != 4) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (vfpid) { | 
|  | case KVM_REG_ARM_VFP_FPEXC: | 
|  | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id); | 
|  | case KVM_REG_ARM_VFP_FPSCR: | 
|  | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id); | 
|  | case KVM_REG_ARM_VFP_FPINST: | 
|  | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id); | 
|  | case KVM_REG_ARM_VFP_FPINST2: | 
|  | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id); | 
|  | case KVM_REG_ARM_VFP_MVFR0: | 
|  | val = fmrx(MVFR0); | 
|  | return reg_to_user(uaddr, &val, id); | 
|  | case KVM_REG_ARM_VFP_MVFR1: | 
|  | val = fmrx(MVFR1); | 
|  | return reg_to_user(uaddr, &val, id); | 
|  | case KVM_REG_ARM_VFP_FPSID: | 
|  | val = fmrx(FPSID); | 
|  | return reg_to_user(uaddr, &val, id); | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) | 
|  | { | 
|  | u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); | 
|  | u32 val; | 
|  |  | 
|  | /* Fail if we have unknown bits set. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | 
|  | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (vfpid < num_fp_regs()) { | 
|  | if (KVM_REG_SIZE(id) != 8) | 
|  | return -ENOENT; | 
|  | return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid], | 
|  | uaddr, id); | 
|  | } | 
|  |  | 
|  | /* FP control registers are all 32 bit. */ | 
|  | if (KVM_REG_SIZE(id) != 4) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (vfpid) { | 
|  | case KVM_REG_ARM_VFP_FPEXC: | 
|  | return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id); | 
|  | case KVM_REG_ARM_VFP_FPSCR: | 
|  | return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id); | 
|  | case KVM_REG_ARM_VFP_FPINST: | 
|  | return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id); | 
|  | case KVM_REG_ARM_VFP_FPINST2: | 
|  | return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id); | 
|  | /* These are invariant. */ | 
|  | case KVM_REG_ARM_VFP_MVFR0: | 
|  | if (reg_from_user(&val, uaddr, id)) | 
|  | return -EFAULT; | 
|  | if (val != fmrx(MVFR0)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | case KVM_REG_ARM_VFP_MVFR1: | 
|  | if (reg_from_user(&val, uaddr, id)) | 
|  | return -EFAULT; | 
|  | if (val != fmrx(MVFR1)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | case KVM_REG_ARM_VFP_FPSID: | 
|  | if (reg_from_user(&val, uaddr, id)) | 
|  | return -EFAULT; | 
|  | if (val != fmrx(FPSID)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  | #else /* !CONFIG_VFPv3 */ | 
|  | static unsigned int num_vfp_regs(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_vfp_regids(u64 __user *uindices) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) | 
|  | { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) | 
|  | { | 
|  | return -ENOENT; | 
|  | } | 
|  | #endif /* !CONFIG_VFPv3 */ | 
|  |  | 
|  | int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) | 
|  | { | 
|  | const struct coproc_reg *r; | 
|  | void __user *uaddr = (void __user *)(long)reg->addr; | 
|  | int ret; | 
|  |  | 
|  | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) | 
|  | return demux_c15_get(reg->id, uaddr); | 
|  |  | 
|  | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) | 
|  | return vfp_get_reg(vcpu, reg->id, uaddr); | 
|  |  | 
|  | r = index_to_coproc_reg(vcpu, reg->id); | 
|  | if (!r) | 
|  | return get_invariant_cp15(reg->id, uaddr); | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (KVM_REG_SIZE(reg->id) == 8) { | 
|  | u64 val; | 
|  |  | 
|  | val = vcpu_cp15_reg64_get(vcpu, r); | 
|  | ret = reg_to_user(uaddr, &val, reg->id); | 
|  | } else if (KVM_REG_SIZE(reg->id) == 4) { | 
|  | ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) | 
|  | { | 
|  | const struct coproc_reg *r; | 
|  | void __user *uaddr = (void __user *)(long)reg->addr; | 
|  | int ret; | 
|  |  | 
|  | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) | 
|  | return demux_c15_set(reg->id, uaddr); | 
|  |  | 
|  | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) | 
|  | return vfp_set_reg(vcpu, reg->id, uaddr); | 
|  |  | 
|  | r = index_to_coproc_reg(vcpu, reg->id); | 
|  | if (!r) | 
|  | return set_invariant_cp15(reg->id, uaddr); | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (KVM_REG_SIZE(reg->id) == 8) { | 
|  | u64 val; | 
|  |  | 
|  | ret = reg_from_user(&val, uaddr, reg->id); | 
|  | if (!ret) | 
|  | vcpu_cp15_reg64_set(vcpu, r, val); | 
|  | } else if (KVM_REG_SIZE(reg->id) == 4) { | 
|  | ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned int num_demux_regs(void) | 
|  | { | 
|  | unsigned int i, count = 0; | 
|  |  | 
|  | for (i = 0; i < CSSELR_MAX; i++) | 
|  | if (is_valid_cache(i)) | 
|  | count++; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int write_demux_regids(u64 __user *uindices) | 
|  | { | 
|  | u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; | 
|  | unsigned int i; | 
|  |  | 
|  | val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; | 
|  | for (i = 0; i < CSSELR_MAX; i++) { | 
|  | if (!is_valid_cache(i)) | 
|  | continue; | 
|  | if (put_user(val | i, uindices)) | 
|  | return -EFAULT; | 
|  | uindices++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 cp15_to_index(const struct coproc_reg *reg) | 
|  | { | 
|  | u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT); | 
|  | if (reg->is_64bit) { | 
|  | val |= KVM_REG_SIZE_U64; | 
|  | val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); | 
|  | /* | 
|  | * CRn always denotes the primary coproc. reg. nr. for the | 
|  | * in-kernel representation, but the user space API uses the | 
|  | * CRm for the encoding, because it is modelled after the | 
|  | * MRRC/MCRR instructions: see the ARM ARM rev. c page | 
|  | * B3-1445 | 
|  | */ | 
|  | val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT); | 
|  | } else { | 
|  | val |= KVM_REG_SIZE_U32; | 
|  | val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); | 
|  | val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT); | 
|  | val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT); | 
|  | val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind) | 
|  | { | 
|  | if (!*uind) | 
|  | return true; | 
|  |  | 
|  | if (put_user(cp15_to_index(reg), *uind)) | 
|  | return false; | 
|  |  | 
|  | (*uind)++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Assumed ordered tables, see kvm_coproc_table_init. */ | 
|  | static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind) | 
|  | { | 
|  | const struct coproc_reg *i1, *i2, *end1, *end2; | 
|  | unsigned int total = 0; | 
|  | size_t num; | 
|  |  | 
|  | /* We check for duplicates here, to allow arch-specific overrides. */ | 
|  | i1 = get_target_table(vcpu->arch.target, &num); | 
|  | end1 = i1 + num; | 
|  | i2 = cp15_regs; | 
|  | end2 = cp15_regs + ARRAY_SIZE(cp15_regs); | 
|  |  | 
|  | BUG_ON(i1 == end1 || i2 == end2); | 
|  |  | 
|  | /* Walk carefully, as both tables may refer to the same register. */ | 
|  | while (i1 || i2) { | 
|  | int cmp = cmp_reg(i1, i2); | 
|  | /* target-specific overrides generic entry. */ | 
|  | if (cmp <= 0) { | 
|  | /* Ignore registers we trap but don't save. */ | 
|  | if (i1->reg) { | 
|  | if (!copy_reg_to_user(i1, &uind)) | 
|  | return -EFAULT; | 
|  | total++; | 
|  | } | 
|  | } else { | 
|  | /* Ignore registers we trap but don't save. */ | 
|  | if (i2->reg) { | 
|  | if (!copy_reg_to_user(i2, &uind)) | 
|  | return -EFAULT; | 
|  | total++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cmp <= 0 && ++i1 == end1) | 
|  | i1 = NULL; | 
|  | if (cmp >= 0 && ++i2 == end2) | 
|  | i2 = NULL; | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return ARRAY_SIZE(invariant_cp15) | 
|  | + num_demux_regs() | 
|  | + num_vfp_regs() | 
|  | + walk_cp15(vcpu, (u64 __user *)NULL); | 
|  | } | 
|  |  | 
|  | int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) | 
|  | { | 
|  | unsigned int i; | 
|  | int err; | 
|  |  | 
|  | /* Then give them all the invariant registers' indices. */ | 
|  | for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) { | 
|  | if (put_user(cp15_to_index(&invariant_cp15[i]), uindices)) | 
|  | return -EFAULT; | 
|  | uindices++; | 
|  | } | 
|  |  | 
|  | err = walk_cp15(vcpu, uindices); | 
|  | if (err < 0) | 
|  | return err; | 
|  | uindices += err; | 
|  |  | 
|  | err = copy_vfp_regids(uindices); | 
|  | if (err < 0) | 
|  | return err; | 
|  | uindices += err; | 
|  |  | 
|  | return write_demux_regids(uindices); | 
|  | } | 
|  |  | 
|  | void kvm_coproc_table_init(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* Make sure tables are unique and in order. */ | 
|  | BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); | 
|  | BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15))); | 
|  |  | 
|  | /* We abuse the reset function to overwrite the table itself. */ | 
|  | for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) | 
|  | invariant_cp15[i].reset(NULL, &invariant_cp15[i]); | 
|  |  | 
|  | /* | 
|  | * CLIDR format is awkward, so clean it up.  See ARM B4.1.20: | 
|  | * | 
|  | *   If software reads the Cache Type fields from Ctype1 | 
|  | *   upwards, once it has seen a value of 0b000, no caches | 
|  | *   exist at further-out levels of the hierarchy. So, for | 
|  | *   example, if Ctype3 is the first Cache Type field with a | 
|  | *   value of 0b000, the values of Ctype4 to Ctype7 must be | 
|  | *   ignored. | 
|  | */ | 
|  | asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels)); | 
|  | for (i = 0; i < 7; i++) | 
|  | if (((cache_levels >> (i*3)) & 7) == 0) | 
|  | break; | 
|  | /* Clear all higher bits. */ | 
|  | cache_levels &= (1 << (i*3))-1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_reset_coprocs - sets cp15 registers to reset value | 
|  | * @vcpu: The VCPU pointer | 
|  | * | 
|  | * This function finds the right table above and sets the registers on the | 
|  | * virtual CPU struct to their architecturally defined reset values. | 
|  | */ | 
|  | void kvm_reset_coprocs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | size_t num; | 
|  | const struct coproc_reg *table; | 
|  | DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, }; | 
|  |  | 
|  | /* Generic chip reset first (so target could override). */ | 
|  | reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap); | 
|  |  | 
|  | table = get_target_table(vcpu->arch.target, &num); | 
|  | reset_coproc_regs(vcpu, table, num, bmap); | 
|  |  | 
|  | for (num = 1; num < NR_CP15_REGS; num++) | 
|  | WARN(!test_bit(num, bmap), | 
|  | "Didn't reset vcpu_cp15(vcpu, %zi)", num); | 
|  | } |