|  | /* | 
|  | *  linux/arch/arm/mm/fault-armv.c | 
|  | * | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | *  Modifications for ARM processor (c) 1995-2002 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <asm/bugs.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cachetype.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "mm.h" | 
|  |  | 
|  | static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE; | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ < 6 | 
|  | /* | 
|  | * We take the easy way out of this problem - we make the | 
|  | * PTE uncacheable.  However, we leave the write buffer on. | 
|  | * | 
|  | * Note that the pte lock held when calling update_mmu_cache must also | 
|  | * guard the pte (somewhere else in the same mm) that we modify here. | 
|  | * Therefore those configurations which might call adjust_pte (those | 
|  | * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. | 
|  | */ | 
|  | static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long pfn, pte_t *ptep) | 
|  | { | 
|  | pte_t entry = *ptep; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If this page is present, it's actually being shared. | 
|  | */ | 
|  | ret = pte_present(entry); | 
|  |  | 
|  | /* | 
|  | * If this page isn't present, or is already setup to | 
|  | * fault (ie, is old), we can safely ignore any issues. | 
|  | */ | 
|  | if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { | 
|  | flush_cache_page(vma, address, pfn); | 
|  | outer_flush_range((pfn << PAGE_SHIFT), | 
|  | (pfn << PAGE_SHIFT) + PAGE_SIZE); | 
|  | pte_val(entry) &= ~L_PTE_MT_MASK; | 
|  | pte_val(entry) |= shared_pte_mask; | 
|  | set_pte_at(vma->vm_mm, address, ptep, entry); | 
|  | flush_tlb_page(vma, address); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if USE_SPLIT_PTE_PTLOCKS | 
|  | /* | 
|  | * If we are using split PTE locks, then we need to take the page | 
|  | * lock here.  Otherwise we are using shared mm->page_table_lock | 
|  | * which is already locked, thus cannot take it. | 
|  | */ | 
|  | static inline void do_pte_lock(spinlock_t *ptl) | 
|  | { | 
|  | /* | 
|  | * Use nested version here to indicate that we are already | 
|  | * holding one similar spinlock. | 
|  | */ | 
|  | spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  |  | 
|  | static inline void do_pte_unlock(spinlock_t *ptl) | 
|  | { | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | #else /* !USE_SPLIT_PTE_PTLOCKS */ | 
|  | static inline void do_pte_lock(spinlock_t *ptl) {} | 
|  | static inline void do_pte_unlock(spinlock_t *ptl) {} | 
|  | #endif /* USE_SPLIT_PTE_PTLOCKS */ | 
|  |  | 
|  | static int adjust_pte(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long pfn) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | int ret; | 
|  |  | 
|  | pgd = pgd_offset(vma->vm_mm, address); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | return 0; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | return 0; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * This is called while another page table is mapped, so we | 
|  | * must use the nested version.  This also means we need to | 
|  | * open-code the spin-locking. | 
|  | */ | 
|  | ptl = pte_lockptr(vma->vm_mm, pmd); | 
|  | pte = pte_offset_map(pmd, address); | 
|  | do_pte_lock(ptl); | 
|  |  | 
|  | ret = do_adjust_pte(vma, address, pfn, pte); | 
|  |  | 
|  | do_pte_unlock(ptl); | 
|  | pte_unmap(pte); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | make_coherent(struct address_space *mapping, struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep, unsigned long pfn) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *mpnt; | 
|  | unsigned long offset; | 
|  | pgoff_t pgoff; | 
|  | int aliases = 0; | 
|  |  | 
|  | pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * If we have any shared mappings that are in the same mm | 
|  | * space, then we need to handle them specially to maintain | 
|  | * cache coherency. | 
|  | */ | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { | 
|  | /* | 
|  | * If this VMA is not in our MM, we can ignore it. | 
|  | * Note that we intentionally mask out the VMA | 
|  | * that we are fixing up. | 
|  | */ | 
|  | if (mpnt->vm_mm != mm || mpnt == vma) | 
|  | continue; | 
|  | if (!(mpnt->vm_flags & VM_MAYSHARE)) | 
|  | continue; | 
|  | offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; | 
|  | aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); | 
|  | } | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | if (aliases) | 
|  | do_adjust_pte(vma, addr, pfn, ptep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take care of architecture specific things when placing a new PTE into | 
|  | * a page table, or changing an existing PTE.  Basically, there are two | 
|  | * things that we need to take care of: | 
|  | * | 
|  | *  1. If PG_dcache_clean is not set for the page, we need to ensure | 
|  | *     that any cache entries for the kernels virtual memory | 
|  | *     range are written back to the page. | 
|  | *  2. If we have multiple shared mappings of the same space in | 
|  | *     an object, we need to deal with the cache aliasing issues. | 
|  | * | 
|  | * Note that the pte lock will be held. | 
|  | */ | 
|  | void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(*ptep); | 
|  | struct address_space *mapping; | 
|  | struct page *page; | 
|  |  | 
|  | if (!pfn_valid(pfn)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The zero page is never written to, so never has any dirty | 
|  | * cache lines, and therefore never needs to be flushed. | 
|  | */ | 
|  | page = pfn_to_page(pfn); | 
|  | if (page == ZERO_PAGE(0)) | 
|  | return; | 
|  |  | 
|  | mapping = page_mapping_file(page); | 
|  | if (!test_and_set_bit(PG_dcache_clean, &page->flags)) | 
|  | __flush_dcache_page(mapping, page); | 
|  | if (mapping) { | 
|  | if (cache_is_vivt()) | 
|  | make_coherent(mapping, vma, addr, ptep, pfn); | 
|  | else if (vma->vm_flags & VM_EXEC) | 
|  | __flush_icache_all(); | 
|  | } | 
|  | } | 
|  | #endif	/* __LINUX_ARM_ARCH__ < 6 */ | 
|  |  | 
|  | /* | 
|  | * Check whether the write buffer has physical address aliasing | 
|  | * issues.  If it has, we need to avoid them for the case where | 
|  | * we have several shared mappings of the same object in user | 
|  | * space. | 
|  | */ | 
|  | static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) | 
|  | { | 
|  | register unsigned long zero = 0, one = 1, val; | 
|  |  | 
|  | local_irq_disable(); | 
|  | mb(); | 
|  | *p1 = one; | 
|  | mb(); | 
|  | *p2 = zero; | 
|  | mb(); | 
|  | val = *p1; | 
|  | mb(); | 
|  | local_irq_enable(); | 
|  | return val != zero; | 
|  | } | 
|  |  | 
|  | void __init check_writebuffer_bugs(void) | 
|  | { | 
|  | struct page *page; | 
|  | const char *reason; | 
|  | unsigned long v = 1; | 
|  |  | 
|  | pr_info("CPU: Testing write buffer coherency: "); | 
|  |  | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (page) { | 
|  | unsigned long *p1, *p2; | 
|  | pgprot_t prot = __pgprot_modify(PAGE_KERNEL, | 
|  | L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); | 
|  |  | 
|  | p1 = vmap(&page, 1, VM_IOREMAP, prot); | 
|  | p2 = vmap(&page, 1, VM_IOREMAP, prot); | 
|  |  | 
|  | if (p1 && p2) { | 
|  | v = check_writebuffer(p1, p2); | 
|  | reason = "enabling work-around"; | 
|  | } else { | 
|  | reason = "unable to map memory\n"; | 
|  | } | 
|  |  | 
|  | vunmap(p1); | 
|  | vunmap(p2); | 
|  | put_page(page); | 
|  | } else { | 
|  | reason = "unable to grab page\n"; | 
|  | } | 
|  |  | 
|  | if (v) { | 
|  | pr_cont("failed, %s\n", reason); | 
|  | shared_pte_mask = L_PTE_MT_UNCACHED; | 
|  | } else { | 
|  | pr_cont("ok\n"); | 
|  | } | 
|  | } |