|  | /* | 
|  | * Copyright (C) 2012-2016 Mentor Graphics Inc. | 
|  | * | 
|  | * Queued image conversion support, with tiling and rotation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; either version 2 of the License, or (at your | 
|  | * option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <video/imx-ipu-image-convert.h> | 
|  | #include "ipu-prv.h" | 
|  |  | 
|  | /* | 
|  | * The IC Resizer has a restriction that the output frame from the | 
|  | * resizer must be 1024 or less in both width (pixels) and height | 
|  | * (lines). | 
|  | * | 
|  | * The image converter attempts to split up a conversion when | 
|  | * the desired output (converted) frame resolution exceeds the | 
|  | * IC resizer limit of 1024 in either dimension. | 
|  | * | 
|  | * If either dimension of the output frame exceeds the limit, the | 
|  | * dimension is split into 1, 2, or 4 equal stripes, for a maximum | 
|  | * of 4*4 or 16 tiles. A conversion is then carried out for each | 
|  | * tile (but taking care to pass the full frame stride length to | 
|  | * the DMA channel's parameter memory!). IDMA double-buffering is used | 
|  | * to convert each tile back-to-back when possible (see note below | 
|  | * when double_buffering boolean is set). | 
|  | * | 
|  | * Note that the input frame must be split up into the same number | 
|  | * of tiles as the output frame. | 
|  | * | 
|  | * FIXME: at this point there is no attempt to deal with visible seams | 
|  | * at the tile boundaries when upscaling. The seams are caused by a reset | 
|  | * of the bilinear upscale interpolation when starting a new tile. The | 
|  | * seams are barely visible for small upscale factors, but become | 
|  | * increasingly visible as the upscale factor gets larger, since more | 
|  | * interpolated pixels get thrown out at the tile boundaries. A possilble | 
|  | * fix might be to overlap tiles of different sizes, but this must be done | 
|  | * while also maintaining the IDMAC dma buffer address alignment and 8x8 IRT | 
|  | * alignment restrictions of each tile. | 
|  | */ | 
|  |  | 
|  | #define MAX_STRIPES_W    4 | 
|  | #define MAX_STRIPES_H    4 | 
|  | #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) | 
|  |  | 
|  | #define MIN_W     16 | 
|  | #define MIN_H     8 | 
|  | #define MAX_W     4096 | 
|  | #define MAX_H     4096 | 
|  |  | 
|  | enum ipu_image_convert_type { | 
|  | IMAGE_CONVERT_IN = 0, | 
|  | IMAGE_CONVERT_OUT, | 
|  | }; | 
|  |  | 
|  | struct ipu_image_convert_dma_buf { | 
|  | void          *virt; | 
|  | dma_addr_t    phys; | 
|  | unsigned long len; | 
|  | }; | 
|  |  | 
|  | struct ipu_image_convert_dma_chan { | 
|  | int in; | 
|  | int out; | 
|  | int rot_in; | 
|  | int rot_out; | 
|  | int vdi_in_p; | 
|  | int vdi_in; | 
|  | int vdi_in_n; | 
|  | }; | 
|  |  | 
|  | /* dimensions of one tile */ | 
|  | struct ipu_image_tile { | 
|  | u32 width; | 
|  | u32 height; | 
|  | /* size and strides are in bytes */ | 
|  | u32 size; | 
|  | u32 stride; | 
|  | u32 rot_stride; | 
|  | /* start Y or packed offset of this tile */ | 
|  | u32 offset; | 
|  | /* offset from start to tile in U plane, for planar formats */ | 
|  | u32 u_off; | 
|  | /* offset from start to tile in V plane, for planar formats */ | 
|  | u32 v_off; | 
|  | }; | 
|  |  | 
|  | struct ipu_image_convert_image { | 
|  | struct ipu_image base; | 
|  | enum ipu_image_convert_type type; | 
|  |  | 
|  | const struct ipu_image_pixfmt *fmt; | 
|  | unsigned int stride; | 
|  |  | 
|  | /* # of rows (horizontal stripes) if dest height is > 1024 */ | 
|  | unsigned int num_rows; | 
|  | /* # of columns (vertical stripes) if dest width is > 1024 */ | 
|  | unsigned int num_cols; | 
|  |  | 
|  | struct ipu_image_tile tile[MAX_TILES]; | 
|  | }; | 
|  |  | 
|  | struct ipu_image_pixfmt { | 
|  | u32	fourcc;        /* V4L2 fourcc */ | 
|  | int     bpp;           /* total bpp */ | 
|  | int     uv_width_dec;  /* decimation in width for U/V planes */ | 
|  | int     uv_height_dec; /* decimation in height for U/V planes */ | 
|  | bool    planar;        /* planar format */ | 
|  | bool    uv_swapped;    /* U and V planes are swapped */ | 
|  | bool    uv_packed;     /* partial planar (U and V in same plane) */ | 
|  | }; | 
|  |  | 
|  | struct ipu_image_convert_ctx; | 
|  | struct ipu_image_convert_chan; | 
|  | struct ipu_image_convert_priv; | 
|  |  | 
|  | struct ipu_image_convert_ctx { | 
|  | struct ipu_image_convert_chan *chan; | 
|  |  | 
|  | ipu_image_convert_cb_t complete; | 
|  | void *complete_context; | 
|  |  | 
|  | /* Source/destination image data and rotation mode */ | 
|  | struct ipu_image_convert_image in; | 
|  | struct ipu_image_convert_image out; | 
|  | enum ipu_rotate_mode rot_mode; | 
|  |  | 
|  | /* intermediate buffer for rotation */ | 
|  | struct ipu_image_convert_dma_buf rot_intermediate[2]; | 
|  |  | 
|  | /* current buffer number for double buffering */ | 
|  | int cur_buf_num; | 
|  |  | 
|  | bool aborting; | 
|  | struct completion aborted; | 
|  |  | 
|  | /* can we use double-buffering for this conversion operation? */ | 
|  | bool double_buffering; | 
|  | /* num_rows * num_cols */ | 
|  | unsigned int num_tiles; | 
|  | /* next tile to process */ | 
|  | unsigned int next_tile; | 
|  | /* where to place converted tile in dest image */ | 
|  | unsigned int out_tile_map[MAX_TILES]; | 
|  |  | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | struct ipu_image_convert_chan { | 
|  | struct ipu_image_convert_priv *priv; | 
|  |  | 
|  | enum ipu_ic_task ic_task; | 
|  | const struct ipu_image_convert_dma_chan *dma_ch; | 
|  |  | 
|  | struct ipu_ic *ic; | 
|  | struct ipuv3_channel *in_chan; | 
|  | struct ipuv3_channel *out_chan; | 
|  | struct ipuv3_channel *rotation_in_chan; | 
|  | struct ipuv3_channel *rotation_out_chan; | 
|  |  | 
|  | /* the IPU end-of-frame irqs */ | 
|  | int out_eof_irq; | 
|  | int rot_out_eof_irq; | 
|  |  | 
|  | spinlock_t irqlock; | 
|  |  | 
|  | /* list of convert contexts */ | 
|  | struct list_head ctx_list; | 
|  | /* queue of conversion runs */ | 
|  | struct list_head pending_q; | 
|  | /* queue of completed runs */ | 
|  | struct list_head done_q; | 
|  |  | 
|  | /* the current conversion run */ | 
|  | struct ipu_image_convert_run *current_run; | 
|  | }; | 
|  |  | 
|  | struct ipu_image_convert_priv { | 
|  | struct ipu_image_convert_chan chan[IC_NUM_TASKS]; | 
|  | struct ipu_soc *ipu; | 
|  | }; | 
|  |  | 
|  | static const struct ipu_image_convert_dma_chan | 
|  | image_convert_dma_chan[IC_NUM_TASKS] = { | 
|  | [IC_TASK_VIEWFINDER] = { | 
|  | .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, | 
|  | .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, | 
|  | .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, | 
|  | .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, | 
|  | .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV, | 
|  | .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR, | 
|  | .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT, | 
|  | }, | 
|  | [IC_TASK_POST_PROCESSOR] = { | 
|  | .in = IPUV3_CHANNEL_MEM_IC_PP, | 
|  | .out = IPUV3_CHANNEL_IC_PP_MEM, | 
|  | .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, | 
|  | .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct ipu_image_pixfmt image_convert_formats[] = { | 
|  | { | 
|  | .fourcc	= V4L2_PIX_FMT_RGB565, | 
|  | .bpp    = 16, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_RGB24, | 
|  | .bpp    = 24, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_BGR24, | 
|  | .bpp    = 24, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_RGB32, | 
|  | .bpp    = 32, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_BGR32, | 
|  | .bpp    = 32, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_XRGB32, | 
|  | .bpp    = 32, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_XBGR32, | 
|  | .bpp    = 32, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_YUYV, | 
|  | .bpp    = 16, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 1, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_UYVY, | 
|  | .bpp    = 16, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 1, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_YUV420, | 
|  | .bpp    = 12, | 
|  | .planar = true, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 2, | 
|  | }, { | 
|  | .fourcc	= V4L2_PIX_FMT_YVU420, | 
|  | .bpp    = 12, | 
|  | .planar = true, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 2, | 
|  | .uv_swapped = true, | 
|  | }, { | 
|  | .fourcc = V4L2_PIX_FMT_NV12, | 
|  | .bpp    = 12, | 
|  | .planar = true, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 2, | 
|  | .uv_packed = true, | 
|  | }, { | 
|  | .fourcc = V4L2_PIX_FMT_YUV422P, | 
|  | .bpp    = 16, | 
|  | .planar = true, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 1, | 
|  | }, { | 
|  | .fourcc = V4L2_PIX_FMT_NV16, | 
|  | .bpp    = 16, | 
|  | .planar = true, | 
|  | .uv_width_dec = 2, | 
|  | .uv_height_dec = 1, | 
|  | .uv_packed = true, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct ipu_image_pixfmt *get_format(u32 fourcc) | 
|  | { | 
|  | const struct ipu_image_pixfmt *ret = NULL; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) { | 
|  | if (image_convert_formats[i].fourcc == fourcc) { | 
|  | ret = &image_convert_formats[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dump_format(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipu_image_convert_image *ic_image) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "task %u: ctx %p: %s format: %dx%d (%dx%d tiles of size %dx%d), %c%c%c%c\n", | 
|  | chan->ic_task, ctx, | 
|  | ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", | 
|  | ic_image->base.pix.width, ic_image->base.pix.height, | 
|  | ic_image->num_cols, ic_image->num_rows, | 
|  | ic_image->tile[0].width, ic_image->tile[0].height, | 
|  | ic_image->fmt->fourcc & 0xff, | 
|  | (ic_image->fmt->fourcc >> 8) & 0xff, | 
|  | (ic_image->fmt->fourcc >> 16) & 0xff, | 
|  | (ic_image->fmt->fourcc >> 24) & 0xff); | 
|  | } | 
|  |  | 
|  | int ipu_image_convert_enum_format(int index, u32 *fourcc) | 
|  | { | 
|  | const struct ipu_image_pixfmt *fmt; | 
|  |  | 
|  | if (index >= (int)ARRAY_SIZE(image_convert_formats)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Format found */ | 
|  | fmt = &image_convert_formats[index]; | 
|  | *fourcc = fmt->fourcc; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); | 
|  |  | 
|  | static void free_dma_buf(struct ipu_image_convert_priv *priv, | 
|  | struct ipu_image_convert_dma_buf *buf) | 
|  | { | 
|  | if (buf->virt) | 
|  | dma_free_coherent(priv->ipu->dev, | 
|  | buf->len, buf->virt, buf->phys); | 
|  | buf->virt = NULL; | 
|  | buf->phys = 0; | 
|  | } | 
|  |  | 
|  | static int alloc_dma_buf(struct ipu_image_convert_priv *priv, | 
|  | struct ipu_image_convert_dma_buf *buf, | 
|  | int size) | 
|  | { | 
|  | buf->len = PAGE_ALIGN(size); | 
|  | buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, | 
|  | GFP_DMA | GFP_KERNEL); | 
|  | if (!buf->virt) { | 
|  | dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int num_stripes(int dim) | 
|  | { | 
|  | if (dim <= 1024) | 
|  | return 1; | 
|  | else if (dim <= 2048) | 
|  | return 2; | 
|  | else | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipu_image_convert_image *image) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ctx->num_tiles; i++) { | 
|  | struct ipu_image_tile *tile = &image->tile[i]; | 
|  |  | 
|  | tile->height = image->base.pix.height / image->num_rows; | 
|  | tile->width = image->base.pix.width / image->num_cols; | 
|  | tile->size = ((tile->height * image->fmt->bpp) >> 3) * | 
|  | tile->width; | 
|  |  | 
|  | if (image->fmt->planar) { | 
|  | tile->stride = tile->width; | 
|  | tile->rot_stride = tile->height; | 
|  | } else { | 
|  | tile->stride = | 
|  | (image->fmt->bpp * tile->width) >> 3; | 
|  | tile->rot_stride = | 
|  | (image->fmt->bpp * tile->height) >> 3; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the rotation transformation to find the tile coordinates | 
|  | * (row, col) of a tile in the destination frame that corresponds | 
|  | * to the given tile coordinates of a source frame. The destination | 
|  | * coordinate is then converted to a tile index. | 
|  | */ | 
|  | static int transform_tile_index(struct ipu_image_convert_ctx *ctx, | 
|  | int src_row, int src_col) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_image *s_image = &ctx->in; | 
|  | struct ipu_image_convert_image *d_image = &ctx->out; | 
|  | int dst_row, dst_col; | 
|  |  | 
|  | /* with no rotation it's a 1:1 mapping */ | 
|  | if (ctx->rot_mode == IPU_ROTATE_NONE) | 
|  | return src_row * s_image->num_cols + src_col; | 
|  |  | 
|  | /* | 
|  | * before doing the transform, first we have to translate | 
|  | * source row,col for an origin in the center of s_image | 
|  | */ | 
|  | src_row = src_row * 2 - (s_image->num_rows - 1); | 
|  | src_col = src_col * 2 - (s_image->num_cols - 1); | 
|  |  | 
|  | /* do the rotation transform */ | 
|  | if (ctx->rot_mode & IPU_ROT_BIT_90) { | 
|  | dst_col = -src_row; | 
|  | dst_row = src_col; | 
|  | } else { | 
|  | dst_col = src_col; | 
|  | dst_row = src_row; | 
|  | } | 
|  |  | 
|  | /* apply flip */ | 
|  | if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) | 
|  | dst_col = -dst_col; | 
|  | if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) | 
|  | dst_row = -dst_row; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n", | 
|  | chan->ic_task, ctx, src_col, src_row, dst_col, dst_row); | 
|  |  | 
|  | /* | 
|  | * finally translate dest row,col using an origin in upper | 
|  | * left of d_image | 
|  | */ | 
|  | dst_row += d_image->num_rows - 1; | 
|  | dst_col += d_image->num_cols - 1; | 
|  | dst_row /= 2; | 
|  | dst_col /= 2; | 
|  |  | 
|  | return dst_row * d_image->num_cols + dst_col; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill the out_tile_map[] with transformed destination tile indeces. | 
|  | */ | 
|  | static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx) | 
|  | { | 
|  | struct ipu_image_convert_image *s_image = &ctx->in; | 
|  | unsigned int row, col, tile = 0; | 
|  |  | 
|  | for (row = 0; row < s_image->num_rows; row++) { | 
|  | for (col = 0; col < s_image->num_cols; col++) { | 
|  | ctx->out_tile_map[tile] = | 
|  | transform_tile_index(ctx, row, col); | 
|  | tile++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipu_image_convert_image *image) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | const struct ipu_image_pixfmt *fmt = image->fmt; | 
|  | unsigned int row, col, tile = 0; | 
|  | u32 H, w, h, y_stride, uv_stride; | 
|  | u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp; | 
|  | u32 y_row_off, y_col_off, y_off; | 
|  | u32 y_size, uv_size; | 
|  |  | 
|  | /* setup some convenience vars */ | 
|  | H = image->base.pix.height; | 
|  |  | 
|  | y_stride = image->stride; | 
|  | uv_stride = y_stride / fmt->uv_width_dec; | 
|  | if (fmt->uv_packed) | 
|  | uv_stride *= 2; | 
|  |  | 
|  | y_size = H * y_stride; | 
|  | uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); | 
|  |  | 
|  | for (row = 0; row < image->num_rows; row++) { | 
|  | w = image->tile[tile].width; | 
|  | h = image->tile[tile].height; | 
|  | y_row_off = row * h * y_stride; | 
|  | uv_row_off = (row * h * uv_stride) / fmt->uv_height_dec; | 
|  |  | 
|  | for (col = 0; col < image->num_cols; col++) { | 
|  | y_col_off = col * w; | 
|  | uv_col_off = y_col_off / fmt->uv_width_dec; | 
|  | if (fmt->uv_packed) | 
|  | uv_col_off *= 2; | 
|  |  | 
|  | y_off = y_row_off + y_col_off; | 
|  | uv_off = uv_row_off + uv_col_off; | 
|  |  | 
|  | u_off = y_size - y_off + uv_off; | 
|  | v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; | 
|  | if (fmt->uv_swapped) { | 
|  | tmp = u_off; | 
|  | u_off = v_off; | 
|  | v_off = tmp; | 
|  | } | 
|  |  | 
|  | image->tile[tile].offset = y_off; | 
|  | image->tile[tile].u_off = u_off; | 
|  | image->tile[tile++].v_off = v_off; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "task %u: ctx %p: %s@[%d,%d]: y_off %08x, u_off %08x, v_off %08x\n", | 
|  | chan->ic_task, ctx, | 
|  | image->type == IMAGE_CONVERT_IN ? | 
|  | "Input" : "Output", row, col, | 
|  | y_off, u_off, v_off); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipu_image_convert_image *image) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | const struct ipu_image_pixfmt *fmt = image->fmt; | 
|  | unsigned int row, col, tile = 0; | 
|  | u32 w, h, bpp, stride; | 
|  | u32 row_off, col_off; | 
|  |  | 
|  | /* setup some convenience vars */ | 
|  | stride = image->stride; | 
|  | bpp = fmt->bpp; | 
|  |  | 
|  | for (row = 0; row < image->num_rows; row++) { | 
|  | w = image->tile[tile].width; | 
|  | h = image->tile[tile].height; | 
|  | row_off = row * h * stride; | 
|  |  | 
|  | for (col = 0; col < image->num_cols; col++) { | 
|  | col_off = (col * w * bpp) >> 3; | 
|  |  | 
|  | image->tile[tile].offset = row_off + col_off; | 
|  | image->tile[tile].u_off = 0; | 
|  | image->tile[tile++].v_off = 0; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "task %u: ctx %p: %s@[%d,%d]: phys %08x\n", | 
|  | chan->ic_task, ctx, | 
|  | image->type == IMAGE_CONVERT_IN ? | 
|  | "Input" : "Output", row, col, | 
|  | row_off + col_off); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void calc_tile_offsets(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipu_image_convert_image *image) | 
|  | { | 
|  | if (image->fmt->planar) | 
|  | calc_tile_offsets_planar(ctx, image); | 
|  | else | 
|  | calc_tile_offsets_packed(ctx, image); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the number of runs in given queue (pending_q or done_q) | 
|  | * for this context. hold irqlock when calling. | 
|  | */ | 
|  | static int get_run_count(struct ipu_image_convert_ctx *ctx, | 
|  | struct list_head *q) | 
|  | { | 
|  | struct ipu_image_convert_run *run; | 
|  | int count = 0; | 
|  |  | 
|  | lockdep_assert_held(&ctx->chan->irqlock); | 
|  |  | 
|  | list_for_each_entry(run, q, list) { | 
|  | if (run->ctx == ctx) | 
|  | count++; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void convert_stop(struct ipu_image_convert_run *run) | 
|  | { | 
|  | struct ipu_image_convert_ctx *ctx = run->ctx; | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n", | 
|  | __func__, chan->ic_task, ctx, run); | 
|  |  | 
|  | /* disable IC tasks and the channels */ | 
|  | ipu_ic_task_disable(chan->ic); | 
|  | ipu_idmac_disable_channel(chan->in_chan); | 
|  | ipu_idmac_disable_channel(chan->out_chan); | 
|  |  | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | ipu_idmac_disable_channel(chan->rotation_in_chan); | 
|  | ipu_idmac_disable_channel(chan->rotation_out_chan); | 
|  | ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan); | 
|  | } | 
|  |  | 
|  | ipu_ic_disable(chan->ic); | 
|  | } | 
|  |  | 
|  | static void init_idmac_channel(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipuv3_channel *channel, | 
|  | struct ipu_image_convert_image *image, | 
|  | enum ipu_rotate_mode rot_mode, | 
|  | bool rot_swap_width_height) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | unsigned int burst_size; | 
|  | u32 width, height, stride; | 
|  | dma_addr_t addr0, addr1 = 0; | 
|  | struct ipu_image tile_image; | 
|  | unsigned int tile_idx[2]; | 
|  |  | 
|  | if (image->type == IMAGE_CONVERT_OUT) { | 
|  | tile_idx[0] = ctx->out_tile_map[0]; | 
|  | tile_idx[1] = ctx->out_tile_map[1]; | 
|  | } else { | 
|  | tile_idx[0] = 0; | 
|  | tile_idx[1] = 1; | 
|  | } | 
|  |  | 
|  | if (rot_swap_width_height) { | 
|  | width = image->tile[0].height; | 
|  | height = image->tile[0].width; | 
|  | stride = image->tile[0].rot_stride; | 
|  | addr0 = ctx->rot_intermediate[0].phys; | 
|  | if (ctx->double_buffering) | 
|  | addr1 = ctx->rot_intermediate[1].phys; | 
|  | } else { | 
|  | width = image->tile[0].width; | 
|  | height = image->tile[0].height; | 
|  | stride = image->stride; | 
|  | addr0 = image->base.phys0 + | 
|  | image->tile[tile_idx[0]].offset; | 
|  | if (ctx->double_buffering) | 
|  | addr1 = image->base.phys0 + | 
|  | image->tile[tile_idx[1]].offset; | 
|  | } | 
|  |  | 
|  | ipu_cpmem_zero(channel); | 
|  |  | 
|  | memset(&tile_image, 0, sizeof(tile_image)); | 
|  | tile_image.pix.width = tile_image.rect.width = width; | 
|  | tile_image.pix.height = tile_image.rect.height = height; | 
|  | tile_image.pix.bytesperline = stride; | 
|  | tile_image.pix.pixelformat =  image->fmt->fourcc; | 
|  | tile_image.phys0 = addr0; | 
|  | tile_image.phys1 = addr1; | 
|  | ipu_cpmem_set_image(channel, &tile_image); | 
|  |  | 
|  | if (image->fmt->planar && !rot_swap_width_height) | 
|  | ipu_cpmem_set_uv_offset(channel, | 
|  | image->tile[tile_idx[0]].u_off, | 
|  | image->tile[tile_idx[0]].v_off); | 
|  |  | 
|  | if (rot_mode) | 
|  | ipu_cpmem_set_rotation(channel, rot_mode); | 
|  |  | 
|  | if (channel == chan->rotation_in_chan || | 
|  | channel == chan->rotation_out_chan) { | 
|  | burst_size = 8; | 
|  | ipu_cpmem_set_block_mode(channel); | 
|  | } else | 
|  | burst_size = (width % 16) ? 8 : 16; | 
|  |  | 
|  | ipu_cpmem_set_burstsize(channel, burst_size); | 
|  |  | 
|  | ipu_ic_task_idma_init(chan->ic, channel, width, height, | 
|  | burst_size, rot_mode); | 
|  |  | 
|  | /* | 
|  | * Setting a non-zero AXI ID collides with the PRG AXI snooping, so | 
|  | * only do this when there is no PRG present. | 
|  | */ | 
|  | if (!channel->ipu->prg_priv) | 
|  | ipu_cpmem_set_axi_id(channel, 1); | 
|  |  | 
|  | ipu_idmac_set_double_buffer(channel, ctx->double_buffering); | 
|  | } | 
|  |  | 
|  | static int convert_start(struct ipu_image_convert_run *run) | 
|  | { | 
|  | struct ipu_image_convert_ctx *ctx = run->ctx; | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_image *s_image = &ctx->in; | 
|  | struct ipu_image_convert_image *d_image = &ctx->out; | 
|  | enum ipu_color_space src_cs, dest_cs; | 
|  | unsigned int dest_width, dest_height; | 
|  | int ret; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p\n", | 
|  | __func__, chan->ic_task, ctx, run); | 
|  |  | 
|  | src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc); | 
|  | dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc); | 
|  |  | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | /* swap width/height for resizer */ | 
|  | dest_width = d_image->tile[0].height; | 
|  | dest_height = d_image->tile[0].width; | 
|  | } else { | 
|  | dest_width = d_image->tile[0].width; | 
|  | dest_height = d_image->tile[0].height; | 
|  | } | 
|  |  | 
|  | /* setup the IC resizer and CSC */ | 
|  | ret = ipu_ic_task_init(chan->ic, | 
|  | s_image->tile[0].width, | 
|  | s_image->tile[0].height, | 
|  | dest_width, | 
|  | dest_height, | 
|  | src_cs, dest_cs); | 
|  | if (ret) { | 
|  | dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* init the source MEM-->IC PP IDMAC channel */ | 
|  | init_idmac_channel(ctx, chan->in_chan, s_image, | 
|  | IPU_ROTATE_NONE, false); | 
|  |  | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | /* init the IC PP-->MEM IDMAC channel */ | 
|  | init_idmac_channel(ctx, chan->out_chan, d_image, | 
|  | IPU_ROTATE_NONE, true); | 
|  |  | 
|  | /* init the MEM-->IC PP ROT IDMAC channel */ | 
|  | init_idmac_channel(ctx, chan->rotation_in_chan, d_image, | 
|  | ctx->rot_mode, true); | 
|  |  | 
|  | /* init the destination IC PP ROT-->MEM IDMAC channel */ | 
|  | init_idmac_channel(ctx, chan->rotation_out_chan, d_image, | 
|  | IPU_ROTATE_NONE, false); | 
|  |  | 
|  | /* now link IC PP-->MEM to MEM-->IC PP ROT */ | 
|  | ipu_idmac_link(chan->out_chan, chan->rotation_in_chan); | 
|  | } else { | 
|  | /* init the destination IC PP-->MEM IDMAC channel */ | 
|  | init_idmac_channel(ctx, chan->out_chan, d_image, | 
|  | ctx->rot_mode, false); | 
|  | } | 
|  |  | 
|  | /* enable the IC */ | 
|  | ipu_ic_enable(chan->ic); | 
|  |  | 
|  | /* set buffers ready */ | 
|  | ipu_idmac_select_buffer(chan->in_chan, 0); | 
|  | ipu_idmac_select_buffer(chan->out_chan, 0); | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) | 
|  | ipu_idmac_select_buffer(chan->rotation_out_chan, 0); | 
|  | if (ctx->double_buffering) { | 
|  | ipu_idmac_select_buffer(chan->in_chan, 1); | 
|  | ipu_idmac_select_buffer(chan->out_chan, 1); | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) | 
|  | ipu_idmac_select_buffer(chan->rotation_out_chan, 1); | 
|  | } | 
|  |  | 
|  | /* enable the channels! */ | 
|  | ipu_idmac_enable_channel(chan->in_chan); | 
|  | ipu_idmac_enable_channel(chan->out_chan); | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | ipu_idmac_enable_channel(chan->rotation_in_chan); | 
|  | ipu_idmac_enable_channel(chan->rotation_out_chan); | 
|  | } | 
|  |  | 
|  | ipu_ic_task_enable(chan->ic); | 
|  |  | 
|  | ipu_cpmem_dump(chan->in_chan); | 
|  | ipu_cpmem_dump(chan->out_chan); | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | ipu_cpmem_dump(chan->rotation_in_chan); | 
|  | ipu_cpmem_dump(chan->rotation_out_chan); | 
|  | } | 
|  |  | 
|  | ipu_dump(priv->ipu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* hold irqlock when calling */ | 
|  | static int do_run(struct ipu_image_convert_run *run) | 
|  | { | 
|  | struct ipu_image_convert_ctx *ctx = run->ctx; | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  |  | 
|  | lockdep_assert_held(&chan->irqlock); | 
|  |  | 
|  | ctx->in.base.phys0 = run->in_phys; | 
|  | ctx->out.base.phys0 = run->out_phys; | 
|  |  | 
|  | ctx->cur_buf_num = 0; | 
|  | ctx->next_tile = 1; | 
|  |  | 
|  | /* remove run from pending_q and set as current */ | 
|  | list_del(&run->list); | 
|  | chan->current_run = run; | 
|  |  | 
|  | return convert_start(run); | 
|  | } | 
|  |  | 
|  | /* hold irqlock when calling */ | 
|  | static void run_next(struct ipu_image_convert_chan *chan) | 
|  | { | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_run *run, *tmp; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&chan->irqlock); | 
|  |  | 
|  | list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { | 
|  | /* skip contexts that are aborting */ | 
|  | if (run->ctx->aborting) { | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "%s: task %u: skipping aborting ctx %p run %p\n", | 
|  | __func__, chan->ic_task, run->ctx, run); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = do_run(run); | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * something went wrong with start, add the run | 
|  | * to done q and continue to the next run in the | 
|  | * pending q. | 
|  | */ | 
|  | run->status = ret; | 
|  | list_add_tail(&run->list, &chan->done_q); | 
|  | chan->current_run = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void empty_done_q(struct ipu_image_convert_chan *chan) | 
|  | { | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_run *run; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | while (!list_empty(&chan->done_q)) { | 
|  | run = list_entry(chan->done_q.next, | 
|  | struct ipu_image_convert_run, | 
|  | list); | 
|  |  | 
|  | list_del(&run->list); | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "%s: task %u: completing ctx %p run %p with %d\n", | 
|  | __func__, chan->ic_task, run->ctx, run, run->status); | 
|  |  | 
|  | /* call the completion callback and free the run */ | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | run->ctx->complete(run, run->ctx->complete_context); | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the bottom half thread clears out the done_q, calling the | 
|  | * completion handler for each. | 
|  | */ | 
|  | static irqreturn_t do_bh(int irq, void *dev_id) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = dev_id; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_ctx *ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__, | 
|  | chan->ic_task); | 
|  |  | 
|  | empty_done_q(chan); | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | /* | 
|  | * the done_q is cleared out, signal any contexts | 
|  | * that are aborting that abort can complete. | 
|  | */ | 
|  | list_for_each_entry(ctx, &chan->ctx_list, list) { | 
|  | if (ctx->aborting) { | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "%s: task %u: signaling abort for ctx %p\n", | 
|  | __func__, chan->ic_task, ctx); | 
|  | complete(&ctx->aborted); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__, | 
|  | chan->ic_task); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* hold irqlock when calling */ | 
|  | static irqreturn_t do_irq(struct ipu_image_convert_run *run) | 
|  | { | 
|  | struct ipu_image_convert_ctx *ctx = run->ctx; | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_tile *src_tile, *dst_tile; | 
|  | struct ipu_image_convert_image *s_image = &ctx->in; | 
|  | struct ipu_image_convert_image *d_image = &ctx->out; | 
|  | struct ipuv3_channel *outch; | 
|  | unsigned int dst_idx; | 
|  |  | 
|  | lockdep_assert_held(&chan->irqlock); | 
|  |  | 
|  | outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? | 
|  | chan->rotation_out_chan : chan->out_chan; | 
|  |  | 
|  | /* | 
|  | * It is difficult to stop the channel DMA before the channels | 
|  | * enter the paused state. Without double-buffering the channels | 
|  | * are always in a paused state when the EOF irq occurs, so it | 
|  | * is safe to stop the channels now. For double-buffering we | 
|  | * just ignore the abort until the operation completes, when it | 
|  | * is safe to shut down. | 
|  | */ | 
|  | if (ctx->aborting && !ctx->double_buffering) { | 
|  | convert_stop(run); | 
|  | run->status = -EIO; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (ctx->next_tile == ctx->num_tiles) { | 
|  | /* | 
|  | * the conversion is complete | 
|  | */ | 
|  | convert_stop(run); | 
|  | run->status = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * not done, place the next tile buffers. | 
|  | */ | 
|  | if (!ctx->double_buffering) { | 
|  |  | 
|  | src_tile = &s_image->tile[ctx->next_tile]; | 
|  | dst_idx = ctx->out_tile_map[ctx->next_tile]; | 
|  | dst_tile = &d_image->tile[dst_idx]; | 
|  |  | 
|  | ipu_cpmem_set_buffer(chan->in_chan, 0, | 
|  | s_image->base.phys0 + src_tile->offset); | 
|  | ipu_cpmem_set_buffer(outch, 0, | 
|  | d_image->base.phys0 + dst_tile->offset); | 
|  | if (s_image->fmt->planar) | 
|  | ipu_cpmem_set_uv_offset(chan->in_chan, | 
|  | src_tile->u_off, | 
|  | src_tile->v_off); | 
|  | if (d_image->fmt->planar) | 
|  | ipu_cpmem_set_uv_offset(outch, | 
|  | dst_tile->u_off, | 
|  | dst_tile->v_off); | 
|  |  | 
|  | ipu_idmac_select_buffer(chan->in_chan, 0); | 
|  | ipu_idmac_select_buffer(outch, 0); | 
|  |  | 
|  | } else if (ctx->next_tile < ctx->num_tiles - 1) { | 
|  |  | 
|  | src_tile = &s_image->tile[ctx->next_tile + 1]; | 
|  | dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; | 
|  | dst_tile = &d_image->tile[dst_idx]; | 
|  |  | 
|  | ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num, | 
|  | s_image->base.phys0 + src_tile->offset); | 
|  | ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, | 
|  | d_image->base.phys0 + dst_tile->offset); | 
|  |  | 
|  | ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num); | 
|  | ipu_idmac_select_buffer(outch, ctx->cur_buf_num); | 
|  |  | 
|  | ctx->cur_buf_num ^= 1; | 
|  | } | 
|  |  | 
|  | ctx->next_tile++; | 
|  | return IRQ_HANDLED; | 
|  | done: | 
|  | list_add_tail(&run->list, &chan->done_q); | 
|  | chan->current_run = NULL; | 
|  | run_next(chan); | 
|  | return IRQ_WAKE_THREAD; | 
|  | } | 
|  |  | 
|  | static irqreturn_t norotate_irq(int irq, void *data) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = data; | 
|  | struct ipu_image_convert_ctx *ctx; | 
|  | struct ipu_image_convert_run *run; | 
|  | unsigned long flags; | 
|  | irqreturn_t ret; | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | /* get current run and its context */ | 
|  | run = chan->current_run; | 
|  | if (!run) { | 
|  | ret = IRQ_NONE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ctx = run->ctx; | 
|  |  | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | /* this is a rotation operation, just ignore */ | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | ret = do_irq(run); | 
|  | out: | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t rotate_irq(int irq, void *data) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = data; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_ctx *ctx; | 
|  | struct ipu_image_convert_run *run; | 
|  | unsigned long flags; | 
|  | irqreturn_t ret; | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | /* get current run and its context */ | 
|  | run = chan->current_run; | 
|  | if (!run) { | 
|  | ret = IRQ_NONE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ctx = run->ctx; | 
|  |  | 
|  | if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | /* this was NOT a rotation operation, shouldn't happen */ | 
|  | dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | ret = do_irq(run); | 
|  | out: | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * try to force the completion of runs for this ctx. Called when | 
|  | * abort wait times out in ipu_image_convert_abort(). | 
|  | */ | 
|  | static void force_abort(struct ipu_image_convert_ctx *ctx) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_run *run; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | run = chan->current_run; | 
|  | if (run && run->ctx == ctx) { | 
|  | convert_stop(run); | 
|  | run->status = -EIO; | 
|  | list_add_tail(&run->list, &chan->done_q); | 
|  | chan->current_run = NULL; | 
|  | run_next(chan); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  |  | 
|  | empty_done_q(chan); | 
|  | } | 
|  |  | 
|  | static void release_ipu_resources(struct ipu_image_convert_chan *chan) | 
|  | { | 
|  | if (chan->out_eof_irq >= 0) | 
|  | free_irq(chan->out_eof_irq, chan); | 
|  | if (chan->rot_out_eof_irq >= 0) | 
|  | free_irq(chan->rot_out_eof_irq, chan); | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(chan->in_chan)) | 
|  | ipu_idmac_put(chan->in_chan); | 
|  | if (!IS_ERR_OR_NULL(chan->out_chan)) | 
|  | ipu_idmac_put(chan->out_chan); | 
|  | if (!IS_ERR_OR_NULL(chan->rotation_in_chan)) | 
|  | ipu_idmac_put(chan->rotation_in_chan); | 
|  | if (!IS_ERR_OR_NULL(chan->rotation_out_chan)) | 
|  | ipu_idmac_put(chan->rotation_out_chan); | 
|  | if (!IS_ERR_OR_NULL(chan->ic)) | 
|  | ipu_ic_put(chan->ic); | 
|  |  | 
|  | chan->in_chan = chan->out_chan = chan->rotation_in_chan = | 
|  | chan->rotation_out_chan = NULL; | 
|  | chan->out_eof_irq = chan->rot_out_eof_irq = -1; | 
|  | } | 
|  |  | 
|  | static int get_ipu_resources(struct ipu_image_convert_chan *chan) | 
|  | { | 
|  | const struct ipu_image_convert_dma_chan *dma = chan->dma_ch; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | int ret; | 
|  |  | 
|  | /* get IC */ | 
|  | chan->ic = ipu_ic_get(priv->ipu, chan->ic_task); | 
|  | if (IS_ERR(chan->ic)) { | 
|  | dev_err(priv->ipu->dev, "could not acquire IC\n"); | 
|  | ret = PTR_ERR(chan->ic); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* get IDMAC channels */ | 
|  | chan->in_chan = ipu_idmac_get(priv->ipu, dma->in); | 
|  | chan->out_chan = ipu_idmac_get(priv->ipu, dma->out); | 
|  | if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) { | 
|  | dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); | 
|  | ret = -EBUSY; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in); | 
|  | chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out); | 
|  | if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) { | 
|  | dev_err(priv->ipu->dev, | 
|  | "could not acquire idmac rotation channels\n"); | 
|  | ret = -EBUSY; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* acquire the EOF interrupts */ | 
|  | chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu, | 
|  | chan->out_chan, | 
|  | IPU_IRQ_EOF); | 
|  |  | 
|  | ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh, | 
|  | 0, "ipu-ic", chan); | 
|  | if (ret < 0) { | 
|  | dev_err(priv->ipu->dev, "could not acquire irq %d\n", | 
|  | chan->out_eof_irq); | 
|  | chan->out_eof_irq = -1; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu, | 
|  | chan->rotation_out_chan, | 
|  | IPU_IRQ_EOF); | 
|  |  | 
|  | ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh, | 
|  | 0, "ipu-ic", chan); | 
|  | if (ret < 0) { | 
|  | dev_err(priv->ipu->dev, "could not acquire irq %d\n", | 
|  | chan->rot_out_eof_irq); | 
|  | chan->rot_out_eof_irq = -1; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | release_ipu_resources(chan); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int fill_image(struct ipu_image_convert_ctx *ctx, | 
|  | struct ipu_image_convert_image *ic_image, | 
|  | struct ipu_image *image, | 
|  | enum ipu_image_convert_type type) | 
|  | { | 
|  | struct ipu_image_convert_priv *priv = ctx->chan->priv; | 
|  |  | 
|  | ic_image->base = *image; | 
|  | ic_image->type = type; | 
|  |  | 
|  | ic_image->fmt = get_format(image->pix.pixelformat); | 
|  | if (!ic_image->fmt) { | 
|  | dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", | 
|  | type == IMAGE_CONVERT_OUT ? "Output" : "Input"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ic_image->fmt->planar) | 
|  | ic_image->stride = ic_image->base.pix.width; | 
|  | else | 
|  | ic_image->stride  = ic_image->base.pix.bytesperline; | 
|  |  | 
|  | calc_tile_dimensions(ctx, ic_image); | 
|  | calc_tile_offsets(ctx, ic_image); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* borrowed from drivers/media/v4l2-core/v4l2-common.c */ | 
|  | static unsigned int clamp_align(unsigned int x, unsigned int min, | 
|  | unsigned int max, unsigned int align) | 
|  | { | 
|  | /* Bits that must be zero to be aligned */ | 
|  | unsigned int mask = ~((1 << align) - 1); | 
|  |  | 
|  | /* Clamp to aligned min and max */ | 
|  | x = clamp(x, (min + ~mask) & mask, max & mask); | 
|  |  | 
|  | /* Round to nearest aligned value */ | 
|  | if (align) | 
|  | x = (x + (1 << (align - 1))) & mask; | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to adjust the tile width such that the tile physaddrs and | 
|  | * U and V plane offsets are multiples of 8 bytes as required by | 
|  | * the IPU DMA Controller. For the planar formats, this corresponds | 
|  | * to a pixel alignment of 16 (but use a more formal equation since | 
|  | * the variables are available). For all the packed formats, 8 is | 
|  | * good enough. | 
|  | */ | 
|  | static inline u32 tile_width_align(const struct ipu_image_pixfmt *fmt) | 
|  | { | 
|  | return fmt->planar ? 8 * fmt->uv_width_dec : 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For tile height alignment, we have to ensure that the output tile | 
|  | * heights are multiples of 8 lines if the IRT is required by the | 
|  | * given rotation mode (the IRT performs rotations on 8x8 blocks | 
|  | * at a time). If the IRT is not used, or for input image tiles, | 
|  | * 2 lines are good enough. | 
|  | */ | 
|  | static inline u32 tile_height_align(enum ipu_image_convert_type type, | 
|  | enum ipu_rotate_mode rot_mode) | 
|  | { | 
|  | return (type == IMAGE_CONVERT_OUT && | 
|  | ipu_rot_mode_is_irt(rot_mode)) ? 8 : 2; | 
|  | } | 
|  |  | 
|  | /* Adjusts input/output images to IPU restrictions */ | 
|  | void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, | 
|  | enum ipu_rotate_mode rot_mode) | 
|  | { | 
|  | const struct ipu_image_pixfmt *infmt, *outfmt; | 
|  | unsigned int num_in_rows, num_in_cols; | 
|  | unsigned int num_out_rows, num_out_cols; | 
|  | u32 w_align, h_align; | 
|  |  | 
|  | infmt = get_format(in->pix.pixelformat); | 
|  | outfmt = get_format(out->pix.pixelformat); | 
|  |  | 
|  | /* set some default pixel formats if needed */ | 
|  | if (!infmt) { | 
|  | in->pix.pixelformat = V4L2_PIX_FMT_RGB24; | 
|  | infmt = get_format(V4L2_PIX_FMT_RGB24); | 
|  | } | 
|  | if (!outfmt) { | 
|  | out->pix.pixelformat = V4L2_PIX_FMT_RGB24; | 
|  | outfmt = get_format(V4L2_PIX_FMT_RGB24); | 
|  | } | 
|  |  | 
|  | /* image converter does not handle fields */ | 
|  | in->pix.field = out->pix.field = V4L2_FIELD_NONE; | 
|  |  | 
|  | /* resizer cannot downsize more than 4:1 */ | 
|  | if (ipu_rot_mode_is_irt(rot_mode)) { | 
|  | out->pix.height = max_t(__u32, out->pix.height, | 
|  | in->pix.width / 4); | 
|  | out->pix.width = max_t(__u32, out->pix.width, | 
|  | in->pix.height / 4); | 
|  | } else { | 
|  | out->pix.width = max_t(__u32, out->pix.width, | 
|  | in->pix.width / 4); | 
|  | out->pix.height = max_t(__u32, out->pix.height, | 
|  | in->pix.height / 4); | 
|  | } | 
|  |  | 
|  | /* get tiling rows/cols from output format */ | 
|  | num_out_rows = num_stripes(out->pix.height); | 
|  | num_out_cols = num_stripes(out->pix.width); | 
|  | if (ipu_rot_mode_is_irt(rot_mode)) { | 
|  | num_in_rows = num_out_cols; | 
|  | num_in_cols = num_out_rows; | 
|  | } else { | 
|  | num_in_rows = num_out_rows; | 
|  | num_in_cols = num_out_cols; | 
|  | } | 
|  |  | 
|  | /* align input width/height */ | 
|  | w_align = ilog2(tile_width_align(infmt) * num_in_cols); | 
|  | h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, rot_mode) * | 
|  | num_in_rows); | 
|  | in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align); | 
|  | in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align); | 
|  |  | 
|  | /* align output width/height */ | 
|  | w_align = ilog2(tile_width_align(outfmt) * num_out_cols); | 
|  | h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, rot_mode) * | 
|  | num_out_rows); | 
|  | out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align); | 
|  | out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align); | 
|  |  | 
|  | /* set input/output strides and image sizes */ | 
|  | in->pix.bytesperline = (in->pix.width * infmt->bpp) >> 3; | 
|  | in->pix.sizeimage = in->pix.height * in->pix.bytesperline; | 
|  | out->pix.bytesperline = (out->pix.width * outfmt->bpp) >> 3; | 
|  | out->pix.sizeimage = out->pix.height * out->pix.bytesperline; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); | 
|  |  | 
|  | /* | 
|  | * this is used by ipu_image_convert_prepare() to verify set input and | 
|  | * output images are valid before starting the conversion. Clients can | 
|  | * also call it before calling ipu_image_convert_prepare(). | 
|  | */ | 
|  | int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, | 
|  | enum ipu_rotate_mode rot_mode) | 
|  | { | 
|  | struct ipu_image testin, testout; | 
|  |  | 
|  | testin = *in; | 
|  | testout = *out; | 
|  |  | 
|  | ipu_image_convert_adjust(&testin, &testout, rot_mode); | 
|  |  | 
|  | if (testin.pix.width != in->pix.width || | 
|  | testin.pix.height != in->pix.height || | 
|  | testout.pix.width != out->pix.width || | 
|  | testout.pix.height != out->pix.height) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_verify); | 
|  |  | 
|  | /* | 
|  | * Call ipu_image_convert_prepare() to prepare for the conversion of | 
|  | * given images and rotation mode. Returns a new conversion context. | 
|  | */ | 
|  | struct ipu_image_convert_ctx * | 
|  | ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task, | 
|  | struct ipu_image *in, struct ipu_image *out, | 
|  | enum ipu_rotate_mode rot_mode, | 
|  | ipu_image_convert_cb_t complete, | 
|  | void *complete_context) | 
|  | { | 
|  | struct ipu_image_convert_priv *priv = ipu->image_convert_priv; | 
|  | struct ipu_image_convert_image *s_image, *d_image; | 
|  | struct ipu_image_convert_chan *chan; | 
|  | struct ipu_image_convert_ctx *ctx; | 
|  | unsigned long flags; | 
|  | bool get_res; | 
|  | int ret; | 
|  |  | 
|  | if (!in || !out || !complete || | 
|  | (ic_task != IC_TASK_VIEWFINDER && | 
|  | ic_task != IC_TASK_POST_PROCESSOR)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* verify the in/out images before continuing */ | 
|  | ret = ipu_image_convert_verify(in, out, rot_mode); | 
|  | if (ret) { | 
|  | dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", | 
|  | __func__); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | chan = &priv->chan[ic_task]; | 
|  |  | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__, | 
|  | chan->ic_task, ctx); | 
|  |  | 
|  | ctx->chan = chan; | 
|  | init_completion(&ctx->aborted); | 
|  |  | 
|  | s_image = &ctx->in; | 
|  | d_image = &ctx->out; | 
|  |  | 
|  | /* set tiling and rotation */ | 
|  | d_image->num_rows = num_stripes(out->pix.height); | 
|  | d_image->num_cols = num_stripes(out->pix.width); | 
|  | if (ipu_rot_mode_is_irt(rot_mode)) { | 
|  | s_image->num_rows = d_image->num_cols; | 
|  | s_image->num_cols = d_image->num_rows; | 
|  | } else { | 
|  | s_image->num_rows = d_image->num_rows; | 
|  | s_image->num_cols = d_image->num_cols; | 
|  | } | 
|  |  | 
|  | ctx->num_tiles = d_image->num_cols * d_image->num_rows; | 
|  | ctx->rot_mode = rot_mode; | 
|  |  | 
|  | ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); | 
|  | if (ret) | 
|  | goto out_free; | 
|  | ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | calc_out_tile_map(ctx); | 
|  |  | 
|  | dump_format(ctx, s_image); | 
|  | dump_format(ctx, d_image); | 
|  |  | 
|  | ctx->complete = complete; | 
|  | ctx->complete_context = complete_context; | 
|  |  | 
|  | /* | 
|  | * Can we use double-buffering for this operation? If there is | 
|  | * only one tile (the whole image can be converted in a single | 
|  | * operation) there's no point in using double-buffering. Also, | 
|  | * the IPU's IDMAC channels allow only a single U and V plane | 
|  | * offset shared between both buffers, but these offsets change | 
|  | * for every tile, and therefore would have to be updated for | 
|  | * each buffer which is not possible. So double-buffering is | 
|  | * impossible when either the source or destination images are | 
|  | * a planar format (YUV420, YUV422P, etc.). | 
|  | */ | 
|  | ctx->double_buffering = (ctx->num_tiles > 1 && | 
|  | !s_image->fmt->planar && | 
|  | !d_image->fmt->planar); | 
|  |  | 
|  | if (ipu_rot_mode_is_irt(ctx->rot_mode)) { | 
|  | ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0], | 
|  | d_image->tile[0].size); | 
|  | if (ret) | 
|  | goto out_free; | 
|  | if (ctx->double_buffering) { | 
|  | ret = alloc_dma_buf(priv, | 
|  | &ctx->rot_intermediate[1], | 
|  | d_image->tile[0].size); | 
|  | if (ret) | 
|  | goto out_free_dmabuf0; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | get_res = list_empty(&chan->ctx_list); | 
|  |  | 
|  | list_add_tail(&ctx->list, &chan->ctx_list); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  |  | 
|  | if (get_res) { | 
|  | ret = get_ipu_resources(chan); | 
|  | if (ret) | 
|  | goto out_free_dmabuf1; | 
|  | } | 
|  |  | 
|  | return ctx; | 
|  |  | 
|  | out_free_dmabuf1: | 
|  | free_dma_buf(priv, &ctx->rot_intermediate[1]); | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  | list_del(&ctx->list); | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | out_free_dmabuf0: | 
|  | free_dma_buf(priv, &ctx->rot_intermediate[0]); | 
|  | out_free: | 
|  | kfree(ctx); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); | 
|  |  | 
|  | /* | 
|  | * Carry out a single image conversion run. Only the physaddr's of the input | 
|  | * and output image buffers are needed. The conversion context must have | 
|  | * been created previously with ipu_image_convert_prepare(). | 
|  | */ | 
|  | int ipu_image_convert_queue(struct ipu_image_convert_run *run) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan; | 
|  | struct ipu_image_convert_priv *priv; | 
|  | struct ipu_image_convert_ctx *ctx; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!run || !run->ctx || !run->in_phys || !run->out_phys) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx = run->ctx; | 
|  | chan = ctx->chan; | 
|  | priv = chan->priv; | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__, | 
|  | chan->ic_task, ctx, run); | 
|  |  | 
|  | INIT_LIST_HEAD(&run->list); | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | if (ctx->aborting) { | 
|  | ret = -EIO; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | list_add_tail(&run->list, &chan->pending_q); | 
|  |  | 
|  | if (!chan->current_run) { | 
|  | ret = do_run(run); | 
|  | if (ret) | 
|  | chan->current_run = NULL; | 
|  | } | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_queue); | 
|  |  | 
|  | /* Abort any active or pending conversions for this context */ | 
|  | static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | struct ipu_image_convert_run *run, *active_run, *tmp; | 
|  | unsigned long flags; | 
|  | int run_count, ret; | 
|  | bool need_abort; | 
|  |  | 
|  | reinit_completion(&ctx->aborted); | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | /* move all remaining pending runs in this context to done_q */ | 
|  | list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { | 
|  | if (run->ctx != ctx) | 
|  | continue; | 
|  | run->status = -EIO; | 
|  | list_move_tail(&run->list, &chan->done_q); | 
|  | } | 
|  |  | 
|  | run_count = get_run_count(ctx, &chan->done_q); | 
|  | active_run = (chan->current_run && chan->current_run->ctx == ctx) ? | 
|  | chan->current_run : NULL; | 
|  |  | 
|  | need_abort = (run_count || active_run); | 
|  |  | 
|  | ctx->aborting = true; | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  |  | 
|  | if (!need_abort) { | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "%s: task %u: no abort needed for ctx %p\n", | 
|  | __func__, chan->ic_task, ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, | 
|  | "%s: task %u: wait for completion: %d runs, active run %p\n", | 
|  | __func__, chan->ic_task, run_count, active_run); | 
|  |  | 
|  | ret = wait_for_completion_timeout(&ctx->aborted, | 
|  | msecs_to_jiffies(10000)); | 
|  | if (ret == 0) { | 
|  | dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); | 
|  | force_abort(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) | 
|  | { | 
|  | __ipu_image_convert_abort(ctx); | 
|  | ctx->aborting = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_abort); | 
|  |  | 
|  | /* Unprepare image conversion context */ | 
|  | void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx) | 
|  | { | 
|  | struct ipu_image_convert_chan *chan = ctx->chan; | 
|  | struct ipu_image_convert_priv *priv = chan->priv; | 
|  | unsigned long flags; | 
|  | bool put_res; | 
|  |  | 
|  | /* make sure no runs are hanging around */ | 
|  | __ipu_image_convert_abort(ctx); | 
|  |  | 
|  | dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__, | 
|  | chan->ic_task, ctx); | 
|  |  | 
|  | spin_lock_irqsave(&chan->irqlock, flags); | 
|  |  | 
|  | list_del(&ctx->list); | 
|  |  | 
|  | put_res = list_empty(&chan->ctx_list); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->irqlock, flags); | 
|  |  | 
|  | if (put_res) | 
|  | release_ipu_resources(chan); | 
|  |  | 
|  | free_dma_buf(priv, &ctx->rot_intermediate[1]); | 
|  | free_dma_buf(priv, &ctx->rot_intermediate[0]); | 
|  |  | 
|  | kfree(ctx); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); | 
|  |  | 
|  | /* | 
|  | * "Canned" asynchronous single image conversion. Allocates and returns | 
|  | * a new conversion run.  On successful return the caller must free the | 
|  | * run and call ipu_image_convert_unprepare() after conversion completes. | 
|  | */ | 
|  | struct ipu_image_convert_run * | 
|  | ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task, | 
|  | struct ipu_image *in, struct ipu_image *out, | 
|  | enum ipu_rotate_mode rot_mode, | 
|  | ipu_image_convert_cb_t complete, | 
|  | void *complete_context) | 
|  | { | 
|  | struct ipu_image_convert_ctx *ctx; | 
|  | struct ipu_image_convert_run *run; | 
|  | int ret; | 
|  |  | 
|  | ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode, | 
|  | complete, complete_context); | 
|  | if (IS_ERR(ctx)) | 
|  | return ERR_CAST(ctx); | 
|  |  | 
|  | run = kzalloc(sizeof(*run), GFP_KERNEL); | 
|  | if (!run) { | 
|  | ipu_image_convert_unprepare(ctx); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | run->ctx = ctx; | 
|  | run->in_phys = in->phys0; | 
|  | run->out_phys = out->phys0; | 
|  |  | 
|  | ret = ipu_image_convert_queue(run); | 
|  | if (ret) { | 
|  | ipu_image_convert_unprepare(ctx); | 
|  | kfree(run); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | return run; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert); | 
|  |  | 
|  | /* "Canned" synchronous single image conversion */ | 
|  | static void image_convert_sync_complete(struct ipu_image_convert_run *run, | 
|  | void *data) | 
|  | { | 
|  | struct completion *comp = data; | 
|  |  | 
|  | complete(comp); | 
|  | } | 
|  |  | 
|  | int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task, | 
|  | struct ipu_image *in, struct ipu_image *out, | 
|  | enum ipu_rotate_mode rot_mode) | 
|  | { | 
|  | struct ipu_image_convert_run *run; | 
|  | struct completion comp; | 
|  | int ret; | 
|  |  | 
|  | init_completion(&comp); | 
|  |  | 
|  | run = ipu_image_convert(ipu, ic_task, in, out, rot_mode, | 
|  | image_convert_sync_complete, &comp); | 
|  | if (IS_ERR(run)) | 
|  | return PTR_ERR(run); | 
|  |  | 
|  | ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); | 
|  | ret = (ret == 0) ? -ETIMEDOUT : 0; | 
|  |  | 
|  | ipu_image_convert_unprepare(run->ctx); | 
|  | kfree(run); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ipu_image_convert_sync); | 
|  |  | 
|  | int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev) | 
|  | { | 
|  | struct ipu_image_convert_priv *priv; | 
|  | int i; | 
|  |  | 
|  | priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); | 
|  | if (!priv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ipu->image_convert_priv = priv; | 
|  | priv->ipu = ipu; | 
|  |  | 
|  | for (i = 0; i < IC_NUM_TASKS; i++) { | 
|  | struct ipu_image_convert_chan *chan = &priv->chan[i]; | 
|  |  | 
|  | chan->ic_task = i; | 
|  | chan->priv = priv; | 
|  | chan->dma_ch = &image_convert_dma_chan[i]; | 
|  | chan->out_eof_irq = -1; | 
|  | chan->rot_out_eof_irq = -1; | 
|  |  | 
|  | spin_lock_init(&chan->irqlock); | 
|  | INIT_LIST_HEAD(&chan->ctx_list); | 
|  | INIT_LIST_HEAD(&chan->pending_q); | 
|  | INIT_LIST_HEAD(&chan->done_q); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ipu_image_convert_exit(struct ipu_soc *ipu) | 
|  | { | 
|  | } |