|  | /* | 
|  | * Copyright (C) 2015 Google, Inc. | 
|  | * | 
|  | * Author: Sami Tolvanen <samitolvanen@google.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | */ | 
|  |  | 
|  | #include "dm-verity-fec.h" | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX	"verity-fec" | 
|  |  | 
|  | /* | 
|  | * If error correction has been configured, returns true. | 
|  | */ | 
|  | bool verity_fec_is_enabled(struct dm_verity *v) | 
|  | { | 
|  | return v->fec && v->fec->dev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable | 
|  | * length fields. | 
|  | */ | 
|  | static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) | 
|  | { | 
|  | return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return an interleaved offset for a byte in RS block. | 
|  | */ | 
|  | static inline u64 fec_interleave(struct dm_verity *v, u64 offset) | 
|  | { | 
|  | u32 mod; | 
|  |  | 
|  | mod = do_div(offset, v->fec->rsn); | 
|  | return offset + mod * (v->fec->rounds << v->data_dev_block_bits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode an RS block using Reed-Solomon. | 
|  | */ | 
|  | static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, | 
|  | u8 *data, u8 *fec, int neras) | 
|  | { | 
|  | int i; | 
|  | uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; | 
|  |  | 
|  | for (i = 0; i < v->fec->roots; i++) | 
|  | par[i] = fec[i]; | 
|  |  | 
|  | return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, | 
|  | fio->erasures, 0, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read error-correcting codes for the requested RS block. Returns a pointer | 
|  | * to the data block. Caller is responsible for releasing buf. | 
|  | */ | 
|  | static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, | 
|  | unsigned *offset, struct dm_buffer **buf) | 
|  | { | 
|  | u64 position, block; | 
|  | u8 *res; | 
|  |  | 
|  | position = (index + rsb) * v->fec->roots; | 
|  | block = position >> v->data_dev_block_bits; | 
|  | *offset = (unsigned)(position - (block << v->data_dev_block_bits)); | 
|  |  | 
|  | res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf); | 
|  | if (unlikely(IS_ERR(res))) { | 
|  | DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", | 
|  | v->data_dev->name, (unsigned long long)rsb, | 
|  | (unsigned long long)(v->fec->start + block), | 
|  | PTR_ERR(res)); | 
|  | *buf = NULL; | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Loop over each preallocated buffer slot. */ | 
|  | #define fec_for_each_prealloc_buffer(__i) \ | 
|  | for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) | 
|  |  | 
|  | /* Loop over each extra buffer slot. */ | 
|  | #define fec_for_each_extra_buffer(io, __i) \ | 
|  | for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) | 
|  |  | 
|  | /* Loop over each allocated buffer. */ | 
|  | #define fec_for_each_buffer(io, __i) \ | 
|  | for (__i = 0; __i < (io)->nbufs; __i++) | 
|  |  | 
|  | /* Loop over each RS block in each allocated buffer. */ | 
|  | #define fec_for_each_buffer_rs_block(io, __i, __j) \ | 
|  | fec_for_each_buffer(io, __i) \ | 
|  | for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) | 
|  |  | 
|  | /* | 
|  | * Return a pointer to the current RS block when called inside | 
|  | * fec_for_each_buffer_rs_block. | 
|  | */ | 
|  | static inline u8 *fec_buffer_rs_block(struct dm_verity *v, | 
|  | struct dm_verity_fec_io *fio, | 
|  | unsigned i, unsigned j) | 
|  | { | 
|  | return &fio->bufs[i][j * v->fec->rsn]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return an index to the current RS block when called inside | 
|  | * fec_for_each_buffer_rs_block. | 
|  | */ | 
|  | static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j) | 
|  | { | 
|  | return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode all RS blocks from buffers and copy corrected bytes into fio->output | 
|  | * starting from block_offset. | 
|  | */ | 
|  | static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, | 
|  | u64 rsb, int byte_index, unsigned block_offset, | 
|  | int neras) | 
|  | { | 
|  | int r, corrected = 0, res; | 
|  | struct dm_buffer *buf; | 
|  | unsigned n, i, offset; | 
|  | u8 *par, *block; | 
|  |  | 
|  | par = fec_read_parity(v, rsb, block_offset, &offset, &buf); | 
|  | if (IS_ERR(par)) | 
|  | return PTR_ERR(par); | 
|  |  | 
|  | /* | 
|  | * Decode the RS blocks we have in bufs. Each RS block results in | 
|  | * one corrected target byte and consumes fec->roots parity bytes. | 
|  | */ | 
|  | fec_for_each_buffer_rs_block(fio, n, i) { | 
|  | block = fec_buffer_rs_block(v, fio, n, i); | 
|  | res = fec_decode_rs8(v, fio, block, &par[offset], neras); | 
|  | if (res < 0) { | 
|  | r = res; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | corrected += res; | 
|  | fio->output[block_offset] = block[byte_index]; | 
|  |  | 
|  | block_offset++; | 
|  | if (block_offset >= 1 << v->data_dev_block_bits) | 
|  | goto done; | 
|  |  | 
|  | /* read the next block when we run out of parity bytes */ | 
|  | offset += v->fec->roots; | 
|  | if (offset >= 1 << v->data_dev_block_bits) { | 
|  | dm_bufio_release(buf); | 
|  |  | 
|  | par = fec_read_parity(v, rsb, block_offset, &offset, &buf); | 
|  | if (unlikely(IS_ERR(par))) | 
|  | return PTR_ERR(par); | 
|  | } | 
|  | } | 
|  | done: | 
|  | r = corrected; | 
|  | error: | 
|  | dm_bufio_release(buf); | 
|  |  | 
|  | if (r < 0 && neras) | 
|  | DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", | 
|  | v->data_dev->name, (unsigned long long)rsb, r); | 
|  | else if (r > 0) | 
|  | DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", | 
|  | v->data_dev->name, (unsigned long long)rsb, r); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate data block erasures using verity hashes. | 
|  | */ | 
|  | static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, | 
|  | u8 *want_digest, u8 *data) | 
|  | { | 
|  | if (unlikely(verity_hash(v, verity_io_hash_req(v, io), | 
|  | data, 1 << v->data_dev_block_bits, | 
|  | verity_io_real_digest(v, io)))) | 
|  | return 0; | 
|  |  | 
|  | return memcmp(verity_io_real_digest(v, io), want_digest, | 
|  | v->digest_size) != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read data blocks that are part of the RS block and deinterleave as much as | 
|  | * fits into buffers. Check for erasure locations if @neras is non-NULL. | 
|  | */ | 
|  | static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, | 
|  | u64 rsb, u64 target, unsigned block_offset, | 
|  | int *neras) | 
|  | { | 
|  | bool is_zero; | 
|  | int i, j, target_index = -1; | 
|  | struct dm_buffer *buf; | 
|  | struct dm_bufio_client *bufio; | 
|  | struct dm_verity_fec_io *fio = fec_io(io); | 
|  | u64 block, ileaved; | 
|  | u8 *bbuf, *rs_block; | 
|  | u8 want_digest[v->digest_size]; | 
|  | unsigned n, k; | 
|  |  | 
|  | if (neras) | 
|  | *neras = 0; | 
|  |  | 
|  | /* | 
|  | * read each of the rsn data blocks that are part of the RS block, and | 
|  | * interleave contents to available bufs | 
|  | */ | 
|  | for (i = 0; i < v->fec->rsn; i++) { | 
|  | ileaved = fec_interleave(v, rsb * v->fec->rsn + i); | 
|  |  | 
|  | /* | 
|  | * target is the data block we want to correct, target_index is | 
|  | * the index of this block within the rsn RS blocks | 
|  | */ | 
|  | if (ileaved == target) | 
|  | target_index = i; | 
|  |  | 
|  | block = ileaved >> v->data_dev_block_bits; | 
|  | bufio = v->fec->data_bufio; | 
|  |  | 
|  | if (block >= v->data_blocks) { | 
|  | block -= v->data_blocks; | 
|  |  | 
|  | /* | 
|  | * blocks outside the area were assumed to contain | 
|  | * zeros when encoding data was generated | 
|  | */ | 
|  | if (unlikely(block >= v->fec->hash_blocks)) | 
|  | continue; | 
|  |  | 
|  | block += v->hash_start; | 
|  | bufio = v->bufio; | 
|  | } | 
|  |  | 
|  | bbuf = dm_bufio_read(bufio, block, &buf); | 
|  | if (unlikely(IS_ERR(bbuf))) { | 
|  | DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", | 
|  | v->data_dev->name, | 
|  | (unsigned long long)rsb, | 
|  | (unsigned long long)block, PTR_ERR(bbuf)); | 
|  |  | 
|  | /* assume the block is corrupted */ | 
|  | if (neras && *neras <= v->fec->roots) | 
|  | fio->erasures[(*neras)++] = i; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* locate erasures if the block is on the data device */ | 
|  | if (bufio == v->fec->data_bufio && | 
|  | verity_hash_for_block(v, io, block, want_digest, | 
|  | &is_zero) == 0) { | 
|  | /* skip known zero blocks entirely */ | 
|  | if (is_zero) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * skip if we have already found the theoretical | 
|  | * maximum number (i.e. fec->roots) of erasures | 
|  | */ | 
|  | if (neras && *neras <= v->fec->roots && | 
|  | fec_is_erasure(v, io, want_digest, bbuf)) | 
|  | fio->erasures[(*neras)++] = i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deinterleave and copy the bytes that fit into bufs, | 
|  | * starting from block_offset | 
|  | */ | 
|  | fec_for_each_buffer_rs_block(fio, n, j) { | 
|  | k = fec_buffer_rs_index(n, j) + block_offset; | 
|  |  | 
|  | if (k >= 1 << v->data_dev_block_bits) | 
|  | goto done; | 
|  |  | 
|  | rs_block = fec_buffer_rs_block(v, fio, n, j); | 
|  | rs_block[i] = bbuf[k]; | 
|  | } | 
|  | done: | 
|  | dm_bufio_release(buf); | 
|  | } | 
|  |  | 
|  | return target_index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate RS control structure and FEC buffers from preallocated mempools, | 
|  | * and attempt to allocate as many extra buffers as available. | 
|  | */ | 
|  | static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) | 
|  | { | 
|  | unsigned n; | 
|  |  | 
|  | if (!fio->rs) | 
|  | fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO); | 
|  |  | 
|  | fec_for_each_prealloc_buffer(n) { | 
|  | if (fio->bufs[n]) | 
|  | continue; | 
|  |  | 
|  | fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT); | 
|  | if (unlikely(!fio->bufs[n])) { | 
|  | DMERR("failed to allocate FEC buffer"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* try to allocate the maximum number of buffers */ | 
|  | fec_for_each_extra_buffer(fio, n) { | 
|  | if (fio->bufs[n]) | 
|  | continue; | 
|  |  | 
|  | fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT); | 
|  | /* we can manage with even one buffer if necessary */ | 
|  | if (unlikely(!fio->bufs[n])) | 
|  | break; | 
|  | } | 
|  | fio->nbufs = n; | 
|  |  | 
|  | if (!fio->output) | 
|  | fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are | 
|  | * zeroed before deinterleaving. | 
|  | */ | 
|  | static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) | 
|  | { | 
|  | unsigned n; | 
|  |  | 
|  | fec_for_each_buffer(fio, n) | 
|  | memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); | 
|  |  | 
|  | memset(fio->erasures, 0, sizeof(fio->erasures)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode all RS blocks in a single data block and return the target block | 
|  | * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses | 
|  | * hashes to locate erasures. | 
|  | */ | 
|  | static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, | 
|  | struct dm_verity_fec_io *fio, u64 rsb, u64 offset, | 
|  | bool use_erasures) | 
|  | { | 
|  | int r, neras = 0; | 
|  | unsigned pos; | 
|  |  | 
|  | r = fec_alloc_bufs(v, fio); | 
|  | if (unlikely(r < 0)) | 
|  | return r; | 
|  |  | 
|  | for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { | 
|  | fec_init_bufs(v, fio); | 
|  |  | 
|  | r = fec_read_bufs(v, io, rsb, offset, pos, | 
|  | use_erasures ? &neras : NULL); | 
|  | if (unlikely(r < 0)) | 
|  | return r; | 
|  |  | 
|  | r = fec_decode_bufs(v, fio, rsb, r, pos, neras); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; | 
|  | } | 
|  |  | 
|  | /* Always re-validate the corrected block against the expected hash */ | 
|  | r = verity_hash(v, verity_io_hash_req(v, io), fio->output, | 
|  | 1 << v->data_dev_block_bits, | 
|  | verity_io_real_digest(v, io)); | 
|  | if (unlikely(r < 0)) | 
|  | return r; | 
|  |  | 
|  | if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), | 
|  | v->digest_size)) { | 
|  | DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", | 
|  | v->data_dev->name, (unsigned long long)rsb, neras); | 
|  | return -EILSEQ; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, | 
|  | size_t len) | 
|  | { | 
|  | struct dm_verity_fec_io *fio = fec_io(io); | 
|  |  | 
|  | memcpy(data, &fio->output[fio->output_pos], len); | 
|  | fio->output_pos += len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Correct errors in a block. Copies corrected block to dest if non-NULL, | 
|  | * otherwise to a bio_vec starting from iter. | 
|  | */ | 
|  | int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, | 
|  | enum verity_block_type type, sector_t block, u8 *dest, | 
|  | struct bvec_iter *iter) | 
|  | { | 
|  | int r; | 
|  | struct dm_verity_fec_io *fio = fec_io(io); | 
|  | u64 offset, res, rsb; | 
|  |  | 
|  | if (!verity_fec_is_enabled(v)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { | 
|  | DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | fio->level++; | 
|  |  | 
|  | if (type == DM_VERITY_BLOCK_TYPE_METADATA) | 
|  | block += v->data_blocks; | 
|  |  | 
|  | /* | 
|  | * For RS(M, N), the continuous FEC data is divided into blocks of N | 
|  | * bytes. Since block size may not be divisible by N, the last block | 
|  | * is zero padded when decoding. | 
|  | * | 
|  | * Each byte of the block is covered by a different RS(M, N) code, | 
|  | * and each code is interleaved over N blocks to make it less likely | 
|  | * that bursty corruption will leave us in unrecoverable state. | 
|  | */ | 
|  |  | 
|  | offset = block << v->data_dev_block_bits; | 
|  | res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); | 
|  |  | 
|  | /* | 
|  | * The base RS block we can feed to the interleaver to find out all | 
|  | * blocks required for decoding. | 
|  | */ | 
|  | rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); | 
|  |  | 
|  | /* | 
|  | * Locating erasures is slow, so attempt to recover the block without | 
|  | * them first. Do a second attempt with erasures if the corruption is | 
|  | * bad enough. | 
|  | */ | 
|  | r = fec_decode_rsb(v, io, fio, rsb, offset, false); | 
|  | if (r < 0) { | 
|  | r = fec_decode_rsb(v, io, fio, rsb, offset, true); | 
|  | if (r < 0) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (dest) | 
|  | memcpy(dest, fio->output, 1 << v->data_dev_block_bits); | 
|  | else if (iter) { | 
|  | fio->output_pos = 0; | 
|  | r = verity_for_bv_block(v, io, iter, fec_bv_copy); | 
|  | } | 
|  |  | 
|  | done: | 
|  | fio->level--; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up per-bio data. | 
|  | */ | 
|  | void verity_fec_finish_io(struct dm_verity_io *io) | 
|  | { | 
|  | unsigned n; | 
|  | struct dm_verity_fec *f = io->v->fec; | 
|  | struct dm_verity_fec_io *fio = fec_io(io); | 
|  |  | 
|  | if (!verity_fec_is_enabled(io->v)) | 
|  | return; | 
|  |  | 
|  | mempool_free(fio->rs, &f->rs_pool); | 
|  |  | 
|  | fec_for_each_prealloc_buffer(n) | 
|  | mempool_free(fio->bufs[n], &f->prealloc_pool); | 
|  |  | 
|  | fec_for_each_extra_buffer(fio, n) | 
|  | mempool_free(fio->bufs[n], &f->extra_pool); | 
|  |  | 
|  | mempool_free(fio->output, &f->output_pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize per-bio data. | 
|  | */ | 
|  | void verity_fec_init_io(struct dm_verity_io *io) | 
|  | { | 
|  | struct dm_verity_fec_io *fio = fec_io(io); | 
|  |  | 
|  | if (!verity_fec_is_enabled(io->v)) | 
|  | return; | 
|  |  | 
|  | fio->rs = NULL; | 
|  | memset(fio->bufs, 0, sizeof(fio->bufs)); | 
|  | fio->nbufs = 0; | 
|  | fio->output = NULL; | 
|  | fio->level = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append feature arguments and values to the status table. | 
|  | */ | 
|  | unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz, | 
|  | char *result, unsigned maxlen) | 
|  | { | 
|  | if (!verity_fec_is_enabled(v)) | 
|  | return sz; | 
|  |  | 
|  | DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " | 
|  | DM_VERITY_OPT_FEC_BLOCKS " %llu " | 
|  | DM_VERITY_OPT_FEC_START " %llu " | 
|  | DM_VERITY_OPT_FEC_ROOTS " %d", | 
|  | v->fec->dev->name, | 
|  | (unsigned long long)v->fec->blocks, | 
|  | (unsigned long long)v->fec->start, | 
|  | v->fec->roots); | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | void verity_fec_dtr(struct dm_verity *v) | 
|  | { | 
|  | struct dm_verity_fec *f = v->fec; | 
|  |  | 
|  | if (!verity_fec_is_enabled(v)) | 
|  | goto out; | 
|  |  | 
|  | mempool_exit(&f->rs_pool); | 
|  | mempool_exit(&f->prealloc_pool); | 
|  | mempool_exit(&f->extra_pool); | 
|  | kmem_cache_destroy(f->cache); | 
|  |  | 
|  | if (f->data_bufio) | 
|  | dm_bufio_client_destroy(f->data_bufio); | 
|  | if (f->bufio) | 
|  | dm_bufio_client_destroy(f->bufio); | 
|  |  | 
|  | if (f->dev) | 
|  | dm_put_device(v->ti, f->dev); | 
|  | out: | 
|  | kfree(f); | 
|  | v->fec = NULL; | 
|  | } | 
|  |  | 
|  | static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) | 
|  | { | 
|  | struct dm_verity *v = (struct dm_verity *)pool_data; | 
|  |  | 
|  | return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask); | 
|  | } | 
|  |  | 
|  | static void fec_rs_free(void *element, void *pool_data) | 
|  | { | 
|  | struct rs_control *rs = (struct rs_control *)element; | 
|  |  | 
|  | if (rs) | 
|  | free_rs(rs); | 
|  | } | 
|  |  | 
|  | bool verity_is_fec_opt_arg(const char *arg_name) | 
|  | { | 
|  | return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || | 
|  | !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || | 
|  | !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || | 
|  | !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); | 
|  | } | 
|  |  | 
|  | int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, | 
|  | unsigned *argc, const char *arg_name) | 
|  | { | 
|  | int r; | 
|  | struct dm_target *ti = v->ti; | 
|  | const char *arg_value; | 
|  | unsigned long long num_ll; | 
|  | unsigned char num_c; | 
|  | char dummy; | 
|  |  | 
|  | if (!*argc) { | 
|  | ti->error = "FEC feature arguments require a value"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | arg_value = dm_shift_arg(as); | 
|  | (*argc)--; | 
|  |  | 
|  | if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { | 
|  | r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev); | 
|  | if (r) { | 
|  | ti->error = "FEC device lookup failed"; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { | 
|  | if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || | 
|  | ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) | 
|  | >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { | 
|  | ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; | 
|  | return -EINVAL; | 
|  | } | 
|  | v->fec->blocks = num_ll; | 
|  |  | 
|  | } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { | 
|  | if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || | 
|  | ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> | 
|  | (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { | 
|  | ti->error = "Invalid " DM_VERITY_OPT_FEC_START; | 
|  | return -EINVAL; | 
|  | } | 
|  | v->fec->start = num_ll; | 
|  |  | 
|  | } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { | 
|  | if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || | 
|  | num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || | 
|  | num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { | 
|  | ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; | 
|  | return -EINVAL; | 
|  | } | 
|  | v->fec->roots = num_c; | 
|  |  | 
|  | } else { | 
|  | ti->error = "Unrecognized verity FEC feature request"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. | 
|  | */ | 
|  | int verity_fec_ctr_alloc(struct dm_verity *v) | 
|  | { | 
|  | struct dm_verity_fec *f; | 
|  |  | 
|  | f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); | 
|  | if (!f) { | 
|  | v->ti->error = "Cannot allocate FEC structure"; | 
|  | return -ENOMEM; | 
|  | } | 
|  | v->fec = f; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate arguments and preallocate memory. Must be called after arguments | 
|  | * have been parsed using verity_fec_parse_opt_args. | 
|  | */ | 
|  | int verity_fec_ctr(struct dm_verity *v) | 
|  | { | 
|  | struct dm_verity_fec *f = v->fec; | 
|  | struct dm_target *ti = v->ti; | 
|  | u64 hash_blocks; | 
|  | int ret; | 
|  |  | 
|  | if (!verity_fec_is_enabled(v)) { | 
|  | verity_fec_dtr(v); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FEC is computed over data blocks, possible metadata, and | 
|  | * hash blocks. In other words, FEC covers total of fec_blocks | 
|  | * blocks consisting of the following: | 
|  | * | 
|  | *  data blocks | hash blocks | metadata (optional) | 
|  | * | 
|  | * We allow metadata after hash blocks to support a use case | 
|  | * where all data is stored on the same device and FEC covers | 
|  | * the entire area. | 
|  | * | 
|  | * If metadata is included, we require it to be available on the | 
|  | * hash device after the hash blocks. | 
|  | */ | 
|  |  | 
|  | hash_blocks = v->hash_blocks - v->hash_start; | 
|  |  | 
|  | /* | 
|  | * Require matching block sizes for data and hash devices for | 
|  | * simplicity. | 
|  | */ | 
|  | if (v->data_dev_block_bits != v->hash_dev_block_bits) { | 
|  | ti->error = "Block sizes must match to use FEC"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!f->roots) { | 
|  | ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; | 
|  | return -EINVAL; | 
|  | } | 
|  | f->rsn = DM_VERITY_FEC_RSM - f->roots; | 
|  |  | 
|  | if (!f->blocks) { | 
|  | ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | f->rounds = f->blocks; | 
|  | if (sector_div(f->rounds, f->rsn)) | 
|  | f->rounds++; | 
|  |  | 
|  | /* | 
|  | * Due to optional metadata, f->blocks can be larger than | 
|  | * data_blocks and hash_blocks combined. | 
|  | */ | 
|  | if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { | 
|  | ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Metadata is accessed through the hash device, so we require | 
|  | * it to be large enough. | 
|  | */ | 
|  | f->hash_blocks = f->blocks - v->data_blocks; | 
|  | if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { | 
|  | ti->error = "Hash device is too small for " | 
|  | DM_VERITY_OPT_FEC_BLOCKS; | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | f->bufio = dm_bufio_client_create(f->dev->bdev, | 
|  | 1 << v->data_dev_block_bits, | 
|  | 1, 0, NULL, NULL); | 
|  | if (IS_ERR(f->bufio)) { | 
|  | ti->error = "Cannot initialize FEC bufio client"; | 
|  | return PTR_ERR(f->bufio); | 
|  | } | 
|  |  | 
|  | if (dm_bufio_get_device_size(f->bufio) < | 
|  | ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) { | 
|  | ti->error = "FEC device is too small"; | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, | 
|  | 1 << v->data_dev_block_bits, | 
|  | 1, 0, NULL, NULL); | 
|  | if (IS_ERR(f->data_bufio)) { | 
|  | ti->error = "Cannot initialize FEC data bufio client"; | 
|  | return PTR_ERR(f->data_bufio); | 
|  | } | 
|  |  | 
|  | if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { | 
|  | ti->error = "Data device is too small"; | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | /* Preallocate an rs_control structure for each worker thread */ | 
|  | ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc, | 
|  | fec_rs_free, (void *) v); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate RS pool"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | f->cache = kmem_cache_create("dm_verity_fec_buffers", | 
|  | f->rsn << DM_VERITY_FEC_BUF_RS_BITS, | 
|  | 0, 0, NULL); | 
|  | if (!f->cache) { | 
|  | ti->error = "Cannot create FEC buffer cache"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ | 
|  | ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() * | 
|  | DM_VERITY_FEC_BUF_PREALLOC, | 
|  | f->cache); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate FEC buffer prealloc pool"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate FEC buffer extra pool"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Preallocate an output buffer for each thread */ | 
|  | ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(), | 
|  | 1 << v->data_dev_block_bits); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate FEC output pool"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Reserve space for our per-bio data */ | 
|  | ti->per_io_data_size += sizeof(struct dm_verity_fec_io); | 
|  |  | 
|  | return 0; | 
|  | } |