|  | /* | 
|  | * PXA2xx SPI DMA engine support. | 
|  | * | 
|  | * Copyright (C) 2013, Intel Corporation | 
|  | * Author: Mika Westerberg <mika.westerberg@linux.intel.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/pxa2xx_ssp.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/pxa2xx_spi.h> | 
|  |  | 
|  | #include "spi-pxa2xx.h" | 
|  |  | 
|  | static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, | 
|  | bool error) | 
|  | { | 
|  | struct spi_message *msg = drv_data->master->cur_msg; | 
|  |  | 
|  | /* | 
|  | * It is possible that one CPU is handling ROR interrupt and other | 
|  | * just gets DMA completion. Calling pump_transfers() twice for the | 
|  | * same transfer leads to problems thus we prevent concurrent calls | 
|  | * by using ->dma_running. | 
|  | */ | 
|  | if (atomic_dec_and_test(&drv_data->dma_running)) { | 
|  | /* | 
|  | * If the other CPU is still handling the ROR interrupt we | 
|  | * might not know about the error yet. So we re-check the | 
|  | * ROR bit here before we clear the status register. | 
|  | */ | 
|  | if (!error) { | 
|  | u32 status = pxa2xx_spi_read(drv_data, SSSR) | 
|  | & drv_data->mask_sr; | 
|  | error = status & SSSR_ROR; | 
|  | } | 
|  |  | 
|  | /* Clear status & disable interrupts */ | 
|  | pxa2xx_spi_write(drv_data, SSCR1, | 
|  | pxa2xx_spi_read(drv_data, SSCR1) | 
|  | & ~drv_data->dma_cr1); | 
|  | write_SSSR_CS(drv_data, drv_data->clear_sr); | 
|  | if (!pxa25x_ssp_comp(drv_data)) | 
|  | pxa2xx_spi_write(drv_data, SSTO, 0); | 
|  |  | 
|  | if (error) { | 
|  | /* In case we got an error we disable the SSP now */ | 
|  | pxa2xx_spi_write(drv_data, SSCR0, | 
|  | pxa2xx_spi_read(drv_data, SSCR0) | 
|  | & ~SSCR0_SSE); | 
|  | msg->status = -EIO; | 
|  | } | 
|  |  | 
|  | spi_finalize_current_transfer(drv_data->master); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_dma_callback(void *data) | 
|  | { | 
|  | pxa2xx_spi_dma_transfer_complete(data, false); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, | 
|  | enum dma_transfer_direction dir, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct chip_data *chip = | 
|  | spi_get_ctldata(drv_data->master->cur_msg->spi); | 
|  | enum dma_slave_buswidth width; | 
|  | struct dma_slave_config cfg; | 
|  | struct dma_chan *chan; | 
|  | struct sg_table *sgt; | 
|  | int ret; | 
|  |  | 
|  | switch (drv_data->n_bytes) { | 
|  | case 1: | 
|  | width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  | break; | 
|  | case 2: | 
|  | width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  | break; | 
|  | default: | 
|  | width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memset(&cfg, 0, sizeof(cfg)); | 
|  | cfg.direction = dir; | 
|  |  | 
|  | if (dir == DMA_MEM_TO_DEV) { | 
|  | cfg.dst_addr = drv_data->ssdr_physical; | 
|  | cfg.dst_addr_width = width; | 
|  | cfg.dst_maxburst = chip->dma_burst_size; | 
|  |  | 
|  | sgt = &xfer->tx_sg; | 
|  | chan = drv_data->master->dma_tx; | 
|  | } else { | 
|  | cfg.src_addr = drv_data->ssdr_physical; | 
|  | cfg.src_addr_width = width; | 
|  | cfg.src_maxburst = chip->dma_burst_size; | 
|  |  | 
|  | sgt = &xfer->rx_sg; | 
|  | chan = drv_data->master->dma_rx; | 
|  | } | 
|  |  | 
|  | ret = dmaengine_slave_config(chan, &cfg); | 
|  | if (ret) { | 
|  | dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | } | 
|  |  | 
|  | irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; | 
|  | if (status & SSSR_ROR) { | 
|  | dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); | 
|  |  | 
|  | dmaengine_terminate_async(drv_data->master->dma_rx); | 
|  | dmaengine_terminate_async(drv_data->master->dma_tx); | 
|  |  | 
|  | pxa2xx_spi_dma_transfer_complete(drv_data, true); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct dma_async_tx_descriptor *tx_desc, *rx_desc; | 
|  | int err; | 
|  |  | 
|  | tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer); | 
|  | if (!tx_desc) { | 
|  | dev_err(&drv_data->pdev->dev, | 
|  | "failed to get DMA TX descriptor\n"); | 
|  | err = -EBUSY; | 
|  | goto err_tx; | 
|  | } | 
|  |  | 
|  | rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer); | 
|  | if (!rx_desc) { | 
|  | dev_err(&drv_data->pdev->dev, | 
|  | "failed to get DMA RX descriptor\n"); | 
|  | err = -EBUSY; | 
|  | goto err_rx; | 
|  | } | 
|  |  | 
|  | /* We are ready when RX completes */ | 
|  | rx_desc->callback = pxa2xx_spi_dma_callback; | 
|  | rx_desc->callback_param = drv_data; | 
|  |  | 
|  | dmaengine_submit(rx_desc); | 
|  | dmaengine_submit(tx_desc); | 
|  | return 0; | 
|  |  | 
|  | err_rx: | 
|  | dmaengine_terminate_async(drv_data->master->dma_tx); | 
|  | err_tx: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void pxa2xx_spi_dma_start(struct driver_data *drv_data) | 
|  | { | 
|  | dma_async_issue_pending(drv_data->master->dma_rx); | 
|  | dma_async_issue_pending(drv_data->master->dma_tx); | 
|  |  | 
|  | atomic_set(&drv_data->dma_running, 1); | 
|  | } | 
|  |  | 
|  | void pxa2xx_spi_dma_stop(struct driver_data *drv_data) | 
|  | { | 
|  | atomic_set(&drv_data->dma_running, 0); | 
|  | dmaengine_terminate_sync(drv_data->master->dma_rx); | 
|  | dmaengine_terminate_sync(drv_data->master->dma_tx); | 
|  | } | 
|  |  | 
|  | int pxa2xx_spi_dma_setup(struct driver_data *drv_data) | 
|  | { | 
|  | struct pxa2xx_spi_master *pdata = drv_data->master_info; | 
|  | struct device *dev = &drv_data->pdev->dev; | 
|  | struct spi_controller *master = drv_data->master; | 
|  | dma_cap_mask_t mask; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | master->dma_tx = dma_request_slave_channel_compat(mask, | 
|  | pdata->dma_filter, pdata->tx_param, dev, "tx"); | 
|  | if (!master->dma_tx) | 
|  | return -ENODEV; | 
|  |  | 
|  | master->dma_rx = dma_request_slave_channel_compat(mask, | 
|  | pdata->dma_filter, pdata->rx_param, dev, "rx"); | 
|  | if (!master->dma_rx) { | 
|  | dma_release_channel(master->dma_tx); | 
|  | master->dma_tx = NULL; | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void pxa2xx_spi_dma_release(struct driver_data *drv_data) | 
|  | { | 
|  | struct spi_controller *master = drv_data->master; | 
|  |  | 
|  | if (master->dma_rx) { | 
|  | dmaengine_terminate_sync(master->dma_rx); | 
|  | dma_release_channel(master->dma_rx); | 
|  | master->dma_rx = NULL; | 
|  | } | 
|  | if (master->dma_tx) { | 
|  | dmaengine_terminate_sync(master->dma_tx); | 
|  | dma_release_channel(master->dma_tx); | 
|  | master->dma_tx = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, | 
|  | struct spi_device *spi, | 
|  | u8 bits_per_word, u32 *burst_code, | 
|  | u32 *threshold) | 
|  | { | 
|  | struct pxa2xx_spi_chip *chip_info = spi->controller_data; | 
|  |  | 
|  | /* | 
|  | * If the DMA burst size is given in chip_info we use that, | 
|  | * otherwise we use the default. Also we use the default FIFO | 
|  | * thresholds for now. | 
|  | */ | 
|  | *burst_code = chip_info ? chip_info->dma_burst_size : 1; | 
|  | *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) | 
|  | | SSCR1_TxTresh(TX_THRESH_DFLT); | 
|  |  | 
|  | return 0; | 
|  | } |