|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/shmem_fs.h> | 
|  |  | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | enum scan_result { | 
|  | SCAN_FAIL, | 
|  | SCAN_SUCCEED, | 
|  | SCAN_PMD_NULL, | 
|  | SCAN_EXCEED_NONE_PTE, | 
|  | SCAN_PTE_NON_PRESENT, | 
|  | SCAN_PAGE_RO, | 
|  | SCAN_LACK_REFERENCED_PAGE, | 
|  | SCAN_PAGE_NULL, | 
|  | SCAN_SCAN_ABORT, | 
|  | SCAN_PAGE_COUNT, | 
|  | SCAN_PAGE_LRU, | 
|  | SCAN_PAGE_LOCK, | 
|  | SCAN_PAGE_ANON, | 
|  | SCAN_PAGE_COMPOUND, | 
|  | SCAN_ANY_PROCESS, | 
|  | SCAN_VMA_NULL, | 
|  | SCAN_VMA_CHECK, | 
|  | SCAN_ADDRESS_RANGE, | 
|  | SCAN_SWAP_CACHE_PAGE, | 
|  | SCAN_DEL_PAGE_LRU, | 
|  | SCAN_ALLOC_HUGE_PAGE_FAIL, | 
|  | SCAN_CGROUP_CHARGE_FAIL, | 
|  | SCAN_EXCEED_SWAP_PTE, | 
|  | SCAN_TRUNCATED, | 
|  | }; | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/huge_memory.h> | 
|  |  | 
|  | /* default scan 8*512 pte (or vmas) every 30 second */ | 
|  | static unsigned int khugepaged_pages_to_scan __read_mostly; | 
|  | static unsigned int khugepaged_pages_collapsed; | 
|  | static unsigned int khugepaged_full_scans; | 
|  | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | 
|  | /* during fragmentation poll the hugepage allocator once every minute */ | 
|  | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | 
|  | static unsigned long khugepaged_sleep_expire; | 
|  | static DEFINE_SPINLOCK(khugepaged_mm_lock); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | 
|  | /* | 
|  | * default collapse hugepages if there is at least one pte mapped like | 
|  | * it would have happened if the vma was large enough during page | 
|  | * fault. | 
|  | */ | 
|  | static unsigned int khugepaged_max_ptes_none __read_mostly; | 
|  | static unsigned int khugepaged_max_ptes_swap __read_mostly; | 
|  |  | 
|  | #define MM_SLOTS_HASH_BITS 10 | 
|  | static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
|  |  | 
|  | static struct kmem_cache *mm_slot_cache __read_mostly; | 
|  |  | 
|  | /** | 
|  | * struct mm_slot - hash lookup from mm to mm_slot | 
|  | * @hash: hash collision list | 
|  | * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | 
|  | * @mm: the mm that this information is valid for | 
|  | */ | 
|  | struct mm_slot { | 
|  | struct hlist_node hash; | 
|  | struct list_head mm_node; | 
|  | struct mm_struct *mm; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct khugepaged_scan - cursor for scanning | 
|  | * @mm_head: the head of the mm list to scan | 
|  | * @mm_slot: the current mm_slot we are scanning | 
|  | * @address: the next address inside that to be scanned | 
|  | * | 
|  | * There is only the one khugepaged_scan instance of this cursor structure. | 
|  | */ | 
|  | struct khugepaged_scan { | 
|  | struct list_head mm_head; | 
|  | struct mm_slot *mm_slot; | 
|  | unsigned long address; | 
|  | }; | 
|  |  | 
|  | static struct khugepaged_scan khugepaged_scan = { | 
|  | .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); | 
|  | } | 
|  |  | 
|  | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned long msecs; | 
|  | int err; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &msecs); | 
|  | if (err || msecs > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_scan_sleep_millisecs = msecs; | 
|  | khugepaged_sleep_expire = 0; | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute scan_sleep_millisecs_attr = | 
|  | __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | 
|  | scan_sleep_millisecs_store); | 
|  |  | 
|  | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | 
|  | } | 
|  |  | 
|  | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned long msecs; | 
|  | int err; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &msecs); | 
|  | if (err || msecs > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_alloc_sleep_millisecs = msecs; | 
|  | khugepaged_sleep_expire = 0; | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute alloc_sleep_millisecs_attr = | 
|  | __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | 
|  | alloc_sleep_millisecs_store); | 
|  |  | 
|  | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_pages_to_scan); | 
|  | } | 
|  | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long pages; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &pages); | 
|  | if (err || !pages || pages > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_pages_to_scan = pages; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute pages_to_scan_attr = | 
|  | __ATTR(pages_to_scan, 0644, pages_to_scan_show, | 
|  | pages_to_scan_store); | 
|  |  | 
|  | static ssize_t pages_collapsed_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_pages_collapsed); | 
|  | } | 
|  | static struct kobj_attribute pages_collapsed_attr = | 
|  | __ATTR_RO(pages_collapsed); | 
|  |  | 
|  | static ssize_t full_scans_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_full_scans); | 
|  | } | 
|  | static struct kobj_attribute full_scans_attr = | 
|  | __ATTR_RO(full_scans); | 
|  |  | 
|  | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return single_hugepage_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  | } | 
|  | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return single_hugepage_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  | } | 
|  | static struct kobj_attribute khugepaged_defrag_attr = | 
|  | __ATTR(defrag, 0644, khugepaged_defrag_show, | 
|  | khugepaged_defrag_store); | 
|  |  | 
|  | /* | 
|  | * max_ptes_none controls if khugepaged should collapse hugepages over | 
|  | * any unmapped ptes in turn potentially increasing the memory | 
|  | * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | 
|  | * reduce the available free memory in the system as it | 
|  | * runs. Increasing max_ptes_none will instead potentially reduce the | 
|  | * free memory in the system during the khugepaged scan. | 
|  | */ | 
|  | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_max_ptes_none); | 
|  | } | 
|  | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long max_ptes_none; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &max_ptes_none); | 
|  | if (err || max_ptes_none > HPAGE_PMD_NR-1) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_max_ptes_none = max_ptes_none; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute khugepaged_max_ptes_none_attr = | 
|  | __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | 
|  | khugepaged_max_ptes_none_store); | 
|  |  | 
|  | static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_max_ptes_swap); | 
|  | } | 
|  |  | 
|  | static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long max_ptes_swap; | 
|  |  | 
|  | err  = kstrtoul(buf, 10, &max_ptes_swap); | 
|  | if (err || max_ptes_swap > HPAGE_PMD_NR-1) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_max_ptes_swap = max_ptes_swap; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute khugepaged_max_ptes_swap_attr = | 
|  | __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, | 
|  | khugepaged_max_ptes_swap_store); | 
|  |  | 
|  | static struct attribute *khugepaged_attr[] = { | 
|  | &khugepaged_defrag_attr.attr, | 
|  | &khugepaged_max_ptes_none_attr.attr, | 
|  | &pages_to_scan_attr.attr, | 
|  | &pages_collapsed_attr.attr, | 
|  | &full_scans_attr.attr, | 
|  | &scan_sleep_millisecs_attr.attr, | 
|  | &alloc_sleep_millisecs_attr.attr, | 
|  | &khugepaged_max_ptes_swap_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | struct attribute_group khugepaged_attr_group = { | 
|  | .attrs = khugepaged_attr, | 
|  | .name = "khugepaged", | 
|  | }; | 
|  | #endif /* CONFIG_SYSFS */ | 
|  |  | 
|  | #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) | 
|  |  | 
|  | int hugepage_madvise(struct vm_area_struct *vma, | 
|  | unsigned long *vm_flags, int advice) | 
|  | { | 
|  | switch (advice) { | 
|  | case MADV_HUGEPAGE: | 
|  | #ifdef CONFIG_S390 | 
|  | /* | 
|  | * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 | 
|  | * can't handle this properly after s390_enable_sie, so we simply | 
|  | * ignore the madvise to prevent qemu from causing a SIGSEGV. | 
|  | */ | 
|  | if (mm_has_pgste(vma->vm_mm)) | 
|  | return 0; | 
|  | #endif | 
|  | *vm_flags &= ~VM_NOHUGEPAGE; | 
|  | *vm_flags |= VM_HUGEPAGE; | 
|  | /* | 
|  | * If the vma become good for khugepaged to scan, | 
|  | * register it here without waiting a page fault that | 
|  | * may not happen any time soon. | 
|  | */ | 
|  | if (!(*vm_flags & VM_NO_KHUGEPAGED) && | 
|  | khugepaged_enter_vma_merge(vma, *vm_flags)) | 
|  | return -ENOMEM; | 
|  | break; | 
|  | case MADV_NOHUGEPAGE: | 
|  | *vm_flags &= ~VM_HUGEPAGE; | 
|  | *vm_flags |= VM_NOHUGEPAGE; | 
|  | /* | 
|  | * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | 
|  | * this vma even if we leave the mm registered in khugepaged if | 
|  | * it got registered before VM_NOHUGEPAGE was set. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init khugepaged_init(void) | 
|  | { | 
|  | mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | 
|  | sizeof(struct mm_slot), | 
|  | __alignof__(struct mm_slot), 0, NULL); | 
|  | if (!mm_slot_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; | 
|  | khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; | 
|  | khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init khugepaged_destroy(void) | 
|  | { | 
|  | kmem_cache_destroy(mm_slot_cache); | 
|  | } | 
|  |  | 
|  | static inline struct mm_slot *alloc_mm_slot(void) | 
|  | { | 
|  | if (!mm_slot_cache)	/* initialization failed */ | 
|  | return NULL; | 
|  | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static inline void free_mm_slot(struct mm_slot *mm_slot) | 
|  | { | 
|  | kmem_cache_free(mm_slot_cache, mm_slot); | 
|  | } | 
|  |  | 
|  | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  |  | 
|  | hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) | 
|  | if (mm == mm_slot->mm) | 
|  | return mm_slot; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void insert_to_mm_slots_hash(struct mm_struct *mm, | 
|  | struct mm_slot *mm_slot) | 
|  | { | 
|  | mm_slot->mm = mm; | 
|  | hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); | 
|  | } | 
|  |  | 
|  | static inline int khugepaged_test_exit(struct mm_struct *mm) | 
|  | { | 
|  | return atomic_read(&mm->mm_users) == 0; | 
|  | } | 
|  |  | 
|  | static bool hugepage_vma_check(struct vm_area_struct *vma, | 
|  | unsigned long vm_flags) | 
|  | { | 
|  | if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || | 
|  | (vm_flags & VM_NOHUGEPAGE) || | 
|  | test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) | 
|  | return false; | 
|  | if (shmem_file(vma->vm_file)) { | 
|  | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) | 
|  | return false; | 
|  | return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, | 
|  | HPAGE_PMD_NR); | 
|  | } | 
|  | if (!vma->anon_vma || vma->vm_ops) | 
|  | return false; | 
|  | if (is_vma_temporary_stack(vma)) | 
|  | return false; | 
|  | return !(vm_flags & VM_NO_KHUGEPAGED); | 
|  | } | 
|  |  | 
|  | int __khugepaged_enter(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | int wakeup; | 
|  |  | 
|  | mm_slot = alloc_mm_slot(); | 
|  | if (!mm_slot) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* __khugepaged_exit() must not run from under us */ | 
|  | VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); | 
|  | if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { | 
|  | free_mm_slot(mm_slot); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | insert_to_mm_slots_hash(mm, mm_slot); | 
|  | /* | 
|  | * Insert just behind the scanning cursor, to let the area settle | 
|  | * down a little. | 
|  | */ | 
|  | wakeup = list_empty(&khugepaged_scan.mm_head); | 
|  | list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | mmgrab(mm); | 
|  | if (wakeup) | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int khugepaged_enter_vma_merge(struct vm_area_struct *vma, | 
|  | unsigned long vm_flags) | 
|  | { | 
|  | unsigned long hstart, hend; | 
|  |  | 
|  | /* | 
|  | * khugepaged does not yet work on non-shmem files or special | 
|  | * mappings. And file-private shmem THP is not supported. | 
|  | */ | 
|  | if (!hugepage_vma_check(vma, vm_flags)) | 
|  | return 0; | 
|  |  | 
|  | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = vma->vm_end & HPAGE_PMD_MASK; | 
|  | if (hstart < hend) | 
|  | return khugepaged_enter(vma, vm_flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __khugepaged_exit(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | int free = 0; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | mm_slot = get_mm_slot(mm); | 
|  | if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | 
|  | hash_del(&mm_slot->hash); | 
|  | list_del(&mm_slot->mm_node); | 
|  | free = 1; | 
|  | } | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | if (free) { | 
|  | clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
|  | free_mm_slot(mm_slot); | 
|  | mmdrop(mm); | 
|  | } else if (mm_slot) { | 
|  | /* | 
|  | * This is required to serialize against | 
|  | * khugepaged_test_exit() (which is guaranteed to run | 
|  | * under mmap sem read mode). Stop here (after we | 
|  | * return all pagetables will be destroyed) until | 
|  | * khugepaged has finished working on the pagetables | 
|  | * under the mmap_sem. | 
|  | */ | 
|  | down_write(&mm->mmap_sem); | 
|  | up_write(&mm->mmap_sem); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void release_pte_page(struct page *page) | 
|  | { | 
|  | dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page)); | 
|  | unlock_page(page); | 
|  | putback_lru_page(page); | 
|  | } | 
|  |  | 
|  | static void release_pte_pages(pte_t *pte, pte_t *_pte) | 
|  | { | 
|  | while (--_pte >= pte) { | 
|  | pte_t pteval = *_pte; | 
|  | if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval))) | 
|  | release_pte_page(pte_page(pteval)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pte_t *pte) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | pte_t *_pte; | 
|  | int none_or_zero = 0, result = 0, referenced = 0; | 
|  | bool writable = false; | 
|  |  | 
|  | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; | 
|  | _pte++, address += PAGE_SIZE) { | 
|  | pte_t pteval = *_pte; | 
|  | if (pte_none(pteval) || (pte_present(pteval) && | 
|  | is_zero_pfn(pte_pfn(pteval)))) { | 
|  | if (!userfaultfd_armed(vma) && | 
|  | ++none_or_zero <= khugepaged_max_ptes_none) { | 
|  | continue; | 
|  | } else { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (!pte_present(pteval)) { | 
|  | result = SCAN_PTE_NON_PRESENT; | 
|  | goto out; | 
|  | } | 
|  | page = vm_normal_page(vma, address, pteval); | 
|  | if (unlikely(!page)) { | 
|  | result = SCAN_PAGE_NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* TODO: teach khugepaged to collapse THP mapped with pte */ | 
|  | if (PageCompound(page)) { | 
|  | result = SCAN_PAGE_COMPOUND; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageAnon(page), page); | 
|  |  | 
|  | /* | 
|  | * We can do it before isolate_lru_page because the | 
|  | * page can't be freed from under us. NOTE: PG_lock | 
|  | * is needed to serialize against split_huge_page | 
|  | * when invoked from the VM. | 
|  | */ | 
|  | if (!trylock_page(page)) { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cannot use mapcount: can't collapse if there's a gup pin. | 
|  | * The page must only be referenced by the scanned process | 
|  | * and page swap cache. | 
|  | */ | 
|  | if (page_count(page) != 1 + PageSwapCache(page)) { | 
|  | unlock_page(page); | 
|  | result = SCAN_PAGE_COUNT; | 
|  | goto out; | 
|  | } | 
|  | if (pte_write(pteval)) { | 
|  | writable = true; | 
|  | } else { | 
|  | if (PageSwapCache(page) && | 
|  | !reuse_swap_page(page, NULL)) { | 
|  | unlock_page(page); | 
|  | result = SCAN_SWAP_CACHE_PAGE; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Page is not in the swap cache. It can be collapsed | 
|  | * into a THP. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Isolate the page to avoid collapsing an hugepage | 
|  | * currently in use by the VM. | 
|  | */ | 
|  | if (isolate_lru_page(page)) { | 
|  | unlock_page(page); | 
|  | result = SCAN_DEL_PAGE_LRU; | 
|  | goto out; | 
|  | } | 
|  | inc_node_page_state(page, | 
|  | NR_ISOLATED_ANON + page_is_file_cache(page)); | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  |  | 
|  | /* There should be enough young pte to collapse the page */ | 
|  | if (pte_young(pteval) || | 
|  | page_is_young(page) || PageReferenced(page) || | 
|  | mmu_notifier_test_young(vma->vm_mm, address)) | 
|  | referenced++; | 
|  | } | 
|  | if (likely(writable)) { | 
|  | if (likely(referenced)) { | 
|  | result = SCAN_SUCCEED; | 
|  | trace_mm_collapse_huge_page_isolate(page, none_or_zero, | 
|  | referenced, writable, result); | 
|  | return 1; | 
|  | } | 
|  | } else { | 
|  | result = SCAN_PAGE_RO; | 
|  | } | 
|  |  | 
|  | out: | 
|  | release_pte_pages(pte, _pte); | 
|  | trace_mm_collapse_huge_page_isolate(page, none_or_zero, | 
|  | referenced, writable, result); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | spinlock_t *ptl) | 
|  | { | 
|  | pte_t *_pte; | 
|  | for (_pte = pte; _pte < pte + HPAGE_PMD_NR; | 
|  | _pte++, page++, address += PAGE_SIZE) { | 
|  | pte_t pteval = *_pte; | 
|  | struct page *src_page; | 
|  |  | 
|  | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
|  | clear_user_highpage(page, address); | 
|  | add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | 
|  | if (is_zero_pfn(pte_pfn(pteval))) { | 
|  | /* | 
|  | * ptl mostly unnecessary. | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | /* | 
|  | * paravirt calls inside pte_clear here are | 
|  | * superfluous. | 
|  | */ | 
|  | pte_clear(vma->vm_mm, address, _pte); | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | } else { | 
|  | src_page = pte_page(pteval); | 
|  | copy_user_highpage(page, src_page, address, vma); | 
|  | VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); | 
|  | release_pte_page(src_page); | 
|  | /* | 
|  | * ptl mostly unnecessary, but preempt has to | 
|  | * be disabled to update the per-cpu stats | 
|  | * inside page_remove_rmap(). | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | /* | 
|  | * paravirt calls inside pte_clear here are | 
|  | * superfluous. | 
|  | */ | 
|  | pte_clear(vma->vm_mm, address, _pte); | 
|  | page_remove_rmap(src_page, false); | 
|  | spin_unlock(ptl); | 
|  | free_page_and_swap_cache(src_page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void khugepaged_alloc_sleep(void) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | add_wait_queue(&khugepaged_wait, &wait); | 
|  | freezable_schedule_timeout_interruptible( | 
|  | msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | 
|  | remove_wait_queue(&khugepaged_wait, &wait); | 
|  | } | 
|  |  | 
|  | static int khugepaged_node_load[MAX_NUMNODES]; | 
|  |  | 
|  | static bool khugepaged_scan_abort(int nid) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * If node_reclaim_mode is disabled, then no extra effort is made to | 
|  | * allocate memory locally. | 
|  | */ | 
|  | if (!node_reclaim_mode) | 
|  | return false; | 
|  |  | 
|  | /* If there is a count for this node already, it must be acceptable */ | 
|  | if (khugepaged_node_load[nid]) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | if (!khugepaged_node_load[i]) | 
|  | continue; | 
|  | if (node_distance(nid, i) > RECLAIM_DISTANCE) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ | 
|  | static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) | 
|  | { | 
|  | return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int khugepaged_find_target_node(void) | 
|  | { | 
|  | static int last_khugepaged_target_node = NUMA_NO_NODE; | 
|  | int nid, target_node = 0, max_value = 0; | 
|  |  | 
|  | /* find first node with max normal pages hit */ | 
|  | for (nid = 0; nid < MAX_NUMNODES; nid++) | 
|  | if (khugepaged_node_load[nid] > max_value) { | 
|  | max_value = khugepaged_node_load[nid]; | 
|  | target_node = nid; | 
|  | } | 
|  |  | 
|  | /* do some balance if several nodes have the same hit record */ | 
|  | if (target_node <= last_khugepaged_target_node) | 
|  | for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; | 
|  | nid++) | 
|  | if (max_value == khugepaged_node_load[nid]) { | 
|  | target_node = nid; | 
|  | break; | 
|  | } | 
|  |  | 
|  | last_khugepaged_target_node = target_node; | 
|  | return target_node; | 
|  | } | 
|  |  | 
|  | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
|  | { | 
|  | if (IS_ERR(*hpage)) { | 
|  | if (!*wait) | 
|  | return false; | 
|  |  | 
|  | *wait = false; | 
|  | *hpage = NULL; | 
|  | khugepaged_alloc_sleep(); | 
|  | } else if (*hpage) { | 
|  | put_page(*hpage); | 
|  | *hpage = NULL; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct page * | 
|  | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) | 
|  | { | 
|  | VM_BUG_ON_PAGE(*hpage, *hpage); | 
|  |  | 
|  | *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); | 
|  | if (unlikely(!*hpage)) { | 
|  | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
|  | *hpage = ERR_PTR(-ENOMEM); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | prep_transhuge_page(*hpage); | 
|  | count_vm_event(THP_COLLAPSE_ALLOC); | 
|  | return *hpage; | 
|  | } | 
|  | #else | 
|  | static int khugepaged_find_target_node(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct page *alloc_khugepaged_hugepage(void) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), | 
|  | HPAGE_PMD_ORDER); | 
|  | if (page) | 
|  | prep_transhuge_page(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *khugepaged_alloc_hugepage(bool *wait) | 
|  | { | 
|  | struct page *hpage; | 
|  |  | 
|  | do { | 
|  | hpage = alloc_khugepaged_hugepage(); | 
|  | if (!hpage) { | 
|  | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
|  | if (!*wait) | 
|  | return NULL; | 
|  |  | 
|  | *wait = false; | 
|  | khugepaged_alloc_sleep(); | 
|  | } else | 
|  | count_vm_event(THP_COLLAPSE_ALLOC); | 
|  | } while (unlikely(!hpage) && likely(khugepaged_enabled())); | 
|  |  | 
|  | return hpage; | 
|  | } | 
|  |  | 
|  | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
|  | { | 
|  | if (!*hpage) | 
|  | *hpage = khugepaged_alloc_hugepage(wait); | 
|  |  | 
|  | if (unlikely(!*hpage)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct page * | 
|  | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) | 
|  | { | 
|  | VM_BUG_ON(!*hpage); | 
|  |  | 
|  | return  *hpage; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If mmap_sem temporarily dropped, revalidate vma | 
|  | * before taking mmap_sem. | 
|  | * Return 0 if succeeds, otherwise return none-zero | 
|  | * value (scan code). | 
|  | */ | 
|  |  | 
|  | static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, | 
|  | struct vm_area_struct **vmap) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long hstart, hend; | 
|  |  | 
|  | if (unlikely(khugepaged_test_exit(mm))) | 
|  | return SCAN_ANY_PROCESS; | 
|  |  | 
|  | *vmap = vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | return SCAN_VMA_NULL; | 
|  |  | 
|  | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = vma->vm_end & HPAGE_PMD_MASK; | 
|  | if (address < hstart || address + HPAGE_PMD_SIZE > hend) | 
|  | return SCAN_ADDRESS_RANGE; | 
|  | if (!hugepage_vma_check(vma, vma->vm_flags)) | 
|  | return SCAN_VMA_CHECK; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bring missing pages in from swap, to complete THP collapse. | 
|  | * Only done if khugepaged_scan_pmd believes it is worthwhile. | 
|  | * | 
|  | * Called and returns without pte mapped or spinlocks held, | 
|  | * but with mmap_sem held to protect against vma changes. | 
|  | */ | 
|  |  | 
|  | static bool __collapse_huge_page_swapin(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmd, | 
|  | int referenced) | 
|  | { | 
|  | int swapped_in = 0; | 
|  | vm_fault_t ret = 0; | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = address, | 
|  | .flags = FAULT_FLAG_ALLOW_RETRY, | 
|  | .pmd = pmd, | 
|  | .pgoff = linear_page_index(vma, address), | 
|  | }; | 
|  |  | 
|  | /* we only decide to swapin, if there is enough young ptes */ | 
|  | if (referenced < HPAGE_PMD_NR/2) { | 
|  | trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
|  | return false; | 
|  | } | 
|  | vmf.pte = pte_offset_map(pmd, address); | 
|  | for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE; | 
|  | vmf.pte++, vmf.address += PAGE_SIZE) { | 
|  | vmf.orig_pte = *vmf.pte; | 
|  | if (!is_swap_pte(vmf.orig_pte)) | 
|  | continue; | 
|  | swapped_in++; | 
|  | ret = do_swap_page(&vmf); | 
|  |  | 
|  | /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */ | 
|  | if (ret & VM_FAULT_RETRY) { | 
|  | down_read(&mm->mmap_sem); | 
|  | if (hugepage_vma_revalidate(mm, address, &vmf.vma)) { | 
|  | /* vma is no longer available, don't continue to swapin */ | 
|  | trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
|  | return false; | 
|  | } | 
|  | /* check if the pmd is still valid */ | 
|  | if (mm_find_pmd(mm, address) != pmd) { | 
|  | trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (ret & VM_FAULT_ERROR) { | 
|  | trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
|  | return false; | 
|  | } | 
|  | /* pte is unmapped now, we need to map it */ | 
|  | vmf.pte = pte_offset_map(pmd, vmf.address); | 
|  | } | 
|  | vmf.pte--; | 
|  | pte_unmap(vmf.pte); | 
|  | trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void collapse_huge_page(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | struct page **hpage, | 
|  | int node, int referenced) | 
|  | { | 
|  | pmd_t *pmd, _pmd; | 
|  | pte_t *pte; | 
|  | pgtable_t pgtable; | 
|  | struct page *new_page; | 
|  | spinlock_t *pmd_ptl, *pte_ptl; | 
|  | int isolated = 0, result = 0; | 
|  | struct mem_cgroup *memcg; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long mmun_start;	/* For mmu_notifiers */ | 
|  | unsigned long mmun_end;		/* For mmu_notifiers */ | 
|  | gfp_t gfp; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | /* Only allocate from the target node */ | 
|  | gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; | 
|  |  | 
|  | /* | 
|  | * Before allocating the hugepage, release the mmap_sem read lock. | 
|  | * The allocation can take potentially a long time if it involves | 
|  | * sync compaction, and we do not need to hold the mmap_sem during | 
|  | * that. We will recheck the vma after taking it again in write mode. | 
|  | */ | 
|  | up_read(&mm->mmap_sem); | 
|  | new_page = khugepaged_alloc_page(hpage, gfp, node); | 
|  | if (!new_page) { | 
|  | result = SCAN_ALLOC_HUGE_PAGE_FAIL; | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) { | 
|  | result = SCAN_CGROUP_CHARGE_FAIL; | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | result = hugepage_vma_revalidate(mm, address, &vma); | 
|  | if (result) { | 
|  | mem_cgroup_cancel_charge(new_page, memcg, true); | 
|  | up_read(&mm->mmap_sem); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | pmd = mm_find_pmd(mm, address); | 
|  | if (!pmd) { | 
|  | result = SCAN_PMD_NULL; | 
|  | mem_cgroup_cancel_charge(new_page, memcg, true); | 
|  | up_read(&mm->mmap_sem); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __collapse_huge_page_swapin always returns with mmap_sem locked. | 
|  | * If it fails, we release mmap_sem and jump out_nolock. | 
|  | * Continuing to collapse causes inconsistency. | 
|  | */ | 
|  | if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) { | 
|  | mem_cgroup_cancel_charge(new_page, memcg, true); | 
|  | up_read(&mm->mmap_sem); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | /* | 
|  | * Prevent all access to pagetables with the exception of | 
|  | * gup_fast later handled by the ptep_clear_flush and the VM | 
|  | * handled by the anon_vma lock + PG_lock. | 
|  | */ | 
|  | down_write(&mm->mmap_sem); | 
|  | result = SCAN_ANY_PROCESS; | 
|  | if (!mmget_still_valid(mm)) | 
|  | goto out; | 
|  | result = hugepage_vma_revalidate(mm, address, &vma); | 
|  | if (result) | 
|  | goto out; | 
|  | /* check if the pmd is still valid */ | 
|  | if (mm_find_pmd(mm, address) != pmd) | 
|  | goto out; | 
|  |  | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | pte = pte_offset_map(pmd, address); | 
|  | pte_ptl = pte_lockptr(mm, pmd); | 
|  |  | 
|  | mmun_start = address; | 
|  | mmun_end   = address + HPAGE_PMD_SIZE; | 
|  | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
|  | pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ | 
|  | /* | 
|  | * After this gup_fast can't run anymore. This also removes | 
|  | * any huge TLB entry from the CPU so we won't allow | 
|  | * huge and small TLB entries for the same virtual address | 
|  | * to avoid the risk of CPU bugs in that area. | 
|  | */ | 
|  | _pmd = pmdp_collapse_flush(vma, address, pmd); | 
|  | spin_unlock(pmd_ptl); | 
|  | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
|  |  | 
|  | spin_lock(pte_ptl); | 
|  | isolated = __collapse_huge_page_isolate(vma, address, pte); | 
|  | spin_unlock(pte_ptl); | 
|  |  | 
|  | if (unlikely(!isolated)) { | 
|  | pte_unmap(pte); | 
|  | spin_lock(pmd_ptl); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | /* | 
|  | * We can only use set_pmd_at when establishing | 
|  | * hugepmds and never for establishing regular pmds that | 
|  | * points to regular pagetables. Use pmd_populate for that | 
|  | */ | 
|  | pmd_populate(mm, pmd, pmd_pgtable(_pmd)); | 
|  | spin_unlock(pmd_ptl); | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | result = SCAN_FAIL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All pages are isolated and locked so anon_vma rmap | 
|  | * can't run anymore. | 
|  | */ | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  |  | 
|  | __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); | 
|  | pte_unmap(pte); | 
|  | __SetPageUptodate(new_page); | 
|  | pgtable = pmd_pgtable(_pmd); | 
|  |  | 
|  | _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); | 
|  | _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | 
|  |  | 
|  | /* | 
|  | * spin_lock() below is not the equivalent of smp_wmb(), so | 
|  | * this is needed to avoid the copy_huge_page writes to become | 
|  | * visible after the set_pmd_at() write. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | spin_lock(pmd_ptl); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | page_add_new_anon_rmap(new_page, vma, address, true); | 
|  | mem_cgroup_commit_charge(new_page, memcg, false, true); | 
|  | lru_cache_add_active_or_unevictable(new_page, vma); | 
|  | pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
|  | set_pmd_at(mm, address, pmd, _pmd); | 
|  | update_mmu_cache_pmd(vma, address, pmd); | 
|  | spin_unlock(pmd_ptl); | 
|  |  | 
|  | *hpage = NULL; | 
|  |  | 
|  | khugepaged_pages_collapsed++; | 
|  | result = SCAN_SUCCEED; | 
|  | out_up_write: | 
|  | up_write(&mm->mmap_sem); | 
|  | out_nolock: | 
|  | trace_mm_collapse_huge_page(mm, isolated, result); | 
|  | return; | 
|  | out: | 
|  | mem_cgroup_cancel_charge(new_page, memcg, true); | 
|  | goto out_up_write; | 
|  | } | 
|  |  | 
|  | static int khugepaged_scan_pmd(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | struct page **hpage) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | pte_t *pte, *_pte; | 
|  | int ret = 0, none_or_zero = 0, result = 0, referenced = 0; | 
|  | struct page *page = NULL; | 
|  | unsigned long _address; | 
|  | spinlock_t *ptl; | 
|  | int node = NUMA_NO_NODE, unmapped = 0; | 
|  | bool writable = false; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | pmd = mm_find_pmd(mm, address); | 
|  | if (!pmd) { | 
|  | result = SCAN_PMD_NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
|  | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | 
|  | _pte++, _address += PAGE_SIZE) { | 
|  | pte_t pteval = *_pte; | 
|  | if (is_swap_pte(pteval)) { | 
|  | if (++unmapped <= khugepaged_max_ptes_swap) { | 
|  | continue; | 
|  | } else { | 
|  | result = SCAN_EXCEED_SWAP_PTE; | 
|  | goto out_unmap; | 
|  | } | 
|  | } | 
|  | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
|  | if (!userfaultfd_armed(vma) && | 
|  | ++none_or_zero <= khugepaged_max_ptes_none) { | 
|  | continue; | 
|  | } else { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | goto out_unmap; | 
|  | } | 
|  | } | 
|  | if (!pte_present(pteval)) { | 
|  | result = SCAN_PTE_NON_PRESENT; | 
|  | goto out_unmap; | 
|  | } | 
|  | if (pte_write(pteval)) | 
|  | writable = true; | 
|  |  | 
|  | page = vm_normal_page(vma, _address, pteval); | 
|  | if (unlikely(!page)) { | 
|  | result = SCAN_PAGE_NULL; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | /* TODO: teach khugepaged to collapse THP mapped with pte */ | 
|  | if (PageCompound(page)) { | 
|  | result = SCAN_PAGE_COMPOUND; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record which node the original page is from and save this | 
|  | * information to khugepaged_node_load[]. | 
|  | * Khupaged will allocate hugepage from the node has the max | 
|  | * hit record. | 
|  | */ | 
|  | node = page_to_nid(page); | 
|  | if (khugepaged_scan_abort(node)) { | 
|  | result = SCAN_SCAN_ABORT; | 
|  | goto out_unmap; | 
|  | } | 
|  | khugepaged_node_load[node]++; | 
|  | if (!PageLRU(page)) { | 
|  | result = SCAN_PAGE_LRU; | 
|  | goto out_unmap; | 
|  | } | 
|  | if (PageLocked(page)) { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto out_unmap; | 
|  | } | 
|  | if (!PageAnon(page)) { | 
|  | result = SCAN_PAGE_ANON; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cannot use mapcount: can't collapse if there's a gup pin. | 
|  | * The page must only be referenced by the scanned process | 
|  | * and page swap cache. | 
|  | */ | 
|  | if (page_count(page) != 1 + PageSwapCache(page)) { | 
|  | result = SCAN_PAGE_COUNT; | 
|  | goto out_unmap; | 
|  | } | 
|  | if (pte_young(pteval) || | 
|  | page_is_young(page) || PageReferenced(page) || | 
|  | mmu_notifier_test_young(vma->vm_mm, address)) | 
|  | referenced++; | 
|  | } | 
|  | if (writable) { | 
|  | if (referenced) { | 
|  | result = SCAN_SUCCEED; | 
|  | ret = 1; | 
|  | } else { | 
|  | result = SCAN_LACK_REFERENCED_PAGE; | 
|  | } | 
|  | } else { | 
|  | result = SCAN_PAGE_RO; | 
|  | } | 
|  | out_unmap: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | if (ret) { | 
|  | node = khugepaged_find_target_node(); | 
|  | /* collapse_huge_page will return with the mmap_sem released */ | 
|  | collapse_huge_page(mm, address, hpage, node, referenced); | 
|  | } | 
|  | out: | 
|  | trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, | 
|  | none_or_zero, result, unmapped); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void collect_mm_slot(struct mm_slot *mm_slot) | 
|  | { | 
|  | struct mm_struct *mm = mm_slot->mm; | 
|  |  | 
|  | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
|  |  | 
|  | if (khugepaged_test_exit(mm)) { | 
|  | /* free mm_slot */ | 
|  | hash_del(&mm_slot->hash); | 
|  | list_del(&mm_slot->mm_node); | 
|  |  | 
|  | /* | 
|  | * Not strictly needed because the mm exited already. | 
|  | * | 
|  | * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
|  | */ | 
|  |  | 
|  | /* khugepaged_mm_lock actually not necessary for the below */ | 
|  | free_mm_slot(mm_slot); | 
|  | mmdrop(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) | 
|  | static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long addr; | 
|  | pmd_t *pmd, _pmd; | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | 
|  | /* probably overkill */ | 
|  | if (vma->anon_vma) | 
|  | continue; | 
|  | addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
|  | if (addr & ~HPAGE_PMD_MASK) | 
|  | continue; | 
|  | if (vma->vm_end < addr + HPAGE_PMD_SIZE) | 
|  | continue; | 
|  | pmd = mm_find_pmd(vma->vm_mm, addr); | 
|  | if (!pmd) | 
|  | continue; | 
|  | /* | 
|  | * We need exclusive mmap_sem to retract page table. | 
|  | * If trylock fails we would end up with pte-mapped THP after | 
|  | * re-fault. Not ideal, but it's more important to not disturb | 
|  | * the system too much. | 
|  | */ | 
|  | if (down_write_trylock(&vma->vm_mm->mmap_sem)) { | 
|  | spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd); | 
|  | /* assume page table is clear */ | 
|  | _pmd = pmdp_collapse_flush(vma, addr, pmd); | 
|  | spin_unlock(ptl); | 
|  | up_write(&vma->vm_mm->mmap_sem); | 
|  | mm_dec_nr_ptes(vma->vm_mm); | 
|  | pte_free(vma->vm_mm, pmd_pgtable(_pmd)); | 
|  | } | 
|  | } | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * collapse_shmem - collapse small tmpfs/shmem pages into huge one. | 
|  | * | 
|  | * Basic scheme is simple, details are more complex: | 
|  | *  - allocate and lock a new huge page; | 
|  | *  - scan over radix tree replacing old pages the new one | 
|  | *    + swap in pages if necessary; | 
|  | *    + fill in gaps; | 
|  | *    + keep old pages around in case if rollback is required; | 
|  | *  - if replacing succeed: | 
|  | *    + copy data over; | 
|  | *    + free old pages; | 
|  | *    + unlock huge page; | 
|  | *  - if replacing failed; | 
|  | *    + put all pages back and unfreeze them; | 
|  | *    + restore gaps in the radix-tree; | 
|  | *    + unlock and free huge page; | 
|  | */ | 
|  | static void collapse_shmem(struct mm_struct *mm, | 
|  | struct address_space *mapping, pgoff_t start, | 
|  | struct page **hpage, int node) | 
|  | { | 
|  | gfp_t gfp; | 
|  | struct page *page, *new_page, *tmp; | 
|  | struct mem_cgroup *memcg; | 
|  | pgoff_t index, end = start + HPAGE_PMD_NR; | 
|  | LIST_HEAD(pagelist); | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | int nr_none = 0, result = SCAN_SUCCEED; | 
|  |  | 
|  | VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); | 
|  |  | 
|  | /* Only allocate from the target node */ | 
|  | gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; | 
|  |  | 
|  | new_page = khugepaged_alloc_page(hpage, gfp, node); | 
|  | if (!new_page) { | 
|  | result = SCAN_ALLOC_HUGE_PAGE_FAIL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) { | 
|  | result = SCAN_CGROUP_CHARGE_FAIL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | __SetPageLocked(new_page); | 
|  | __SetPageSwapBacked(new_page); | 
|  | new_page->index = start; | 
|  | new_page->mapping = mapping; | 
|  |  | 
|  | /* | 
|  | * At this point the new_page is locked and not up-to-date. | 
|  | * It's safe to insert it into the page cache, because nobody would | 
|  | * be able to map it or use it in another way until we unlock it. | 
|  | */ | 
|  |  | 
|  | index = start; | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { | 
|  | int n = min(iter.index, end) - index; | 
|  |  | 
|  | /* | 
|  | * Stop if extent has been hole-punched, and is now completely | 
|  | * empty (the more obvious i_size_read() check would take an | 
|  | * irq-unsafe seqlock on 32-bit). | 
|  | */ | 
|  | if (n >= HPAGE_PMD_NR) { | 
|  | result = SCAN_TRUNCATED; | 
|  | goto tree_locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle holes in the radix tree: charge it from shmem and | 
|  | * insert relevant subpage of new_page into the radix-tree. | 
|  | */ | 
|  | if (n && !shmem_charge(mapping->host, n)) { | 
|  | result = SCAN_FAIL; | 
|  | goto tree_locked; | 
|  | } | 
|  | for (; index < min(iter.index, end); index++) { | 
|  | radix_tree_insert(&mapping->i_pages, index, | 
|  | new_page + (index % HPAGE_PMD_NR)); | 
|  | } | 
|  | nr_none += n; | 
|  |  | 
|  | /* We are done. */ | 
|  | if (index >= end) | 
|  | break; | 
|  |  | 
|  | page = radix_tree_deref_slot_protected(slot, | 
|  | &mapping->i_pages.xa_lock); | 
|  | if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) { | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | /* swap in or instantiate fallocated page */ | 
|  | if (shmem_getpage(mapping->host, index, &page, | 
|  | SGP_NOHUGE)) { | 
|  | result = SCAN_FAIL; | 
|  | goto tree_unlocked; | 
|  | } | 
|  | } else if (trylock_page(page)) { | 
|  | get_page(page); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | } else { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto tree_locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The page must be locked, so we can drop the i_pages lock | 
|  | * without racing with truncate. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageUptodate(page), page); | 
|  |  | 
|  | /* | 
|  | * If file was truncated then extended, or hole-punched, before | 
|  | * we locked the first page, then a THP might be there already. | 
|  | */ | 
|  | if (PageTransCompound(page)) { | 
|  | result = SCAN_PAGE_COMPOUND; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (page_mapping(page) != mapping) { | 
|  | result = SCAN_TRUNCATED; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (isolate_lru_page(page)) { | 
|  | result = SCAN_DEL_PAGE_LRU; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (page_mapped(page)) | 
|  | unmap_mapping_pages(mapping, index, 1, false); | 
|  |  | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  |  | 
|  | slot = radix_tree_lookup_slot(&mapping->i_pages, index); | 
|  | VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot, | 
|  | &mapping->i_pages.xa_lock), page); | 
|  | VM_BUG_ON_PAGE(page_mapped(page), page); | 
|  |  | 
|  | /* | 
|  | * The page is expected to have page_count() == 3: | 
|  | *  - we hold a pin on it; | 
|  | *  - one reference from radix tree; | 
|  | *  - one from isolate_lru_page; | 
|  | */ | 
|  | if (!page_ref_freeze(page, 3)) { | 
|  | result = SCAN_PAGE_COUNT; | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | putback_lru_page(page); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the page to the list to be able to undo the collapse if | 
|  | * something go wrong. | 
|  | */ | 
|  | list_add_tail(&page->lru, &pagelist); | 
|  |  | 
|  | /* Finally, replace with the new page. */ | 
|  | radix_tree_replace_slot(&mapping->i_pages, slot, | 
|  | new_page + (index % HPAGE_PMD_NR)); | 
|  |  | 
|  | slot = radix_tree_iter_resume(slot, &iter); | 
|  | index++; | 
|  | continue; | 
|  | out_unlock: | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto tree_unlocked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle hole in radix tree at the end of the range. | 
|  | * This code only triggers if there's nothing in radix tree | 
|  | * beyond 'end'. | 
|  | */ | 
|  | if (index < end) { | 
|  | int n = end - index; | 
|  |  | 
|  | /* Stop if extent has been truncated, and is now empty */ | 
|  | if (n >= HPAGE_PMD_NR) { | 
|  | result = SCAN_TRUNCATED; | 
|  | goto tree_locked; | 
|  | } | 
|  | if (!shmem_charge(mapping->host, n)) { | 
|  | result = SCAN_FAIL; | 
|  | goto tree_locked; | 
|  | } | 
|  | for (; index < end; index++) { | 
|  | radix_tree_insert(&mapping->i_pages, index, | 
|  | new_page + (index % HPAGE_PMD_NR)); | 
|  | } | 
|  | nr_none += n; | 
|  | } | 
|  |  | 
|  | __inc_node_page_state(new_page, NR_SHMEM_THPS); | 
|  | if (nr_none) { | 
|  | struct zone *zone = page_zone(new_page); | 
|  |  | 
|  | __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none); | 
|  | __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none); | 
|  | } | 
|  |  | 
|  | tree_locked: | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | tree_unlocked: | 
|  |  | 
|  | if (result == SCAN_SUCCEED) { | 
|  | /* | 
|  | * Replacing old pages with new one has succeed, now we need to | 
|  | * copy the content and free old pages. | 
|  | */ | 
|  | index = start; | 
|  | list_for_each_entry_safe(page, tmp, &pagelist, lru) { | 
|  | while (index < page->index) { | 
|  | clear_highpage(new_page + (index % HPAGE_PMD_NR)); | 
|  | index++; | 
|  | } | 
|  | copy_highpage(new_page + (page->index % HPAGE_PMD_NR), | 
|  | page); | 
|  | list_del(&page->lru); | 
|  | page->mapping = NULL; | 
|  | page_ref_unfreeze(page, 1); | 
|  | ClearPageActive(page); | 
|  | ClearPageUnevictable(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | index++; | 
|  | } | 
|  | while (index < end) { | 
|  | clear_highpage(new_page + (index % HPAGE_PMD_NR)); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | SetPageUptodate(new_page); | 
|  | page_ref_add(new_page, HPAGE_PMD_NR - 1); | 
|  | set_page_dirty(new_page); | 
|  | mem_cgroup_commit_charge(new_page, memcg, false, true); | 
|  | lru_cache_add_anon(new_page); | 
|  |  | 
|  | /* | 
|  | * Remove pte page tables, so we can re-fault the page as huge. | 
|  | */ | 
|  | retract_page_tables(mapping, start); | 
|  | *hpage = NULL; | 
|  |  | 
|  | khugepaged_pages_collapsed++; | 
|  | } else { | 
|  | /* Something went wrong: rollback changes to the radix-tree */ | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | mapping->nrpages -= nr_none; | 
|  | shmem_uncharge(mapping->host, nr_none); | 
|  |  | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { | 
|  | if (iter.index >= end) | 
|  | break; | 
|  | page = list_first_entry_or_null(&pagelist, | 
|  | struct page, lru); | 
|  | if (!page || iter.index < page->index) { | 
|  | if (!nr_none) | 
|  | break; | 
|  | nr_none--; | 
|  | /* Put holes back where they were */ | 
|  | radix_tree_delete(&mapping->i_pages, iter.index); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON_PAGE(page->index != iter.index, page); | 
|  |  | 
|  | /* Unfreeze the page. */ | 
|  | list_del(&page->lru); | 
|  | page_ref_unfreeze(page, 2); | 
|  | radix_tree_replace_slot(&mapping->i_pages, slot, page); | 
|  | slot = radix_tree_iter_resume(slot, &iter); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | unlock_page(page); | 
|  | putback_lru_page(page); | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | } | 
|  | VM_BUG_ON(nr_none); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  |  | 
|  | mem_cgroup_cancel_charge(new_page, memcg, true); | 
|  | new_page->mapping = NULL; | 
|  | } | 
|  |  | 
|  | unlock_page(new_page); | 
|  | out: | 
|  | VM_BUG_ON(!list_empty(&pagelist)); | 
|  | /* TODO: tracepoints */ | 
|  | } | 
|  |  | 
|  | static void khugepaged_scan_shmem(struct mm_struct *mm, | 
|  | struct address_space *mapping, | 
|  | pgoff_t start, struct page **hpage) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | int present, swap; | 
|  | int node = NUMA_NO_NODE; | 
|  | int result = SCAN_SUCCEED; | 
|  |  | 
|  | present = 0; | 
|  | swap = 0; | 
|  | memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { | 
|  | if (iter.index >= start + HPAGE_PMD_NR) | 
|  | break; | 
|  |  | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (radix_tree_exception(page)) { | 
|  | if (++swap > khugepaged_max_ptes_swap) { | 
|  | result = SCAN_EXCEED_SWAP_PTE; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PageTransCompound(page)) { | 
|  | result = SCAN_PAGE_COMPOUND; | 
|  | break; | 
|  | } | 
|  |  | 
|  | node = page_to_nid(page); | 
|  | if (khugepaged_scan_abort(node)) { | 
|  | result = SCAN_SCAN_ABORT; | 
|  | break; | 
|  | } | 
|  | khugepaged_node_load[node]++; | 
|  |  | 
|  | if (!PageLRU(page)) { | 
|  | result = SCAN_PAGE_LRU; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (page_count(page) != 1 + page_mapcount(page)) { | 
|  | result = SCAN_PAGE_COUNT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We probably should check if the page is referenced here, but | 
|  | * nobody would transfer pte_young() to PageReferenced() for us. | 
|  | * And rmap walk here is just too costly... | 
|  | */ | 
|  |  | 
|  | present++; | 
|  |  | 
|  | if (need_resched()) { | 
|  | slot = radix_tree_iter_resume(slot, &iter); | 
|  | cond_resched_rcu(); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (result == SCAN_SUCCEED) { | 
|  | if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | } else { | 
|  | node = khugepaged_find_target_node(); | 
|  | collapse_shmem(mm, mapping, start, hpage, node); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* TODO: tracepoints */ | 
|  | } | 
|  | #else | 
|  | static void khugepaged_scan_shmem(struct mm_struct *mm, | 
|  | struct address_space *mapping, | 
|  | pgoff_t start, struct page **hpage) | 
|  | { | 
|  | BUILD_BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | 
|  | struct page **hpage) | 
|  | __releases(&khugepaged_mm_lock) | 
|  | __acquires(&khugepaged_mm_lock) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | int progress = 0; | 
|  |  | 
|  | VM_BUG_ON(!pages); | 
|  | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
|  |  | 
|  | if (khugepaged_scan.mm_slot) | 
|  | mm_slot = khugepaged_scan.mm_slot; | 
|  | else { | 
|  | mm_slot = list_entry(khugepaged_scan.mm_head.next, | 
|  | struct mm_slot, mm_node); | 
|  | khugepaged_scan.address = 0; | 
|  | khugepaged_scan.mm_slot = mm_slot; | 
|  | } | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | mm = mm_slot->mm; | 
|  | /* | 
|  | * Don't wait for semaphore (to avoid long wait times).  Just move to | 
|  | * the next mm on the list. | 
|  | */ | 
|  | vma = NULL; | 
|  | if (unlikely(!down_read_trylock(&mm->mmap_sem))) | 
|  | goto breakouterloop_mmap_sem; | 
|  | if (likely(!khugepaged_test_exit(mm))) | 
|  | vma = find_vma(mm, khugepaged_scan.address); | 
|  |  | 
|  | progress++; | 
|  | for (; vma; vma = vma->vm_next) { | 
|  | unsigned long hstart, hend; | 
|  |  | 
|  | cond_resched(); | 
|  | if (unlikely(khugepaged_test_exit(mm))) { | 
|  | progress++; | 
|  | break; | 
|  | } | 
|  | if (!hugepage_vma_check(vma, vma->vm_flags)) { | 
|  | skip: | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = vma->vm_end & HPAGE_PMD_MASK; | 
|  | if (hstart >= hend) | 
|  | goto skip; | 
|  | if (khugepaged_scan.address > hend) | 
|  | goto skip; | 
|  | if (khugepaged_scan.address < hstart) | 
|  | khugepaged_scan.address = hstart; | 
|  | VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | while (khugepaged_scan.address < hend) { | 
|  | int ret; | 
|  | cond_resched(); | 
|  | if (unlikely(khugepaged_test_exit(mm))) | 
|  | goto breakouterloop; | 
|  |  | 
|  | VM_BUG_ON(khugepaged_scan.address < hstart || | 
|  | khugepaged_scan.address + HPAGE_PMD_SIZE > | 
|  | hend); | 
|  | if (shmem_file(vma->vm_file)) { | 
|  | struct file *file; | 
|  | pgoff_t pgoff = linear_page_index(vma, | 
|  | khugepaged_scan.address); | 
|  | if (!shmem_huge_enabled(vma)) | 
|  | goto skip; | 
|  | file = get_file(vma->vm_file); | 
|  | up_read(&mm->mmap_sem); | 
|  | ret = 1; | 
|  | khugepaged_scan_shmem(mm, file->f_mapping, | 
|  | pgoff, hpage); | 
|  | fput(file); | 
|  | } else { | 
|  | ret = khugepaged_scan_pmd(mm, vma, | 
|  | khugepaged_scan.address, | 
|  | hpage); | 
|  | } | 
|  | /* move to next address */ | 
|  | khugepaged_scan.address += HPAGE_PMD_SIZE; | 
|  | progress += HPAGE_PMD_NR; | 
|  | if (ret) | 
|  | /* we released mmap_sem so break loop */ | 
|  | goto breakouterloop_mmap_sem; | 
|  | if (progress >= pages) | 
|  | goto breakouterloop; | 
|  | } | 
|  | } | 
|  | breakouterloop: | 
|  | up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ | 
|  | breakouterloop_mmap_sem: | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); | 
|  | /* | 
|  | * Release the current mm_slot if this mm is about to die, or | 
|  | * if we scanned all vmas of this mm. | 
|  | */ | 
|  | if (khugepaged_test_exit(mm) || !vma) { | 
|  | /* | 
|  | * Make sure that if mm_users is reaching zero while | 
|  | * khugepaged runs here, khugepaged_exit will find | 
|  | * mm_slot not pointing to the exiting mm. | 
|  | */ | 
|  | if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | 
|  | khugepaged_scan.mm_slot = list_entry( | 
|  | mm_slot->mm_node.next, | 
|  | struct mm_slot, mm_node); | 
|  | khugepaged_scan.address = 0; | 
|  | } else { | 
|  | khugepaged_scan.mm_slot = NULL; | 
|  | khugepaged_full_scans++; | 
|  | } | 
|  |  | 
|  | collect_mm_slot(mm_slot); | 
|  | } | 
|  |  | 
|  | return progress; | 
|  | } | 
|  |  | 
|  | static int khugepaged_has_work(void) | 
|  | { | 
|  | return !list_empty(&khugepaged_scan.mm_head) && | 
|  | khugepaged_enabled(); | 
|  | } | 
|  |  | 
|  | static int khugepaged_wait_event(void) | 
|  | { | 
|  | return !list_empty(&khugepaged_scan.mm_head) || | 
|  | kthread_should_stop(); | 
|  | } | 
|  |  | 
|  | static void khugepaged_do_scan(void) | 
|  | { | 
|  | struct page *hpage = NULL; | 
|  | unsigned int progress = 0, pass_through_head = 0; | 
|  | unsigned int pages = khugepaged_pages_to_scan; | 
|  | bool wait = true; | 
|  |  | 
|  | barrier(); /* write khugepaged_pages_to_scan to local stack */ | 
|  |  | 
|  | while (progress < pages) { | 
|  | if (!khugepaged_prealloc_page(&hpage, &wait)) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (unlikely(kthread_should_stop() || try_to_freeze())) | 
|  | break; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | if (!khugepaged_scan.mm_slot) | 
|  | pass_through_head++; | 
|  | if (khugepaged_has_work() && | 
|  | pass_through_head < 2) | 
|  | progress += khugepaged_scan_mm_slot(pages - progress, | 
|  | &hpage); | 
|  | else | 
|  | progress = pages; | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  | } | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(hpage)) | 
|  | put_page(hpage); | 
|  | } | 
|  |  | 
|  | static bool khugepaged_should_wakeup(void) | 
|  | { | 
|  | return kthread_should_stop() || | 
|  | time_after_eq(jiffies, khugepaged_sleep_expire); | 
|  | } | 
|  |  | 
|  | static void khugepaged_wait_work(void) | 
|  | { | 
|  | if (khugepaged_has_work()) { | 
|  | const unsigned long scan_sleep_jiffies = | 
|  | msecs_to_jiffies(khugepaged_scan_sleep_millisecs); | 
|  |  | 
|  | if (!scan_sleep_jiffies) | 
|  | return; | 
|  |  | 
|  | khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; | 
|  | wait_event_freezable_timeout(khugepaged_wait, | 
|  | khugepaged_should_wakeup(), | 
|  | scan_sleep_jiffies); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (khugepaged_enabled()) | 
|  | wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); | 
|  | } | 
|  |  | 
|  | static int khugepaged(void *none) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  |  | 
|  | set_freezable(); | 
|  | set_user_nice(current, MAX_NICE); | 
|  |  | 
|  | while (!kthread_should_stop()) { | 
|  | khugepaged_do_scan(); | 
|  | khugepaged_wait_work(); | 
|  | } | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | mm_slot = khugepaged_scan.mm_slot; | 
|  | khugepaged_scan.mm_slot = NULL; | 
|  | if (mm_slot) | 
|  | collect_mm_slot(mm_slot); | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_recommended_min_free_kbytes(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int nr_zones = 0; | 
|  | unsigned long recommended_min; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | /* | 
|  | * We don't need to worry about fragmentation of | 
|  | * ZONE_MOVABLE since it only has movable pages. | 
|  | */ | 
|  | if (zone_idx(zone) > gfp_zone(GFP_USER)) | 
|  | continue; | 
|  |  | 
|  | nr_zones++; | 
|  | } | 
|  |  | 
|  | /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ | 
|  | recommended_min = pageblock_nr_pages * nr_zones * 2; | 
|  |  | 
|  | /* | 
|  | * Make sure that on average at least two pageblocks are almost free | 
|  | * of another type, one for a migratetype to fall back to and a | 
|  | * second to avoid subsequent fallbacks of other types There are 3 | 
|  | * MIGRATE_TYPES we care about. | 
|  | */ | 
|  | recommended_min += pageblock_nr_pages * nr_zones * | 
|  | MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | 
|  |  | 
|  | /* don't ever allow to reserve more than 5% of the lowmem */ | 
|  | recommended_min = min(recommended_min, | 
|  | (unsigned long) nr_free_buffer_pages() / 20); | 
|  | recommended_min <<= (PAGE_SHIFT-10); | 
|  |  | 
|  | if (recommended_min > min_free_kbytes) { | 
|  | if (user_min_free_kbytes >= 0) | 
|  | pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", | 
|  | min_free_kbytes, recommended_min); | 
|  |  | 
|  | min_free_kbytes = recommended_min; | 
|  | } | 
|  | setup_per_zone_wmarks(); | 
|  | } | 
|  |  | 
|  | int start_stop_khugepaged(void) | 
|  | { | 
|  | static struct task_struct *khugepaged_thread __read_mostly; | 
|  | static DEFINE_MUTEX(khugepaged_mutex); | 
|  | int err = 0; | 
|  |  | 
|  | mutex_lock(&khugepaged_mutex); | 
|  | if (khugepaged_enabled()) { | 
|  | if (!khugepaged_thread) | 
|  | khugepaged_thread = kthread_run(khugepaged, NULL, | 
|  | "khugepaged"); | 
|  | if (IS_ERR(khugepaged_thread)) { | 
|  | pr_err("khugepaged: kthread_run(khugepaged) failed\n"); | 
|  | err = PTR_ERR(khugepaged_thread); | 
|  | khugepaged_thread = NULL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!list_empty(&khugepaged_scan.mm_head)) | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | set_recommended_min_free_kbytes(); | 
|  | } else if (khugepaged_thread) { | 
|  | kthread_stop(khugepaged_thread); | 
|  | khugepaged_thread = NULL; | 
|  | } | 
|  | fail: | 
|  | mutex_unlock(&khugepaged_mutex); | 
|  | return err; | 
|  | } |