| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * KVM/MIPS: MIPS specific KVM APIs | 
 |  * | 
 |  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved. | 
 |  * Authors: Sanjay Lal <sanjayl@kymasys.com> | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/module.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/bootmem.h> | 
 |  | 
 | #include <asm/fpu.h> | 
 | #include <asm/page.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #include <linux/kvm_host.h> | 
 |  | 
 | #include "interrupt.h" | 
 | #include "commpage.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include "trace.h" | 
 |  | 
 | #ifndef VECTORSPACING | 
 | #define VECTORSPACING 0x100	/* for EI/VI mode */ | 
 | #endif | 
 |  | 
 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x) | 
 | struct kvm_stats_debugfs_item debugfs_entries[] = { | 
 | 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU }, | 
 | 	{ "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU }, | 
 | 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU }, | 
 | 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU }, | 
 | 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU }, | 
 | #ifdef CONFIG_KVM_MIPS_VZ | 
 | 	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU }, | 
 | 	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU }, | 
 | #endif | 
 | 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU }, | 
 | 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU }, | 
 | 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU }, | 
 | 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU }, | 
 | 	{NULL} | 
 | }; | 
 |  | 
 | bool kvm_trace_guest_mode_change; | 
 |  | 
 | int kvm_guest_mode_change_trace_reg(void) | 
 | { | 
 | 	kvm_trace_guest_mode_change = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_guest_mode_change_trace_unreg(void) | 
 | { | 
 | 	kvm_trace_guest_mode_change = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * XXXKYMA: We are simulatoring a processor that has the WII bit set in | 
 |  * Config7, so we are "runnable" if interrupts are pending | 
 |  */ | 
 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return !!(vcpu->arch.pending_exceptions); | 
 | } | 
 |  | 
 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | int kvm_arch_hardware_enable(void) | 
 | { | 
 | 	return kvm_mips_callbacks->hardware_enable(); | 
 | } | 
 |  | 
 | void kvm_arch_hardware_disable(void) | 
 | { | 
 | 	kvm_mips_callbacks->hardware_disable(); | 
 | } | 
 |  | 
 | int kvm_arch_hardware_setup(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_check_processor_compat(void *rtn) | 
 | { | 
 | 	*(int *)rtn = 0; | 
 | } | 
 |  | 
 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | 
 | { | 
 | 	switch (type) { | 
 | #ifdef CONFIG_KVM_MIPS_VZ | 
 | 	case KVM_VM_MIPS_VZ: | 
 | #else | 
 | 	case KVM_VM_MIPS_TE: | 
 | #endif | 
 | 		break; | 
 | 	default: | 
 | 		/* Unsupported KVM type */ | 
 | 		return -EINVAL; | 
 | 	}; | 
 |  | 
 | 	/* Allocate page table to map GPA -> RPA */ | 
 | 	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); | 
 | 	if (!kvm->arch.gpa_mm.pgd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool kvm_arch_has_vcpu_debugfs(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_mips_free_vcpus(struct kvm *kvm) | 
 | { | 
 | 	unsigned int i; | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		kvm_arch_vcpu_free(vcpu); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 |  | 
 | 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | 
 | 		kvm->vcpus[i] = NULL; | 
 |  | 
 | 	atomic_set(&kvm->online_vcpus, 0); | 
 |  | 
 | 	mutex_unlock(&kvm->lock); | 
 | } | 
 |  | 
 | static void kvm_mips_free_gpa_pt(struct kvm *kvm) | 
 | { | 
 | 	/* It should always be safe to remove after flushing the whole range */ | 
 | 	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); | 
 | 	pgd_free(NULL, kvm->arch.gpa_mm.pgd); | 
 | } | 
 |  | 
 | void kvm_arch_destroy_vm(struct kvm *kvm) | 
 | { | 
 | 	kvm_mips_free_vcpus(kvm); | 
 | 	kvm_mips_free_gpa_pt(kvm); | 
 | } | 
 |  | 
 | long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, | 
 | 			unsigned long arg) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, | 
 | 			    unsigned long npages) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_flush_shadow_all(struct kvm *kvm) | 
 | { | 
 | 	/* Flush whole GPA */ | 
 | 	kvm_mips_flush_gpa_pt(kvm, 0, ~0); | 
 |  | 
 | 	/* Let implementation do the rest */ | 
 | 	kvm_mips_callbacks->flush_shadow_all(kvm); | 
 | } | 
 |  | 
 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, | 
 | 				   struct kvm_memory_slot *slot) | 
 | { | 
 | 	/* | 
 | 	 * The slot has been made invalid (ready for moving or deletion), so we | 
 | 	 * need to ensure that it can no longer be accessed by any guest VCPUs. | 
 | 	 */ | 
 |  | 
 | 	spin_lock(&kvm->mmu_lock); | 
 | 	/* Flush slot from GPA */ | 
 | 	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, | 
 | 			      slot->base_gfn + slot->npages - 1); | 
 | 	/* Let implementation do the rest */ | 
 | 	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot); | 
 | 	spin_unlock(&kvm->mmu_lock); | 
 | } | 
 |  | 
 | int kvm_arch_prepare_memory_region(struct kvm *kvm, | 
 | 				   struct kvm_memory_slot *memslot, | 
 | 				   const struct kvm_userspace_memory_region *mem, | 
 | 				   enum kvm_mr_change change) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_commit_memory_region(struct kvm *kvm, | 
 | 				   const struct kvm_userspace_memory_region *mem, | 
 | 				   const struct kvm_memory_slot *old, | 
 | 				   const struct kvm_memory_slot *new, | 
 | 				   enum kvm_mr_change change) | 
 | { | 
 | 	int needs_flush; | 
 |  | 
 | 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n", | 
 | 		  __func__, kvm, mem->slot, mem->guest_phys_addr, | 
 | 		  mem->memory_size, mem->userspace_addr); | 
 |  | 
 | 	/* | 
 | 	 * If dirty page logging is enabled, write protect all pages in the slot | 
 | 	 * ready for dirty logging. | 
 | 	 * | 
 | 	 * There is no need to do this in any of the following cases: | 
 | 	 * CREATE:	No dirty mappings will already exist. | 
 | 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by | 
 | 	 *		kvm_arch_flush_shadow_memslot() | 
 | 	 */ | 
 | 	if (change == KVM_MR_FLAGS_ONLY && | 
 | 	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && | 
 | 	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { | 
 | 		spin_lock(&kvm->mmu_lock); | 
 | 		/* Write protect GPA page table entries */ | 
 | 		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, | 
 | 					new->base_gfn + new->npages - 1); | 
 | 		/* Let implementation do the rest */ | 
 | 		if (needs_flush) | 
 | 			kvm_mips_callbacks->flush_shadow_memslot(kvm, new); | 
 | 		spin_unlock(&kvm->mmu_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void dump_handler(const char *symbol, void *start, void *end) | 
 | { | 
 | 	u32 *p; | 
 |  | 
 | 	pr_debug("LEAF(%s)\n", symbol); | 
 |  | 
 | 	pr_debug("\t.set push\n"); | 
 | 	pr_debug("\t.set noreorder\n"); | 
 |  | 
 | 	for (p = start; p < (u32 *)end; ++p) | 
 | 		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); | 
 |  | 
 | 	pr_debug("\t.set\tpop\n"); | 
 |  | 
 | 	pr_debug("\tEND(%s)\n", symbol); | 
 | } | 
 |  | 
 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) | 
 | { | 
 | 	int err, size; | 
 | 	void *gebase, *p, *handler, *refill_start, *refill_end; | 
 | 	int i; | 
 |  | 
 | 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); | 
 |  | 
 | 	if (!vcpu) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = kvm_vcpu_init(vcpu, kvm, id); | 
 |  | 
 | 	if (err) | 
 | 		goto out_free_cpu; | 
 |  | 
 | 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Allocate space for host mode exception handlers that handle | 
 | 	 * guest mode exits | 
 | 	 */ | 
 | 	if (cpu_has_veic || cpu_has_vint) | 
 | 		size = 0x200 + VECTORSPACING * 64; | 
 | 	else | 
 | 		size = 0x4000; | 
 |  | 
 | 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); | 
 |  | 
 | 	if (!gebase) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_uninit_cpu; | 
 | 	} | 
 | 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", | 
 | 		  ALIGN(size, PAGE_SIZE), gebase); | 
 |  | 
 | 	/* | 
 | 	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate | 
 | 	 * limits us to the low 512MB of physical address space. If the memory | 
 | 	 * we allocate is out of range, just give up now. | 
 | 	 */ | 
 | 	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { | 
 | 		kvm_err("CP0_EBase.WG required for guest exception base %pK\n", | 
 | 			gebase); | 
 | 		err = -ENOMEM; | 
 | 		goto out_free_gebase; | 
 | 	} | 
 |  | 
 | 	/* Save new ebase */ | 
 | 	vcpu->arch.guest_ebase = gebase; | 
 |  | 
 | 	/* Build guest exception vectors dynamically in unmapped memory */ | 
 | 	handler = gebase + 0x2000; | 
 |  | 
 | 	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ | 
 | 	refill_start = gebase; | 
 | 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT)) | 
 | 		refill_start += 0x080; | 
 | 	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); | 
 |  | 
 | 	/* General Exception Entry point */ | 
 | 	kvm_mips_build_exception(gebase + 0x180, handler); | 
 |  | 
 | 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */ | 
 | 	for (i = 0; i < 8; i++) { | 
 | 		kvm_debug("L1 Vectored handler @ %p\n", | 
 | 			  gebase + 0x200 + (i * VECTORSPACING)); | 
 | 		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, | 
 | 					 handler); | 
 | 	} | 
 |  | 
 | 	/* General exit handler */ | 
 | 	p = handler; | 
 | 	p = kvm_mips_build_exit(p); | 
 |  | 
 | 	/* Guest entry routine */ | 
 | 	vcpu->arch.vcpu_run = p; | 
 | 	p = kvm_mips_build_vcpu_run(p); | 
 |  | 
 | 	/* Dump the generated code */ | 
 | 	pr_debug("#include <asm/asm.h>\n"); | 
 | 	pr_debug("#include <asm/regdef.h>\n"); | 
 | 	pr_debug("\n"); | 
 | 	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); | 
 | 	dump_handler("kvm_tlb_refill", refill_start, refill_end); | 
 | 	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); | 
 | 	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); | 
 |  | 
 | 	/* Invalidate the icache for these ranges */ | 
 | 	flush_icache_range((unsigned long)gebase, | 
 | 			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); | 
 |  | 
 | 	/* | 
 | 	 * Allocate comm page for guest kernel, a TLB will be reserved for | 
 | 	 * mapping GVA @ 0xFFFF8000 to this page | 
 | 	 */ | 
 | 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL); | 
 |  | 
 | 	if (!vcpu->arch.kseg0_commpage) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_free_gebase; | 
 | 	} | 
 |  | 
 | 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage); | 
 | 	kvm_mips_commpage_init(vcpu); | 
 |  | 
 | 	/* Init */ | 
 | 	vcpu->arch.last_sched_cpu = -1; | 
 | 	vcpu->arch.last_exec_cpu = -1; | 
 |  | 
 | 	return vcpu; | 
 |  | 
 | out_free_gebase: | 
 | 	kfree(gebase); | 
 |  | 
 | out_uninit_cpu: | 
 | 	kvm_vcpu_uninit(vcpu); | 
 |  | 
 | out_free_cpu: | 
 | 	kfree(vcpu); | 
 |  | 
 | out: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	hrtimer_cancel(&vcpu->arch.comparecount_timer); | 
 |  | 
 | 	kvm_vcpu_uninit(vcpu); | 
 |  | 
 | 	kvm_mips_dump_stats(vcpu); | 
 |  | 
 | 	kvm_mmu_free_memory_caches(vcpu); | 
 | 	kfree(vcpu->arch.guest_ebase); | 
 | 	kfree(vcpu->arch.kseg0_commpage); | 
 | 	kfree(vcpu); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_arch_vcpu_free(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_guest_debug *dbg) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
 | { | 
 | 	int r = -EINTR; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	kvm_sigset_activate(vcpu); | 
 |  | 
 | 	if (vcpu->mmio_needed) { | 
 | 		if (!vcpu->mmio_is_write) | 
 | 			kvm_mips_complete_mmio_load(vcpu, run); | 
 | 		vcpu->mmio_needed = 0; | 
 | 	} | 
 |  | 
 | 	if (run->immediate_exit) | 
 | 		goto out; | 
 |  | 
 | 	lose_fpu(1); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	guest_enter_irqoff(); | 
 | 	trace_kvm_enter(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Make sure the read of VCPU requests in vcpu_run() callback is not | 
 | 	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB | 
 | 	 * flush request while the requester sees the VCPU as outside of guest | 
 | 	 * mode and not needing an IPI. | 
 | 	 */ | 
 | 	smp_store_mb(vcpu->mode, IN_GUEST_MODE); | 
 |  | 
 | 	r = kvm_mips_callbacks->vcpu_run(run, vcpu); | 
 |  | 
 | 	trace_kvm_out(vcpu); | 
 | 	guest_exit_irqoff(); | 
 | 	local_irq_enable(); | 
 |  | 
 | out: | 
 | 	kvm_sigset_deactivate(vcpu); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | 
 | 			     struct kvm_mips_interrupt *irq) | 
 | { | 
 | 	int intr = (int)irq->irq; | 
 | 	struct kvm_vcpu *dvcpu = NULL; | 
 |  | 
 | 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4) | 
 | 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, | 
 | 			  (int)intr); | 
 |  | 
 | 	if (irq->cpu == -1) | 
 | 		dvcpu = vcpu; | 
 | 	else | 
 | 		dvcpu = vcpu->kvm->vcpus[irq->cpu]; | 
 |  | 
 | 	if (intr == 2 || intr == 3 || intr == 4) { | 
 | 		kvm_mips_callbacks->queue_io_int(dvcpu, irq); | 
 |  | 
 | 	} else if (intr == -2 || intr == -3 || intr == -4) { | 
 | 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); | 
 | 	} else { | 
 | 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, | 
 | 			irq->cpu, irq->irq); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	dvcpu->arch.wait = 0; | 
 |  | 
 | 	if (swq_has_sleeper(&dvcpu->wq)) | 
 | 		swake_up_one(&dvcpu->wq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | static u64 kvm_mips_get_one_regs[] = { | 
 | 	KVM_REG_MIPS_R0, | 
 | 	KVM_REG_MIPS_R1, | 
 | 	KVM_REG_MIPS_R2, | 
 | 	KVM_REG_MIPS_R3, | 
 | 	KVM_REG_MIPS_R4, | 
 | 	KVM_REG_MIPS_R5, | 
 | 	KVM_REG_MIPS_R6, | 
 | 	KVM_REG_MIPS_R7, | 
 | 	KVM_REG_MIPS_R8, | 
 | 	KVM_REG_MIPS_R9, | 
 | 	KVM_REG_MIPS_R10, | 
 | 	KVM_REG_MIPS_R11, | 
 | 	KVM_REG_MIPS_R12, | 
 | 	KVM_REG_MIPS_R13, | 
 | 	KVM_REG_MIPS_R14, | 
 | 	KVM_REG_MIPS_R15, | 
 | 	KVM_REG_MIPS_R16, | 
 | 	KVM_REG_MIPS_R17, | 
 | 	KVM_REG_MIPS_R18, | 
 | 	KVM_REG_MIPS_R19, | 
 | 	KVM_REG_MIPS_R20, | 
 | 	KVM_REG_MIPS_R21, | 
 | 	KVM_REG_MIPS_R22, | 
 | 	KVM_REG_MIPS_R23, | 
 | 	KVM_REG_MIPS_R24, | 
 | 	KVM_REG_MIPS_R25, | 
 | 	KVM_REG_MIPS_R26, | 
 | 	KVM_REG_MIPS_R27, | 
 | 	KVM_REG_MIPS_R28, | 
 | 	KVM_REG_MIPS_R29, | 
 | 	KVM_REG_MIPS_R30, | 
 | 	KVM_REG_MIPS_R31, | 
 |  | 
 | #ifndef CONFIG_CPU_MIPSR6 | 
 | 	KVM_REG_MIPS_HI, | 
 | 	KVM_REG_MIPS_LO, | 
 | #endif | 
 | 	KVM_REG_MIPS_PC, | 
 | }; | 
 |  | 
 | static u64 kvm_mips_get_one_regs_fpu[] = { | 
 | 	KVM_REG_MIPS_FCR_IR, | 
 | 	KVM_REG_MIPS_FCR_CSR, | 
 | }; | 
 |  | 
 | static u64 kvm_mips_get_one_regs_msa[] = { | 
 | 	KVM_REG_MIPS_MSA_IR, | 
 | 	KVM_REG_MIPS_MSA_CSR, | 
 | }; | 
 |  | 
 | static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long ret; | 
 |  | 
 | 	ret = ARRAY_SIZE(kvm_mips_get_one_regs); | 
 | 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { | 
 | 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; | 
 | 		/* odd doubles */ | 
 | 		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) | 
 | 			ret += 16; | 
 | 	} | 
 | 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) | 
 | 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; | 
 | 	ret += kvm_mips_callbacks->num_regs(vcpu); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) | 
 | { | 
 | 	u64 index; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (copy_to_user(indices, kvm_mips_get_one_regs, | 
 | 			 sizeof(kvm_mips_get_one_regs))) | 
 | 		return -EFAULT; | 
 | 	indices += ARRAY_SIZE(kvm_mips_get_one_regs); | 
 |  | 
 | 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { | 
 | 		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, | 
 | 				 sizeof(kvm_mips_get_one_regs_fpu))) | 
 | 			return -EFAULT; | 
 | 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); | 
 |  | 
 | 		for (i = 0; i < 32; ++i) { | 
 | 			index = KVM_REG_MIPS_FPR_32(i); | 
 | 			if (copy_to_user(indices, &index, sizeof(index))) | 
 | 				return -EFAULT; | 
 | 			++indices; | 
 |  | 
 | 			/* skip odd doubles if no F64 */ | 
 | 			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) | 
 | 				continue; | 
 |  | 
 | 			index = KVM_REG_MIPS_FPR_64(i); | 
 | 			if (copy_to_user(indices, &index, sizeof(index))) | 
 | 				return -EFAULT; | 
 | 			++indices; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { | 
 | 		if (copy_to_user(indices, kvm_mips_get_one_regs_msa, | 
 | 				 sizeof(kvm_mips_get_one_regs_msa))) | 
 | 			return -EFAULT; | 
 | 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); | 
 |  | 
 | 		for (i = 0; i < 32; ++i) { | 
 | 			index = KVM_REG_MIPS_VEC_128(i); | 
 | 			if (copy_to_user(indices, &index, sizeof(index))) | 
 | 				return -EFAULT; | 
 | 			++indices; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); | 
 | } | 
 |  | 
 | static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, | 
 | 			    const struct kvm_one_reg *reg) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu; | 
 | 	int ret; | 
 | 	s64 v; | 
 | 	s64 vs[2]; | 
 | 	unsigned int idx; | 
 |  | 
 | 	switch (reg->id) { | 
 | 	/* General purpose registers */ | 
 | 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: | 
 | 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; | 
 | 		break; | 
 | #ifndef CONFIG_CPU_MIPSR6 | 
 | 	case KVM_REG_MIPS_HI: | 
 | 		v = (long)vcpu->arch.hi; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_LO: | 
 | 		v = (long)vcpu->arch.lo; | 
 | 		break; | 
 | #endif | 
 | 	case KVM_REG_MIPS_PC: | 
 | 		v = (long)vcpu->arch.pc; | 
 | 		break; | 
 |  | 
 | 	/* Floating point registers */ | 
 | 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_FPR_32(0); | 
 | 		/* Odd singles in top of even double when FR=0 */ | 
 | 		if (kvm_read_c0_guest_status(cop0) & ST0_FR) | 
 | 			v = get_fpr32(&fpu->fpr[idx], 0); | 
 | 		else | 
 | 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_FPR_64(0); | 
 | 		/* Can't access odd doubles in FR=0 mode */ | 
 | 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) | 
 | 			return -EINVAL; | 
 | 		v = get_fpr64(&fpu->fpr[idx], 0); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_FCR_IR: | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		v = boot_cpu_data.fpu_id; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_FCR_CSR: | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		v = fpu->fcr31; | 
 | 		break; | 
 |  | 
 | 	/* MIPS SIMD Architecture (MSA) registers */ | 
 | 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): | 
 | 		if (!kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		/* Can't access MSA registers in FR=0 mode */ | 
 | 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_VEC_128(0); | 
 | #ifdef CONFIG_CPU_LITTLE_ENDIAN | 
 | 		/* least significant byte first */ | 
 | 		vs[0] = get_fpr64(&fpu->fpr[idx], 0); | 
 | 		vs[1] = get_fpr64(&fpu->fpr[idx], 1); | 
 | #else | 
 | 		/* most significant byte first */ | 
 | 		vs[0] = get_fpr64(&fpu->fpr[idx], 1); | 
 | 		vs[1] = get_fpr64(&fpu->fpr[idx], 0); | 
 | #endif | 
 | 		break; | 
 | 	case KVM_REG_MIPS_MSA_IR: | 
 | 		if (!kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		v = boot_cpu_data.msa_id; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_MSA_CSR: | 
 | 		if (!kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		v = fpu->msacsr; | 
 | 		break; | 
 |  | 
 | 	/* registers to be handled specially */ | 
 | 	default: | 
 | 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		break; | 
 | 	} | 
 | 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { | 
 | 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; | 
 |  | 
 | 		return put_user(v, uaddr64); | 
 | 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { | 
 | 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; | 
 | 		u32 v32 = (u32)v; | 
 |  | 
 | 		return put_user(v32, uaddr32); | 
 | 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { | 
 | 		void __user *uaddr = (void __user *)(long)reg->addr; | 
 |  | 
 | 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, | 
 | 			    const struct kvm_one_reg *reg) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu; | 
 | 	s64 v; | 
 | 	s64 vs[2]; | 
 | 	unsigned int idx; | 
 |  | 
 | 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { | 
 | 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; | 
 |  | 
 | 		if (get_user(v, uaddr64) != 0) | 
 | 			return -EFAULT; | 
 | 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { | 
 | 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; | 
 | 		s32 v32; | 
 |  | 
 | 		if (get_user(v32, uaddr32) != 0) | 
 | 			return -EFAULT; | 
 | 		v = (s64)v32; | 
 | 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { | 
 | 		void __user *uaddr = (void __user *)(long)reg->addr; | 
 |  | 
 | 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	switch (reg->id) { | 
 | 	/* General purpose registers */ | 
 | 	case KVM_REG_MIPS_R0: | 
 | 		/* Silently ignore requests to set $0 */ | 
 | 		break; | 
 | 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: | 
 | 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; | 
 | 		break; | 
 | #ifndef CONFIG_CPU_MIPSR6 | 
 | 	case KVM_REG_MIPS_HI: | 
 | 		vcpu->arch.hi = v; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_LO: | 
 | 		vcpu->arch.lo = v; | 
 | 		break; | 
 | #endif | 
 | 	case KVM_REG_MIPS_PC: | 
 | 		vcpu->arch.pc = v; | 
 | 		break; | 
 |  | 
 | 	/* Floating point registers */ | 
 | 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_FPR_32(0); | 
 | 		/* Odd singles in top of even double when FR=0 */ | 
 | 		if (kvm_read_c0_guest_status(cop0) & ST0_FR) | 
 | 			set_fpr32(&fpu->fpr[idx], 0, v); | 
 | 		else | 
 | 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_FPR_64(0); | 
 | 		/* Can't access odd doubles in FR=0 mode */ | 
 | 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) | 
 | 			return -EINVAL; | 
 | 		set_fpr64(&fpu->fpr[idx], 0, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_FCR_IR: | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		/* Read-only */ | 
 | 		break; | 
 | 	case KVM_REG_MIPS_FCR_CSR: | 
 | 		if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		fpu->fcr31 = v; | 
 | 		break; | 
 |  | 
 | 	/* MIPS SIMD Architecture (MSA) registers */ | 
 | 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): | 
 | 		if (!kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_VEC_128(0); | 
 | #ifdef CONFIG_CPU_LITTLE_ENDIAN | 
 | 		/* least significant byte first */ | 
 | 		set_fpr64(&fpu->fpr[idx], 0, vs[0]); | 
 | 		set_fpr64(&fpu->fpr[idx], 1, vs[1]); | 
 | #else | 
 | 		/* most significant byte first */ | 
 | 		set_fpr64(&fpu->fpr[idx], 1, vs[0]); | 
 | 		set_fpr64(&fpu->fpr[idx], 0, vs[1]); | 
 | #endif | 
 | 		break; | 
 | 	case KVM_REG_MIPS_MSA_IR: | 
 | 		if (!kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		/* Read-only */ | 
 | 		break; | 
 | 	case KVM_REG_MIPS_MSA_CSR: | 
 | 		if (!kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 			return -EINVAL; | 
 | 		fpu->msacsr = v; | 
 | 		break; | 
 |  | 
 | 	/* registers to be handled specially */ | 
 | 	default: | 
 | 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_enable_cap *cap) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) | 
 | 		return -EINVAL; | 
 | 	if (cap->flags) | 
 | 		return -EINVAL; | 
 | 	if (cap->args[0]) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (cap->cap) { | 
 | 	case KVM_CAP_MIPS_FPU: | 
 | 		vcpu->arch.fpu_enabled = true; | 
 | 		break; | 
 | 	case KVM_CAP_MIPS_MSA: | 
 | 		vcpu->arch.msa_enabled = true; | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, | 
 | 			       unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 |  | 
 | 	if (ioctl == KVM_INTERRUPT) { | 
 | 		struct kvm_mips_interrupt irq; | 
 |  | 
 | 		if (copy_from_user(&irq, argp, sizeof(irq))) | 
 | 			return -EFAULT; | 
 | 		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, | 
 | 			  irq.irq); | 
 |  | 
 | 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq); | 
 | 	} | 
 |  | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, | 
 | 			 unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	long r; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_SET_ONE_REG: | 
 | 	case KVM_GET_ONE_REG: { | 
 | 		struct kvm_one_reg reg; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(®, argp, sizeof(reg))) | 
 | 			break; | 
 | 		if (ioctl == KVM_SET_ONE_REG) | 
 | 			r = kvm_mips_set_reg(vcpu, ®); | 
 | 		else | 
 | 			r = kvm_mips_get_reg(vcpu, ®); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_REG_LIST: { | 
 | 		struct kvm_reg_list __user *user_list = argp; | 
 | 		struct kvm_reg_list reg_list; | 
 | 		unsigned n; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(®_list, user_list, sizeof(reg_list))) | 
 | 			break; | 
 | 		n = reg_list.n; | 
 | 		reg_list.n = kvm_mips_num_regs(vcpu); | 
 | 		if (copy_to_user(user_list, ®_list, sizeof(reg_list))) | 
 | 			break; | 
 | 		r = -E2BIG; | 
 | 		if (n < reg_list.n) | 
 | 			break; | 
 | 		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_ENABLE_CAP: { | 
 | 		struct kvm_enable_cap cap; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cap, argp, sizeof(cap))) | 
 | 			break; | 
 | 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -ENOIOCTLCMD; | 
 | 	} | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot | 
 |  * @kvm: kvm instance | 
 |  * @log: slot id and address to which we copy the log | 
 |  * | 
 |  * Steps 1-4 below provide general overview of dirty page logging. See | 
 |  * kvm_get_dirty_log_protect() function description for additional details. | 
 |  * | 
 |  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we | 
 |  * always flush the TLB (step 4) even if previous step failed  and the dirty | 
 |  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API | 
 |  * does not preclude user space subsequent dirty log read. Flushing TLB ensures | 
 |  * writes will be marked dirty for next log read. | 
 |  * | 
 |  *   1. Take a snapshot of the bit and clear it if needed. | 
 |  *   2. Write protect the corresponding page. | 
 |  *   3. Copy the snapshot to the userspace. | 
 |  *   4. Flush TLB's if needed. | 
 |  */ | 
 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) | 
 | { | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	bool is_dirty = false; | 
 | 	int r; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); | 
 |  | 
 | 	if (is_dirty) { | 
 | 		slots = kvm_memslots(kvm); | 
 | 		memslot = id_to_memslot(slots, log->slot); | 
 |  | 
 | 		/* Let implementation handle TLB/GVA invalidation */ | 
 | 		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	long r; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	default: | 
 | 		r = -ENOIOCTLCMD; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_init(void *opaque) | 
 | { | 
 | 	if (kvm_mips_callbacks) { | 
 | 		kvm_err("kvm: module already exists\n"); | 
 | 		return -EEXIST; | 
 | 	} | 
 |  | 
 | 	return kvm_mips_emulation_init(&kvm_mips_callbacks); | 
 | } | 
 |  | 
 | void kvm_arch_exit(void) | 
 | { | 
 | 	kvm_mips_callbacks = NULL; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	return -ENOIOCTLCMD; | 
 | } | 
 |  | 
 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | 
 | { | 
 | 	return VM_FAULT_SIGBUS; | 
 | } | 
 |  | 
 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	switch (ext) { | 
 | 	case KVM_CAP_ONE_REG: | 
 | 	case KVM_CAP_ENABLE_CAP: | 
 | 	case KVM_CAP_READONLY_MEM: | 
 | 	case KVM_CAP_SYNC_MMU: | 
 | 	case KVM_CAP_IMMEDIATE_EXIT: | 
 | 		r = 1; | 
 | 		break; | 
 | 	case KVM_CAP_NR_VCPUS: | 
 | 		r = num_online_cpus(); | 
 | 		break; | 
 | 	case KVM_CAP_MAX_VCPUS: | 
 | 		r = KVM_MAX_VCPUS; | 
 | 		break; | 
 | 	case KVM_CAP_MAX_VCPU_ID: | 
 | 		r = KVM_MAX_VCPU_ID; | 
 | 		break; | 
 | 	case KVM_CAP_MIPS_FPU: | 
 | 		/* We don't handle systems with inconsistent cpu_has_fpu */ | 
 | 		r = !!raw_cpu_has_fpu; | 
 | 		break; | 
 | 	case KVM_CAP_MIPS_MSA: | 
 | 		/* | 
 | 		 * We don't support MSA vector partitioning yet: | 
 | 		 * 1) It would require explicit support which can't be tested | 
 | 		 *    yet due to lack of support in current hardware. | 
 | 		 * 2) It extends the state that would need to be saved/restored | 
 | 		 *    by e.g. QEMU for migration. | 
 | 		 * | 
 | 		 * When vector partitioning hardware becomes available, support | 
 | 		 * could be added by requiring a flag when enabling | 
 | 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows | 
 | 		 * to save/restore the appropriate extra state. | 
 | 		 */ | 
 | 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); | 
 | 		break; | 
 | 	default: | 
 | 		r = kvm_mips_callbacks->check_extension(kvm, ext); | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_mips_pending_timer(vcpu) || | 
 | 		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	struct mips_coproc *cop0; | 
 |  | 
 | 	if (!vcpu) | 
 | 		return -1; | 
 |  | 
 | 	kvm_debug("VCPU Register Dump:\n"); | 
 | 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); | 
 | 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); | 
 |  | 
 | 	for (i = 0; i < 32; i += 4) { | 
 | 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, | 
 | 		       vcpu->arch.gprs[i], | 
 | 		       vcpu->arch.gprs[i + 1], | 
 | 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); | 
 | 	} | 
 | 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); | 
 | 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); | 
 |  | 
 | 	cop0 = vcpu->arch.cop0; | 
 | 	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", | 
 | 		  kvm_read_c0_guest_status(cop0), | 
 | 		  kvm_read_c0_guest_cause(cop0)); | 
 |  | 
 | 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) | 
 | 		vcpu->arch.gprs[i] = regs->gpr[i]; | 
 | 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ | 
 | 	vcpu->arch.hi = regs->hi; | 
 | 	vcpu->arch.lo = regs->lo; | 
 | 	vcpu->arch.pc = regs->pc; | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) | 
 | 		regs->gpr[i] = vcpu->arch.gprs[i]; | 
 |  | 
 | 	regs->hi = vcpu->arch.hi; | 
 | 	regs->lo = vcpu->arch.lo; | 
 | 	regs->pc = vcpu->arch.pc; | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_mips_comparecount_func(unsigned long data) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; | 
 |  | 
 | 	kvm_mips_callbacks->queue_timer_int(vcpu); | 
 |  | 
 | 	vcpu->arch.wait = 0; | 
 | 	if (swq_has_sleeper(&vcpu->wq)) | 
 | 		swake_up_one(&vcpu->wq); | 
 | } | 
 |  | 
 | /* low level hrtimer wake routine */ | 
 | static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); | 
 | 	kvm_mips_comparecount_func((unsigned long) vcpu); | 
 | 	return kvm_mips_count_timeout(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = kvm_mips_callbacks->vcpu_init(vcpu); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, | 
 | 		     HRTIMER_MODE_REL); | 
 | 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_mips_callbacks->vcpu_uninit(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_translation *tr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Initial guest state */ | 
 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_mips_callbacks->vcpu_setup(vcpu); | 
 | } | 
 |  | 
 | static void kvm_mips_set_c0_status(void) | 
 | { | 
 | 	u32 status = read_c0_status(); | 
 |  | 
 | 	if (cpu_has_dsp) | 
 | 		status |= (ST0_MX); | 
 |  | 
 | 	write_c0_status(status); | 
 | 	ehb(); | 
 | } | 
 |  | 
 | /* | 
 |  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) | 
 |  */ | 
 | int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 cause = vcpu->arch.host_cp0_cause; | 
 | 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; | 
 | 	u32 __user *opc = (u32 __user *) vcpu->arch.pc; | 
 | 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	u32 inst; | 
 | 	int ret = RESUME_GUEST; | 
 |  | 
 | 	vcpu->mode = OUTSIDE_GUEST_MODE; | 
 |  | 
 | 	/* re-enable HTW before enabling interrupts */ | 
 | 	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) | 
 | 		htw_start(); | 
 |  | 
 | 	/* Set a default exit reason */ | 
 | 	run->exit_reason = KVM_EXIT_UNKNOWN; | 
 | 	run->ready_for_interrupt_injection = 1; | 
 |  | 
 | 	/* | 
 | 	 * Set the appropriate status bits based on host CPU features, | 
 | 	 * before we hit the scheduler | 
 | 	 */ | 
 | 	kvm_mips_set_c0_status(); | 
 |  | 
 | 	local_irq_enable(); | 
 |  | 
 | 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", | 
 | 			cause, opc, run, vcpu); | 
 | 	trace_kvm_exit(vcpu, exccode); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { | 
 | 		/* | 
 | 		 * Do a privilege check, if in UM most of these exit conditions | 
 | 		 * end up causing an exception to be delivered to the Guest | 
 | 		 * Kernel | 
 | 		 */ | 
 | 		er = kvm_mips_check_privilege(cause, opc, run, vcpu); | 
 | 		if (er == EMULATE_PRIV_FAIL) { | 
 | 			goto skip_emul; | 
 | 		} else if (er == EMULATE_FAIL) { | 
 | 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 			ret = RESUME_HOST; | 
 | 			goto skip_emul; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	switch (exccode) { | 
 | 	case EXCCODE_INT: | 
 | 		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); | 
 |  | 
 | 		++vcpu->stat.int_exits; | 
 |  | 
 | 		if (need_resched()) | 
 | 			cond_resched(); | 
 |  | 
 | 		ret = RESUME_GUEST; | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_CPU: | 
 | 		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); | 
 |  | 
 | 		++vcpu->stat.cop_unusable_exits; | 
 | 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); | 
 | 		/* XXXKYMA: Might need to return to user space */ | 
 | 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) | 
 | 			ret = RESUME_HOST; | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_MOD: | 
 | 		++vcpu->stat.tlbmod_exits; | 
 | 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_TLBS: | 
 | 		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", | 
 | 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc, | 
 | 			  badvaddr); | 
 |  | 
 | 		++vcpu->stat.tlbmiss_st_exits; | 
 | 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_TLBL: | 
 | 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", | 
 | 			  cause, opc, badvaddr); | 
 |  | 
 | 		++vcpu->stat.tlbmiss_ld_exits; | 
 | 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_ADES: | 
 | 		++vcpu->stat.addrerr_st_exits; | 
 | 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_ADEL: | 
 | 		++vcpu->stat.addrerr_ld_exits; | 
 | 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_SYS: | 
 | 		++vcpu->stat.syscall_exits; | 
 | 		ret = kvm_mips_callbacks->handle_syscall(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_RI: | 
 | 		++vcpu->stat.resvd_inst_exits; | 
 | 		ret = kvm_mips_callbacks->handle_res_inst(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_BP: | 
 | 		++vcpu->stat.break_inst_exits; | 
 | 		ret = kvm_mips_callbacks->handle_break(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_TR: | 
 | 		++vcpu->stat.trap_inst_exits; | 
 | 		ret = kvm_mips_callbacks->handle_trap(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_MSAFPE: | 
 | 		++vcpu->stat.msa_fpe_exits; | 
 | 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_FPE: | 
 | 		++vcpu->stat.fpe_exits; | 
 | 		ret = kvm_mips_callbacks->handle_fpe(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_MSADIS: | 
 | 		++vcpu->stat.msa_disabled_exits; | 
 | 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); | 
 | 		break; | 
 |  | 
 | 	case EXCCODE_GE: | 
 | 		/* defer exit accounting to handler */ | 
 | 		ret = kvm_mips_callbacks->handle_guest_exit(vcpu); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		if (cause & CAUSEF_BD) | 
 | 			opc += 1; | 
 | 		inst = 0; | 
 | 		kvm_get_badinstr(opc, vcpu, &inst); | 
 | 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n", | 
 | 			exccode, opc, inst, badvaddr, | 
 | 			kvm_read_c0_guest_status(vcpu->arch.cop0)); | 
 | 		kvm_arch_vcpu_dump_regs(vcpu); | 
 | 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		ret = RESUME_HOST; | 
 | 		break; | 
 |  | 
 | 	} | 
 |  | 
 | skip_emul: | 
 | 	local_irq_disable(); | 
 |  | 
 | 	if (ret == RESUME_GUEST) | 
 | 		kvm_vz_acquire_htimer(vcpu); | 
 |  | 
 | 	if (er == EMULATE_DONE && !(ret & RESUME_HOST)) | 
 | 		kvm_mips_deliver_interrupts(vcpu, cause); | 
 |  | 
 | 	if (!(ret & RESUME_HOST)) { | 
 | 		/* Only check for signals if not already exiting to userspace */ | 
 | 		if (signal_pending(current)) { | 
 | 			run->exit_reason = KVM_EXIT_INTR; | 
 | 			ret = (-EINTR << 2) | RESUME_HOST; | 
 | 			++vcpu->stat.signal_exits; | 
 | 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret == RESUME_GUEST) { | 
 | 		trace_kvm_reenter(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Make sure the read of VCPU requests in vcpu_reenter() | 
 | 		 * callback is not reordered ahead of the write to vcpu->mode, | 
 | 		 * or we could miss a TLB flush request while the requester sees | 
 | 		 * the VCPU as outside of guest mode and not needing an IPI. | 
 | 		 */ | 
 | 		smp_store_mb(vcpu->mode, IN_GUEST_MODE); | 
 |  | 
 | 		kvm_mips_callbacks->vcpu_reenter(run, vcpu); | 
 |  | 
 | 		/* | 
 | 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context | 
 | 		 * is live), restore FCR31 / MSACSR. | 
 | 		 * | 
 | 		 * This should be before returning to the guest exception | 
 | 		 * vector, as it may well cause an [MSA] FP exception if there | 
 | 		 * are pending exception bits unmasked. (see | 
 | 		 * kvm_mips_csr_die_notifier() for how that is handled). | 
 | 		 */ | 
 | 		if (kvm_mips_guest_has_fpu(&vcpu->arch) && | 
 | 		    read_c0_status() & ST0_CU1) | 
 | 			__kvm_restore_fcsr(&vcpu->arch); | 
 |  | 
 | 		if (kvm_mips_guest_has_msa(&vcpu->arch) && | 
 | 		    read_c0_config5() & MIPS_CONF5_MSAEN) | 
 | 			__kvm_restore_msacsr(&vcpu->arch); | 
 | 	} | 
 |  | 
 | 	/* Disable HTW before returning to guest or host */ | 
 | 	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) | 
 | 		htw_stop(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Enable FPU for guest and restore context */ | 
 | void kvm_own_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	unsigned int sr, cfg5; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	sr = kvm_read_c0_guest_status(cop0); | 
 |  | 
 | 	/* | 
 | 	 * If MSA state is already live, it is undefined how it interacts with | 
 | 	 * FR=0 FPU state, and we don't want to hit reserved instruction | 
 | 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so | 
 | 	 * play it safe and save it first. | 
 | 	 * | 
 | 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should | 
 | 	 * get called when guest CU1 is set, however we can't trust the guest | 
 | 	 * not to clobber the status register directly via the commpage. | 
 | 	 */ | 
 | 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && | 
 | 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) | 
 | 		kvm_lose_fpu(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Enable FPU for guest | 
 | 	 * We set FR and FRE according to guest context | 
 | 	 */ | 
 | 	change_c0_status(ST0_CU1 | ST0_FR, sr); | 
 | 	if (cpu_has_fre) { | 
 | 		cfg5 = kvm_read_c0_guest_config5(cop0); | 
 | 		change_c0_config5(MIPS_CONF5_FRE, cfg5); | 
 | 	} | 
 | 	enable_fpu_hazard(); | 
 |  | 
 | 	/* If guest FPU state not active, restore it now */ | 
 | 	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { | 
 | 		__kvm_restore_fpu(&vcpu->arch); | 
 | 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); | 
 | 	} else { | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); | 
 | 	} | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_HAS_MSA | 
 | /* Enable MSA for guest and restore context */ | 
 | void kvm_own_msa(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	unsigned int sr, cfg5; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	/* | 
 | 	 * Enable FPU if enabled in guest, since we're restoring FPU context | 
 | 	 * anyway. We set FR and FRE according to guest context. | 
 | 	 */ | 
 | 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) { | 
 | 		sr = kvm_read_c0_guest_status(cop0); | 
 |  | 
 | 		/* | 
 | 		 * If FR=0 FPU state is already live, it is undefined how it | 
 | 		 * interacts with MSA state, so play it safe and save it first. | 
 | 		 */ | 
 | 		if (!(sr & ST0_FR) && | 
 | 		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | | 
 | 				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) | 
 | 			kvm_lose_fpu(vcpu); | 
 |  | 
 | 		change_c0_status(ST0_CU1 | ST0_FR, sr); | 
 | 		if (sr & ST0_CU1 && cpu_has_fre) { | 
 | 			cfg5 = kvm_read_c0_guest_config5(cop0); | 
 | 			change_c0_config5(MIPS_CONF5_FRE, cfg5); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Enable MSA for guest */ | 
 | 	set_c0_config5(MIPS_CONF5_MSAEN); | 
 | 	enable_fpu_hazard(); | 
 |  | 
 | 	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { | 
 | 	case KVM_MIPS_AUX_FPU: | 
 | 		/* | 
 | 		 * Guest FPU state already loaded, only restore upper MSA state | 
 | 		 */ | 
 | 		__kvm_restore_msa_upper(&vcpu->arch); | 
 | 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); | 
 | 		break; | 
 | 	case 0: | 
 | 		/* Neither FPU or MSA already active, restore full MSA state */ | 
 | 		__kvm_restore_msa(&vcpu->arch); | 
 | 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; | 
 | 		if (kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, | 
 | 			      KVM_TRACE_AUX_FPU_MSA); | 
 | 		break; | 
 | 	default: | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 | #endif | 
 |  | 
 | /* Drop FPU & MSA without saving it */ | 
 | void kvm_drop_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { | 
 | 		disable_msa(); | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); | 
 | 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; | 
 | 	} | 
 | 	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { | 
 | 		clear_c0_status(ST0_CU1 | ST0_FR); | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); | 
 | 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* Save and disable FPU & MSA */ | 
 | void kvm_lose_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * With T&E, FPU & MSA get disabled in root context (hardware) when it | 
 | 	 * is disabled in guest context (software), but the register state in | 
 | 	 * the hardware may still be in use. | 
 | 	 * This is why we explicitly re-enable the hardware before saving. | 
 | 	 */ | 
 |  | 
 | 	preempt_disable(); | 
 | 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { | 
 | 		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { | 
 | 			set_c0_config5(MIPS_CONF5_MSAEN); | 
 | 			enable_fpu_hazard(); | 
 | 		} | 
 |  | 
 | 		__kvm_save_msa(&vcpu->arch); | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); | 
 |  | 
 | 		/* Disable MSA & FPU */ | 
 | 		disable_msa(); | 
 | 		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { | 
 | 			clear_c0_status(ST0_CU1 | ST0_FR); | 
 | 			disable_fpu_hazard(); | 
 | 		} | 
 | 		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); | 
 | 	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { | 
 | 		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { | 
 | 			set_c0_status(ST0_CU1); | 
 | 			enable_fpu_hazard(); | 
 | 		} | 
 |  | 
 | 		__kvm_save_fpu(&vcpu->arch); | 
 | 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; | 
 | 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); | 
 |  | 
 | 		/* Disable FPU */ | 
 | 		clear_c0_status(ST0_CU1 | ST0_FR); | 
 | 		disable_fpu_hazard(); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are | 
 |  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP | 
 |  * exception if cause bits are set in the value being written. | 
 |  */ | 
 | static int kvm_mips_csr_die_notify(struct notifier_block *self, | 
 | 				   unsigned long cmd, void *ptr) | 
 | { | 
 | 	struct die_args *args = (struct die_args *)ptr; | 
 | 	struct pt_regs *regs = args->regs; | 
 | 	unsigned long pc; | 
 |  | 
 | 	/* Only interested in FPE and MSAFPE */ | 
 | 	if (cmd != DIE_FP && cmd != DIE_MSAFP) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* Return immediately if guest context isn't active */ | 
 | 	if (!(current->flags & PF_VCPU)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* Should never get here from user mode */ | 
 | 	BUG_ON(user_mode(regs)); | 
 |  | 
 | 	pc = instruction_pointer(regs); | 
 | 	switch (cmd) { | 
 | 	case DIE_FP: | 
 | 		/* match 2nd instruction in __kvm_restore_fcsr */ | 
 | 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4) | 
 | 			return NOTIFY_DONE; | 
 | 		break; | 
 | 	case DIE_MSAFP: | 
 | 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */ | 
 | 		if (!cpu_has_msa || | 
 | 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 || | 
 | 		    pc > (unsigned long)&__kvm_restore_msacsr + 8) | 
 | 			return NOTIFY_DONE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Move PC forward a little and continue executing */ | 
 | 	instruction_pointer(regs) += 4; | 
 |  | 
 | 	return NOTIFY_STOP; | 
 | } | 
 |  | 
 | static struct notifier_block kvm_mips_csr_die_notifier = { | 
 | 	.notifier_call = kvm_mips_csr_die_notify, | 
 | }; | 
 |  | 
 | static int __init kvm_mips_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = kvm_mips_entry_setup(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	register_die_notifier(&kvm_mips_csr_die_notifier); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit kvm_mips_exit(void) | 
 | { | 
 | 	kvm_exit(); | 
 |  | 
 | 	unregister_die_notifier(&kvm_mips_csr_die_notifier); | 
 | } | 
 |  | 
 | module_init(kvm_mips_init); | 
 | module_exit(kvm_mips_exit); | 
 |  | 
 | EXPORT_TRACEPOINT_SYMBOL(kvm_exit); |