|  | /* | 
|  | * Page table handling routines for radix page table. | 
|  | * | 
|  | * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "radix-mmu: " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/of_fdt.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string_helpers.h> | 
|  | #include <linux/stop_machine.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/powernv.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/trace.h> | 
|  |  | 
|  | #include <trace/events/thp.h> | 
|  |  | 
|  | unsigned int mmu_pid_bits; | 
|  | unsigned int mmu_base_pid; | 
|  |  | 
|  | static int native_register_process_table(unsigned long base, unsigned long pg_sz, | 
|  | unsigned long table_size) | 
|  | { | 
|  | unsigned long patb0, patb1; | 
|  |  | 
|  | patb0 = be64_to_cpu(partition_tb[0].patb0); | 
|  | patb1 = base | table_size | PATB_GR; | 
|  |  | 
|  | mmu_partition_table_set_entry(0, patb0, patb1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __ref void *early_alloc_pgtable(unsigned long size, int nid, | 
|  | unsigned long region_start, unsigned long region_end) | 
|  | { | 
|  | unsigned long pa = 0; | 
|  | void *pt; | 
|  |  | 
|  | if (region_start || region_end) /* has region hint */ | 
|  | pa = memblock_alloc_range(size, size, region_start, region_end, | 
|  | MEMBLOCK_NONE); | 
|  | else if (nid != -1) /* has node hint */ | 
|  | pa = memblock_alloc_base_nid(size, size, | 
|  | MEMBLOCK_ALLOC_ANYWHERE, | 
|  | nid, MEMBLOCK_NONE); | 
|  |  | 
|  | if (!pa) | 
|  | pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE); | 
|  |  | 
|  | BUG_ON(!pa); | 
|  |  | 
|  | pt = __va(pa); | 
|  | memset(pt, 0, size); | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | static int early_map_kernel_page(unsigned long ea, unsigned long pa, | 
|  | pgprot_t flags, | 
|  | unsigned int map_page_size, | 
|  | int nid, | 
|  | unsigned long region_start, unsigned long region_end) | 
|  | { | 
|  | unsigned long pfn = pa >> PAGE_SHIFT; | 
|  | pgd_t *pgdp; | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  |  | 
|  | pgdp = pgd_offset_k(ea); | 
|  | if (pgd_none(*pgdp)) { | 
|  | pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid, | 
|  | region_start, region_end); | 
|  | pgd_populate(&init_mm, pgdp, pudp); | 
|  | } | 
|  | pudp = pud_offset(pgdp, ea); | 
|  | if (map_page_size == PUD_SIZE) { | 
|  | ptep = (pte_t *)pudp; | 
|  | goto set_the_pte; | 
|  | } | 
|  | if (pud_none(*pudp)) { | 
|  | pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid, | 
|  | region_start, region_end); | 
|  | pud_populate(&init_mm, pudp, pmdp); | 
|  | } | 
|  | pmdp = pmd_offset(pudp, ea); | 
|  | if (map_page_size == PMD_SIZE) { | 
|  | ptep = pmdp_ptep(pmdp); | 
|  | goto set_the_pte; | 
|  | } | 
|  | if (!pmd_present(*pmdp)) { | 
|  | ptep = early_alloc_pgtable(PAGE_SIZE, nid, | 
|  | region_start, region_end); | 
|  | pmd_populate_kernel(&init_mm, pmdp, ptep); | 
|  | } | 
|  | ptep = pte_offset_kernel(pmdp, ea); | 
|  |  | 
|  | set_the_pte: | 
|  | set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); | 
|  | smp_wmb(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nid, region_start, and region_end are hints to try to place the page | 
|  | * table memory in the same node or region. | 
|  | */ | 
|  | static int __map_kernel_page(unsigned long ea, unsigned long pa, | 
|  | pgprot_t flags, | 
|  | unsigned int map_page_size, | 
|  | int nid, | 
|  | unsigned long region_start, unsigned long region_end) | 
|  | { | 
|  | unsigned long pfn = pa >> PAGE_SHIFT; | 
|  | pgd_t *pgdp; | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  | /* | 
|  | * Make sure task size is correct as per the max adddr | 
|  | */ | 
|  | BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); | 
|  |  | 
|  | if (unlikely(!slab_is_available())) | 
|  | return early_map_kernel_page(ea, pa, flags, map_page_size, | 
|  | nid, region_start, region_end); | 
|  |  | 
|  | /* | 
|  | * Should make page table allocation functions be able to take a | 
|  | * node, so we can place kernel page tables on the right nodes after | 
|  | * boot. | 
|  | */ | 
|  | pgdp = pgd_offset_k(ea); | 
|  | pudp = pud_alloc(&init_mm, pgdp, ea); | 
|  | if (!pudp) | 
|  | return -ENOMEM; | 
|  | if (map_page_size == PUD_SIZE) { | 
|  | ptep = (pte_t *)pudp; | 
|  | goto set_the_pte; | 
|  | } | 
|  | pmdp = pmd_alloc(&init_mm, pudp, ea); | 
|  | if (!pmdp) | 
|  | return -ENOMEM; | 
|  | if (map_page_size == PMD_SIZE) { | 
|  | ptep = pmdp_ptep(pmdp); | 
|  | goto set_the_pte; | 
|  | } | 
|  | ptep = pte_alloc_kernel(pmdp, ea); | 
|  | if (!ptep) | 
|  | return -ENOMEM; | 
|  |  | 
|  | set_the_pte: | 
|  | set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); | 
|  | smp_wmb(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int radix__map_kernel_page(unsigned long ea, unsigned long pa, | 
|  | pgprot_t flags, | 
|  | unsigned int map_page_size) | 
|  | { | 
|  | return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_STRICT_KERNEL_RWX | 
|  | void radix__change_memory_range(unsigned long start, unsigned long end, | 
|  | unsigned long clear) | 
|  | { | 
|  | unsigned long idx; | 
|  | pgd_t *pgdp; | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  |  | 
|  | start = ALIGN_DOWN(start, PAGE_SIZE); | 
|  | end = PAGE_ALIGN(end); // aligns up | 
|  |  | 
|  | pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", | 
|  | start, end, clear); | 
|  |  | 
|  | for (idx = start; idx < end; idx += PAGE_SIZE) { | 
|  | pgdp = pgd_offset_k(idx); | 
|  | pudp = pud_alloc(&init_mm, pgdp, idx); | 
|  | if (!pudp) | 
|  | continue; | 
|  | if (pud_huge(*pudp)) { | 
|  | ptep = (pte_t *)pudp; | 
|  | goto update_the_pte; | 
|  | } | 
|  | pmdp = pmd_alloc(&init_mm, pudp, idx); | 
|  | if (!pmdp) | 
|  | continue; | 
|  | if (pmd_huge(*pmdp)) { | 
|  | ptep = pmdp_ptep(pmdp); | 
|  | goto update_the_pte; | 
|  | } | 
|  | ptep = pte_alloc_kernel(pmdp, idx); | 
|  | if (!ptep) | 
|  | continue; | 
|  | update_the_pte: | 
|  | radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); | 
|  | } | 
|  |  | 
|  | radix__flush_tlb_kernel_range(start, end); | 
|  | } | 
|  |  | 
|  | void radix__mark_rodata_ro(void) | 
|  | { | 
|  | unsigned long start, end; | 
|  |  | 
|  | start = (unsigned long)_stext; | 
|  | end = (unsigned long)__init_begin; | 
|  |  | 
|  | radix__change_memory_range(start, end, _PAGE_WRITE); | 
|  | } | 
|  |  | 
|  | void radix__mark_initmem_nx(void) | 
|  | { | 
|  | unsigned long start = (unsigned long)__init_begin; | 
|  | unsigned long end = (unsigned long)__init_end; | 
|  |  | 
|  | radix__change_memory_range(start, end, _PAGE_EXEC); | 
|  | } | 
|  | #endif /* CONFIG_STRICT_KERNEL_RWX */ | 
|  |  | 
|  | static inline void __meminit print_mapping(unsigned long start, | 
|  | unsigned long end, | 
|  | unsigned long size) | 
|  | { | 
|  | char buf[10]; | 
|  |  | 
|  | if (end <= start) | 
|  | return; | 
|  |  | 
|  | string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); | 
|  |  | 
|  | pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf); | 
|  | } | 
|  |  | 
|  | static int __meminit create_physical_mapping(unsigned long start, | 
|  | unsigned long end, | 
|  | int nid) | 
|  | { | 
|  | unsigned long vaddr, addr, mapping_size = 0; | 
|  | pgprot_t prot; | 
|  | unsigned long max_mapping_size; | 
|  | #ifdef CONFIG_STRICT_KERNEL_RWX | 
|  | int split_text_mapping = 1; | 
|  | #else | 
|  | int split_text_mapping = 0; | 
|  | #endif | 
|  | int psize; | 
|  |  | 
|  | start = _ALIGN_UP(start, PAGE_SIZE); | 
|  | for (addr = start; addr < end; addr += mapping_size) { | 
|  | unsigned long gap, previous_size; | 
|  | int rc; | 
|  |  | 
|  | gap = end - addr; | 
|  | previous_size = mapping_size; | 
|  | max_mapping_size = PUD_SIZE; | 
|  |  | 
|  | retry: | 
|  | if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && | 
|  | mmu_psize_defs[MMU_PAGE_1G].shift && | 
|  | PUD_SIZE <= max_mapping_size) { | 
|  | mapping_size = PUD_SIZE; | 
|  | psize = MMU_PAGE_1G; | 
|  | } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && | 
|  | mmu_psize_defs[MMU_PAGE_2M].shift) { | 
|  | mapping_size = PMD_SIZE; | 
|  | psize = MMU_PAGE_2M; | 
|  | } else { | 
|  | mapping_size = PAGE_SIZE; | 
|  | psize = mmu_virtual_psize; | 
|  | } | 
|  |  | 
|  | if (split_text_mapping && (mapping_size == PUD_SIZE) && | 
|  | (addr < __pa_symbol(__init_begin)) && | 
|  | (addr + mapping_size) > __pa_symbol(__init_begin)) { | 
|  | max_mapping_size = PMD_SIZE; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (split_text_mapping && (mapping_size == PMD_SIZE) && | 
|  | (addr < __pa_symbol(__init_begin)) && | 
|  | (addr + mapping_size) > __pa_symbol(__init_begin)) { | 
|  | mapping_size = PAGE_SIZE; | 
|  | psize = mmu_virtual_psize; | 
|  | } | 
|  |  | 
|  | if (mapping_size != previous_size) { | 
|  | print_mapping(start, addr, previous_size); | 
|  | start = addr; | 
|  | } | 
|  |  | 
|  | vaddr = (unsigned long)__va(addr); | 
|  |  | 
|  | if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || | 
|  | overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) | 
|  | prot = PAGE_KERNEL_X; | 
|  | else | 
|  | prot = PAGE_KERNEL; | 
|  |  | 
|  | rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | update_page_count(psize, 1); | 
|  | } | 
|  |  | 
|  | print_mapping(start, addr, mapping_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init radix_init_pgtable(void) | 
|  | { | 
|  | unsigned long rts_field; | 
|  | struct memblock_region *reg; | 
|  |  | 
|  | /* We don't support slb for radix */ | 
|  | mmu_slb_size = 0; | 
|  | /* | 
|  | * Create the linear mapping, using standard page size for now | 
|  | */ | 
|  | for_each_memblock(memory, reg) { | 
|  | /* | 
|  | * The memblock allocator  is up at this point, so the | 
|  | * page tables will be allocated within the range. No | 
|  | * need or a node (which we don't have yet). | 
|  | */ | 
|  | WARN_ON(create_physical_mapping(reg->base, | 
|  | reg->base + reg->size, | 
|  | -1)); | 
|  | } | 
|  |  | 
|  | /* Find out how many PID bits are supported */ | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) { | 
|  | if (!mmu_pid_bits) | 
|  | mmu_pid_bits = 20; | 
|  | #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE | 
|  | /* | 
|  | * When KVM is possible, we only use the top half of the | 
|  | * PID space to avoid collisions between host and guest PIDs | 
|  | * which can cause problems due to prefetch when exiting the | 
|  | * guest with AIL=3 | 
|  | */ | 
|  | mmu_base_pid = 1 << (mmu_pid_bits - 1); | 
|  | #else | 
|  | mmu_base_pid = 1; | 
|  | #endif | 
|  | } else { | 
|  | /* The guest uses the bottom half of the PID space */ | 
|  | if (!mmu_pid_bits) | 
|  | mmu_pid_bits = 19; | 
|  | mmu_base_pid = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate Partition table and process table for the | 
|  | * host. | 
|  | */ | 
|  | BUG_ON(PRTB_SIZE_SHIFT > 36); | 
|  | process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); | 
|  | /* | 
|  | * Fill in the process table. | 
|  | */ | 
|  | rts_field = radix__get_tree_size(); | 
|  | process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); | 
|  | /* | 
|  | * Fill in the partition table. We are suppose to use effective address | 
|  | * of process table here. But our linear mapping also enable us to use | 
|  | * physical address here. | 
|  | */ | 
|  | register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12); | 
|  | pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd); | 
|  | asm volatile("ptesync" : : : "memory"); | 
|  | asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : | 
|  | "r" (TLBIEL_INVAL_SET_LPID), "r" (0)); | 
|  | asm volatile("eieio; tlbsync; ptesync" : : : "memory"); | 
|  | trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1); | 
|  |  | 
|  | /* | 
|  | * The init_mm context is given the first available (non-zero) PID, | 
|  | * which is the "guard PID" and contains no page table. PIDR should | 
|  | * never be set to zero because that duplicates the kernel address | 
|  | * space at the 0x0... offset (quadrant 0)! | 
|  | * | 
|  | * An arbitrary PID that may later be allocated by the PID allocator | 
|  | * for userspace processes must not be used either, because that | 
|  | * would cause stale user mappings for that PID on CPUs outside of | 
|  | * the TLB invalidation scheme (because it won't be in mm_cpumask). | 
|  | * | 
|  | * So permanently carve out one PID for the purpose of a guard PID. | 
|  | */ | 
|  | init_mm.context.id = mmu_base_pid; | 
|  | mmu_base_pid++; | 
|  | } | 
|  |  | 
|  | static void __init radix_init_partition_table(void) | 
|  | { | 
|  | unsigned long rts_field, dw0; | 
|  |  | 
|  | mmu_partition_table_init(); | 
|  | rts_field = radix__get_tree_size(); | 
|  | dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; | 
|  | mmu_partition_table_set_entry(0, dw0, 0); | 
|  |  | 
|  | pr_info("Initializing Radix MMU\n"); | 
|  | pr_info("Partition table %p\n", partition_tb); | 
|  | } | 
|  |  | 
|  | void __init radix_init_native(void) | 
|  | { | 
|  | register_process_table = native_register_process_table; | 
|  | } | 
|  |  | 
|  | static int __init get_idx_from_shift(unsigned int shift) | 
|  | { | 
|  | int idx = -1; | 
|  |  | 
|  | switch (shift) { | 
|  | case 0xc: | 
|  | idx = MMU_PAGE_4K; | 
|  | break; | 
|  | case 0x10: | 
|  | idx = MMU_PAGE_64K; | 
|  | break; | 
|  | case 0x15: | 
|  | idx = MMU_PAGE_2M; | 
|  | break; | 
|  | case 0x1e: | 
|  | idx = MMU_PAGE_1G; | 
|  | break; | 
|  | } | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static int __init radix_dt_scan_page_sizes(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | int size = 0; | 
|  | int shift, idx; | 
|  | unsigned int ap; | 
|  | const __be32 *prop; | 
|  | const char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | /* Find MMU PID size */ | 
|  | prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); | 
|  | if (prop && size == 4) | 
|  | mmu_pid_bits = be32_to_cpup(prop); | 
|  |  | 
|  | /* Grab page size encodings */ | 
|  | prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); | 
|  | if (!prop) | 
|  | return 0; | 
|  |  | 
|  | pr_info("Page sizes from device-tree:\n"); | 
|  | for (; size >= 4; size -= 4, ++prop) { | 
|  |  | 
|  | struct mmu_psize_def *def; | 
|  |  | 
|  | /* top 3 bit is AP encoding */ | 
|  | shift = be32_to_cpu(prop[0]) & ~(0xe << 28); | 
|  | ap = be32_to_cpu(prop[0]) >> 29; | 
|  | pr_info("Page size shift = %d AP=0x%x\n", shift, ap); | 
|  |  | 
|  | idx = get_idx_from_shift(shift); | 
|  | if (idx < 0) | 
|  | continue; | 
|  |  | 
|  | def = &mmu_psize_defs[idx]; | 
|  | def->shift = shift; | 
|  | def->ap  = ap; | 
|  | } | 
|  |  | 
|  | /* needed ? */ | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __init radix__early_init_devtree(void) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Try to find the available page sizes in the device-tree | 
|  | */ | 
|  | rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); | 
|  | if (rc != 0)  /* Found */ | 
|  | goto found; | 
|  | /* | 
|  | * let's assume we have page 4k and 64k support | 
|  | */ | 
|  | mmu_psize_defs[MMU_PAGE_4K].shift = 12; | 
|  | mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; | 
|  |  | 
|  | mmu_psize_defs[MMU_PAGE_64K].shift = 16; | 
|  | mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; | 
|  | found: | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void radix_init_amor(void) | 
|  | { | 
|  | /* | 
|  | * In HV mode, we init AMOR (Authority Mask Override Register) so that | 
|  | * the hypervisor and guest can setup IAMR (Instruction Authority Mask | 
|  | * Register), enable key 0 and set it to 1. | 
|  | * | 
|  | * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11) | 
|  | */ | 
|  | mtspr(SPRN_AMOR, (3ul << 62)); | 
|  | } | 
|  |  | 
|  | static void radix_init_iamr(void) | 
|  | { | 
|  | /* | 
|  | * Radix always uses key0 of the IAMR to determine if an access is | 
|  | * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction | 
|  | * fetch. | 
|  | */ | 
|  | mtspr(SPRN_IAMR, (1ul << 62)); | 
|  | } | 
|  |  | 
|  | void __init radix__early_init_mmu(void) | 
|  | { | 
|  | unsigned long lpcr; | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* PAGE_SIZE mappings */ | 
|  | mmu_virtual_psize = MMU_PAGE_64K; | 
|  | #else | 
|  | mmu_virtual_psize = MMU_PAGE_4K; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | /* vmemmap mapping */ | 
|  | if (mmu_psize_defs[MMU_PAGE_2M].shift) { | 
|  | /* | 
|  | * map vmemmap using 2M if available | 
|  | */ | 
|  | mmu_vmemmap_psize = MMU_PAGE_2M; | 
|  | } else | 
|  | mmu_vmemmap_psize = mmu_virtual_psize; | 
|  | #endif | 
|  | /* | 
|  | * initialize page table size | 
|  | */ | 
|  | __pte_index_size = RADIX_PTE_INDEX_SIZE; | 
|  | __pmd_index_size = RADIX_PMD_INDEX_SIZE; | 
|  | __pud_index_size = RADIX_PUD_INDEX_SIZE; | 
|  | __pgd_index_size = RADIX_PGD_INDEX_SIZE; | 
|  | __pud_cache_index = RADIX_PUD_INDEX_SIZE; | 
|  | __pte_table_size = RADIX_PTE_TABLE_SIZE; | 
|  | __pmd_table_size = RADIX_PMD_TABLE_SIZE; | 
|  | __pud_table_size = RADIX_PUD_TABLE_SIZE; | 
|  | __pgd_table_size = RADIX_PGD_TABLE_SIZE; | 
|  |  | 
|  | __pmd_val_bits = RADIX_PMD_VAL_BITS; | 
|  | __pud_val_bits = RADIX_PUD_VAL_BITS; | 
|  | __pgd_val_bits = RADIX_PGD_VAL_BITS; | 
|  |  | 
|  | __kernel_virt_start = RADIX_KERN_VIRT_START; | 
|  | __kernel_virt_size = RADIX_KERN_VIRT_SIZE; | 
|  | __vmalloc_start = RADIX_VMALLOC_START; | 
|  | __vmalloc_end = RADIX_VMALLOC_END; | 
|  | __kernel_io_start = RADIX_KERN_IO_START; | 
|  | vmemmap = (struct page *)RADIX_VMEMMAP_BASE; | 
|  | ioremap_bot = IOREMAP_BASE; | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | pci_io_base = ISA_IO_BASE; | 
|  | #endif | 
|  | __pte_frag_nr = RADIX_PTE_FRAG_NR; | 
|  | __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; | 
|  | __pmd_frag_nr = RADIX_PMD_FRAG_NR; | 
|  | __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; | 
|  |  | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) { | 
|  | radix_init_native(); | 
|  | lpcr = mfspr(SPRN_LPCR); | 
|  | mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); | 
|  | radix_init_partition_table(); | 
|  | radix_init_amor(); | 
|  | } else { | 
|  | radix_init_pseries(); | 
|  | } | 
|  |  | 
|  | memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); | 
|  |  | 
|  | radix_init_iamr(); | 
|  | radix_init_pgtable(); | 
|  | /* Switch to the guard PID before turning on MMU */ | 
|  | radix__switch_mmu_context(NULL, &init_mm); | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) | 
|  | tlbiel_all(); | 
|  | } | 
|  |  | 
|  | void radix__early_init_mmu_secondary(void) | 
|  | { | 
|  | unsigned long lpcr; | 
|  | /* | 
|  | * update partition table control register and UPRT | 
|  | */ | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) { | 
|  | lpcr = mfspr(SPRN_LPCR); | 
|  | mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); | 
|  |  | 
|  | mtspr(SPRN_PTCR, | 
|  | __pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); | 
|  | radix_init_amor(); | 
|  | } | 
|  | radix_init_iamr(); | 
|  |  | 
|  | radix__switch_mmu_context(NULL, &init_mm); | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) | 
|  | tlbiel_all(); | 
|  | } | 
|  |  | 
|  | void radix__mmu_cleanup_all(void) | 
|  | { | 
|  | unsigned long lpcr; | 
|  |  | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) { | 
|  | lpcr = mfspr(SPRN_LPCR); | 
|  | mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); | 
|  | mtspr(SPRN_PTCR, 0); | 
|  | powernv_set_nmmu_ptcr(0); | 
|  | radix__flush_tlb_all(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base, | 
|  | phys_addr_t first_memblock_size) | 
|  | { | 
|  | /* We don't currently support the first MEMBLOCK not mapping 0 | 
|  | * physical on those processors | 
|  | */ | 
|  | BUG_ON(first_memblock_base != 0); | 
|  |  | 
|  | /* | 
|  | * Radix mode is not limited by RMA / VRMA addressing. | 
|  | */ | 
|  | ppc64_rma_size = ULONG_MAX; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | static void free_pte_table(pte_t *pte_start, pmd_t *pmd) | 
|  | { | 
|  | pte_t *pte; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PTRS_PER_PTE; i++) { | 
|  | pte = pte_start + i; | 
|  | if (!pte_none(*pte)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | pte_free_kernel(&init_mm, pte_start); | 
|  | pmd_clear(pmd); | 
|  | } | 
|  |  | 
|  | static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PTRS_PER_PMD; i++) { | 
|  | pmd = pmd_start + i; | 
|  | if (!pmd_none(*pmd)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | pmd_free(&init_mm, pmd_start); | 
|  | pud_clear(pud); | 
|  | } | 
|  |  | 
|  | struct change_mapping_params { | 
|  | pte_t *pte; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | unsigned long aligned_start; | 
|  | unsigned long aligned_end; | 
|  | }; | 
|  |  | 
|  | static int __meminit stop_machine_change_mapping(void *data) | 
|  | { | 
|  | struct change_mapping_params *params = | 
|  | (struct change_mapping_params *)data; | 
|  |  | 
|  | if (!data) | 
|  | return -1; | 
|  |  | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | pte_clear(&init_mm, params->aligned_start, params->pte); | 
|  | create_physical_mapping(params->aligned_start, params->start, -1); | 
|  | create_physical_mapping(params->end, params->aligned_end, -1); | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void remove_pte_table(pte_t *pte_start, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long next; | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = pte_start + pte_index(addr); | 
|  | for (; addr < end; addr = next, pte++) { | 
|  | next = (addr + PAGE_SIZE) & PAGE_MASK; | 
|  | if (next > end) | 
|  | next = end; | 
|  |  | 
|  | if (!pte_present(*pte)) | 
|  | continue; | 
|  |  | 
|  | if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) { | 
|  | /* | 
|  | * The vmemmap_free() and remove_section_mapping() | 
|  | * codepaths call us with aligned addresses. | 
|  | */ | 
|  | WARN_ONCE(1, "%s: unaligned range\n", __func__); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pte_clear(&init_mm, addr, pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear the pte and potentially split the mapping helper | 
|  | */ | 
|  | static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end, | 
|  | unsigned long size, pte_t *pte) | 
|  | { | 
|  | unsigned long mask = ~(size - 1); | 
|  | unsigned long aligned_start = addr & mask; | 
|  | unsigned long aligned_end = addr + size; | 
|  | struct change_mapping_params params; | 
|  | bool split_region = false; | 
|  |  | 
|  | if ((end - addr) < size) { | 
|  | /* | 
|  | * We're going to clear the PTE, but not flushed | 
|  | * the mapping, time to remap and flush. The | 
|  | * effects if visible outside the processor or | 
|  | * if we are running in code close to the | 
|  | * mapping we cleared, we are in trouble. | 
|  | */ | 
|  | if (overlaps_kernel_text(aligned_start, addr) || | 
|  | overlaps_kernel_text(end, aligned_end)) { | 
|  | /* | 
|  | * Hack, just return, don't pte_clear | 
|  | */ | 
|  | WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel " | 
|  | "text, not splitting\n", addr, end); | 
|  | return; | 
|  | } | 
|  | split_region = true; | 
|  | } | 
|  |  | 
|  | if (split_region) { | 
|  | params.pte = pte; | 
|  | params.start = addr; | 
|  | params.end = end; | 
|  | params.aligned_start = addr & ~(size - 1); | 
|  | params.aligned_end = min_t(unsigned long, aligned_end, | 
|  | (unsigned long)__va(memblock_end_of_DRAM())); | 
|  | stop_machine(stop_machine_change_mapping, ¶ms, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pte_clear(&init_mm, addr, pte); | 
|  | } | 
|  |  | 
|  | static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long next; | 
|  | pte_t *pte_base; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = pmd_start + pmd_index(addr); | 
|  | for (; addr < end; addr = next, pmd++) { | 
|  | next = pmd_addr_end(addr, end); | 
|  |  | 
|  | if (!pmd_present(*pmd)) | 
|  | continue; | 
|  |  | 
|  | if (pmd_huge(*pmd)) { | 
|  | split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pte_base = (pte_t *)pmd_page_vaddr(*pmd); | 
|  | remove_pte_table(pte_base, addr, next); | 
|  | free_pte_table(pte_base, pmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void remove_pud_table(pud_t *pud_start, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long next; | 
|  | pmd_t *pmd_base; | 
|  | pud_t *pud; | 
|  |  | 
|  | pud = pud_start + pud_index(addr); | 
|  | for (; addr < end; addr = next, pud++) { | 
|  | next = pud_addr_end(addr, end); | 
|  |  | 
|  | if (!pud_present(*pud)) | 
|  | continue; | 
|  |  | 
|  | if (pud_huge(*pud)) { | 
|  | split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pmd_base = (pmd_t *)pud_page_vaddr(*pud); | 
|  | remove_pmd_table(pmd_base, addr, next); | 
|  | free_pmd_table(pmd_base, pud); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __meminit remove_pagetable(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long addr, next; | 
|  | pud_t *pud_base; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  |  | 
|  | for (addr = start; addr < end; addr = next) { | 
|  | next = pgd_addr_end(addr, end); | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | if (!pgd_present(*pgd)) | 
|  | continue; | 
|  |  | 
|  | if (pgd_huge(*pgd)) { | 
|  | split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pud_base = (pud_t *)pgd_page_vaddr(*pgd); | 
|  | remove_pud_table(pud_base, addr, next); | 
|  | } | 
|  |  | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | radix__flush_tlb_kernel_range(start, end); | 
|  | } | 
|  |  | 
|  | int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid) | 
|  | { | 
|  | return create_physical_mapping(start, end, nid); | 
|  | } | 
|  |  | 
|  | int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) | 
|  | { | 
|  | remove_pagetable(start, end); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, | 
|  | pgprot_t flags, unsigned int map_page_size, | 
|  | int nid) | 
|  | { | 
|  | return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); | 
|  | } | 
|  |  | 
|  | int __meminit radix__vmemmap_create_mapping(unsigned long start, | 
|  | unsigned long page_size, | 
|  | unsigned long phys) | 
|  | { | 
|  | /* Create a PTE encoding */ | 
|  | unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW; | 
|  | int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); | 
|  | int ret; | 
|  |  | 
|  | ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) | 
|  | { | 
|  | remove_pagetable(start, start + page_size); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  |  | 
|  | unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, | 
|  | pmd_t *pmdp, unsigned long clr, | 
|  | unsigned long set) | 
|  | { | 
|  | unsigned long old; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); | 
|  | assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
|  | #endif | 
|  |  | 
|  | old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1); | 
|  | trace_hugepage_update(addr, old, clr, set); | 
|  |  | 
|  | return old; | 
|  | } | 
|  |  | 
|  | pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, | 
|  | pmd_t *pmdp) | 
|  |  | 
|  | { | 
|  | pmd_t pmd; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  | VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); | 
|  | VM_BUG_ON(pmd_devmap(*pmdp)); | 
|  | /* | 
|  | * khugepaged calls this for normal pmd | 
|  | */ | 
|  | pmd = *pmdp; | 
|  | pmd_clear(pmdp); | 
|  |  | 
|  | /*FIXME!!  Verify whether we need this kick below */ | 
|  | serialize_against_pte_lookup(vma->vm_mm); | 
|  |  | 
|  | radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); | 
|  |  | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For us pgtable_t is pte_t *. Inorder to save the deposisted | 
|  | * page table, we consider the allocated page table as a list | 
|  | * head. On withdraw we need to make sure we zero out the used | 
|  | * list_head memory area. | 
|  | */ | 
|  | void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, | 
|  | pgtable_t pgtable) | 
|  | { | 
|  | struct list_head *lh = (struct list_head *) pgtable; | 
|  |  | 
|  | assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
|  |  | 
|  | /* FIFO */ | 
|  | if (!pmd_huge_pte(mm, pmdp)) | 
|  | INIT_LIST_HEAD(lh); | 
|  | else | 
|  | list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); | 
|  | pmd_huge_pte(mm, pmdp) = pgtable; | 
|  | } | 
|  |  | 
|  | pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) | 
|  | { | 
|  | pte_t *ptep; | 
|  | pgtable_t pgtable; | 
|  | struct list_head *lh; | 
|  |  | 
|  | assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
|  |  | 
|  | /* FIFO */ | 
|  | pgtable = pmd_huge_pte(mm, pmdp); | 
|  | lh = (struct list_head *) pgtable; | 
|  | if (list_empty(lh)) | 
|  | pmd_huge_pte(mm, pmdp) = NULL; | 
|  | else { | 
|  | pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; | 
|  | list_del(lh); | 
|  | } | 
|  | ptep = (pte_t *) pgtable; | 
|  | *ptep = __pte(0); | 
|  | ptep++; | 
|  | *ptep = __pte(0); | 
|  | return pgtable; | 
|  | } | 
|  |  | 
|  |  | 
|  | pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, | 
|  | unsigned long addr, pmd_t *pmdp) | 
|  | { | 
|  | pmd_t old_pmd; | 
|  | unsigned long old; | 
|  |  | 
|  | old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); | 
|  | old_pmd = __pmd(old); | 
|  | /* | 
|  | * Serialize against find_current_mm_pte which does lock-less | 
|  | * lookup in page tables with local interrupts disabled. For huge pages | 
|  | * it casts pmd_t to pte_t. Since format of pte_t is different from | 
|  | * pmd_t we want to prevent transit from pmd pointing to page table | 
|  | * to pmd pointing to huge page (and back) while interrupts are disabled. | 
|  | * We clear pmd to possibly replace it with page table pointer in | 
|  | * different code paths. So make sure we wait for the parallel | 
|  | * find_current_mm_pte to finish. | 
|  | */ | 
|  | serialize_against_pte_lookup(mm); | 
|  | return old_pmd; | 
|  | } | 
|  |  | 
|  | int radix__has_transparent_hugepage(void) | 
|  | { | 
|  | /* For radix 2M at PMD level means thp */ | 
|  | if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, | 
|  | pte_t entry, unsigned long address, int psize) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | | 
|  | _PAGE_RW | _PAGE_EXEC); | 
|  |  | 
|  | unsigned long change = pte_val(entry) ^ pte_val(*ptep); | 
|  | /* | 
|  | * To avoid NMMU hang while relaxing access, we need mark | 
|  | * the pte invalid in between. | 
|  | */ | 
|  | if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) { | 
|  | unsigned long old_pte, new_pte; | 
|  |  | 
|  | old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); | 
|  | /* | 
|  | * new value of pte | 
|  | */ | 
|  | new_pte = old_pte | set; | 
|  | radix__flush_tlb_page_psize(mm, address, psize); | 
|  | __radix_pte_update(ptep, _PAGE_INVALID, new_pte); | 
|  | } else { | 
|  | __radix_pte_update(ptep, 0, set); | 
|  | /* | 
|  | * Book3S does not require a TLB flush when relaxing access | 
|  | * restrictions when the address space is not attached to a | 
|  | * NMMU, because the core MMU will reload the pte after taking | 
|  | * an access fault, which is defined by the architectue. | 
|  | */ | 
|  | } | 
|  | /* See ptesync comment in radix__set_pte_at */ | 
|  | } |