|  | /* | 
|  | * Kernel-based Virtual Machine -- Performance Monitoring Unit support | 
|  | * | 
|  | * Copyright 2015 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Avi Kivity   <avi@redhat.com> | 
|  | *   Gleb Natapov <gleb@redhat.com> | 
|  | *   Wei Huang    <wei@redhat.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <asm/perf_event.h> | 
|  | #include "x86.h" | 
|  | #include "cpuid.h" | 
|  | #include "lapic.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | /* NOTE: | 
|  | * - Each perf counter is defined as "struct kvm_pmc"; | 
|  | * - There are two types of perf counters: general purpose (gp) and fixed. | 
|  | *   gp counters are stored in gp_counters[] and fixed counters are stored | 
|  | *   in fixed_counters[] respectively. Both of them are part of "struct | 
|  | *   kvm_pmu"; | 
|  | * - pmu.c understands the difference between gp counters and fixed counters. | 
|  | *   However AMD doesn't support fixed-counters; | 
|  | * - There are three types of index to access perf counters (PMC): | 
|  | *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD | 
|  | *        has MSR_K7_PERFCTRn. | 
|  | *     2. MSR Index (named idx): This normally is used by RDPMC instruction. | 
|  | *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access | 
|  | *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except | 
|  | *        that it also supports fixed counters. idx can be used to as index to | 
|  | *        gp and fixed counters. | 
|  | *     3. Global PMC Index (named pmc): pmc is an index specific to PMU | 
|  | *        code. Each pmc, stored in kvm_pmc.idx field, is unique across | 
|  | *        all perf counters (both gp and fixed). The mapping relationship | 
|  | *        between pmc and perf counters is as the following: | 
|  | *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters | 
|  | *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed | 
|  | *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters | 
|  | */ | 
|  |  | 
|  | static void kvm_pmi_trigger_fn(struct irq_work *irq_work) | 
|  | { | 
|  | struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); | 
|  | struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); | 
|  |  | 
|  | kvm_pmu_deliver_pmi(vcpu); | 
|  | } | 
|  |  | 
|  | static void kvm_perf_overflow(struct perf_event *perf_event, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct kvm_pmc *pmc = perf_event->overflow_handler_context; | 
|  | struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
|  |  | 
|  | if (!test_and_set_bit(pmc->idx, | 
|  | (unsigned long *)&pmu->reprogram_pmi)) { | 
|  | __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); | 
|  | kvm_make_request(KVM_REQ_PMU, pmc->vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_perf_overflow_intr(struct perf_event *perf_event, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct kvm_pmc *pmc = perf_event->overflow_handler_context; | 
|  | struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
|  |  | 
|  | if (!test_and_set_bit(pmc->idx, | 
|  | (unsigned long *)&pmu->reprogram_pmi)) { | 
|  | __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); | 
|  | kvm_make_request(KVM_REQ_PMU, pmc->vcpu); | 
|  |  | 
|  | /* | 
|  | * Inject PMI. If vcpu was in a guest mode during NMI PMI | 
|  | * can be ejected on a guest mode re-entry. Otherwise we can't | 
|  | * be sure that vcpu wasn't executing hlt instruction at the | 
|  | * time of vmexit and is not going to re-enter guest mode until | 
|  | * woken up. So we should wake it, but this is impossible from | 
|  | * NMI context. Do it from irq work instead. | 
|  | */ | 
|  | if (!kvm_is_in_guest()) | 
|  | irq_work_queue(&pmc_to_pmu(pmc)->irq_work); | 
|  | else | 
|  | kvm_make_request(KVM_REQ_PMI, pmc->vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, | 
|  | unsigned config, bool exclude_user, | 
|  | bool exclude_kernel, bool intr, | 
|  | bool in_tx, bool in_tx_cp) | 
|  | { | 
|  | struct perf_event *event; | 
|  | struct perf_event_attr attr = { | 
|  | .type = type, | 
|  | .size = sizeof(attr), | 
|  | .pinned = true, | 
|  | .exclude_idle = true, | 
|  | .exclude_host = 1, | 
|  | .exclude_user = exclude_user, | 
|  | .exclude_kernel = exclude_kernel, | 
|  | .config = config, | 
|  | }; | 
|  |  | 
|  | attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc); | 
|  |  | 
|  | if (in_tx) | 
|  | attr.config |= HSW_IN_TX; | 
|  | if (in_tx_cp) { | 
|  | /* | 
|  | * HSW_IN_TX_CHECKPOINTED is not supported with nonzero | 
|  | * period. Just clear the sample period so at least | 
|  | * allocating the counter doesn't fail. | 
|  | */ | 
|  | attr.sample_period = 0; | 
|  | attr.config |= HSW_IN_TX_CHECKPOINTED; | 
|  | } | 
|  |  | 
|  | event = perf_event_create_kernel_counter(&attr, -1, current, | 
|  | intr ? kvm_perf_overflow_intr : | 
|  | kvm_perf_overflow, pmc); | 
|  | if (IS_ERR(event)) { | 
|  | pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", | 
|  | PTR_ERR(event), pmc->idx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pmc->perf_event = event; | 
|  | clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi); | 
|  | } | 
|  |  | 
|  | void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) | 
|  | { | 
|  | unsigned config, type = PERF_TYPE_RAW; | 
|  | u8 event_select, unit_mask; | 
|  |  | 
|  | if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) | 
|  | printk_once("kvm pmu: pin control bit is ignored\n"); | 
|  |  | 
|  | pmc->eventsel = eventsel; | 
|  |  | 
|  | pmc_stop_counter(pmc); | 
|  |  | 
|  | if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) | 
|  | return; | 
|  |  | 
|  | event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; | 
|  | unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; | 
|  |  | 
|  | if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | | 
|  | ARCH_PERFMON_EVENTSEL_INV | | 
|  | ARCH_PERFMON_EVENTSEL_CMASK | | 
|  | HSW_IN_TX | | 
|  | HSW_IN_TX_CHECKPOINTED))) { | 
|  | config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc), | 
|  | event_select, | 
|  | unit_mask); | 
|  | if (config != PERF_COUNT_HW_MAX) | 
|  | type = PERF_TYPE_HARDWARE; | 
|  | } | 
|  |  | 
|  | if (type == PERF_TYPE_RAW) | 
|  | config = eventsel & X86_RAW_EVENT_MASK; | 
|  |  | 
|  | pmc_reprogram_counter(pmc, type, config, | 
|  | !(eventsel & ARCH_PERFMON_EVENTSEL_USR), | 
|  | !(eventsel & ARCH_PERFMON_EVENTSEL_OS), | 
|  | eventsel & ARCH_PERFMON_EVENTSEL_INT, | 
|  | (eventsel & HSW_IN_TX), | 
|  | (eventsel & HSW_IN_TX_CHECKPOINTED)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(reprogram_gp_counter); | 
|  |  | 
|  | void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) | 
|  | { | 
|  | unsigned en_field = ctrl & 0x3; | 
|  | bool pmi = ctrl & 0x8; | 
|  |  | 
|  | pmc_stop_counter(pmc); | 
|  |  | 
|  | if (!en_field || !pmc_is_enabled(pmc)) | 
|  | return; | 
|  |  | 
|  | pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, | 
|  | kvm_x86_ops->pmu_ops->find_fixed_event(idx), | 
|  | !(en_field & 0x2), /* exclude user */ | 
|  | !(en_field & 0x1), /* exclude kernel */ | 
|  | pmi, false, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(reprogram_fixed_counter); | 
|  |  | 
|  | void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) | 
|  | { | 
|  | struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); | 
|  |  | 
|  | if (!pmc) | 
|  | return; | 
|  |  | 
|  | if (pmc_is_gp(pmc)) | 
|  | reprogram_gp_counter(pmc, pmc->eventsel); | 
|  | else { | 
|  | int idx = pmc_idx - INTEL_PMC_IDX_FIXED; | 
|  | u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); | 
|  |  | 
|  | reprogram_fixed_counter(pmc, ctrl, idx); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(reprogram_counter); | 
|  |  | 
|  | void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | u64 bitmask; | 
|  | int bit; | 
|  |  | 
|  | bitmask = pmu->reprogram_pmi; | 
|  |  | 
|  | for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) { | 
|  | struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit); | 
|  |  | 
|  | if (unlikely(!pmc || !pmc->perf_event)) { | 
|  | clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reprogram_counter(pmu, bit); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check if idx is a valid index to access PMU */ | 
|  | int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx) | 
|  | { | 
|  | return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx); | 
|  | } | 
|  |  | 
|  | bool is_vmware_backdoor_pmc(u32 pmc_idx) | 
|  | { | 
|  | switch (pmc_idx) { | 
|  | case VMWARE_BACKDOOR_PMC_HOST_TSC: | 
|  | case VMWARE_BACKDOOR_PMC_REAL_TIME: | 
|  | case VMWARE_BACKDOOR_PMC_APPARENT_TIME: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) | 
|  | { | 
|  | u64 ctr_val; | 
|  |  | 
|  | switch (idx) { | 
|  | case VMWARE_BACKDOOR_PMC_HOST_TSC: | 
|  | ctr_val = rdtsc(); | 
|  | break; | 
|  | case VMWARE_BACKDOOR_PMC_REAL_TIME: | 
|  | ctr_val = ktime_get_boot_ns(); | 
|  | break; | 
|  | case VMWARE_BACKDOOR_PMC_APPARENT_TIME: | 
|  | ctr_val = ktime_get_boot_ns() + | 
|  | vcpu->kvm->arch.kvmclock_offset; | 
|  | break; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | *data = ctr_val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) | 
|  | { | 
|  | bool fast_mode = idx & (1u << 31); | 
|  | struct kvm_pmc *pmc; | 
|  | u64 mask = fast_mode ? ~0u : ~0ull; | 
|  |  | 
|  | if (is_vmware_backdoor_pmc(idx)) | 
|  | return kvm_pmu_rdpmc_vmware(vcpu, idx, data); | 
|  |  | 
|  | pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx, &mask); | 
|  | if (!pmc) | 
|  | return 1; | 
|  |  | 
|  | *data = pmc_read_counter(pmc) & mask; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (lapic_in_kernel(vcpu)) | 
|  | kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); | 
|  | } | 
|  |  | 
|  | bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) | 
|  | { | 
|  | return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr); | 
|  | } | 
|  |  | 
|  | int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data) | 
|  | { | 
|  | return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data); | 
|  | } | 
|  |  | 
|  | int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
|  | { | 
|  | return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info); | 
|  | } | 
|  |  | 
|  | /* refresh PMU settings. This function generally is called when underlying | 
|  | * settings are changed (such as changes of PMU CPUID by guest VMs), which | 
|  | * should rarely happen. | 
|  | */ | 
|  | void kvm_pmu_refresh(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_x86_ops->pmu_ops->refresh(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_reset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  |  | 
|  | irq_work_sync(&pmu->irq_work); | 
|  | kvm_x86_ops->pmu_ops->reset(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  |  | 
|  | memset(pmu, 0, sizeof(*pmu)); | 
|  | kvm_x86_ops->pmu_ops->init(vcpu); | 
|  | init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); | 
|  | kvm_pmu_refresh(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_pmu_reset(vcpu); | 
|  | } |