|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/mtrr.h> | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK | 
|  | phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; | 
|  | EXPORT_SYMBOL(physical_mask); | 
|  | #endif | 
|  |  | 
|  | #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) | 
|  |  | 
|  | #ifdef CONFIG_HIGHPTE | 
|  | #define PGALLOC_USER_GFP __GFP_HIGHMEM | 
|  | #else | 
|  | #define PGALLOC_USER_GFP 0 | 
|  | #endif | 
|  |  | 
|  | gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; | 
|  |  | 
|  | pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT); | 
|  | } | 
|  |  | 
|  | pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | struct page *pte; | 
|  |  | 
|  | pte = alloc_pages(__userpte_alloc_gfp, 0); | 
|  | if (!pte) | 
|  | return NULL; | 
|  | if (!pgtable_page_ctor(pte)) { | 
|  | __free_page(pte); | 
|  | return NULL; | 
|  | } | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static int __init setup_userpte(char *arg) | 
|  | { | 
|  | if (!arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * "userpte=nohigh" disables allocation of user pagetables in | 
|  | * high memory. | 
|  | */ | 
|  | if (strcmp(arg, "nohigh") == 0) | 
|  | __userpte_alloc_gfp &= ~__GFP_HIGHMEM; | 
|  | else | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | early_param("userpte", setup_userpte); | 
|  |  | 
|  | void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) | 
|  | { | 
|  | pgtable_page_dtor(pte); | 
|  | paravirt_release_pte(page_to_pfn(pte)); | 
|  | paravirt_tlb_remove_table(tlb, pte); | 
|  | } | 
|  |  | 
|  | #if CONFIG_PGTABLE_LEVELS > 2 | 
|  | void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) | 
|  | { | 
|  | struct page *page = virt_to_page(pmd); | 
|  | paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); | 
|  | /* | 
|  | * NOTE! For PAE, any changes to the top page-directory-pointer-table | 
|  | * entries need a full cr3 reload to flush. | 
|  | */ | 
|  | #ifdef CONFIG_X86_PAE | 
|  | tlb->need_flush_all = 1; | 
|  | #endif | 
|  | pgtable_pmd_page_dtor(page); | 
|  | paravirt_tlb_remove_table(tlb, page); | 
|  | } | 
|  |  | 
|  | #if CONFIG_PGTABLE_LEVELS > 3 | 
|  | void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) | 
|  | { | 
|  | paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); | 
|  | paravirt_tlb_remove_table(tlb, virt_to_page(pud)); | 
|  | } | 
|  |  | 
|  | #if CONFIG_PGTABLE_LEVELS > 4 | 
|  | void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) | 
|  | { | 
|  | paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); | 
|  | paravirt_tlb_remove_table(tlb, virt_to_page(p4d)); | 
|  | } | 
|  | #endif	/* CONFIG_PGTABLE_LEVELS > 4 */ | 
|  | #endif	/* CONFIG_PGTABLE_LEVELS > 3 */ | 
|  | #endif	/* CONFIG_PGTABLE_LEVELS > 2 */ | 
|  |  | 
|  | static inline void pgd_list_add(pgd_t *pgd) | 
|  | { | 
|  | struct page *page = virt_to_page(pgd); | 
|  |  | 
|  | list_add(&page->lru, &pgd_list); | 
|  | } | 
|  |  | 
|  | static inline void pgd_list_del(pgd_t *pgd) | 
|  | { | 
|  | struct page *page = virt_to_page(pgd); | 
|  |  | 
|  | list_del(&page->lru); | 
|  | } | 
|  |  | 
|  | #define UNSHARED_PTRS_PER_PGD				\ | 
|  | (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) | 
|  | #define MAX_UNSHARED_PTRS_PER_PGD			\ | 
|  | max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD) | 
|  |  | 
|  |  | 
|  | static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) | 
|  | { | 
|  | virt_to_page(pgd)->pt_mm = mm; | 
|  | } | 
|  |  | 
|  | struct mm_struct *pgd_page_get_mm(struct page *page) | 
|  | { | 
|  | return page->pt_mm; | 
|  | } | 
|  |  | 
|  | static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | /* If the pgd points to a shared pagetable level (either the | 
|  | ptes in non-PAE, or shared PMD in PAE), then just copy the | 
|  | references from swapper_pg_dir. */ | 
|  | if (CONFIG_PGTABLE_LEVELS == 2 || | 
|  | (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || | 
|  | CONFIG_PGTABLE_LEVELS >= 4) { | 
|  | clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, | 
|  | swapper_pg_dir + KERNEL_PGD_BOUNDARY, | 
|  | KERNEL_PGD_PTRS); | 
|  | } | 
|  |  | 
|  | /* list required to sync kernel mapping updates */ | 
|  | if (!SHARED_KERNEL_PMD) { | 
|  | pgd_set_mm(pgd, mm); | 
|  | pgd_list_add(pgd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pgd_dtor(pgd_t *pgd) | 
|  | { | 
|  | if (SHARED_KERNEL_PMD) | 
|  | return; | 
|  |  | 
|  | spin_lock(&pgd_lock); | 
|  | pgd_list_del(pgd); | 
|  | spin_unlock(&pgd_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * List of all pgd's needed for non-PAE so it can invalidate entries | 
|  | * in both cached and uncached pgd's; not needed for PAE since the | 
|  | * kernel pmd is shared. If PAE were not to share the pmd a similar | 
|  | * tactic would be needed. This is essentially codepath-based locking | 
|  | * against pageattr.c; it is the unique case in which a valid change | 
|  | * of kernel pagetables can't be lazily synchronized by vmalloc faults. | 
|  | * vmalloc faults work because attached pagetables are never freed. | 
|  | * -- nyc | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | /* | 
|  | * In PAE mode, we need to do a cr3 reload (=tlb flush) when | 
|  | * updating the top-level pagetable entries to guarantee the | 
|  | * processor notices the update.  Since this is expensive, and | 
|  | * all 4 top-level entries are used almost immediately in a | 
|  | * new process's life, we just pre-populate them here. | 
|  | * | 
|  | * Also, if we're in a paravirt environment where the kernel pmd is | 
|  | * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate | 
|  | * and initialize the kernel pmds here. | 
|  | */ | 
|  | #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD | 
|  | #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD | 
|  |  | 
|  | /* | 
|  | * We allocate separate PMDs for the kernel part of the user page-table | 
|  | * when PTI is enabled. We need them to map the per-process LDT into the | 
|  | * user-space page-table. | 
|  | */ | 
|  | #define PREALLOCATED_USER_PMDS	 (static_cpu_has(X86_FEATURE_PTI) ? \ | 
|  | KERNEL_PGD_PTRS : 0) | 
|  | #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS | 
|  |  | 
|  | void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) | 
|  | { | 
|  | paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); | 
|  |  | 
|  | /* Note: almost everything apart from _PAGE_PRESENT is | 
|  | reserved at the pmd (PDPT) level. */ | 
|  | set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); | 
|  |  | 
|  | /* | 
|  | * According to Intel App note "TLBs, Paging-Structure Caches, | 
|  | * and Their Invalidation", April 2007, document 317080-001, | 
|  | * section 8.1: in PAE mode we explicitly have to flush the | 
|  | * TLB via cr3 if the top-level pgd is changed... | 
|  | */ | 
|  | flush_tlb_mm(mm); | 
|  | } | 
|  | #else  /* !CONFIG_X86_PAE */ | 
|  |  | 
|  | /* No need to prepopulate any pagetable entries in non-PAE modes. */ | 
|  | #define PREALLOCATED_PMDS	0 | 
|  | #define MAX_PREALLOCATED_PMDS	0 | 
|  | #define PREALLOCATED_USER_PMDS	 0 | 
|  | #define MAX_PREALLOCATED_USER_PMDS 0 | 
|  | #endif	/* CONFIG_X86_PAE */ | 
|  |  | 
|  | static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | if (pmds[i]) { | 
|  | pgtable_pmd_page_dtor(virt_to_page(pmds[i])); | 
|  | free_page((unsigned long)pmds[i]); | 
|  | mm_dec_nr_pmds(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) | 
|  | { | 
|  | int i; | 
|  | bool failed = false; | 
|  | gfp_t gfp = PGALLOC_GFP; | 
|  |  | 
|  | if (mm == &init_mm) | 
|  | gfp &= ~__GFP_ACCOUNT; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | pmd_t *pmd = (pmd_t *)__get_free_page(gfp); | 
|  | if (!pmd) | 
|  | failed = true; | 
|  | if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) { | 
|  | free_page((unsigned long)pmd); | 
|  | pmd = NULL; | 
|  | failed = true; | 
|  | } | 
|  | if (pmd) | 
|  | mm_inc_nr_pmds(mm); | 
|  | pmds[i] = pmd; | 
|  | } | 
|  |  | 
|  | if (failed) { | 
|  | free_pmds(mm, pmds, count); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mop up any pmd pages which may still be attached to the pgd. | 
|  | * Normally they will be freed by munmap/exit_mmap, but any pmd we | 
|  | * preallocate which never got a corresponding vma will need to be | 
|  | * freed manually. | 
|  | */ | 
|  | static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp) | 
|  | { | 
|  | pgd_t pgd = *pgdp; | 
|  |  | 
|  | if (pgd_val(pgd) != 0) { | 
|  | pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); | 
|  |  | 
|  | pgd_clear(pgdp); | 
|  |  | 
|  | paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); | 
|  | pmd_free(mm, pmd); | 
|  | mm_dec_nr_pmds(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PREALLOCATED_PMDS; i++) | 
|  | mop_up_one_pmd(mm, &pgdp[i]); | 
|  |  | 
|  | #ifdef CONFIG_PAGE_TABLE_ISOLATION | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_PTI)) | 
|  | return; | 
|  |  | 
|  | pgdp = kernel_to_user_pgdp(pgdp); | 
|  |  | 
|  | for (i = 0; i < PREALLOCATED_USER_PMDS; i++) | 
|  | mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | int i; | 
|  |  | 
|  | if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ | 
|  | return; | 
|  |  | 
|  | p4d = p4d_offset(pgd, 0); | 
|  | pud = pud_offset(p4d, 0); | 
|  |  | 
|  | for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { | 
|  | pmd_t *pmd = pmds[i]; | 
|  |  | 
|  | if (i >= KERNEL_PGD_BOUNDARY) | 
|  | memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), | 
|  | sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | pud_populate(mm, pud, pmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PAGE_TABLE_ISOLATION | 
|  | static void pgd_prepopulate_user_pmd(struct mm_struct *mm, | 
|  | pgd_t *k_pgd, pmd_t *pmds[]) | 
|  | { | 
|  | pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir); | 
|  | pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); | 
|  | p4d_t *u_p4d; | 
|  | pud_t *u_pud; | 
|  | int i; | 
|  |  | 
|  | u_p4d = p4d_offset(u_pgd, 0); | 
|  | u_pud = pud_offset(u_p4d, 0); | 
|  |  | 
|  | s_pgd += KERNEL_PGD_BOUNDARY; | 
|  | u_pud += KERNEL_PGD_BOUNDARY; | 
|  |  | 
|  | for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) { | 
|  | pmd_t *pmd = pmds[i]; | 
|  |  | 
|  | memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd), | 
|  | sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | pud_populate(mm, u_pud, pmd); | 
|  | } | 
|  |  | 
|  | } | 
|  | #else | 
|  | static void pgd_prepopulate_user_pmd(struct mm_struct *mm, | 
|  | pgd_t *k_pgd, pmd_t *pmds[]) | 
|  | { | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also | 
|  | * assumes that pgd should be in one page. | 
|  | * | 
|  | * But kernel with PAE paging that is not running as a Xen domain | 
|  | * only needs to allocate 32 bytes for pgd instead of one page. | 
|  | */ | 
|  | #ifdef CONFIG_X86_PAE | 
|  |  | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t)) | 
|  | #define PGD_ALIGN	32 | 
|  |  | 
|  | static struct kmem_cache *pgd_cache; | 
|  |  | 
|  | static int __init pgd_cache_init(void) | 
|  | { | 
|  | /* | 
|  | * When PAE kernel is running as a Xen domain, it does not use | 
|  | * shared kernel pmd. And this requires a whole page for pgd. | 
|  | */ | 
|  | if (!SHARED_KERNEL_PMD) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * when PAE kernel is not running as a Xen domain, it uses | 
|  | * shared kernel pmd. Shared kernel pmd does not require a whole | 
|  | * page for pgd. We are able to just allocate a 32-byte for pgd. | 
|  | * During boot time, we create a 32-byte slab for pgd table allocation. | 
|  | */ | 
|  | pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, | 
|  | SLAB_PANIC, NULL); | 
|  | return 0; | 
|  | } | 
|  | core_initcall(pgd_cache_init); | 
|  |  | 
|  | static inline pgd_t *_pgd_alloc(void) | 
|  | { | 
|  | /* | 
|  | * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain. | 
|  | * We allocate one page for pgd. | 
|  | */ | 
|  | if (!SHARED_KERNEL_PMD) | 
|  | return (pgd_t *)__get_free_pages(PGALLOC_GFP, | 
|  | PGD_ALLOCATION_ORDER); | 
|  |  | 
|  | /* | 
|  | * Now PAE kernel is not running as a Xen domain. We can allocate | 
|  | * a 32-byte slab for pgd to save memory space. | 
|  | */ | 
|  | return kmem_cache_alloc(pgd_cache, PGALLOC_GFP); | 
|  | } | 
|  |  | 
|  | static inline void _pgd_free(pgd_t *pgd) | 
|  | { | 
|  | if (!SHARED_KERNEL_PMD) | 
|  | free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); | 
|  | else | 
|  | kmem_cache_free(pgd_cache, pgd); | 
|  | } | 
|  | #else | 
|  |  | 
|  | static inline pgd_t *_pgd_alloc(void) | 
|  | { | 
|  | return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER); | 
|  | } | 
|  |  | 
|  | static inline void _pgd_free(pgd_t *pgd) | 
|  | { | 
|  | free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER); | 
|  | } | 
|  | #endif /* CONFIG_X86_PAE */ | 
|  |  | 
|  | pgd_t *pgd_alloc(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS]; | 
|  | pmd_t *pmds[MAX_PREALLOCATED_PMDS]; | 
|  |  | 
|  | pgd = _pgd_alloc(); | 
|  |  | 
|  | if (pgd == NULL) | 
|  | goto out; | 
|  |  | 
|  | mm->pgd = pgd; | 
|  |  | 
|  | if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0) | 
|  | goto out_free_pgd; | 
|  |  | 
|  | if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0) | 
|  | goto out_free_pmds; | 
|  |  | 
|  | if (paravirt_pgd_alloc(mm) != 0) | 
|  | goto out_free_user_pmds; | 
|  |  | 
|  | /* | 
|  | * Make sure that pre-populating the pmds is atomic with | 
|  | * respect to anything walking the pgd_list, so that they | 
|  | * never see a partially populated pgd. | 
|  | */ | 
|  | spin_lock(&pgd_lock); | 
|  |  | 
|  | pgd_ctor(mm, pgd); | 
|  | pgd_prepopulate_pmd(mm, pgd, pmds); | 
|  | pgd_prepopulate_user_pmd(mm, pgd, u_pmds); | 
|  |  | 
|  | spin_unlock(&pgd_lock); | 
|  |  | 
|  | return pgd; | 
|  |  | 
|  | out_free_user_pmds: | 
|  | free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS); | 
|  | out_free_pmds: | 
|  | free_pmds(mm, pmds, PREALLOCATED_PMDS); | 
|  | out_free_pgd: | 
|  | _pgd_free(pgd); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | pgd_mop_up_pmds(mm, pgd); | 
|  | pgd_dtor(pgd); | 
|  | paravirt_pgd_free(mm, pgd); | 
|  | _pgd_free(pgd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to set accessed or dirty bits in the page table entries | 
|  | * on other architectures. On x86, the accessed and dirty bits | 
|  | * are tracked by hardware. However, do_wp_page calls this function | 
|  | * to also make the pte writeable at the same time the dirty bit is | 
|  | * set. In that case we do actually need to write the PTE. | 
|  | */ | 
|  | int ptep_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, | 
|  | pte_t entry, int dirty) | 
|  | { | 
|  | int changed = !pte_same(*ptep, entry); | 
|  |  | 
|  | if (changed && dirty) | 
|  | set_pte(ptep, entry); | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int pmdp_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp, | 
|  | pmd_t entry, int dirty) | 
|  | { | 
|  | int changed = !pmd_same(*pmdp, entry); | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | if (changed && dirty) { | 
|  | set_pmd(pmdp, entry); | 
|  | /* | 
|  | * We had a write-protection fault here and changed the pmd | 
|  | * to to more permissive. No need to flush the TLB for that, | 
|  | * #PF is architecturally guaranteed to do that and in the | 
|  | * worst-case we'll generate a spurious fault. | 
|  | */ | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, | 
|  | pud_t *pudp, pud_t entry, int dirty) | 
|  | { | 
|  | int changed = !pud_same(*pudp, entry); | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PUD_MASK); | 
|  |  | 
|  | if (changed && dirty) { | 
|  | set_pud(pudp, entry); | 
|  | /* | 
|  | * We had a write-protection fault here and changed the pud | 
|  | * to to more permissive. No need to flush the TLB for that, | 
|  | * #PF is architecturally guaranteed to do that and in the | 
|  | * worst-case we'll generate a spurious fault. | 
|  | */ | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int ptep_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (pte_young(*ptep)) | 
|  | ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, | 
|  | (unsigned long *) &ptep->pte); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int pmdp_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t *pmdp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (pmd_young(*pmdp)) | 
|  | ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, | 
|  | (unsigned long *)pmdp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | int pudp_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long addr, pud_t *pudp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (pud_young(*pudp)) | 
|  | ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, | 
|  | (unsigned long *)pudp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int ptep_clear_flush_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | /* | 
|  | * On x86 CPUs, clearing the accessed bit without a TLB flush | 
|  | * doesn't cause data corruption. [ It could cause incorrect | 
|  | * page aging and the (mistaken) reclaim of hot pages, but the | 
|  | * chance of that should be relatively low. ] | 
|  | * | 
|  | * So as a performance optimization don't flush the TLB when | 
|  | * clearing the accessed bit, it will eventually be flushed by | 
|  | * a context switch or a VM operation anyway. [ In the rare | 
|  | * event of it not getting flushed for a long time the delay | 
|  | * shouldn't really matter because there's no real memory | 
|  | * pressure for swapout to react to. ] | 
|  | */ | 
|  | return ptep_test_and_clear_young(vma, address, ptep); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int pmdp_clear_flush_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp) | 
|  | { | 
|  | int young; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | young = pmdp_test_and_clear_young(vma, address, pmdp); | 
|  | if (young) | 
|  | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  |  | 
|  | return young; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * reserve_top_address - reserves a hole in the top of kernel address space | 
|  | * @reserve - size of hole to reserve | 
|  | * | 
|  | * Can be used to relocate the fixmap area and poke a hole in the top | 
|  | * of kernel address space to make room for a hypervisor. | 
|  | */ | 
|  | void __init reserve_top_address(unsigned long reserve) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | BUG_ON(fixmaps_set > 0); | 
|  | __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; | 
|  | printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", | 
|  | -reserve, __FIXADDR_TOP + PAGE_SIZE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int fixmaps_set; | 
|  |  | 
|  | void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) | 
|  | { | 
|  | unsigned long address = __fix_to_virt(idx); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Ensure that the static initial page tables are covering the | 
|  | * fixmap completely. | 
|  | */ | 
|  | BUILD_BUG_ON(__end_of_permanent_fixed_addresses > | 
|  | (FIXMAP_PMD_NUM * PTRS_PER_PTE)); | 
|  | #endif | 
|  |  | 
|  | if (idx >= __end_of_fixed_addresses) { | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | set_pte_vaddr(address, pte); | 
|  | fixmaps_set++; | 
|  | } | 
|  |  | 
|  | void native_set_fixmap(unsigned /* enum fixed_addresses */ idx, | 
|  | phys_addr_t phys, pgprot_t flags) | 
|  | { | 
|  | /* Sanitize 'prot' against any unsupported bits: */ | 
|  | pgprot_val(flags) &= __default_kernel_pte_mask; | 
|  |  | 
|  | __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP | 
|  | #ifdef CONFIG_X86_5LEVEL | 
|  | /** | 
|  | * p4d_set_huge - setup kernel P4D mapping | 
|  | * | 
|  | * No 512GB pages yet -- always return 0 | 
|  | */ | 
|  | int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * p4d_clear_huge - clear kernel P4D mapping when it is set | 
|  | * | 
|  | * No 512GB pages yet -- always return 0 | 
|  | */ | 
|  | int p4d_clear_huge(p4d_t *p4d) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * pud_set_huge - setup kernel PUD mapping | 
|  | * | 
|  | * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this | 
|  | * function sets up a huge page only if any of the following conditions are met: | 
|  | * | 
|  | * - MTRRs are disabled, or | 
|  | * | 
|  | * - MTRRs are enabled and the range is completely covered by a single MTRR, or | 
|  | * | 
|  | * - MTRRs are enabled and the corresponding MTRR memory type is WB, which | 
|  | *   has no effect on the requested PAT memory type. | 
|  | * | 
|  | * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger | 
|  | * page mapping attempt fails. | 
|  | * | 
|  | * Returns 1 on success and 0 on failure. | 
|  | */ | 
|  | int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) | 
|  | { | 
|  | u8 mtrr, uniform; | 
|  |  | 
|  | mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); | 
|  | if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && | 
|  | (mtrr != MTRR_TYPE_WRBACK)) | 
|  | return 0; | 
|  |  | 
|  | /* Bail out if we are we on a populated non-leaf entry: */ | 
|  | if (pud_present(*pud) && !pud_huge(*pud)) | 
|  | return 0; | 
|  |  | 
|  | prot = pgprot_4k_2_large(prot); | 
|  |  | 
|  | set_pte((pte_t *)pud, pfn_pte( | 
|  | (u64)addr >> PAGE_SHIFT, | 
|  | __pgprot(pgprot_val(prot) | _PAGE_PSE))); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pmd_set_huge - setup kernel PMD mapping | 
|  | * | 
|  | * See text over pud_set_huge() above. | 
|  | * | 
|  | * Returns 1 on success and 0 on failure. | 
|  | */ | 
|  | int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) | 
|  | { | 
|  | u8 mtrr, uniform; | 
|  |  | 
|  | mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); | 
|  | if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) && | 
|  | (mtrr != MTRR_TYPE_WRBACK)) { | 
|  | pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", | 
|  | __func__, addr, addr + PMD_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Bail out if we are we on a populated non-leaf entry: */ | 
|  | if (pmd_present(*pmd) && !pmd_huge(*pmd)) | 
|  | return 0; | 
|  |  | 
|  | prot = pgprot_4k_2_large(prot); | 
|  |  | 
|  | set_pte((pte_t *)pmd, pfn_pte( | 
|  | (u64)addr >> PAGE_SHIFT, | 
|  | __pgprot(pgprot_val(prot) | _PAGE_PSE))); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pud_clear_huge - clear kernel PUD mapping when it is set | 
|  | * | 
|  | * Returns 1 on success and 0 on failure (no PUD map is found). | 
|  | */ | 
|  | int pud_clear_huge(pud_t *pud) | 
|  | { | 
|  | if (pud_large(*pud)) { | 
|  | pud_clear(pud); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pmd_clear_huge - clear kernel PMD mapping when it is set | 
|  | * | 
|  | * Returns 1 on success and 0 on failure (no PMD map is found). | 
|  | */ | 
|  | int pmd_clear_huge(pmd_t *pmd) | 
|  | { | 
|  | if (pmd_large(*pmd)) { | 
|  | pmd_clear(pmd); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /** | 
|  | * pud_free_pmd_page - Clear pud entry and free pmd page. | 
|  | * @pud: Pointer to a PUD. | 
|  | * @addr: Virtual address associated with pud. | 
|  | * | 
|  | * Context: The pud range has been unmapped and TLB purged. | 
|  | * Return: 1 if clearing the entry succeeded. 0 otherwise. | 
|  | * | 
|  | * NOTE: Callers must allow a single page allocation. | 
|  | */ | 
|  | int pud_free_pmd_page(pud_t *pud, unsigned long addr) | 
|  | { | 
|  | pmd_t *pmd, *pmd_sv; | 
|  | pte_t *pte; | 
|  | int i; | 
|  |  | 
|  | if (pud_none(*pud)) | 
|  | return 1; | 
|  |  | 
|  | pmd = (pmd_t *)pud_page_vaddr(*pud); | 
|  | pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); | 
|  | if (!pmd_sv) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < PTRS_PER_PMD; i++) { | 
|  | pmd_sv[i] = pmd[i]; | 
|  | if (!pmd_none(pmd[i])) | 
|  | pmd_clear(&pmd[i]); | 
|  | } | 
|  |  | 
|  | pud_clear(pud); | 
|  |  | 
|  | /* INVLPG to clear all paging-structure caches */ | 
|  | flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); | 
|  |  | 
|  | for (i = 0; i < PTRS_PER_PMD; i++) { | 
|  | if (!pmd_none(pmd_sv[i])) { | 
|  | pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]); | 
|  | free_page((unsigned long)pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | free_page((unsigned long)pmd_sv); | 
|  | free_page((unsigned long)pmd); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pmd_free_pte_page - Clear pmd entry and free pte page. | 
|  | * @pmd: Pointer to a PMD. | 
|  | * @addr: Virtual address associated with pmd. | 
|  | * | 
|  | * Context: The pmd range has been unmapped and TLB purged. | 
|  | * Return: 1 if clearing the entry succeeded. 0 otherwise. | 
|  | */ | 
|  | int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | if (pmd_none(*pmd)) | 
|  | return 1; | 
|  |  | 
|  | pte = (pte_t *)pmd_page_vaddr(*pmd); | 
|  | pmd_clear(pmd); | 
|  |  | 
|  | /* INVLPG to clear all paging-structure caches */ | 
|  | flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); | 
|  |  | 
|  | free_page((unsigned long)pte); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_X86_64 */ | 
|  |  | 
|  | int pud_free_pmd_page(pud_t *pud, unsigned long addr) | 
|  | { | 
|  | return pud_none(*pud); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable free page handling on x86-PAE. This assures that ioremap() | 
|  | * does not update sync'd pmd entries. See vmalloc_sync_one(). | 
|  | */ | 
|  | int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) | 
|  | { | 
|  | return pmd_none(*pmd); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_X86_64 */ | 
|  | #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */ |