|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2011 STRATO.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <trace/events/btrfs.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "backref.h" | 
|  | #include "ulist.h" | 
|  | #include "transaction.h" | 
|  | #include "delayed-ref.h" | 
|  | #include "locking.h" | 
|  |  | 
|  | /* Just an arbitrary number so we can be sure this happened */ | 
|  | #define BACKREF_FOUND_SHARED 6 | 
|  |  | 
|  | struct extent_inode_elem { | 
|  | u64 inum; | 
|  | u64 offset; | 
|  | struct extent_inode_elem *next; | 
|  | }; | 
|  |  | 
|  | static int check_extent_in_eb(const struct btrfs_key *key, | 
|  | const struct extent_buffer *eb, | 
|  | const struct btrfs_file_extent_item *fi, | 
|  | u64 extent_item_pos, | 
|  | struct extent_inode_elem **eie, | 
|  | bool ignore_offset) | 
|  | { | 
|  | u64 offset = 0; | 
|  | struct extent_inode_elem *e; | 
|  |  | 
|  | if (!ignore_offset && | 
|  | !btrfs_file_extent_compression(eb, fi) && | 
|  | !btrfs_file_extent_encryption(eb, fi) && | 
|  | !btrfs_file_extent_other_encoding(eb, fi)) { | 
|  | u64 data_offset; | 
|  | u64 data_len; | 
|  |  | 
|  | data_offset = btrfs_file_extent_offset(eb, fi); | 
|  | data_len = btrfs_file_extent_num_bytes(eb, fi); | 
|  |  | 
|  | if (extent_item_pos < data_offset || | 
|  | extent_item_pos >= data_offset + data_len) | 
|  | return 1; | 
|  | offset = extent_item_pos - data_offset; | 
|  | } | 
|  |  | 
|  | e = kmalloc(sizeof(*e), GFP_NOFS); | 
|  | if (!e) | 
|  | return -ENOMEM; | 
|  |  | 
|  | e->next = *eie; | 
|  | e->inum = key->objectid; | 
|  | e->offset = key->offset + offset; | 
|  | *eie = e; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_inode_elem_list(struct extent_inode_elem *eie) | 
|  | { | 
|  | struct extent_inode_elem *eie_next; | 
|  |  | 
|  | for (; eie; eie = eie_next) { | 
|  | eie_next = eie->next; | 
|  | kfree(eie); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int find_extent_in_eb(const struct extent_buffer *eb, | 
|  | u64 wanted_disk_byte, u64 extent_item_pos, | 
|  | struct extent_inode_elem **eie, | 
|  | bool ignore_offset) | 
|  | { | 
|  | u64 disk_byte; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | int slot; | 
|  | int nritems; | 
|  | int extent_type; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * from the shared data ref, we only have the leaf but we need | 
|  | * the key. thus, we must look into all items and see that we | 
|  | * find one (some) with a reference to our extent item. | 
|  | */ | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | for (slot = 0; slot < nritems; ++slot) { | 
|  | btrfs_item_key_to_cpu(eb, &key, slot); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(eb, fi); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ | 
|  | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  | if (disk_byte != wanted_disk_byte) | 
|  | continue; | 
|  |  | 
|  | ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct preftree { | 
|  | struct rb_root root; | 
|  | unsigned int count; | 
|  | }; | 
|  |  | 
|  | #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 } | 
|  |  | 
|  | struct preftrees { | 
|  | struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ | 
|  | struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ | 
|  | struct preftree indirect_missing_keys; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Checks for a shared extent during backref search. | 
|  | * | 
|  | * The share_count tracks prelim_refs (direct and indirect) having a | 
|  | * ref->count >0: | 
|  | *  - incremented when a ref->count transitions to >0 | 
|  | *  - decremented when a ref->count transitions to <1 | 
|  | */ | 
|  | struct share_check { | 
|  | u64 root_objectid; | 
|  | u64 inum; | 
|  | int share_count; | 
|  | }; | 
|  |  | 
|  | static inline int extent_is_shared(struct share_check *sc) | 
|  | { | 
|  | return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *btrfs_prelim_ref_cache; | 
|  |  | 
|  | int __init btrfs_prelim_ref_init(void) | 
|  | { | 
|  | btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", | 
|  | sizeof(struct prelim_ref), | 
|  | 0, | 
|  | SLAB_MEM_SPREAD, | 
|  | NULL); | 
|  | if (!btrfs_prelim_ref_cache) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cold btrfs_prelim_ref_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(btrfs_prelim_ref_cache); | 
|  | } | 
|  |  | 
|  | static void free_pref(struct prelim_ref *ref) | 
|  | { | 
|  | kmem_cache_free(btrfs_prelim_ref_cache, ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 when both refs are for the same block (and can be merged). | 
|  | * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 | 
|  | * indicates a 'higher' block. | 
|  | */ | 
|  | static int prelim_ref_compare(struct prelim_ref *ref1, | 
|  | struct prelim_ref *ref2) | 
|  | { | 
|  | if (ref1->level < ref2->level) | 
|  | return -1; | 
|  | if (ref1->level > ref2->level) | 
|  | return 1; | 
|  | if (ref1->root_id < ref2->root_id) | 
|  | return -1; | 
|  | if (ref1->root_id > ref2->root_id) | 
|  | return 1; | 
|  | if (ref1->key_for_search.type < ref2->key_for_search.type) | 
|  | return -1; | 
|  | if (ref1->key_for_search.type > ref2->key_for_search.type) | 
|  | return 1; | 
|  | if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) | 
|  | return -1; | 
|  | if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) | 
|  | return 1; | 
|  | if (ref1->key_for_search.offset < ref2->key_for_search.offset) | 
|  | return -1; | 
|  | if (ref1->key_for_search.offset > ref2->key_for_search.offset) | 
|  | return 1; | 
|  | if (ref1->parent < ref2->parent) | 
|  | return -1; | 
|  | if (ref1->parent > ref2->parent) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void update_share_count(struct share_check *sc, int oldcount, | 
|  | int newcount) | 
|  | { | 
|  | if ((!sc) || (oldcount == 0 && newcount < 1)) | 
|  | return; | 
|  |  | 
|  | if (oldcount > 0 && newcount < 1) | 
|  | sc->share_count--; | 
|  | else if (oldcount < 1 && newcount > 0) | 
|  | sc->share_count++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add @newref to the @root rbtree, merging identical refs. | 
|  | * | 
|  | * Callers should assume that newref has been freed after calling. | 
|  | */ | 
|  | static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, | 
|  | struct preftree *preftree, | 
|  | struct prelim_ref *newref, | 
|  | struct share_check *sc) | 
|  | { | 
|  | struct rb_root *root; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct prelim_ref *ref; | 
|  | int result; | 
|  |  | 
|  | root = &preftree->root; | 
|  | p = &root->rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | ref = rb_entry(parent, struct prelim_ref, rbnode); | 
|  | result = prelim_ref_compare(ref, newref); | 
|  | if (result < 0) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (result > 0) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | /* Identical refs, merge them and free @newref */ | 
|  | struct extent_inode_elem *eie = ref->inode_list; | 
|  |  | 
|  | while (eie && eie->next) | 
|  | eie = eie->next; | 
|  |  | 
|  | if (!eie) | 
|  | ref->inode_list = newref->inode_list; | 
|  | else | 
|  | eie->next = newref->inode_list; | 
|  | trace_btrfs_prelim_ref_merge(fs_info, ref, newref, | 
|  | preftree->count); | 
|  | /* | 
|  | * A delayed ref can have newref->count < 0. | 
|  | * The ref->count is updated to follow any | 
|  | * BTRFS_[ADD|DROP]_DELAYED_REF actions. | 
|  | */ | 
|  | update_share_count(sc, ref->count, | 
|  | ref->count + newref->count); | 
|  | ref->count += newref->count; | 
|  | free_pref(newref); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | update_share_count(sc, 0, newref->count); | 
|  | preftree->count++; | 
|  | trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); | 
|  | rb_link_node(&newref->rbnode, parent, p); | 
|  | rb_insert_color(&newref->rbnode, root); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the entire tree.  We don't care about internal consistency so | 
|  | * just free everything and then reset the tree root. | 
|  | */ | 
|  | static void prelim_release(struct preftree *preftree) | 
|  | { | 
|  | struct prelim_ref *ref, *next_ref; | 
|  |  | 
|  | rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root, | 
|  | rbnode) | 
|  | free_pref(ref); | 
|  |  | 
|  | preftree->root = RB_ROOT; | 
|  | preftree->count = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the rules for all callers of this function are: | 
|  | * - obtaining the parent is the goal | 
|  | * - if you add a key, you must know that it is a correct key | 
|  | * - if you cannot add the parent or a correct key, then we will look into the | 
|  | *   block later to set a correct key | 
|  | * | 
|  | * delayed refs | 
|  | * ============ | 
|  | *        backref type | shared | indirect | shared | indirect | 
|  | * information         |   tree |     tree |   data |     data | 
|  | * --------------------+--------+----------+--------+---------- | 
|  | *      parent logical |    y   |     -    |    -   |     - | 
|  | *      key to resolve |    -   |     y    |    y   |     y | 
|  | *  tree block logical |    -   |     -    |    -   |     - | 
|  | *  root for resolving |    y   |     y    |    y   |     y | 
|  | * | 
|  | * - column 1:       we've the parent -> done | 
|  | * - column 2, 3, 4: we use the key to find the parent | 
|  | * | 
|  | * on disk refs (inline or keyed) | 
|  | * ============================== | 
|  | *        backref type | shared | indirect | shared | indirect | 
|  | * information         |   tree |     tree |   data |     data | 
|  | * --------------------+--------+----------+--------+---------- | 
|  | *      parent logical |    y   |     -    |    y   |     - | 
|  | *      key to resolve |    -   |     -    |    -   |     y | 
|  | *  tree block logical |    y   |     y    |    y   |     y | 
|  | *  root for resolving |    -   |     y    |    y   |     y | 
|  | * | 
|  | * - column 1, 3: we've the parent -> done | 
|  | * - column 2:    we take the first key from the block to find the parent | 
|  | *                (see add_missing_keys) | 
|  | * - column 4:    we use the key to find the parent | 
|  | * | 
|  | * additional information that's available but not required to find the parent | 
|  | * block might help in merging entries to gain some speed. | 
|  | */ | 
|  | static int add_prelim_ref(const struct btrfs_fs_info *fs_info, | 
|  | struct preftree *preftree, u64 root_id, | 
|  | const struct btrfs_key *key, int level, u64 parent, | 
|  | u64 wanted_disk_byte, int count, | 
|  | struct share_check *sc, gfp_t gfp_mask) | 
|  | { | 
|  | struct prelim_ref *ref; | 
|  |  | 
|  | if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | return 0; | 
|  |  | 
|  | ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); | 
|  | if (!ref) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ref->root_id = root_id; | 
|  | if (key) { | 
|  | ref->key_for_search = *key; | 
|  | /* | 
|  | * We can often find data backrefs with an offset that is too | 
|  | * large (>= LLONG_MAX, maximum allowed file offset) due to | 
|  | * underflows when subtracting a file's offset with the data | 
|  | * offset of its corresponding extent data item. This can | 
|  | * happen for example in the clone ioctl. | 
|  | * So if we detect such case we set the search key's offset to | 
|  | * zero to make sure we will find the matching file extent item | 
|  | * at add_all_parents(), otherwise we will miss it because the | 
|  | * offset taken form the backref is much larger then the offset | 
|  | * of the file extent item. This can make us scan a very large | 
|  | * number of file extent items, but at least it will not make | 
|  | * us miss any. | 
|  | * This is an ugly workaround for a behaviour that should have | 
|  | * never existed, but it does and a fix for the clone ioctl | 
|  | * would touch a lot of places, cause backwards incompatibility | 
|  | * and would not fix the problem for extents cloned with older | 
|  | * kernels. | 
|  | */ | 
|  | if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && | 
|  | ref->key_for_search.offset >= LLONG_MAX) | 
|  | ref->key_for_search.offset = 0; | 
|  | } else { | 
|  | memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); | 
|  | } | 
|  |  | 
|  | ref->inode_list = NULL; | 
|  | ref->level = level; | 
|  | ref->count = count; | 
|  | ref->parent = parent; | 
|  | ref->wanted_disk_byte = wanted_disk_byte; | 
|  | prelim_ref_insert(fs_info, preftree, ref, sc); | 
|  | return extent_is_shared(sc); | 
|  | } | 
|  |  | 
|  | /* direct refs use root == 0, key == NULL */ | 
|  | static int add_direct_ref(const struct btrfs_fs_info *fs_info, | 
|  | struct preftrees *preftrees, int level, u64 parent, | 
|  | u64 wanted_disk_byte, int count, | 
|  | struct share_check *sc, gfp_t gfp_mask) | 
|  | { | 
|  | return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, | 
|  | parent, wanted_disk_byte, count, sc, gfp_mask); | 
|  | } | 
|  |  | 
|  | /* indirect refs use parent == 0 */ | 
|  | static int add_indirect_ref(const struct btrfs_fs_info *fs_info, | 
|  | struct preftrees *preftrees, u64 root_id, | 
|  | const struct btrfs_key *key, int level, | 
|  | u64 wanted_disk_byte, int count, | 
|  | struct share_check *sc, gfp_t gfp_mask) | 
|  | { | 
|  | struct preftree *tree = &preftrees->indirect; | 
|  |  | 
|  | if (!key) | 
|  | tree = &preftrees->indirect_missing_keys; | 
|  | return add_prelim_ref(fs_info, tree, root_id, key, level, 0, | 
|  | wanted_disk_byte, count, sc, gfp_mask); | 
|  | } | 
|  |  | 
|  | static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, | 
|  | struct ulist *parents, struct prelim_ref *ref, | 
|  | int level, u64 time_seq, const u64 *extent_item_pos, | 
|  | u64 total_refs, bool ignore_offset) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key *key_for_search = &ref->key_for_search; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_inode_elem *eie = NULL, *old = NULL; | 
|  | u64 disk_byte; | 
|  | u64 wanted_disk_byte = ref->wanted_disk_byte; | 
|  | u64 count = 0; | 
|  |  | 
|  | if (level != 0) { | 
|  | eb = path->nodes[level]; | 
|  | ret = ulist_add(parents, eb->start, 0, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We normally enter this function with the path already pointing to | 
|  | * the first item to check. But sometimes, we may enter it with | 
|  | * slot==nritems. In that case, go to the next leaf before we continue. | 
|  | */ | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | if (time_seq == SEQ_LAST) | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | else | 
|  | ret = btrfs_next_old_leaf(root, path, time_seq); | 
|  | } | 
|  |  | 
|  | while (!ret && count < total_refs) { | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | btrfs_item_key_to_cpu(eb, &key, slot); | 
|  |  | 
|  | if (key.objectid != key_for_search->objectid || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | break; | 
|  |  | 
|  | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
|  |  | 
|  | if (disk_byte == wanted_disk_byte) { | 
|  | eie = NULL; | 
|  | old = NULL; | 
|  | count++; | 
|  | if (extent_item_pos) { | 
|  | ret = check_extent_in_eb(&key, eb, fi, | 
|  | *extent_item_pos, | 
|  | &eie, ignore_offset); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | if (ret > 0) | 
|  | goto next; | 
|  | ret = ulist_add_merge_ptr(parents, eb->start, | 
|  | eie, (void **)&old, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (!ret && extent_item_pos) { | 
|  | while (old->next) | 
|  | old = old->next; | 
|  | old->next = eie; | 
|  | } | 
|  | eie = NULL; | 
|  | } | 
|  | next: | 
|  | if (time_seq == SEQ_LAST) | 
|  | ret = btrfs_next_item(root, path); | 
|  | else | 
|  | ret = btrfs_next_old_item(root, path, time_seq); | 
|  | } | 
|  |  | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | else if (ret < 0) | 
|  | free_inode_elem_list(eie); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * resolve an indirect backref in the form (root_id, key, level) | 
|  | * to a logical address | 
|  | */ | 
|  | static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, u64 time_seq, | 
|  | struct prelim_ref *ref, struct ulist *parents, | 
|  | const u64 *extent_item_pos, u64 total_refs, | 
|  | bool ignore_offset) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_key root_key; | 
|  | struct extent_buffer *eb; | 
|  | int ret = 0; | 
|  | int root_level; | 
|  | int level = ref->level; | 
|  | int index; | 
|  |  | 
|  | root_key.objectid = ref->root_id; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root_key.offset = (u64)-1; | 
|  |  | 
|  | index = srcu_read_lock(&fs_info->subvol_srcu); | 
|  |  | 
|  | root = btrfs_get_fs_root(fs_info, &root_key, false); | 
|  | if (IS_ERR(root)) { | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | ret = PTR_ERR(root); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) { | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (path->search_commit_root) | 
|  | root_level = btrfs_header_level(root->commit_root); | 
|  | else if (time_seq == SEQ_LAST) | 
|  | root_level = btrfs_header_level(root->node); | 
|  | else | 
|  | root_level = btrfs_old_root_level(root, time_seq); | 
|  |  | 
|  | if (root_level + 1 == level) { | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | path->lowest_level = level; | 
|  | if (time_seq == SEQ_LAST) | 
|  | ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, | 
|  | 0, 0); | 
|  | else | 
|  | ret = btrfs_search_old_slot(root, &ref->key_for_search, path, | 
|  | time_seq); | 
|  |  | 
|  | /* root node has been locked, we can release @subvol_srcu safely here */ | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", | 
|  | ref->root_id, level, ref->count, ret, | 
|  | ref->key_for_search.objectid, ref->key_for_search.type, | 
|  | ref->key_for_search.offset); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | eb = path->nodes[level]; | 
|  | while (!eb) { | 
|  | if (WARN_ON(!level)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | level--; | 
|  | eb = path->nodes[level]; | 
|  | } | 
|  |  | 
|  | ret = add_all_parents(root, path, parents, ref, level, time_seq, | 
|  | extent_item_pos, total_refs, ignore_offset); | 
|  | out: | 
|  | path->lowest_level = 0; | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct extent_inode_elem * | 
|  | unode_aux_to_inode_list(struct ulist_node *node) | 
|  | { | 
|  | if (!node) | 
|  | return NULL; | 
|  | return (struct extent_inode_elem *)(uintptr_t)node->aux; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We maintain three seperate rbtrees: one for direct refs, one for | 
|  | * indirect refs which have a key, and one for indirect refs which do not | 
|  | * have a key. Each tree does merge on insertion. | 
|  | * | 
|  | * Once all of the references are located, we iterate over the tree of | 
|  | * indirect refs with missing keys. An appropriate key is located and | 
|  | * the ref is moved onto the tree for indirect refs. After all missing | 
|  | * keys are thus located, we iterate over the indirect ref tree, resolve | 
|  | * each reference, and then insert the resolved reference onto the | 
|  | * direct tree (merging there too). | 
|  | * | 
|  | * New backrefs (i.e., for parent nodes) are added to the appropriate | 
|  | * rbtree as they are encountered. The new backrefs are subsequently | 
|  | * resolved as above. | 
|  | */ | 
|  | static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, u64 time_seq, | 
|  | struct preftrees *preftrees, | 
|  | const u64 *extent_item_pos, u64 total_refs, | 
|  | struct share_check *sc, bool ignore_offset) | 
|  | { | 
|  | int err; | 
|  | int ret = 0; | 
|  | struct ulist *parents; | 
|  | struct ulist_node *node; | 
|  | struct ulist_iterator uiter; | 
|  | struct rb_node *rnode; | 
|  |  | 
|  | parents = ulist_alloc(GFP_NOFS); | 
|  | if (!parents) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * We could trade memory usage for performance here by iterating | 
|  | * the tree, allocating new refs for each insertion, and then | 
|  | * freeing the entire indirect tree when we're done.  In some test | 
|  | * cases, the tree can grow quite large (~200k objects). | 
|  | */ | 
|  | while ((rnode = rb_first(&preftrees->indirect.root))) { | 
|  | struct prelim_ref *ref; | 
|  |  | 
|  | ref = rb_entry(rnode, struct prelim_ref, rbnode); | 
|  | if (WARN(ref->parent, | 
|  | "BUG: direct ref found in indirect tree")) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rb_erase(&ref->rbnode, &preftrees->indirect.root); | 
|  | preftrees->indirect.count--; | 
|  |  | 
|  | if (ref->count == 0) { | 
|  | free_pref(ref); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (sc && sc->root_objectid && | 
|  | ref->root_id != sc->root_objectid) { | 
|  | free_pref(ref); | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | goto out; | 
|  | } | 
|  | err = resolve_indirect_ref(fs_info, path, time_seq, ref, | 
|  | parents, extent_item_pos, | 
|  | total_refs, ignore_offset); | 
|  | /* | 
|  | * we can only tolerate ENOENT,otherwise,we should catch error | 
|  | * and return directly. | 
|  | */ | 
|  | if (err == -ENOENT) { | 
|  | prelim_ref_insert(fs_info, &preftrees->direct, ref, | 
|  | NULL); | 
|  | continue; | 
|  | } else if (err) { | 
|  | free_pref(ref); | 
|  | ret = err; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* we put the first parent into the ref at hand */ | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | node = ulist_next(parents, &uiter); | 
|  | ref->parent = node ? node->val : 0; | 
|  | ref->inode_list = unode_aux_to_inode_list(node); | 
|  |  | 
|  | /* Add a prelim_ref(s) for any other parent(s). */ | 
|  | while ((node = ulist_next(parents, &uiter))) { | 
|  | struct prelim_ref *new_ref; | 
|  |  | 
|  | new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, | 
|  | GFP_NOFS); | 
|  | if (!new_ref) { | 
|  | free_pref(ref); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | memcpy(new_ref, ref, sizeof(*ref)); | 
|  | new_ref->parent = node->val; | 
|  | new_ref->inode_list = unode_aux_to_inode_list(node); | 
|  | prelim_ref_insert(fs_info, &preftrees->direct, | 
|  | new_ref, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now it's a direct ref, put it in the the direct tree. We must | 
|  | * do this last because the ref could be merged/freed here. | 
|  | */ | 
|  | prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); | 
|  |  | 
|  | ulist_reinit(parents); | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | ulist_free(parents); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read tree blocks and add keys where required. | 
|  | */ | 
|  | static int add_missing_keys(struct btrfs_fs_info *fs_info, | 
|  | struct preftrees *preftrees, bool lock) | 
|  | { | 
|  | struct prelim_ref *ref; | 
|  | struct extent_buffer *eb; | 
|  | struct preftree *tree = &preftrees->indirect_missing_keys; | 
|  | struct rb_node *node; | 
|  |  | 
|  | while ((node = rb_first(&tree->root))) { | 
|  | ref = rb_entry(node, struct prelim_ref, rbnode); | 
|  | rb_erase(node, &tree->root); | 
|  |  | 
|  | BUG_ON(ref->parent);	/* should not be a direct ref */ | 
|  | BUG_ON(ref->key_for_search.type); | 
|  | BUG_ON(!ref->wanted_disk_byte); | 
|  |  | 
|  | eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, | 
|  | ref->level - 1, NULL); | 
|  | if (IS_ERR(eb)) { | 
|  | free_pref(ref); | 
|  | return PTR_ERR(eb); | 
|  | } else if (!extent_buffer_uptodate(eb)) { | 
|  | free_pref(ref); | 
|  | free_extent_buffer(eb); | 
|  | return -EIO; | 
|  | } | 
|  | if (lock) | 
|  | btrfs_tree_read_lock(eb); | 
|  | if (btrfs_header_level(eb) == 0) | 
|  | btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); | 
|  | else | 
|  | btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); | 
|  | if (lock) | 
|  | btrfs_tree_read_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); | 
|  | cond_resched(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add all currently queued delayed refs from this head whose seq nr is | 
|  | * smaller or equal that seq to the list | 
|  | */ | 
|  | static int add_delayed_refs(const struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_delayed_ref_head *head, u64 seq, | 
|  | struct preftrees *preftrees, u64 *total_refs, | 
|  | struct share_check *sc) | 
|  | { | 
|  | struct btrfs_delayed_ref_node *node; | 
|  | struct btrfs_delayed_extent_op *extent_op = head->extent_op; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key tmp_op_key; | 
|  | struct rb_node *n; | 
|  | int count; | 
|  | int ret = 0; | 
|  |  | 
|  | if (extent_op && extent_op->update_key) | 
|  | btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) { | 
|  | node = rb_entry(n, struct btrfs_delayed_ref_node, | 
|  | ref_node); | 
|  | if (node->seq > seq) | 
|  | continue; | 
|  |  | 
|  | switch (node->action) { | 
|  | case BTRFS_ADD_DELAYED_EXTENT: | 
|  | case BTRFS_UPDATE_DELAYED_HEAD: | 
|  | WARN_ON(1); | 
|  | continue; | 
|  | case BTRFS_ADD_DELAYED_REF: | 
|  | count = node->ref_mod; | 
|  | break; | 
|  | case BTRFS_DROP_DELAYED_REF: | 
|  | count = node->ref_mod * -1; | 
|  | break; | 
|  | default: | 
|  | BUG_ON(1); | 
|  | } | 
|  | *total_refs += count; | 
|  | switch (node->type) { | 
|  | case BTRFS_TREE_BLOCK_REF_KEY: { | 
|  | /* NORMAL INDIRECT METADATA backref */ | 
|  | struct btrfs_delayed_tree_ref *ref; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  | ret = add_indirect_ref(fs_info, preftrees, ref->root, | 
|  | &tmp_op_key, ref->level + 1, | 
|  | node->bytenr, count, sc, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | case BTRFS_SHARED_BLOCK_REF_KEY: { | 
|  | /* SHARED DIRECT METADATA backref */ | 
|  | struct btrfs_delayed_tree_ref *ref; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  |  | 
|  | ret = add_direct_ref(fs_info, preftrees, ref->level + 1, | 
|  | ref->parent, node->bytenr, count, | 
|  | sc, GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | /* NORMAL INDIRECT DATA backref */ | 
|  | struct btrfs_delayed_data_ref *ref; | 
|  | ref = btrfs_delayed_node_to_data_ref(node); | 
|  |  | 
|  | key.objectid = ref->objectid; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = ref->offset; | 
|  |  | 
|  | /* | 
|  | * Found a inum that doesn't match our known inum, we | 
|  | * know it's shared. | 
|  | */ | 
|  | if (sc && sc->inum && ref->objectid != sc->inum) { | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = add_indirect_ref(fs_info, preftrees, ref->root, | 
|  | &key, 0, node->bytenr, count, sc, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | /* SHARED DIRECT FULL backref */ | 
|  | struct btrfs_delayed_data_ref *ref; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_data_ref(node); | 
|  |  | 
|  | ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, | 
|  | node->bytenr, count, sc, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | /* | 
|  | * We must ignore BACKREF_FOUND_SHARED until all delayed | 
|  | * refs have been checked. | 
|  | */ | 
|  | if (ret && (ret != BACKREF_FOUND_SHARED)) | 
|  | break; | 
|  | } | 
|  | if (!ret) | 
|  | ret = extent_is_shared(sc); | 
|  | out: | 
|  | spin_unlock(&head->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add all inline backrefs for bytenr to the list | 
|  | * | 
|  | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
|  | */ | 
|  | static int add_inline_refs(const struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, u64 bytenr, | 
|  | int *info_level, struct preftrees *preftrees, | 
|  | u64 *total_refs, struct share_check *sc) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | struct btrfs_extent_item *ei; | 
|  | u64 flags; | 
|  | u64 item_size; | 
|  |  | 
|  | /* | 
|  | * enumerate all inline refs | 
|  | */ | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(leaf, slot); | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(leaf, ei); | 
|  | *total_refs += btrfs_extent_refs(leaf, ei); | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + item_size; | 
|  |  | 
|  | if (found_key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | struct btrfs_tree_block_info *info; | 
|  |  | 
|  | info = (struct btrfs_tree_block_info *)ptr; | 
|  | *info_level = btrfs_tree_block_level(leaf, info); | 
|  | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | BUG_ON(ptr > end); | 
|  | } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { | 
|  | *info_level = found_key.offset; | 
|  | } else { | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
|  | } | 
|  |  | 
|  | while (ptr < end) { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | u64 offset; | 
|  | int type; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_REF_TYPE_ANY); | 
|  | if (type == BTRFS_REF_TYPE_INVALID) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  |  | 
|  | switch (type) { | 
|  | case BTRFS_SHARED_BLOCK_REF_KEY: | 
|  | ret = add_direct_ref(fs_info, preftrees, | 
|  | *info_level + 1, offset, | 
|  | bytenr, 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | struct btrfs_shared_data_ref *sdref; | 
|  | int count; | 
|  |  | 
|  | sdref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | count = btrfs_shared_data_ref_count(leaf, sdref); | 
|  |  | 
|  | ret = add_direct_ref(fs_info, preftrees, 0, offset, | 
|  | bytenr, count, sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | case BTRFS_TREE_BLOCK_REF_KEY: | 
|  | ret = add_indirect_ref(fs_info, preftrees, offset, | 
|  | NULL, *info_level + 1, | 
|  | bytenr, 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | int count; | 
|  | u64 root; | 
|  |  | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | count = btrfs_extent_data_ref_count(leaf, dref); | 
|  | key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
|  | dref); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
|  |  | 
|  | if (sc && sc->inum && key.objectid != sc->inum) { | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | root = btrfs_extent_data_ref_root(leaf, dref); | 
|  |  | 
|  | ret = add_indirect_ref(fs_info, preftrees, root, | 
|  | &key, 0, bytenr, count, | 
|  | sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add all non-inline backrefs for bytenr to the list | 
|  | * | 
|  | * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
|  | */ | 
|  | static int add_keyed_refs(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, u64 bytenr, | 
|  | int info_level, struct preftrees *preftrees, | 
|  | struct share_check *sc) | 
|  | { | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | int ret; | 
|  | int slot; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_next_item(extent_root, path); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  |  | 
|  | if (key.objectid != bytenr) | 
|  | break; | 
|  | if (key.type < BTRFS_TREE_BLOCK_REF_KEY) | 
|  | continue; | 
|  | if (key.type > BTRFS_SHARED_DATA_REF_KEY) | 
|  | break; | 
|  |  | 
|  | switch (key.type) { | 
|  | case BTRFS_SHARED_BLOCK_REF_KEY: | 
|  | /* SHARED DIRECT METADATA backref */ | 
|  | ret = add_direct_ref(fs_info, preftrees, | 
|  | info_level + 1, key.offset, | 
|  | bytenr, 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_SHARED_DATA_REF_KEY: { | 
|  | /* SHARED DIRECT FULL backref */ | 
|  | struct btrfs_shared_data_ref *sdref; | 
|  | int count; | 
|  |  | 
|  | sdref = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_shared_data_ref); | 
|  | count = btrfs_shared_data_ref_count(leaf, sdref); | 
|  | ret = add_direct_ref(fs_info, preftrees, 0, | 
|  | key.offset, bytenr, count, | 
|  | sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | case BTRFS_TREE_BLOCK_REF_KEY: | 
|  | /* NORMAL INDIRECT METADATA backref */ | 
|  | ret = add_indirect_ref(fs_info, preftrees, key.offset, | 
|  | NULL, info_level + 1, bytenr, | 
|  | 1, NULL, GFP_NOFS); | 
|  | break; | 
|  | case BTRFS_EXTENT_DATA_REF_KEY: { | 
|  | /* NORMAL INDIRECT DATA backref */ | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | int count; | 
|  | u64 root; | 
|  |  | 
|  | dref = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_extent_data_ref); | 
|  | count = btrfs_extent_data_ref_count(leaf, dref); | 
|  | key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
|  | dref); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
|  |  | 
|  | if (sc && sc->inum && key.objectid != sc->inum) { | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | root = btrfs_extent_data_ref_root(leaf, dref); | 
|  | ret = add_indirect_ref(fs_info, preftrees, root, | 
|  | &key, 0, bytenr, count, | 
|  | sc, GFP_NOFS); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this adds all existing backrefs (inline backrefs, backrefs and delayed | 
|  | * refs) for the given bytenr to the refs list, merges duplicates and resolves | 
|  | * indirect refs to their parent bytenr. | 
|  | * When roots are found, they're added to the roots list | 
|  | * | 
|  | * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave | 
|  | * much like trans == NULL case, the difference only lies in it will not | 
|  | * commit root. | 
|  | * The special case is for qgroup to search roots in commit_transaction(). | 
|  | * | 
|  | * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a | 
|  | * shared extent is detected. | 
|  | * | 
|  | * Otherwise this returns 0 for success and <0 for an error. | 
|  | * | 
|  | * If ignore_offset is set to false, only extent refs whose offsets match | 
|  | * extent_item_pos are returned.  If true, every extent ref is returned | 
|  | * and extent_item_pos is ignored. | 
|  | * | 
|  | * FIXME some caching might speed things up | 
|  | */ | 
|  | static int find_parent_nodes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 time_seq, struct ulist *refs, | 
|  | struct ulist *roots, const u64 *extent_item_pos, | 
|  | struct share_check *sc, bool ignore_offset) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_delayed_ref_root *delayed_refs = NULL; | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | int info_level = 0; | 
|  | int ret; | 
|  | struct prelim_ref *ref; | 
|  | struct rb_node *node; | 
|  | struct extent_inode_elem *eie = NULL; | 
|  | /* total of both direct AND indirect refs! */ | 
|  | u64 total_refs = 0; | 
|  | struct preftrees preftrees = { | 
|  | .direct = PREFTREE_INIT, | 
|  | .indirect = PREFTREE_INIT, | 
|  | .indirect_missing_keys = PREFTREE_INIT | 
|  | }; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = (u64)-1; | 
|  | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | if (!trans) { | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | } | 
|  |  | 
|  | if (time_seq == SEQ_LAST) | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | /* | 
|  | * grab both a lock on the path and a lock on the delayed ref head. | 
|  | * We need both to get a consistent picture of how the refs look | 
|  | * at a specified point in time | 
|  | */ | 
|  | again: | 
|  | head = NULL; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(ret == 0); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | if (trans && likely(trans->type != __TRANS_DUMMY) && | 
|  | time_seq != SEQ_LAST) { | 
|  | #else | 
|  | if (trans && time_seq != SEQ_LAST) { | 
|  | #endif | 
|  | /* | 
|  | * look if there are updates for this ref queued and lock the | 
|  | * head | 
|  | */ | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (head) { | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's | 
|  | * released and try again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | goto again; | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | ret = add_delayed_refs(fs_info, head, time_seq, | 
|  | &preftrees, &total_refs, sc); | 
|  | mutex_unlock(&head->mutex); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (path->slots[0]) { | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  |  | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid == bytenr && | 
|  | (key.type == BTRFS_EXTENT_ITEM_KEY || | 
|  | key.type == BTRFS_METADATA_ITEM_KEY)) { | 
|  | ret = add_inline_refs(fs_info, path, bytenr, | 
|  | &info_level, &preftrees, | 
|  | &total_refs, sc); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = add_keyed_refs(fs_info, path, bytenr, info_level, | 
|  | &preftrees, sc); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root)); | 
|  |  | 
|  | ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, | 
|  | extent_item_pos, total_refs, sc, ignore_offset); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root)); | 
|  |  | 
|  | /* | 
|  | * This walks the tree of merged and resolved refs. Tree blocks are | 
|  | * read in as needed. Unique entries are added to the ulist, and | 
|  | * the list of found roots is updated. | 
|  | * | 
|  | * We release the entire tree in one go before returning. | 
|  | */ | 
|  | node = rb_first(&preftrees.direct.root); | 
|  | while (node) { | 
|  | ref = rb_entry(node, struct prelim_ref, rbnode); | 
|  | node = rb_next(&ref->rbnode); | 
|  | /* | 
|  | * ref->count < 0 can happen here if there are delayed | 
|  | * refs with a node->action of BTRFS_DROP_DELAYED_REF. | 
|  | * prelim_ref_insert() relies on this when merging | 
|  | * identical refs to keep the overall count correct. | 
|  | * prelim_ref_insert() will merge only those refs | 
|  | * which compare identically.  Any refs having | 
|  | * e.g. different offsets would not be merged, | 
|  | * and would retain their original ref->count < 0. | 
|  | */ | 
|  | if (roots && ref->count && ref->root_id && ref->parent == 0) { | 
|  | if (sc && sc->root_objectid && | 
|  | ref->root_id != sc->root_objectid) { | 
|  | ret = BACKREF_FOUND_SHARED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* no parent == root of tree */ | 
|  | ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | if (ref->count && ref->parent) { | 
|  | if (extent_item_pos && !ref->inode_list && | 
|  | ref->level == 0) { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = read_tree_block(fs_info, ref->parent, 0, | 
|  | ref->level, NULL); | 
|  | if (IS_ERR(eb)) { | 
|  | ret = PTR_ERR(eb); | 
|  | goto out; | 
|  | } else if (!extent_buffer_uptodate(eb)) { | 
|  | free_extent_buffer(eb); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (!path->skip_locking) { | 
|  | btrfs_tree_read_lock(eb); | 
|  | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | } | 
|  | ret = find_extent_in_eb(eb, bytenr, | 
|  | *extent_item_pos, &eie, ignore_offset); | 
|  | if (!path->skip_locking) | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ref->inode_list = eie; | 
|  | } | 
|  | ret = ulist_add_merge_ptr(refs, ref->parent, | 
|  | ref->inode_list, | 
|  | (void **)&eie, GFP_NOFS); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (!ret && extent_item_pos) { | 
|  | /* | 
|  | * we've recorded that parent, so we must extend | 
|  | * its inode list here | 
|  | */ | 
|  | BUG_ON(!eie); | 
|  | while (eie->next) | 
|  | eie = eie->next; | 
|  | eie->next = ref->inode_list; | 
|  | } | 
|  | eie = NULL; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | prelim_release(&preftrees.direct); | 
|  | prelim_release(&preftrees.indirect); | 
|  | prelim_release(&preftrees.indirect_missing_keys); | 
|  |  | 
|  | if (ret < 0) | 
|  | free_inode_elem_list(eie); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void free_leaf_list(struct ulist *blocks) | 
|  | { | 
|  | struct ulist_node *node = NULL; | 
|  | struct extent_inode_elem *eie; | 
|  | struct ulist_iterator uiter; | 
|  |  | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while ((node = ulist_next(blocks, &uiter))) { | 
|  | if (!node->aux) | 
|  | continue; | 
|  | eie = unode_aux_to_inode_list(node); | 
|  | free_inode_elem_list(eie); | 
|  | node->aux = 0; | 
|  | } | 
|  |  | 
|  | ulist_free(blocks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds all leafs with a reference to the specified combination of bytenr and | 
|  | * offset. key_list_head will point to a list of corresponding keys (caller must | 
|  | * free each list element). The leafs will be stored in the leafs ulist, which | 
|  | * must be freed with ulist_free. | 
|  | * | 
|  | * returns 0 on success, <0 on error | 
|  | */ | 
|  | static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 time_seq, struct ulist **leafs, | 
|  | const u64 *extent_item_pos, bool ignore_offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | *leafs = ulist_alloc(GFP_NOFS); | 
|  | if (!*leafs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, | 
|  | *leafs, NULL, extent_item_pos, NULL, ignore_offset); | 
|  | if (ret < 0 && ret != -ENOENT) { | 
|  | free_leaf_list(*leafs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walk all backrefs for a given extent to find all roots that reference this | 
|  | * extent. Walking a backref means finding all extents that reference this | 
|  | * extent and in turn walk the backrefs of those, too. Naturally this is a | 
|  | * recursive process, but here it is implemented in an iterative fashion: We | 
|  | * find all referencing extents for the extent in question and put them on a | 
|  | * list. In turn, we find all referencing extents for those, further appending | 
|  | * to the list. The way we iterate the list allows adding more elements after | 
|  | * the current while iterating. The process stops when we reach the end of the | 
|  | * list. Found roots are added to the roots list. | 
|  | * | 
|  | * returns 0 on success, < 0 on error. | 
|  | */ | 
|  | static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 time_seq, struct ulist **roots, | 
|  | bool ignore_offset) | 
|  | { | 
|  | struct ulist *tmp; | 
|  | struct ulist_node *node = NULL; | 
|  | struct ulist_iterator uiter; | 
|  | int ret; | 
|  |  | 
|  | tmp = ulist_alloc(GFP_NOFS); | 
|  | if (!tmp) | 
|  | return -ENOMEM; | 
|  | *roots = ulist_alloc(GFP_NOFS); | 
|  | if (!*roots) { | 
|  | ulist_free(tmp); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while (1) { | 
|  | ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, | 
|  | tmp, *roots, NULL, NULL, ignore_offset); | 
|  | if (ret < 0 && ret != -ENOENT) { | 
|  | ulist_free(tmp); | 
|  | ulist_free(*roots); | 
|  | return ret; | 
|  | } | 
|  | node = ulist_next(tmp, &uiter); | 
|  | if (!node) | 
|  | break; | 
|  | bytenr = node->val; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | ulist_free(tmp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_find_all_roots(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 time_seq, struct ulist **roots, | 
|  | bool ignore_offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!trans) | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, | 
|  | time_seq, roots, ignore_offset); | 
|  | if (!trans) | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_check_shared - tell us whether an extent is shared | 
|  | * | 
|  | * btrfs_check_shared uses the backref walking code but will short | 
|  | * circuit as soon as it finds a root or inode that doesn't match the | 
|  | * one passed in. This provides a significant performance benefit for | 
|  | * callers (such as fiemap) which want to know whether the extent is | 
|  | * shared but do not need a ref count. | 
|  | * | 
|  | * This attempts to attach to the running transaction in order to account for | 
|  | * delayed refs, but continues on even when no running transaction exists. | 
|  | * | 
|  | * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. | 
|  | */ | 
|  | int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct ulist *tmp = NULL; | 
|  | struct ulist *roots = NULL; | 
|  | struct ulist_iterator uiter; | 
|  | struct ulist_node *node; | 
|  | struct seq_list elem = SEQ_LIST_INIT(elem); | 
|  | int ret = 0; | 
|  | struct share_check shared = { | 
|  | .root_objectid = root->objectid, | 
|  | .inum = inum, | 
|  | .share_count = 0, | 
|  | }; | 
|  |  | 
|  | tmp = ulist_alloc(GFP_NOFS); | 
|  | roots = ulist_alloc(GFP_NOFS); | 
|  | if (!tmp || !roots) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction_nostart(root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  | trans = NULL; | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | } else { | 
|  | btrfs_get_tree_mod_seq(fs_info, &elem); | 
|  | } | 
|  |  | 
|  | ULIST_ITER_INIT(&uiter); | 
|  | while (1) { | 
|  | ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, | 
|  | roots, NULL, &shared, false); | 
|  | if (ret == BACKREF_FOUND_SHARED) { | 
|  | /* this is the only condition under which we return 1 */ | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | break; | 
|  | ret = 0; | 
|  | node = ulist_next(tmp, &uiter); | 
|  | if (!node) | 
|  | break; | 
|  | bytenr = node->val; | 
|  | shared.share_count = 0; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (trans) { | 
|  | btrfs_put_tree_mod_seq(fs_info, &elem); | 
|  | btrfs_end_transaction(trans); | 
|  | } else { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | } | 
|  | out: | 
|  | ulist_free(tmp); | 
|  | ulist_free(roots); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, | 
|  | u64 start_off, struct btrfs_path *path, | 
|  | struct btrfs_inode_extref **ret_extref, | 
|  | u64 *found_off) | 
|  | { | 
|  | int ret, slot; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_inode_extref *extref; | 
|  | const struct extent_buffer *leaf; | 
|  | unsigned long ptr; | 
|  |  | 
|  | key.objectid = inode_objectid; | 
|  | key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | key.offset = start_off; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | while (1) { | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | /* | 
|  | * If the item at offset is not found, | 
|  | * btrfs_search_slot will point us to the slot | 
|  | * where it should be inserted. In our case | 
|  | * that will be the slot directly before the | 
|  | * next INODE_REF_KEY_V2 item. In the case | 
|  | * that we're pointing to the last slot in a | 
|  | * leaf, we must move one leaf over. | 
|  | */ | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) { | 
|  | if (ret >= 1) | 
|  | ret = -ENOENT; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | /* | 
|  | * Check that we're still looking at an extended ref key for | 
|  | * this particular objectid. If we have different | 
|  | * objectid or type then there are no more to be found | 
|  | * in the tree and we can exit. | 
|  | */ | 
|  | ret = -ENOENT; | 
|  | if (found_key.objectid != inode_objectid) | 
|  | break; | 
|  | if (found_key.type != BTRFS_INODE_EXTREF_KEY) | 
|  | break; | 
|  |  | 
|  | ret = 0; | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | extref = (struct btrfs_inode_extref *)ptr; | 
|  | *ret_extref = extref; | 
|  | if (found_off) | 
|  | *found_off = found_key.offset; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this iterates to turn a name (from iref/extref) into a full filesystem path. | 
|  | * Elements of the path are separated by '/' and the path is guaranteed to be | 
|  | * 0-terminated. the path is only given within the current file system. | 
|  | * Therefore, it never starts with a '/'. the caller is responsible to provide | 
|  | * "size" bytes in "dest". the dest buffer will be filled backwards. finally, | 
|  | * the start point of the resulting string is returned. this pointer is within | 
|  | * dest, normally. | 
|  | * in case the path buffer would overflow, the pointer is decremented further | 
|  | * as if output was written to the buffer, though no more output is actually | 
|  | * generated. that way, the caller can determine how much space would be | 
|  | * required for the path to fit into the buffer. in that case, the returned | 
|  | * value will be smaller than dest. callers must check this! | 
|  | */ | 
|  | char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, | 
|  | u32 name_len, unsigned long name_off, | 
|  | struct extent_buffer *eb_in, u64 parent, | 
|  | char *dest, u32 size) | 
|  | { | 
|  | int slot; | 
|  | u64 next_inum; | 
|  | int ret; | 
|  | s64 bytes_left = ((s64)size) - 1; | 
|  | struct extent_buffer *eb = eb_in; | 
|  | struct btrfs_key found_key; | 
|  | int leave_spinning = path->leave_spinning; | 
|  | struct btrfs_inode_ref *iref; | 
|  |  | 
|  | if (bytes_left >= 0) | 
|  | dest[bytes_left] = '\0'; | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | while (1) { | 
|  | bytes_left -= name_len; | 
|  | if (bytes_left >= 0) | 
|  | read_extent_buffer(eb, dest + bytes_left, | 
|  | name_off, name_len); | 
|  | if (eb != eb_in) { | 
|  | if (!path->skip_locking) | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  | ret = btrfs_find_item(fs_root, path, parent, 0, | 
|  | BTRFS_INODE_REF_KEY, &found_key); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | next_inum = found_key.offset; | 
|  |  | 
|  | /* regular exit ahead */ | 
|  | if (parent == next_inum) | 
|  | break; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | eb = path->nodes[0]; | 
|  | /* make sure we can use eb after releasing the path */ | 
|  | if (eb != eb_in) { | 
|  | if (!path->skip_locking) | 
|  | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | path->nodes[0] = NULL; | 
|  | path->locks[0] = 0; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
|  |  | 
|  | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | name_off = (unsigned long)(iref + 1); | 
|  |  | 
|  | parent = next_inum; | 
|  | --bytes_left; | 
|  | if (bytes_left >= 0) | 
|  | dest[bytes_left] = '/'; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | path->leave_spinning = leave_spinning; | 
|  |  | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return dest + bytes_left; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this makes the path point to (logical EXTENT_ITEM *) | 
|  | * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for | 
|  | * tree blocks and <0 on error. | 
|  | */ | 
|  | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, | 
|  | struct btrfs_path *path, struct btrfs_key *found_key, | 
|  | u64 *flags_ret) | 
|  | { | 
|  | int ret; | 
|  | u64 flags; | 
|  | u64 size = 0; | 
|  | u32 item_size; | 
|  | const struct extent_buffer *eb; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.objectid = logical; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); | 
|  | if (found_key->type == BTRFS_METADATA_ITEM_KEY) | 
|  | size = fs_info->nodesize; | 
|  | else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) | 
|  | size = found_key->offset; | 
|  |  | 
|  | if (found_key->objectid > logical || | 
|  | found_key->objectid + size <= logical) { | 
|  | btrfs_debug(fs_info, | 
|  | "logical %llu is not within any extent", logical); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  |  | 
|  | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(eb, ei); | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", | 
|  | logical, logical - found_key->objectid, found_key->objectid, | 
|  | found_key->offset, flags, item_size); | 
|  |  | 
|  | WARN_ON(!flags_ret); | 
|  | if (flags_ret) { | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; | 
|  | else if (flags & BTRFS_EXTENT_FLAG_DATA) | 
|  | *flags_ret = BTRFS_EXTENT_FLAG_DATA; | 
|  | else | 
|  | BUG_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to iterate extent inline refs. ptr must point to a 0 value | 
|  | * for the first call and may be modified. it is used to track state. | 
|  | * if more refs exist, 0 is returned and the next call to | 
|  | * get_extent_inline_ref must pass the modified ptr parameter to get the | 
|  | * next ref. after the last ref was processed, 1 is returned. | 
|  | * returns <0 on error | 
|  | */ | 
|  | static int get_extent_inline_ref(unsigned long *ptr, | 
|  | const struct extent_buffer *eb, | 
|  | const struct btrfs_key *key, | 
|  | const struct btrfs_extent_item *ei, | 
|  | u32 item_size, | 
|  | struct btrfs_extent_inline_ref **out_eiref, | 
|  | int *out_type) | 
|  | { | 
|  | unsigned long end; | 
|  | u64 flags; | 
|  | struct btrfs_tree_block_info *info; | 
|  |  | 
|  | if (!*ptr) { | 
|  | /* first call */ | 
|  | flags = btrfs_extent_flags(eb, ei); | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | if (key->type == BTRFS_METADATA_ITEM_KEY) { | 
|  | /* a skinny metadata extent */ | 
|  | *out_eiref = | 
|  | (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | } else { | 
|  | WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); | 
|  | info = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | *out_eiref = | 
|  | (struct btrfs_extent_inline_ref *)(info + 1); | 
|  | } | 
|  | } else { | 
|  | *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | } | 
|  | *ptr = (unsigned long)*out_eiref; | 
|  | if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | end = (unsigned long)ei + item_size; | 
|  | *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); | 
|  | *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, | 
|  | BTRFS_REF_TYPE_ANY); | 
|  | if (*out_type == BTRFS_REF_TYPE_INVALID) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | *ptr += btrfs_extent_inline_ref_size(*out_type); | 
|  | WARN_ON(*ptr > end); | 
|  | if (*ptr == end) | 
|  | return 1; /* last */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reads the tree block backref for an extent. tree level and root are returned | 
|  | * through out_level and out_root. ptr must point to a 0 value for the first | 
|  | * call and may be modified (see get_extent_inline_ref comment). | 
|  | * returns 0 if data was provided, 1 if there was no more data to provide or | 
|  | * <0 on error. | 
|  | */ | 
|  | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, | 
|  | struct btrfs_key *key, struct btrfs_extent_item *ei, | 
|  | u32 item_size, u64 *out_root, u8 *out_level) | 
|  | { | 
|  | int ret; | 
|  | int type; | 
|  | struct btrfs_extent_inline_ref *eiref; | 
|  |  | 
|  | if (*ptr == (unsigned long)-1) | 
|  | return 1; | 
|  |  | 
|  | while (1) { | 
|  | ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, | 
|  | &eiref, &type); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | break; | 
|  |  | 
|  | if (ret == 1) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* we can treat both ref types equally here */ | 
|  | *out_root = btrfs_extent_inline_ref_offset(eb, eiref); | 
|  |  | 
|  | if (key->type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | struct btrfs_tree_block_info *info; | 
|  |  | 
|  | info = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | *out_level = btrfs_tree_block_level(eb, info); | 
|  | } else { | 
|  | ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); | 
|  | *out_level = (u8)key->offset; | 
|  | } | 
|  |  | 
|  | if (ret == 1) | 
|  | *ptr = (unsigned long)-1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, | 
|  | struct extent_inode_elem *inode_list, | 
|  | u64 root, u64 extent_item_objectid, | 
|  | iterate_extent_inodes_t *iterate, void *ctx) | 
|  | { | 
|  | struct extent_inode_elem *eie; | 
|  | int ret = 0; | 
|  |  | 
|  | for (eie = inode_list; eie; eie = eie->next) { | 
|  | btrfs_debug(fs_info, | 
|  | "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", | 
|  | extent_item_objectid, eie->inum, | 
|  | eie->offset, root); | 
|  | ret = iterate(eie->inum, eie->offset, root, ctx); | 
|  | if (ret) { | 
|  | btrfs_debug(fs_info, | 
|  | "stopping iteration for %llu due to ret=%d", | 
|  | extent_item_objectid, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calls iterate() for every inode that references the extent identified by | 
|  | * the given parameters. | 
|  | * when the iterator function returns a non-zero value, iteration stops. | 
|  | */ | 
|  | int iterate_extent_inodes(struct btrfs_fs_info *fs_info, | 
|  | u64 extent_item_objectid, u64 extent_item_pos, | 
|  | int search_commit_root, | 
|  | iterate_extent_inodes_t *iterate, void *ctx, | 
|  | bool ignore_offset) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct ulist *refs = NULL; | 
|  | struct ulist *roots = NULL; | 
|  | struct ulist_node *ref_node = NULL; | 
|  | struct ulist_node *root_node = NULL; | 
|  | struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); | 
|  | struct ulist_iterator ref_uiter; | 
|  | struct ulist_iterator root_uiter; | 
|  |  | 
|  | btrfs_debug(fs_info, "resolving all inodes for extent %llu", | 
|  | extent_item_objectid); | 
|  |  | 
|  | if (!search_commit_root) { | 
|  | trans = btrfs_attach_transaction(fs_info->extent_root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) != -ENOENT && | 
|  | PTR_ERR(trans) != -EROFS) | 
|  | return PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (trans) | 
|  | btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); | 
|  | else | 
|  | down_read(&fs_info->commit_root_sem); | 
|  |  | 
|  | ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, | 
|  | tree_mod_seq_elem.seq, &refs, | 
|  | &extent_item_pos, ignore_offset); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ULIST_ITER_INIT(&ref_uiter); | 
|  | while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { | 
|  | ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, | 
|  | tree_mod_seq_elem.seq, &roots, | 
|  | ignore_offset); | 
|  | if (ret) | 
|  | break; | 
|  | ULIST_ITER_INIT(&root_uiter); | 
|  | while (!ret && (root_node = ulist_next(roots, &root_uiter))) { | 
|  | btrfs_debug(fs_info, | 
|  | "root %llu references leaf %llu, data list %#llx", | 
|  | root_node->val, ref_node->val, | 
|  | ref_node->aux); | 
|  | ret = iterate_leaf_refs(fs_info, | 
|  | (struct extent_inode_elem *) | 
|  | (uintptr_t)ref_node->aux, | 
|  | root_node->val, | 
|  | extent_item_objectid, | 
|  | iterate, ctx); | 
|  | } | 
|  | ulist_free(roots); | 
|  | } | 
|  |  | 
|  | free_leaf_list(refs); | 
|  | out: | 
|  | if (trans) { | 
|  | btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); | 
|  | btrfs_end_transaction(trans); | 
|  | } else { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | iterate_extent_inodes_t *iterate, void *ctx, | 
|  | bool ignore_offset) | 
|  | { | 
|  | int ret; | 
|  | u64 extent_item_pos; | 
|  | u64 flags = 0; | 
|  | struct btrfs_key found_key; | 
|  | int search_commit_root = path->search_commit_root; | 
|  |  | 
|  | ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); | 
|  | btrfs_release_path(path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | return -EINVAL; | 
|  |  | 
|  | extent_item_pos = logical - found_key.objectid; | 
|  | ret = iterate_extent_inodes(fs_info, found_key.objectid, | 
|  | extent_item_pos, search_commit_root, | 
|  | iterate, ctx, ignore_offset); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, | 
|  | struct extent_buffer *eb, void *ctx); | 
|  |  | 
|  | static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, | 
|  | struct btrfs_path *path, | 
|  | iterate_irefs_t *iterate, void *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | u32 cur; | 
|  | u32 len; | 
|  | u32 name_len; | 
|  | u64 parent = 0; | 
|  | int found = 0; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_item *item; | 
|  | struct btrfs_inode_ref *iref; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | while (!ret) { | 
|  | ret = btrfs_find_item(fs_root, path, inum, | 
|  | parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, | 
|  | &found_key); | 
|  |  | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret) { | 
|  | ret = found ? 0 : -ENOENT; | 
|  | break; | 
|  | } | 
|  | ++found; | 
|  |  | 
|  | parent = found_key.offset; | 
|  | slot = path->slots[0]; | 
|  | eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!eb) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | extent_buffer_get(eb); | 
|  | btrfs_tree_read_lock(eb); | 
|  | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | item = btrfs_item_nr(slot); | 
|  | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
|  |  | 
|  | for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { | 
|  | name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | /* path must be released before calling iterate()! */ | 
|  | btrfs_debug(fs_root->fs_info, | 
|  | "following ref at offset %u for inode %llu in tree %llu", | 
|  | cur, found_key.objectid, fs_root->objectid); | 
|  | ret = iterate(parent, name_len, | 
|  | (unsigned long)(iref + 1), eb, ctx); | 
|  | if (ret) | 
|  | break; | 
|  | len = sizeof(*iref) + name_len; | 
|  | iref = (struct btrfs_inode_ref *)((char *)iref + len); | 
|  | } | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, | 
|  | struct btrfs_path *path, | 
|  | iterate_irefs_t *iterate, void *ctx) | 
|  | { | 
|  | int ret; | 
|  | int slot; | 
|  | u64 offset = 0; | 
|  | u64 parent; | 
|  | int found = 0; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_inode_extref *extref; | 
|  | u32 item_size; | 
|  | u32 cur_offset; | 
|  | unsigned long ptr; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, | 
|  | &offset); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret) { | 
|  | ret = found ? 0 : -ENOENT; | 
|  | break; | 
|  | } | 
|  | ++found; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!eb) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | extent_buffer_get(eb); | 
|  |  | 
|  | btrfs_tree_read_lock(eb); | 
|  | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | cur_offset = 0; | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | u32 name_len; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)(ptr + cur_offset); | 
|  | parent = btrfs_inode_extref_parent(eb, extref); | 
|  | name_len = btrfs_inode_extref_name_len(eb, extref); | 
|  | ret = iterate(parent, name_len, | 
|  | (unsigned long)&extref->name, eb, ctx); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | cur_offset += btrfs_inode_extref_name_len(eb, extref); | 
|  | cur_offset += sizeof(*extref); | 
|  | } | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, | 
|  | struct btrfs_path *path, iterate_irefs_t *iterate, | 
|  | void *ctx) | 
|  | { | 
|  | int ret; | 
|  | int found_refs = 0; | 
|  |  | 
|  | ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); | 
|  | if (!ret) | 
|  | ++found_refs; | 
|  | else if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); | 
|  | if (ret == -ENOENT && found_refs) | 
|  | return 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 0 if the path could be dumped (probably truncated) | 
|  | * returns <0 in case of an error | 
|  | */ | 
|  | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, | 
|  | struct extent_buffer *eb, void *ctx) | 
|  | { | 
|  | struct inode_fs_paths *ipath = ctx; | 
|  | char *fspath; | 
|  | char *fspath_min; | 
|  | int i = ipath->fspath->elem_cnt; | 
|  | const int s_ptr = sizeof(char *); | 
|  | u32 bytes_left; | 
|  |  | 
|  | bytes_left = ipath->fspath->bytes_left > s_ptr ? | 
|  | ipath->fspath->bytes_left - s_ptr : 0; | 
|  |  | 
|  | fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; | 
|  | fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, | 
|  | name_off, eb, inum, fspath_min, bytes_left); | 
|  | if (IS_ERR(fspath)) | 
|  | return PTR_ERR(fspath); | 
|  |  | 
|  | if (fspath > fspath_min) { | 
|  | ipath->fspath->val[i] = (u64)(unsigned long)fspath; | 
|  | ++ipath->fspath->elem_cnt; | 
|  | ipath->fspath->bytes_left = fspath - fspath_min; | 
|  | } else { | 
|  | ++ipath->fspath->elem_missed; | 
|  | ipath->fspath->bytes_missing += fspath_min - fspath; | 
|  | ipath->fspath->bytes_left = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this dumps all file system paths to the inode into the ipath struct, provided | 
|  | * is has been created large enough. each path is zero-terminated and accessed | 
|  | * from ipath->fspath->val[i]. | 
|  | * when it returns, there are ipath->fspath->elem_cnt number of paths available | 
|  | * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the | 
|  | * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, | 
|  | * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would | 
|  | * have been needed to return all paths. | 
|  | */ | 
|  | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) | 
|  | { | 
|  | return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, | 
|  | inode_to_path, ipath); | 
|  | } | 
|  |  | 
|  | struct btrfs_data_container *init_data_container(u32 total_bytes) | 
|  | { | 
|  | struct btrfs_data_container *data; | 
|  | size_t alloc_bytes; | 
|  |  | 
|  | alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); | 
|  | data = kvmalloc(alloc_bytes, GFP_KERNEL); | 
|  | if (!data) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (total_bytes >= sizeof(*data)) { | 
|  | data->bytes_left = total_bytes - sizeof(*data); | 
|  | data->bytes_missing = 0; | 
|  | } else { | 
|  | data->bytes_missing = sizeof(*data) - total_bytes; | 
|  | data->bytes_left = 0; | 
|  | } | 
|  |  | 
|  | data->elem_cnt = 0; | 
|  | data->elem_missed = 0; | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocates space to return multiple file system paths for an inode. | 
|  | * total_bytes to allocate are passed, note that space usable for actual path | 
|  | * information will be total_bytes - sizeof(struct inode_fs_paths). | 
|  | * the returned pointer must be freed with free_ipath() in the end. | 
|  | */ | 
|  | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct inode_fs_paths *ifp; | 
|  | struct btrfs_data_container *fspath; | 
|  |  | 
|  | fspath = init_data_container(total_bytes); | 
|  | if (IS_ERR(fspath)) | 
|  | return ERR_CAST(fspath); | 
|  |  | 
|  | ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); | 
|  | if (!ifp) { | 
|  | kvfree(fspath); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | ifp->btrfs_path = path; | 
|  | ifp->fspath = fspath; | 
|  | ifp->fs_root = fs_root; | 
|  |  | 
|  | return ifp; | 
|  | } | 
|  |  | 
|  | void free_ipath(struct inode_fs_paths *ipath) | 
|  | { | 
|  | if (!ipath) | 
|  | return; | 
|  | kvfree(ipath->fspath); | 
|  | kfree(ipath); | 
|  | } |