| /* | 
 |  * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T). | 
 |  * | 
 |  * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  *  modify it under the terms of the GNU General Public License as | 
 |  *  published by the Free Software Foundation, version 2. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/mutex.h> | 
 | #include <asm/div64.h> | 
 |  | 
 | #include <media/dvb_math.h> | 
 |  | 
 | #include <media/dvb_frontend.h> | 
 |  | 
 | #include "dib8000.h" | 
 |  | 
 | #define LAYER_ALL -1 | 
 | #define LAYER_A   1 | 
 | #define LAYER_B   2 | 
 | #define LAYER_C   3 | 
 |  | 
 | #define MAX_NUMBER_OF_FRONTENDS 6 | 
 | /* #define DIB8000_AGC_FREEZE */ | 
 |  | 
 | static int debug; | 
 | module_param(debug, int, 0644); | 
 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); | 
 |  | 
 | #define dprintk(fmt, arg...) do {					\ | 
 | 	if (debug)							\ | 
 | 		printk(KERN_DEBUG pr_fmt("%s: " fmt),			\ | 
 | 		       __func__, ##arg);				\ | 
 | } while (0) | 
 |  | 
 | struct i2c_device { | 
 | 	struct i2c_adapter *adap; | 
 | 	u8 addr; | 
 | 	u8 *i2c_write_buffer; | 
 | 	u8 *i2c_read_buffer; | 
 | 	struct mutex *i2c_buffer_lock; | 
 | }; | 
 |  | 
 | enum param_loop_step { | 
 | 	LOOP_TUNE_1, | 
 | 	LOOP_TUNE_2 | 
 | }; | 
 |  | 
 | enum dib8000_autosearch_step { | 
 | 	AS_START = 0, | 
 | 	AS_SEARCHING_FFT, | 
 | 	AS_SEARCHING_GUARD, | 
 | 	AS_DONE = 100, | 
 | }; | 
 |  | 
 | enum timeout_mode { | 
 | 	SYMBOL_DEPENDENT_OFF = 0, | 
 | 	SYMBOL_DEPENDENT_ON, | 
 | }; | 
 |  | 
 | struct dib8000_state { | 
 | 	struct dib8000_config cfg; | 
 |  | 
 | 	struct i2c_device i2c; | 
 |  | 
 | 	struct dibx000_i2c_master i2c_master; | 
 |  | 
 | 	u16 wbd_ref; | 
 |  | 
 | 	u8 current_band; | 
 | 	u32 current_bandwidth; | 
 | 	struct dibx000_agc_config *current_agc; | 
 | 	u32 timf; | 
 | 	u32 timf_default; | 
 |  | 
 | 	u8 div_force_off:1; | 
 | 	u8 div_state:1; | 
 | 	u16 div_sync_wait; | 
 |  | 
 | 	u8 agc_state; | 
 | 	u8 differential_constellation; | 
 | 	u8 diversity_onoff; | 
 |  | 
 | 	s16 ber_monitored_layer; | 
 | 	u16 gpio_dir; | 
 | 	u16 gpio_val; | 
 |  | 
 | 	u16 revision; | 
 | 	u8 isdbt_cfg_loaded; | 
 | 	enum frontend_tune_state tune_state; | 
 | 	s32 status; | 
 |  | 
 | 	struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; | 
 |  | 
 | 	/* for the I2C transfer */ | 
 | 	struct i2c_msg msg[2]; | 
 | 	u8 i2c_write_buffer[4]; | 
 | 	u8 i2c_read_buffer[2]; | 
 | 	struct mutex i2c_buffer_lock; | 
 | 	u8 input_mode_mpeg; | 
 |  | 
 | 	u16 tuner_enable; | 
 | 	struct i2c_adapter dib8096p_tuner_adap; | 
 | 	u16 current_demod_bw; | 
 |  | 
 | 	u16 seg_mask; | 
 | 	u16 seg_diff_mask; | 
 | 	u16 mode; | 
 | 	u8 layer_b_nb_seg; | 
 | 	u8 layer_c_nb_seg; | 
 |  | 
 | 	u8 channel_parameters_set; | 
 | 	u16 autosearch_state; | 
 | 	u16 found_nfft; | 
 | 	u16 found_guard; | 
 | 	u8 subchannel; | 
 | 	u8 symbol_duration; | 
 | 	unsigned long timeout; | 
 | 	u8 longest_intlv_layer; | 
 | 	u16 output_mode; | 
 |  | 
 | 	/* for DVBv5 stats */ | 
 | 	s64 init_ucb; | 
 | 	unsigned long per_jiffies_stats; | 
 | 	unsigned long ber_jiffies_stats; | 
 | 	unsigned long ber_jiffies_stats_layer[3]; | 
 |  | 
 | #ifdef DIB8000_AGC_FREEZE | 
 | 	u16 agc1_max; | 
 | 	u16 agc1_min; | 
 | 	u16 agc2_max; | 
 | 	u16 agc2_min; | 
 | #endif | 
 | }; | 
 |  | 
 | enum dib8000_power_mode { | 
 | 	DIB8000_POWER_ALL = 0, | 
 | 	DIB8000_POWER_INTERFACE_ONLY, | 
 | }; | 
 |  | 
 | static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) | 
 | { | 
 | 	u16 ret; | 
 | 	struct i2c_msg msg[2] = { | 
 | 		{.addr = i2c->addr >> 1, .flags = 0, .len = 2}, | 
 | 		{.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2}, | 
 | 	}; | 
 |  | 
 | 	if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { | 
 | 		dprintk("could not acquire lock\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	msg[0].buf    = i2c->i2c_write_buffer; | 
 | 	msg[0].buf[0] = reg >> 8; | 
 | 	msg[0].buf[1] = reg & 0xff; | 
 | 	msg[1].buf    = i2c->i2c_read_buffer; | 
 |  | 
 | 	if (i2c_transfer(i2c->adap, msg, 2) != 2) | 
 | 		dprintk("i2c read error on %d\n", reg); | 
 |  | 
 | 	ret = (msg[1].buf[0] << 8) | msg[1].buf[1]; | 
 | 	mutex_unlock(i2c->i2c_buffer_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg) | 
 | { | 
 | 	u16 ret; | 
 |  | 
 | 	state->i2c_write_buffer[0] = reg >> 8; | 
 | 	state->i2c_write_buffer[1] = reg & 0xff; | 
 |  | 
 | 	memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); | 
 | 	state->msg[0].addr = state->i2c.addr >> 1; | 
 | 	state->msg[0].flags = 0; | 
 | 	state->msg[0].buf = state->i2c_write_buffer; | 
 | 	state->msg[0].len = 2; | 
 | 	state->msg[1].addr = state->i2c.addr >> 1; | 
 | 	state->msg[1].flags = I2C_M_RD; | 
 | 	state->msg[1].buf = state->i2c_read_buffer; | 
 | 	state->msg[1].len = 2; | 
 |  | 
 | 	if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2) | 
 | 		dprintk("i2c read error on %d\n", reg); | 
 |  | 
 | 	ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) | 
 | { | 
 | 	u16 ret; | 
 |  | 
 | 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | 
 | 		dprintk("could not acquire lock\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = __dib8000_read_word(state, reg); | 
 |  | 
 | 	mutex_unlock(&state->i2c_buffer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u32 dib8000_read32(struct dib8000_state *state, u16 reg) | 
 | { | 
 | 	u16 rw[2]; | 
 |  | 
 | 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | 
 | 		dprintk("could not acquire lock\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	rw[0] = __dib8000_read_word(state, reg + 0); | 
 | 	rw[1] = __dib8000_read_word(state, reg + 1); | 
 |  | 
 | 	mutex_unlock(&state->i2c_buffer_lock); | 
 |  | 
 | 	return ((rw[0] << 16) | (rw[1])); | 
 | } | 
 |  | 
 | static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) | 
 | { | 
 | 	struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4}; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { | 
 | 		dprintk("could not acquire lock\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	msg.buf    = i2c->i2c_write_buffer; | 
 | 	msg.buf[0] = (reg >> 8) & 0xff; | 
 | 	msg.buf[1] = reg & 0xff; | 
 | 	msg.buf[2] = (val >> 8) & 0xff; | 
 | 	msg.buf[3] = val & 0xff; | 
 |  | 
 | 	ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0; | 
 | 	mutex_unlock(i2c->i2c_buffer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | 
 | 		dprintk("could not acquire lock\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	state->i2c_write_buffer[0] = (reg >> 8) & 0xff; | 
 | 	state->i2c_write_buffer[1] = reg & 0xff; | 
 | 	state->i2c_write_buffer[2] = (val >> 8) & 0xff; | 
 | 	state->i2c_write_buffer[3] = val & 0xff; | 
 |  | 
 | 	memset(&state->msg[0], 0, sizeof(struct i2c_msg)); | 
 | 	state->msg[0].addr = state->i2c.addr >> 1; | 
 | 	state->msg[0].flags = 0; | 
 | 	state->msg[0].buf = state->i2c_write_buffer; | 
 | 	state->msg[0].len = 4; | 
 |  | 
 | 	ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ? | 
 | 			-EREMOTEIO : 0); | 
 | 	mutex_unlock(&state->i2c_buffer_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const s16 coeff_2k_sb_1seg_dqpsk[8] = { | 
 | 	(769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c, | 
 | 		(920 << 5) | 0x09 | 
 | }; | 
 |  | 
 | static const s16 coeff_2k_sb_1seg[8] = { | 
 | 	(692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f | 
 | }; | 
 |  | 
 | static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = { | 
 | 	(832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11, | 
 | 		(-931 << 5) | 0x0f | 
 | }; | 
 |  | 
 | static const s16 coeff_2k_sb_3seg_0dqpsk[8] = { | 
 | 	(622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e, | 
 | 		(982 << 5) | 0x0c | 
 | }; | 
 |  | 
 | static const s16 coeff_2k_sb_3seg_1dqpsk[8] = { | 
 | 	(699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12, | 
 | 		(-720 << 5) | 0x0d | 
 | }; | 
 |  | 
 | static const s16 coeff_2k_sb_3seg[8] = { | 
 | 	(664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e, | 
 | 		(-610 << 5) | 0x0a | 
 | }; | 
 |  | 
 | static const s16 coeff_4k_sb_1seg_dqpsk[8] = { | 
 | 	(-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f, | 
 | 		(-922 << 5) | 0x0d | 
 | }; | 
 |  | 
 | static const s16 coeff_4k_sb_1seg[8] = { | 
 | 	(638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d, | 
 | 		(-655 << 5) | 0x0a | 
 | }; | 
 |  | 
 | static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = { | 
 | 	(-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14, | 
 | 		(-958 << 5) | 0x13 | 
 | }; | 
 |  | 
 | static const s16 coeff_4k_sb_3seg_0dqpsk[8] = { | 
 | 	(-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12, | 
 | 		(-568 << 5) | 0x0f | 
 | }; | 
 |  | 
 | static const s16 coeff_4k_sb_3seg_1dqpsk[8] = { | 
 | 	(-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14, | 
 | 		(-848 << 5) | 0x13 | 
 | }; | 
 |  | 
 | static const s16 coeff_4k_sb_3seg[8] = { | 
 | 	(612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12, | 
 | 		(-869 << 5) | 0x13 | 
 | }; | 
 |  | 
 | static const s16 coeff_8k_sb_1seg_dqpsk[8] = { | 
 | 	(-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13, | 
 | 		(-598 << 5) | 0x10 | 
 | }; | 
 |  | 
 | static const s16 coeff_8k_sb_1seg[8] = { | 
 | 	(673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f, | 
 | 		(585 << 5) | 0x0f | 
 | }; | 
 |  | 
 | static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = { | 
 | 	(863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18, | 
 | 		(0 << 5) | 0x14 | 
 | }; | 
 |  | 
 | static const s16 coeff_8k_sb_3seg_0dqpsk[8] = { | 
 | 	(-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15, | 
 | 		(-877 << 5) | 0x15 | 
 | }; | 
 |  | 
 | static const s16 coeff_8k_sb_3seg_1dqpsk[8] = { | 
 | 	(-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18, | 
 | 		(-921 << 5) | 0x14 | 
 | }; | 
 |  | 
 | static const s16 coeff_8k_sb_3seg[8] = { | 
 | 	(514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15, | 
 | 		(690 << 5) | 0x14 | 
 | }; | 
 |  | 
 | static const s16 ana_fe_coeff_3seg[24] = { | 
 | 	81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017 | 
 | }; | 
 |  | 
 | static const s16 ana_fe_coeff_1seg[24] = { | 
 | 	249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003 | 
 | }; | 
 |  | 
 | static const s16 ana_fe_coeff_13seg[24] = { | 
 | 	396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1 | 
 | }; | 
 |  | 
 | static u16 fft_to_mode(struct dib8000_state *state) | 
 | { | 
 | 	u16 mode; | 
 | 	switch (state->fe[0]->dtv_property_cache.transmission_mode) { | 
 | 	case TRANSMISSION_MODE_2K: | 
 | 		mode = 1; | 
 | 		break; | 
 | 	case TRANSMISSION_MODE_4K: | 
 | 		mode = 2; | 
 | 		break; | 
 | 	default: | 
 | 	case TRANSMISSION_MODE_AUTO: | 
 | 	case TRANSMISSION_MODE_8K: | 
 | 		mode = 3; | 
 | 		break; | 
 | 	} | 
 | 	return mode; | 
 | } | 
 |  | 
 | static void dib8000_set_acquisition_mode(struct dib8000_state *state) | 
 | { | 
 | 	u16 nud = dib8000_read_word(state, 298); | 
 | 	nud |= (1 << 3) | (1 << 0); | 
 | 	dprintk("acquisition mode activated\n"); | 
 | 	dib8000_write_word(state, 298, nud); | 
 | } | 
 | static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 outreg, fifo_threshold, smo_mode, sram = 0x0205;	/* by default SDRAM deintlv is enabled */ | 
 |  | 
 | 	state->output_mode = mode; | 
 | 	outreg = 0; | 
 | 	fifo_threshold = 1792; | 
 | 	smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); | 
 |  | 
 | 	dprintk("-I-	Setting output mode for demod %p to %d\n", | 
 | 			&state->fe[0], mode); | 
 |  | 
 | 	switch (mode) { | 
 | 	case OUTMODE_MPEG2_PAR_GATED_CLK:	// STBs with parallel gated clock | 
 | 		outreg = (1 << 10);	/* 0x0400 */ | 
 | 		break; | 
 | 	case OUTMODE_MPEG2_PAR_CONT_CLK:	// STBs with parallel continues clock | 
 | 		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */ | 
 | 		break; | 
 | 	case OUTMODE_MPEG2_SERIAL:	// STBs with serial input | 
 | 		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0482 */ | 
 | 		break; | 
 | 	case OUTMODE_DIVERSITY: | 
 | 		if (state->cfg.hostbus_diversity) { | 
 | 			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */ | 
 | 			sram &= 0xfdff; | 
 | 		} else | 
 | 			sram |= 0x0c00; | 
 | 		break; | 
 | 	case OUTMODE_MPEG2_FIFO:	// e.g. USB feeding | 
 | 		smo_mode |= (3 << 1); | 
 | 		fifo_threshold = 512; | 
 | 		outreg = (1 << 10) | (5 << 6); | 
 | 		break; | 
 | 	case OUTMODE_HIGH_Z:	// disable | 
 | 		outreg = 0; | 
 | 		break; | 
 |  | 
 | 	case OUTMODE_ANALOG_ADC: | 
 | 		outreg = (1 << 10) | (3 << 6); | 
 | 		dib8000_set_acquisition_mode(state); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		dprintk("Unhandled output_mode passed to be set for demod %p\n", | 
 | 				&state->fe[0]); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (state->cfg.output_mpeg2_in_188_bytes) | 
 | 		smo_mode |= (1 << 5); | 
 |  | 
 | 	dib8000_write_word(state, 299, smo_mode); | 
 | 	dib8000_write_word(state, 300, fifo_threshold);	/* synchronous fread */ | 
 | 	dib8000_write_word(state, 1286, outreg); | 
 | 	dib8000_write_word(state, 1291, sram); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0; | 
 |  | 
 | 	dprintk("set diversity input to %i\n", onoff); | 
 | 	if (!state->differential_constellation) { | 
 | 		dib8000_write_word(state, 272, 1 << 9);	//dvsy_off_lmod4 = 1 | 
 | 		dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2);	// sync_enable = 1; comb_mode = 2 | 
 | 	} else { | 
 | 		dib8000_write_word(state, 272, 0);	//dvsy_off_lmod4 = 0 | 
 | 		dib8000_write_word(state, 273, sync_wait);	// sync_enable = 0; comb_mode = 0 | 
 | 	} | 
 | 	state->diversity_onoff = onoff; | 
 |  | 
 | 	switch (onoff) { | 
 | 	case 0:		/* only use the internal way - not the diversity input */ | 
 | 		dib8000_write_word(state, 270, 1); | 
 | 		dib8000_write_word(state, 271, 0); | 
 | 		break; | 
 | 	case 1:		/* both ways */ | 
 | 		dib8000_write_word(state, 270, 6); | 
 | 		dib8000_write_word(state, 271, 6); | 
 | 		break; | 
 | 	case 2:		/* only the diversity input */ | 
 | 		dib8000_write_word(state, 270, 0); | 
 | 		dib8000_write_word(state, 271, 1); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (state->revision == 0x8002) { | 
 | 		tmp = dib8000_read_word(state, 903); | 
 | 		dib8000_write_word(state, 903, tmp & ~(1 << 3)); | 
 | 		msleep(30); | 
 | 		dib8000_write_word(state, 903, tmp | (1 << 3)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode) | 
 | { | 
 | 	/* by default everything is going to be powered off */ | 
 | 	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff, | 
 | 		reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, | 
 | 		reg_1280; | 
 |  | 
 | 	if (state->revision != 0x8090) | 
 | 		reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00; | 
 | 	else | 
 | 		reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80; | 
 |  | 
 | 	/* now, depending on the requested mode, we power on */ | 
 | 	switch (mode) { | 
 | 		/* power up everything in the demod */ | 
 | 	case DIB8000_POWER_ALL: | 
 | 		reg_774 = 0x0000; | 
 | 		reg_775 = 0x0000; | 
 | 		reg_776 = 0x0000; | 
 | 		reg_900 &= 0xfffc; | 
 | 		if (state->revision != 0x8090) | 
 | 			reg_1280 &= 0x00ff; | 
 | 		else | 
 | 			reg_1280 &= 0x707f; | 
 | 		break; | 
 | 	case DIB8000_POWER_INTERFACE_ONLY: | 
 | 		if (state->revision != 0x8090) | 
 | 			reg_1280 &= 0x00ff; | 
 | 		else | 
 | 			reg_1280 &= 0xfa7b; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280); | 
 | 	dib8000_write_word(state, 774, reg_774); | 
 | 	dib8000_write_word(state, 775, reg_775); | 
 | 	dib8000_write_word(state, 776, reg_776); | 
 | 	dib8000_write_word(state, 900, reg_900); | 
 | 	dib8000_write_word(state, 1280, reg_1280); | 
 | } | 
 |  | 
 | static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no) | 
 | { | 
 | 	int ret = 0; | 
 | 	u16 reg, reg_907 = dib8000_read_word(state, 907); | 
 | 	u16 reg_908 = dib8000_read_word(state, 908); | 
 |  | 
 | 	switch (no) { | 
 | 	case DIBX000_SLOW_ADC_ON: | 
 | 		if (state->revision != 0x8090) { | 
 | 			reg_908 |= (1 << 1) | (1 << 0); | 
 | 			ret |= dib8000_write_word(state, 908, reg_908); | 
 | 			reg_908 &= ~(1 << 1); | 
 | 		} else { | 
 | 			reg = dib8000_read_word(state, 1925); | 
 | 			/* en_slowAdc = 1 & reset_sladc = 1 */ | 
 | 			dib8000_write_word(state, 1925, reg | | 
 | 					(1<<4) | (1<<2)); | 
 |  | 
 | 			/* read acces to make it works... strange ... */ | 
 | 			reg = dib8000_read_word(state, 1925); | 
 | 			msleep(20); | 
 | 			/* en_slowAdc = 1 & reset_sladc = 0 */ | 
 | 			dib8000_write_word(state, 1925, reg & ~(1<<4)); | 
 |  | 
 | 			reg = dib8000_read_word(state, 921) & ~((0x3 << 14) | 
 | 					| (0x3 << 12)); | 
 | 			/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; | 
 | 			   (Vin2 = Vcm) */ | 
 | 			dib8000_write_word(state, 921, reg | (1 << 14) | 
 | 					| (3 << 12)); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case DIBX000_SLOW_ADC_OFF: | 
 | 		if (state->revision == 0x8090) { | 
 | 			reg = dib8000_read_word(state, 1925); | 
 | 			/* reset_sladc = 1 en_slowAdc = 0 */ | 
 | 			dib8000_write_word(state, 1925, | 
 | 					(reg & ~(1<<2)) | (1<<4)); | 
 | 		} | 
 | 		reg_908 |= (1 << 1) | (1 << 0); | 
 | 		break; | 
 |  | 
 | 	case DIBX000_ADC_ON: | 
 | 		reg_907 &= 0x0fff; | 
 | 		reg_908 &= 0x0003; | 
 | 		break; | 
 |  | 
 | 	case DIBX000_ADC_OFF:	// leave the VBG voltage on | 
 | 		reg_907 = (1 << 13) | (1 << 12); | 
 | 		reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1); | 
 | 		break; | 
 |  | 
 | 	case DIBX000_VBG_ENABLE: | 
 | 		reg_907 &= ~(1 << 15); | 
 | 		break; | 
 |  | 
 | 	case DIBX000_VBG_DISABLE: | 
 | 		reg_907 |= (1 << 15); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret |= dib8000_write_word(state, 907, reg_907); | 
 | 	ret |= dib8000_write_word(state, 908, reg_908); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u32 timf; | 
 |  | 
 | 	if (bw == 0) | 
 | 		bw = 6000; | 
 |  | 
 | 	if (state->timf == 0) { | 
 | 		dprintk("using default timf\n"); | 
 | 		timf = state->timf_default; | 
 | 	} else { | 
 | 		dprintk("using updated timf\n"); | 
 | 		timf = state->timf; | 
 | 	} | 
 |  | 
 | 	dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff)); | 
 | 	dib8000_write_word(state, 30, (u16) ((timf) & 0xffff)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_sad_calib(struct dib8000_state *state) | 
 | { | 
 | 	u8 sad_sel = 3; | 
 |  | 
 | 	if (state->revision == 0x8090) { | 
 | 		dib8000_write_word(state, 922, (sad_sel << 2)); | 
 | 		dib8000_write_word(state, 923, 2048); | 
 |  | 
 | 		dib8000_write_word(state, 922, (sad_sel << 2) | 0x1); | 
 | 		dib8000_write_word(state, 922, (sad_sel << 2)); | 
 | 	} else { | 
 | 		/* internal */ | 
 | 		dib8000_write_word(state, 923, (0 << 1) | (0 << 0)); | 
 | 		dib8000_write_word(state, 924, 776); | 
 |  | 
 | 		/* do the calibration */ | 
 | 		dib8000_write_word(state, 923, (1 << 0)); | 
 | 		dib8000_write_word(state, 923, (0 << 0)); | 
 | 	} | 
 |  | 
 | 	msleep(1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	if (value > 4095) | 
 | 		value = 4095; | 
 | 	state->wbd_ref = value; | 
 | 	return dib8000_write_word(state, 106, value); | 
 | } | 
 |  | 
 | static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw) | 
 | { | 
 | 	dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25); | 
 | 	if (state->revision != 0x8090) { | 
 | 		dib8000_write_word(state, 23, | 
 | 				(u16) (((bw->internal * 1000) >> 16) & 0xffff)); | 
 | 		dib8000_write_word(state, 24, | 
 | 				(u16) ((bw->internal * 1000) & 0xffff)); | 
 | 	} else { | 
 | 		dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff)); | 
 | 		dib8000_write_word(state, 24, | 
 | 				(u16) ((bw->internal  / 2 * 1000) & 0xffff)); | 
 | 	} | 
 | 	dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff)); | 
 | 	dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff)); | 
 | 	dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003)); | 
 |  | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_write_word(state, 922, bw->sad_cfg); | 
 | } | 
 |  | 
 | static void dib8000_reset_pll(struct dib8000_state *state) | 
 | { | 
 | 	const struct dibx000_bandwidth_config *pll = state->cfg.pll; | 
 | 	u16 clk_cfg1, reg; | 
 |  | 
 | 	if (state->revision != 0x8090) { | 
 | 		dib8000_write_word(state, 901, | 
 | 				(pll->pll_prediv << 8) | (pll->pll_ratio << 0)); | 
 |  | 
 | 		clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) | | 
 | 			(pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | | 
 | 			(1 << 3) | (pll->pll_range << 1) | | 
 | 			(pll->pll_reset << 0); | 
 |  | 
 | 		dib8000_write_word(state, 902, clk_cfg1); | 
 | 		clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3); | 
 | 		dib8000_write_word(state, 902, clk_cfg1); | 
 |  | 
 | 		dprintk("clk_cfg1: 0x%04x\n", clk_cfg1); | 
 |  | 
 | 		/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */ | 
 | 		if (state->cfg.pll->ADClkSrc == 0) | 
 | 			dib8000_write_word(state, 904, | 
 | 					(0 << 15) | (0 << 12) | (0 << 10) | | 
 | 					(pll->modulo << 8) | | 
 | 					(pll->ADClkSrc << 7) | (0 << 1)); | 
 | 		else if (state->cfg.refclksel != 0) | 
 | 			dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | | 
 | 					((state->cfg.refclksel & 0x3) << 10) | | 
 | 					(pll->modulo << 8) | | 
 | 					(pll->ADClkSrc << 7) | (0 << 1)); | 
 | 		else | 
 | 			dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | | 
 | 					(3 << 10) | (pll->modulo << 8) | | 
 | 					(pll->ADClkSrc << 7) | (0 << 1)); | 
 | 	} else { | 
 | 		dib8000_write_word(state, 1856, (!pll->pll_reset<<13) | | 
 | 				(pll->pll_range<<12) | (pll->pll_ratio<<6) | | 
 | 				(pll->pll_prediv)); | 
 |  | 
 | 		reg = dib8000_read_word(state, 1857); | 
 | 		dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15)); | 
 |  | 
 | 		reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */ | 
 | 		dib8000_write_word(state, 1858, reg | 1); | 
 |  | 
 | 		dib8000_write_word(state, 904, (pll->modulo << 8)); | 
 | 	} | 
 |  | 
 | 	dib8000_reset_pll_common(state, pll); | 
 | } | 
 |  | 
 | static int dib8000_update_pll(struct dvb_frontend *fe, | 
 | 		struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856); | 
 | 	u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ; | 
 | 	u32 internal, xtal; | 
 |  | 
 | 	/* get back old values */ | 
 | 	prediv = reg_1856 & 0x3f; | 
 | 	loopdiv = (reg_1856 >> 6) & 0x3f; | 
 |  | 
 | 	if ((pll == NULL) || (pll->pll_prediv == prediv && | 
 | 				pll->pll_ratio == loopdiv)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio); | 
 | 	if (state->revision == 0x8090) { | 
 | 		reg_1856 &= 0xf000; | 
 | 		reg_1857 = dib8000_read_word(state, 1857); | 
 | 		/* disable PLL */ | 
 | 		dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15)); | 
 |  | 
 | 		dib8000_write_word(state, 1856, reg_1856 | | 
 | 				((pll->pll_ratio & 0x3f) << 6) | | 
 | 				(pll->pll_prediv & 0x3f)); | 
 |  | 
 | 		/* write new system clk into P_sec_len */ | 
 | 		internal = dib8000_read32(state, 23) / 1000; | 
 | 		dprintk("Old Internal = %d\n", internal); | 
 | 		xtal = 2 * (internal / loopdiv) * prediv; | 
 | 		internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio; | 
 | 		dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000); | 
 | 		dprintk("New Internal = %d\n", internal); | 
 |  | 
 | 		dib8000_write_word(state, 23, | 
 | 				(u16) (((internal / 2) >> 16) & 0xffff)); | 
 | 		dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff)); | 
 | 		/* enable PLL */ | 
 | 		dib8000_write_word(state, 1857, reg_1857 | (1 << 15)); | 
 |  | 
 | 		while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1) | 
 | 			dprintk("Waiting for PLL to lock\n"); | 
 |  | 
 | 		/* verify */ | 
 | 		reg_1856 = dib8000_read_word(state, 1856); | 
 | 		dprintk("PLL Updated with prediv = %d and loopdiv = %d\n", | 
 | 				reg_1856&0x3f, (reg_1856>>6)&0x3f); | 
 | 	} else { | 
 | 		if (bw != state->current_demod_bw) { | 
 | 			/** Bandwidth change => force PLL update **/ | 
 | 			dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv); | 
 |  | 
 | 			if (state->cfg.pll->pll_prediv != oldprediv) { | 
 | 				/** Full PLL change only if prediv is changed **/ | 
 |  | 
 | 				/** full update => bypass and reconfigure **/ | 
 | 				dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio); | 
 | 				dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */ | 
 | 				dib8000_reset_pll(state); | 
 | 				dib8000_write_word(state, 898, 0x0004); /* sad */ | 
 | 			} else | 
 | 				ratio = state->cfg.pll->pll_ratio; | 
 |  | 
 | 			state->current_demod_bw = bw; | 
 | 		} | 
 |  | 
 | 		if (ratio != 0) { | 
 | 			/** ratio update => only change ratio **/ | 
 | 			dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio); | 
 | 			dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_reset_gpio(struct dib8000_state *st) | 
 | { | 
 | 	/* reset the GPIOs */ | 
 | 	dib8000_write_word(st, 1029, st->cfg.gpio_dir); | 
 | 	dib8000_write_word(st, 1030, st->cfg.gpio_val); | 
 |  | 
 | 	/* TODO 782 is P_gpio_od */ | 
 |  | 
 | 	dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos); | 
 |  | 
 | 	dib8000_write_word(st, 1037, st->cfg.pwm_freq_div); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val) | 
 | { | 
 | 	st->cfg.gpio_dir = dib8000_read_word(st, 1029); | 
 | 	st->cfg.gpio_dir &= ~(1 << num);	/* reset the direction bit */ | 
 | 	st->cfg.gpio_dir |= (dir & 0x1) << num;	/* set the new direction */ | 
 | 	dib8000_write_word(st, 1029, st->cfg.gpio_dir); | 
 |  | 
 | 	st->cfg.gpio_val = dib8000_read_word(st, 1030); | 
 | 	st->cfg.gpio_val &= ~(1 << num);	/* reset the direction bit */ | 
 | 	st->cfg.gpio_val |= (val & 0x01) << num;	/* set the new value */ | 
 | 	dib8000_write_word(st, 1030, st->cfg.gpio_val); | 
 |  | 
 | 	dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	return dib8000_cfg_gpio(state, num, dir, val); | 
 | } | 
 |  | 
 | static const u16 dib8000_defaults[] = { | 
 | 	/* auto search configuration - lock0 by default waiting | 
 | 	 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */ | 
 | 	3, 7, | 
 | 	0x0004, | 
 | 	0x0400, | 
 | 	0x0814, | 
 |  | 
 | 	12, 11, | 
 | 	0x001b, | 
 | 	0x7740, | 
 | 	0x005b, | 
 | 	0x8d80, | 
 | 	0x01c9, | 
 | 	0xc380, | 
 | 	0x0000, | 
 | 	0x0080, | 
 | 	0x0000, | 
 | 	0x0090, | 
 | 	0x0001, | 
 | 	0xd4c0, | 
 |  | 
 | 	/*1, 32, | 
 | 		0x6680 // P_corm_thres Lock algorithms configuration */ | 
 |  | 
 | 	11, 80,			/* set ADC level to -16 */ | 
 | 	(1 << 13) - 825 - 117, | 
 | 	(1 << 13) - 837 - 117, | 
 | 	(1 << 13) - 811 - 117, | 
 | 	(1 << 13) - 766 - 117, | 
 | 	(1 << 13) - 737 - 117, | 
 | 	(1 << 13) - 693 - 117, | 
 | 	(1 << 13) - 648 - 117, | 
 | 	(1 << 13) - 619 - 117, | 
 | 	(1 << 13) - 575 - 117, | 
 | 	(1 << 13) - 531 - 117, | 
 | 	(1 << 13) - 501 - 117, | 
 |  | 
 | 	4, 108, | 
 | 	0, | 
 | 	0, | 
 | 	0, | 
 | 	0, | 
 |  | 
 | 	1, 175, | 
 | 	0x0410, | 
 | 	1, 179, | 
 | 	8192,			// P_fft_nb_to_cut | 
 |  | 
 | 	6, 181, | 
 | 	0x2800,			// P_coff_corthres_ ( 2k 4k 8k ) 0x2800 | 
 | 	0x2800, | 
 | 	0x2800, | 
 | 	0x2800,			// P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800 | 
 | 	0x2800, | 
 | 	0x2800, | 
 |  | 
 | 	2, 193, | 
 | 	0x0666,			// P_pha3_thres | 
 | 	0x0000,			// P_cti_use_cpe, P_cti_use_prog | 
 |  | 
 | 	2, 205, | 
 | 	0x200f,			// P_cspu_regul, P_cspu_win_cut | 
 | 	0x000f,			// P_des_shift_work | 
 |  | 
 | 	5, 215, | 
 | 	0x023d,			// P_adp_regul_cnt | 
 | 	0x00a4,			// P_adp_noise_cnt | 
 | 	0x00a4,			// P_adp_regul_ext | 
 | 	0x7ff0,			// P_adp_noise_ext | 
 | 	0x3ccc,			// P_adp_fil | 
 |  | 
 | 	1, 230, | 
 | 	0x0000,			// P_2d_byp_ti_num | 
 |  | 
 | 	1, 263, | 
 | 	0x800,			//P_equal_thres_wgn | 
 |  | 
 | 	1, 268, | 
 | 	(2 << 9) | 39,		// P_equal_ctrl_synchro, P_equal_speedmode | 
 |  | 
 | 	1, 270, | 
 | 	0x0001,			// P_div_lock0_wait | 
 | 	1, 285, | 
 | 	0x0020,			//p_fec_ | 
 | 	1, 299, | 
 | 	0x0062,			/* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */ | 
 |  | 
 | 	1, 338, | 
 | 	(1 << 12) |		// P_ctrl_corm_thres4pre_freq_inh=1 | 
 | 		(1 << 10) | | 
 | 		(0 << 9) |		/* P_ctrl_pre_freq_inh=0 */ | 
 | 		(3 << 5) |		/* P_ctrl_pre_freq_step=3 */ | 
 | 		(1 << 0),		/* P_pre_freq_win_len=1 */ | 
 |  | 
 | 	0, | 
 | }; | 
 |  | 
 | static u16 dib8000_identify(struct i2c_device *client) | 
 | { | 
 | 	u16 value; | 
 |  | 
 | 	//because of glitches sometimes | 
 | 	value = dib8000_i2c_read16(client, 896); | 
 |  | 
 | 	if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) { | 
 | 		dprintk("wrong Vendor ID (read=0x%x)\n", value); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	value = dib8000_i2c_read16(client, 897); | 
 | 	if (value != 0x8000 && value != 0x8001 && | 
 | 			value != 0x8002 && value != 0x8090) { | 
 | 		dprintk("wrong Device ID (%x)\n", value); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	switch (value) { | 
 | 	case 0x8000: | 
 | 		dprintk("found DiB8000A\n"); | 
 | 		break; | 
 | 	case 0x8001: | 
 | 		dprintk("found DiB8000B\n"); | 
 | 		break; | 
 | 	case 0x8002: | 
 | 		dprintk("found DiB8000C\n"); | 
 | 		break; | 
 | 	case 0x8090: | 
 | 		dprintk("found DiB8096P\n"); | 
 | 		break; | 
 | 	} | 
 | 	return value; | 
 | } | 
 |  | 
 | static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc); | 
 |  | 
 | static void dib8000_reset_stats(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	u32 ucb; | 
 |  | 
 | 	memset(&c->strength, 0, sizeof(c->strength)); | 
 | 	memset(&c->cnr, 0, sizeof(c->cnr)); | 
 | 	memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); | 
 | 	memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); | 
 | 	memset(&c->block_error, 0, sizeof(c->block_error)); | 
 |  | 
 | 	c->strength.len = 1; | 
 | 	c->cnr.len = 1; | 
 | 	c->block_error.len = 1; | 
 | 	c->block_count.len = 1; | 
 | 	c->post_bit_error.len = 1; | 
 | 	c->post_bit_count.len = 1; | 
 |  | 
 | 	c->strength.stat[0].scale = FE_SCALE_DECIBEL; | 
 | 	c->strength.stat[0].uvalue = 0; | 
 |  | 
 | 	c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 	c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 	c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 	c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 	c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 |  | 
 | 	dib8000_read_unc_blocks(fe, &ucb); | 
 |  | 
 | 	state->init_ucb = -ucb; | 
 | 	state->ber_jiffies_stats = 0; | 
 | 	state->per_jiffies_stats = 0; | 
 | 	memset(&state->ber_jiffies_stats_layer, 0, | 
 | 	       sizeof(state->ber_jiffies_stats_layer)); | 
 | } | 
 |  | 
 | static int dib8000_reset(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	if ((state->revision = dib8000_identify(&state->i2c)) == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* sram lead in, rdy */ | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_write_word(state, 1287, 0x0003); | 
 |  | 
 | 	if (state->revision == 0x8000) | 
 | 		dprintk("error : dib8000 MA not supported\n"); | 
 |  | 
 | 	dibx000_reset_i2c_master(&state->i2c_master); | 
 |  | 
 | 	dib8000_set_power_mode(state, DIB8000_POWER_ALL); | 
 |  | 
 | 	/* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ | 
 | 	dib8000_set_adc_state(state, DIBX000_ADC_OFF); | 
 |  | 
 | 	/* restart all parts */ | 
 | 	dib8000_write_word(state, 770, 0xffff); | 
 | 	dib8000_write_word(state, 771, 0xffff); | 
 | 	dib8000_write_word(state, 772, 0xfffc); | 
 | 	dib8000_write_word(state, 898, 0x000c);	/* restart sad */ | 
 | 	if (state->revision == 0x8090) | 
 | 		dib8000_write_word(state, 1280, 0x0045); | 
 | 	else | 
 | 		dib8000_write_word(state, 1280, 0x004d); | 
 | 	dib8000_write_word(state, 1281, 0x000c); | 
 |  | 
 | 	dib8000_write_word(state, 770, 0x0000); | 
 | 	dib8000_write_word(state, 771, 0x0000); | 
 | 	dib8000_write_word(state, 772, 0x0000); | 
 | 	dib8000_write_word(state, 898, 0x0004);	// sad | 
 | 	dib8000_write_word(state, 1280, 0x0000); | 
 | 	dib8000_write_word(state, 1281, 0x0000); | 
 |  | 
 | 	/* drives */ | 
 | 	if (state->revision != 0x8090) { | 
 | 		if (state->cfg.drives) | 
 | 			dib8000_write_word(state, 906, state->cfg.drives); | 
 | 		else { | 
 | 			dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n"); | 
 | 			/* min drive SDRAM - not optimal - adjust */ | 
 | 			dib8000_write_word(state, 906, 0x2d98); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dib8000_reset_pll(state); | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_write_word(state, 898, 0x0004); | 
 |  | 
 | 	if (dib8000_reset_gpio(state) != 0) | 
 | 		dprintk("GPIO reset was not successful.\n"); | 
 |  | 
 | 	if ((state->revision != 0x8090) && | 
 | 			(dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)) | 
 | 		dprintk("OUTPUT_MODE could not be resetted.\n"); | 
 |  | 
 | 	state->current_agc = NULL; | 
 |  | 
 | 	// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... | 
 | 	/* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */ | 
 | 	if (state->cfg.pll->ifreq == 0) | 
 | 		dib8000_write_word(state, 40, 0x0755);	/* P_iqc_corr_inh = 0 enable IQcorr block */ | 
 | 	else | 
 | 		dib8000_write_word(state, 40, 0x1f55);	/* P_iqc_corr_inh = 1 disable IQcorr block */ | 
 |  | 
 | 	{ | 
 | 		u16 l = 0, r; | 
 | 		const u16 *n; | 
 | 		n = dib8000_defaults; | 
 | 		l = *n++; | 
 | 		while (l) { | 
 | 			r = *n++; | 
 | 			do { | 
 | 				dib8000_write_word(state, r, *n++); | 
 | 				r++; | 
 | 			} while (--l); | 
 | 			l = *n++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	state->isdbt_cfg_loaded = 0; | 
 |  | 
 | 	//div_cfg override for special configs | 
 | 	if ((state->revision != 8090) && (state->cfg.div_cfg != 0)) | 
 | 		dib8000_write_word(state, 903, state->cfg.div_cfg); | 
 |  | 
 | 	/* unforce divstr regardless whether i2c enumeration was done or not */ | 
 | 	dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1)); | 
 |  | 
 | 	dib8000_set_bandwidth(fe, 6000); | 
 |  | 
 | 	dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON); | 
 | 	dib8000_sad_calib(state); | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF); | 
 |  | 
 | 	/* ber_rs_len = 3 */ | 
 | 	dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); | 
 |  | 
 | 	dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); | 
 |  | 
 | 	dib8000_reset_stats(fe); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dib8000_restart_agc(struct dib8000_state *state) | 
 | { | 
 | 	// P_restart_iqc & P_restart_agc | 
 | 	dib8000_write_word(state, 770, 0x0a00); | 
 | 	dib8000_write_word(state, 770, 0x0000); | 
 | } | 
 |  | 
 | static int dib8000_update_lna(struct dib8000_state *state) | 
 | { | 
 | 	u16 dyn_gain; | 
 |  | 
 | 	if (state->cfg.update_lna) { | 
 | 		// read dyn_gain here (because it is demod-dependent and not tuner) | 
 | 		dyn_gain = dib8000_read_word(state, 390); | 
 |  | 
 | 		if (state->cfg.update_lna(state->fe[0], dyn_gain)) { | 
 | 			dib8000_restart_agc(state); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_set_agc_config(struct dib8000_state *state, u8 band) | 
 | { | 
 | 	struct dibx000_agc_config *agc = NULL; | 
 | 	int i; | 
 | 	u16 reg; | 
 |  | 
 | 	if (state->current_band == band && state->current_agc != NULL) | 
 | 		return 0; | 
 | 	state->current_band = band; | 
 |  | 
 | 	for (i = 0; i < state->cfg.agc_config_count; i++) | 
 | 		if (state->cfg.agc[i].band_caps & band) { | 
 | 			agc = &state->cfg.agc[i]; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	if (agc == NULL) { | 
 | 		dprintk("no valid AGC configuration found for band 0x%02x\n", band); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	state->current_agc = agc; | 
 |  | 
 | 	/* AGC */ | 
 | 	dib8000_write_word(state, 76, agc->setup); | 
 | 	dib8000_write_word(state, 77, agc->inv_gain); | 
 | 	dib8000_write_word(state, 78, agc->time_stabiliz); | 
 | 	dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock); | 
 |  | 
 | 	// Demod AGC loop configuration | 
 | 	dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp); | 
 | 	dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp); | 
 |  | 
 | 	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", | 
 | 		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); | 
 |  | 
 | 	/* AGC continued */ | 
 | 	if (state->wbd_ref != 0) | 
 | 		dib8000_write_word(state, 106, state->wbd_ref); | 
 | 	else			// use default | 
 | 		dib8000_write_word(state, 106, agc->wbd_ref); | 
 |  | 
 | 	if (state->revision == 0x8090) { | 
 | 		reg = dib8000_read_word(state, 922) & (0x3 << 2); | 
 | 		dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2)); | 
 | 	} | 
 |  | 
 | 	dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); | 
 | 	dib8000_write_word(state, 108, agc->agc1_max); | 
 | 	dib8000_write_word(state, 109, agc->agc1_min); | 
 | 	dib8000_write_word(state, 110, agc->agc2_max); | 
 | 	dib8000_write_word(state, 111, agc->agc2_min); | 
 | 	dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2); | 
 | 	dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); | 
 | 	dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); | 
 | 	dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); | 
 |  | 
 | 	dib8000_write_word(state, 75, agc->agc1_pt3); | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_write_word(state, 923, | 
 | 				(dib8000_read_word(state, 923) & 0xffe3) | | 
 | 				(agc->wbd_inv << 4) | (agc->wbd_sel << 2)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dib8000_pwm_agc_reset(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	dib8000_set_adc_state(state, DIBX000_ADC_ON); | 
 | 	dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))); | 
 | } | 
 |  | 
 | static int dib8000_agc_soft_split(struct dib8000_state *state) | 
 | { | 
 | 	u16 agc, split_offset; | 
 |  | 
 | 	if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) | 
 | 		return 0; | 
 |  | 
 | 	// n_agc_global | 
 | 	agc = dib8000_read_word(state, 390); | 
 |  | 
 | 	if (agc > state->current_agc->split.min_thres) | 
 | 		split_offset = state->current_agc->split.min; | 
 | 	else if (agc < state->current_agc->split.max_thres) | 
 | 		split_offset = state->current_agc->split.max; | 
 | 	else | 
 | 		split_offset = state->current_agc->split.max * | 
 | 			(agc - state->current_agc->split.min_thres) / | 
 | 			(state->current_agc->split.max_thres - state->current_agc->split.min_thres); | 
 |  | 
 | 	dprintk("AGC split_offset: %d\n", split_offset); | 
 |  | 
 | 	// P_agc_force_split and P_agc_split_offset | 
 | 	dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset); | 
 | 	return 5000; | 
 | } | 
 |  | 
 | static int dib8000_agc_startup(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	enum frontend_tune_state *tune_state = &state->tune_state; | 
 | 	int ret = 0; | 
 | 	u16 reg; | 
 | 	u32 upd_demod_gain_period = 0x8000; | 
 |  | 
 | 	switch (*tune_state) { | 
 | 	case CT_AGC_START: | 
 | 		// set power-up level: interf+analog+AGC | 
 |  | 
 | 		if (state->revision != 0x8090) | 
 | 			dib8000_set_adc_state(state, DIBX000_ADC_ON); | 
 | 		else { | 
 | 			dib8000_set_power_mode(state, DIB8000_POWER_ALL); | 
 |  | 
 | 			reg = dib8000_read_word(state, 1947)&0xff00; | 
 | 			dib8000_write_word(state, 1946, | 
 | 					upd_demod_gain_period & 0xFFFF); | 
 | 			/* bit 14 = enDemodGain */ | 
 | 			dib8000_write_word(state, 1947, reg | (1<<14) | | 
 | 					((upd_demod_gain_period >> 16) & 0xFF)); | 
 |  | 
 | 			/* enable adc i & q */ | 
 | 			reg = dib8000_read_word(state, 1920); | 
 | 			dib8000_write_word(state, 1920, (reg | 0x3) & | 
 | 					(~(1 << 7))); | 
 | 		} | 
 |  | 
 | 		if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) { | 
 | 			*tune_state = CT_AGC_STOP; | 
 | 			state->status = FE_STATUS_TUNE_FAILED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = 70; | 
 | 		*tune_state = CT_AGC_STEP_0; | 
 | 		break; | 
 |  | 
 | 	case CT_AGC_STEP_0: | 
 | 		//AGC initialization | 
 | 		if (state->cfg.agc_control) | 
 | 			state->cfg.agc_control(fe, 1); | 
 |  | 
 | 		dib8000_restart_agc(state); | 
 |  | 
 | 		// wait AGC rough lock time | 
 | 		ret = 50; | 
 | 		*tune_state = CT_AGC_STEP_1; | 
 | 		break; | 
 |  | 
 | 	case CT_AGC_STEP_1: | 
 | 		// wait AGC accurate lock time | 
 | 		ret = 70; | 
 |  | 
 | 		if (dib8000_update_lna(state)) | 
 | 			// wait only AGC rough lock time | 
 | 			ret = 50; | 
 | 		else | 
 | 			*tune_state = CT_AGC_STEP_2; | 
 | 		break; | 
 |  | 
 | 	case CT_AGC_STEP_2: | 
 | 		dib8000_agc_soft_split(state); | 
 |  | 
 | 		if (state->cfg.agc_control) | 
 | 			state->cfg.agc_control(fe, 0); | 
 |  | 
 | 		*tune_state = CT_AGC_STOP; | 
 | 		break; | 
 | 	default: | 
 | 		ret = dib8000_agc_soft_split(state); | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive) | 
 | { | 
 | 	u16 reg; | 
 |  | 
 | 	drive &= 0x7; | 
 |  | 
 | 	/* drive host bus 2, 3, 4 */ | 
 | 	reg = dib8000_read_word(state, 1798) & | 
 | 		~(0x7 | (0x7 << 6) | (0x7 << 12)); | 
 | 	reg |= (drive<<12) | (drive<<6) | drive; | 
 | 	dib8000_write_word(state, 1798, reg); | 
 |  | 
 | 	/* drive host bus 5,6 */ | 
 | 	reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); | 
 | 	reg |= (drive<<8) | (drive<<2); | 
 | 	dib8000_write_word(state, 1799, reg); | 
 |  | 
 | 	/* drive host bus 7, 8, 9 */ | 
 | 	reg = dib8000_read_word(state, 1800) & | 
 | 		~(0x7 | (0x7 << 6) | (0x7 << 12)); | 
 | 	reg |= (drive<<12) | (drive<<6) | drive; | 
 | 	dib8000_write_word(state, 1800, reg); | 
 |  | 
 | 	/* drive host bus 10, 11 */ | 
 | 	reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); | 
 | 	reg |= (drive<<8) | (drive<<2); | 
 | 	dib8000_write_word(state, 1801, reg); | 
 |  | 
 | 	/* drive host bus 12, 13, 14 */ | 
 | 	reg = dib8000_read_word(state, 1802) & | 
 | 		~(0x7 | (0x7 << 6) | (0x7 << 12)); | 
 | 	reg |= (drive<<12) | (drive<<6) | drive; | 
 | 	dib8000_write_word(state, 1802, reg); | 
 | } | 
 |  | 
 | static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout, | 
 | 		u32 insertExtSynchro, u32 syncSize) | 
 | { | 
 | 	u32 quantif = 3; | 
 | 	u32 nom = (insertExtSynchro * P_Kin+syncSize); | 
 | 	u32 denom = P_Kout; | 
 | 	u32 syncFreq = ((nom << quantif) / denom); | 
 |  | 
 | 	if ((syncFreq & ((1 << quantif) - 1)) != 0) | 
 | 		syncFreq = (syncFreq >> quantif) + 1; | 
 | 	else | 
 | 		syncFreq = (syncFreq >> quantif); | 
 |  | 
 | 	if (syncFreq != 0) | 
 | 		syncFreq = syncFreq - 1; | 
 |  | 
 | 	return syncFreq; | 
 | } | 
 |  | 
 | static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin, | 
 | 		u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, | 
 | 		u32 syncWord, u32 syncSize) | 
 | { | 
 | 	dprintk("Configure DibStream Tx\n"); | 
 |  | 
 | 	dib8000_write_word(state, 1615, 1); | 
 | 	dib8000_write_word(state, 1603, P_Kin); | 
 | 	dib8000_write_word(state, 1605, P_Kout); | 
 | 	dib8000_write_word(state, 1606, insertExtSynchro); | 
 | 	dib8000_write_word(state, 1608, synchroMode); | 
 | 	dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff); | 
 | 	dib8000_write_word(state, 1610, syncWord & 0xffff); | 
 | 	dib8000_write_word(state, 1612, syncSize); | 
 | 	dib8000_write_word(state, 1615, 0); | 
 | } | 
 |  | 
 | static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin, | 
 | 		u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, | 
 | 		u32 syncWord, u32 syncSize, u32 dataOutRate) | 
 | { | 
 | 	u32 syncFreq; | 
 |  | 
 | 	dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode); | 
 |  | 
 | 	if ((P_Kin != 0) && (P_Kout != 0)) { | 
 | 		syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout, | 
 | 				insertExtSynchro, syncSize); | 
 | 		dib8000_write_word(state, 1542, syncFreq); | 
 | 	} | 
 |  | 
 | 	dib8000_write_word(state, 1554, 1); | 
 | 	dib8000_write_word(state, 1536, P_Kin); | 
 | 	dib8000_write_word(state, 1537, P_Kout); | 
 | 	dib8000_write_word(state, 1539, synchroMode); | 
 | 	dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff); | 
 | 	dib8000_write_word(state, 1541, syncWord & 0xffff); | 
 | 	dib8000_write_word(state, 1543, syncSize); | 
 | 	dib8000_write_word(state, 1544, dataOutRate); | 
 | 	dib8000_write_word(state, 1554, 0); | 
 | } | 
 |  | 
 | static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff) | 
 | { | 
 | 	u16 reg_1287; | 
 |  | 
 | 	reg_1287 = dib8000_read_word(state, 1287); | 
 |  | 
 | 	switch (onoff) { | 
 | 	case 1: | 
 | 			reg_1287 &= ~(1 << 8); | 
 | 			break; | 
 | 	case 0: | 
 | 			reg_1287 |= (1 << 8); | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	dib8000_write_word(state, 1287, reg_1287); | 
 | } | 
 |  | 
 | static void dib8096p_configMpegMux(struct dib8000_state *state, | 
 | 		u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) | 
 | { | 
 | 	u16 reg_1287; | 
 |  | 
 | 	dprintk("Enable Mpeg mux\n"); | 
 |  | 
 | 	dib8096p_enMpegMux(state, 0); | 
 |  | 
 | 	/* If the input mode is MPEG do not divide the serial clock */ | 
 | 	if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) | 
 | 		enSerialClkDiv2 = 0; | 
 |  | 
 | 	reg_1287 = ((pulseWidth & 0x1f) << 3) | | 
 | 		((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1); | 
 | 	dib8000_write_word(state, 1287, reg_1287); | 
 |  | 
 | 	dib8096p_enMpegMux(state, 1); | 
 | } | 
 |  | 
 | static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode) | 
 | { | 
 | 	u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7); | 
 |  | 
 | 	switch (mode) { | 
 | 	case MPEG_ON_DIBTX: | 
 | 			dprintk("SET MPEG ON DIBSTREAM TX\n"); | 
 | 			dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); | 
 | 			reg_1288 |= (1 << 9); break; | 
 | 	case DIV_ON_DIBTX: | 
 | 			dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); | 
 | 			dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); | 
 | 			reg_1288 |= (1 << 8); break; | 
 | 	case ADC_ON_DIBTX: | 
 | 			dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); | 
 | 			dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); | 
 | 			reg_1288 |= (1 << 7); break; | 
 | 	default: | 
 | 			break; | 
 | 	} | 
 | 	dib8000_write_word(state, 1288, reg_1288); | 
 | } | 
 |  | 
 | static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode) | 
 | { | 
 | 	u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4); | 
 |  | 
 | 	switch (mode) { | 
 | 	case DEMOUT_ON_HOSTBUS: | 
 | 			dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); | 
 | 			dib8096p_enMpegMux(state, 0); | 
 | 			reg_1288 |= (1 << 6); | 
 | 			break; | 
 | 	case DIBTX_ON_HOSTBUS: | 
 | 			dprintk("SET DIBSTREAM TX ON HOST BUS\n"); | 
 | 			dib8096p_enMpegMux(state, 0); | 
 | 			reg_1288 |= (1 << 5); | 
 | 			break; | 
 | 	case MPEG_ON_HOSTBUS: | 
 | 			dprintk("SET MPEG MUX ON HOST BUS\n"); | 
 | 			reg_1288 |= (1 << 4); | 
 | 			break; | 
 | 	default: | 
 | 			break; | 
 | 	} | 
 | 	dib8000_write_word(state, 1288, reg_1288); | 
 | } | 
 |  | 
 | static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 reg_1287; | 
 |  | 
 | 	switch (onoff) { | 
 | 	case 0: /* only use the internal way - not the diversity input */ | 
 | 			dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", | 
 | 					__func__); | 
 | 			/* outputRate = 8 */ | 
 | 			dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); | 
 |  | 
 | 			/* Do not divide the serial clock of MPEG MUX in | 
 | 			   SERIAL MODE in case input mode MPEG is used */ | 
 | 			reg_1287 = dib8000_read_word(state, 1287); | 
 | 			/* enSerialClkDiv2 == 1 ? */ | 
 | 			if ((reg_1287 & 0x1) == 1) { | 
 | 				/* force enSerialClkDiv2 = 0 */ | 
 | 				reg_1287 &= ~0x1; | 
 | 				dib8000_write_word(state, 1287, reg_1287); | 
 | 			} | 
 | 			state->input_mode_mpeg = 1; | 
 | 			break; | 
 | 	case 1: /* both ways */ | 
 | 	case 2: /* only the diversity input */ | 
 | 			dprintk("%s ON : Enable diversity INPUT\n", __func__); | 
 | 			dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); | 
 | 			state->input_mode_mpeg = 0; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	dib8000_set_diversity_in(state->fe[0], onoff); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 outreg, smo_mode, fifo_threshold; | 
 | 	u8 prefer_mpeg_mux_use = 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	state->output_mode = mode; | 
 | 	dib8096p_host_bus_drive(state, 1); | 
 |  | 
 | 	fifo_threshold = 1792; | 
 | 	smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); | 
 | 	outreg   = dib8000_read_word(state, 1286) & | 
 | 		~((1 << 10) | (0x7 << 6) | (1 << 1)); | 
 |  | 
 | 	switch (mode) { | 
 | 	case OUTMODE_HIGH_Z: | 
 | 			outreg = 0; | 
 | 			break; | 
 |  | 
 | 	case OUTMODE_MPEG2_SERIAL: | 
 | 			if (prefer_mpeg_mux_use) { | 
 | 				dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n"); | 
 | 				dib8096p_configMpegMux(state, 3, 1, 1); | 
 | 				dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); | 
 | 			} else {/* Use Smooth block */ | 
 | 				dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n"); | 
 | 				dib8096p_setHostBusMux(state, | 
 | 						DEMOUT_ON_HOSTBUS); | 
 | 				outreg |= (2 << 6) | (0 << 1); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 	case OUTMODE_MPEG2_PAR_GATED_CLK: | 
 | 			if (prefer_mpeg_mux_use) { | 
 | 				dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); | 
 | 				dib8096p_configMpegMux(state, 2, 0, 0); | 
 | 				dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); | 
 | 			} else { /* Use Smooth block */ | 
 | 				dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n"); | 
 | 				dib8096p_setHostBusMux(state, | 
 | 						DEMOUT_ON_HOSTBUS); | 
 | 				outreg |= (0 << 6); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 	case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ | 
 | 			dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n"); | 
 | 			dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); | 
 | 			outreg |= (1 << 6); | 
 | 			break; | 
 |  | 
 | 	case OUTMODE_MPEG2_FIFO: | 
 | 			/* Using Smooth block because not supported | 
 | 			   by new Mpeg Mux bloc */ | 
 | 			dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n"); | 
 | 			dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); | 
 | 			outreg |= (5 << 6); | 
 | 			smo_mode |= (3 << 1); | 
 | 			fifo_threshold = 512; | 
 | 			break; | 
 |  | 
 | 	case OUTMODE_DIVERSITY: | 
 | 			dprintk("dib8096P setting output mode MODE_DIVERSITY\n"); | 
 | 			dib8096p_setDibTxMux(state, DIV_ON_DIBTX); | 
 | 			dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); | 
 | 			break; | 
 |  | 
 | 	case OUTMODE_ANALOG_ADC: | 
 | 			dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n"); | 
 | 			dib8096p_setDibTxMux(state, ADC_ON_DIBTX); | 
 | 			dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (mode != OUTMODE_HIGH_Z) | 
 | 		outreg |= (1<<10); | 
 |  | 
 | 	dprintk("output_mpeg2_in_188_bytes = %d\n", | 
 | 			state->cfg.output_mpeg2_in_188_bytes); | 
 | 	if (state->cfg.output_mpeg2_in_188_bytes) | 
 | 		smo_mode |= (1 << 5); | 
 |  | 
 | 	ret |= dib8000_write_word(state, 299, smo_mode); | 
 | 	/* synchronous fread */ | 
 | 	ret |= dib8000_write_word(state, 299 + 1, fifo_threshold); | 
 | 	ret |= dib8000_write_word(state, 1286, outreg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int map_addr_to_serpar_number(struct i2c_msg *msg) | 
 | { | 
 | 	if (msg->buf[0] <= 15) | 
 | 		msg->buf[0] -= 1; | 
 | 	else if (msg->buf[0] == 17) | 
 | 		msg->buf[0] = 15; | 
 | 	else if (msg->buf[0] == 16) | 
 | 		msg->buf[0] = 17; | 
 | 	else if (msg->buf[0] == 19) | 
 | 		msg->buf[0] = 16; | 
 | 	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) | 
 | 		msg->buf[0] -= 3; | 
 | 	else if (msg->buf[0] == 28) | 
 | 		msg->buf[0] = 23; | 
 | 	else if (msg->buf[0] == 99) | 
 | 		msg->buf[0] = 99; | 
 | 	else | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap, | 
 | 		struct i2c_msg msg[], int num) | 
 | { | 
 | 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap); | 
 | 	u8 n_overflow = 1; | 
 | 	u16 i = 1000; | 
 | 	u16 serpar_num = msg[0].buf[0]; | 
 |  | 
 | 	while (n_overflow == 1 && i) { | 
 | 		n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; | 
 | 		i--; | 
 | 		if (i == 0) | 
 | 			dprintk("Tuner ITF: write busy (overflow)\n"); | 
 | 	} | 
 | 	dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); | 
 | 	dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); | 
 |  | 
 | 	return num; | 
 | } | 
 |  | 
 | static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap, | 
 | 		struct i2c_msg msg[], int num) | 
 | { | 
 | 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap); | 
 | 	u8 n_overflow = 1, n_empty = 1; | 
 | 	u16 i = 1000; | 
 | 	u16 serpar_num = msg[0].buf[0]; | 
 | 	u16 read_word; | 
 |  | 
 | 	while (n_overflow == 1 && i) { | 
 | 		n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; | 
 | 		i--; | 
 | 		if (i == 0) | 
 | 			dprintk("TunerITF: read busy (overflow)\n"); | 
 | 	} | 
 | 	dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f)); | 
 |  | 
 | 	i = 1000; | 
 | 	while (n_empty == 1 && i) { | 
 | 		n_empty = dib8000_read_word(state, 1984)&0x1; | 
 | 		i--; | 
 | 		if (i == 0) | 
 | 			dprintk("TunerITF: read busy (empty)\n"); | 
 | 	} | 
 |  | 
 | 	read_word = dib8000_read_word(state, 1987); | 
 | 	msg[1].buf[0] = (read_word >> 8) & 0xff; | 
 | 	msg[1].buf[1] = (read_word) & 0xff; | 
 |  | 
 | 	return num; | 
 | } | 
 |  | 
 | static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, | 
 | 		struct i2c_msg msg[], int num) | 
 | { | 
 | 	if (map_addr_to_serpar_number(&msg[0]) == 0) { | 
 | 		if (num == 1) /* write */ | 
 | 			return dib8096p_tuner_write_serpar(i2c_adap, msg, 1); | 
 | 		else /* read */ | 
 | 			return dib8096p_tuner_read_serpar(i2c_adap, msg, 2); | 
 | 	} | 
 | 	return num; | 
 | } | 
 |  | 
 | static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap, | 
 | 		struct i2c_msg msg[], int num, u16 apb_address) | 
 | { | 
 | 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap); | 
 | 	u16 word; | 
 |  | 
 | 	if (num == 1) {		/* write */ | 
 | 		dib8000_write_word(state, apb_address, | 
 | 				((msg[0].buf[1] << 8) | (msg[0].buf[2]))); | 
 | 	} else { | 
 | 		word = dib8000_read_word(state, apb_address); | 
 | 		msg[1].buf[0] = (word >> 8) & 0xff; | 
 | 		msg[1].buf[1] = (word) & 0xff; | 
 | 	} | 
 | 	return num; | 
 | } | 
 |  | 
 | static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap, | 
 | 		struct i2c_msg msg[], int num) | 
 | { | 
 | 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap); | 
 | 	u16 apb_address = 0, word; | 
 | 	int i = 0; | 
 |  | 
 | 	switch (msg[0].buf[0]) { | 
 | 	case 0x12: | 
 | 			apb_address = 1920; | 
 | 			break; | 
 | 	case 0x14: | 
 | 			apb_address = 1921; | 
 | 			break; | 
 | 	case 0x24: | 
 | 			apb_address = 1922; | 
 | 			break; | 
 | 	case 0x1a: | 
 | 			apb_address = 1923; | 
 | 			break; | 
 | 	case 0x22: | 
 | 			apb_address = 1924; | 
 | 			break; | 
 | 	case 0x33: | 
 | 			apb_address = 1926; | 
 | 			break; | 
 | 	case 0x34: | 
 | 			apb_address = 1927; | 
 | 			break; | 
 | 	case 0x35: | 
 | 			apb_address = 1928; | 
 | 			break; | 
 | 	case 0x36: | 
 | 			apb_address = 1929; | 
 | 			break; | 
 | 	case 0x37: | 
 | 			apb_address = 1930; | 
 | 			break; | 
 | 	case 0x38: | 
 | 			apb_address = 1931; | 
 | 			break; | 
 | 	case 0x39: | 
 | 			apb_address = 1932; | 
 | 			break; | 
 | 	case 0x2a: | 
 | 			apb_address = 1935; | 
 | 			break; | 
 | 	case 0x2b: | 
 | 			apb_address = 1936; | 
 | 			break; | 
 | 	case 0x2c: | 
 | 			apb_address = 1937; | 
 | 			break; | 
 | 	case 0x2d: | 
 | 			apb_address = 1938; | 
 | 			break; | 
 | 	case 0x2e: | 
 | 			apb_address = 1939; | 
 | 			break; | 
 | 	case 0x2f: | 
 | 			apb_address = 1940; | 
 | 			break; | 
 | 	case 0x30: | 
 | 			apb_address = 1941; | 
 | 			break; | 
 | 	case 0x31: | 
 | 			apb_address = 1942; | 
 | 			break; | 
 | 	case 0x32: | 
 | 			apb_address = 1943; | 
 | 			break; | 
 | 	case 0x3e: | 
 | 			apb_address = 1944; | 
 | 			break; | 
 | 	case 0x3f: | 
 | 			apb_address = 1945; | 
 | 			break; | 
 | 	case 0x40: | 
 | 			apb_address = 1948; | 
 | 			break; | 
 | 	case 0x25: | 
 | 			apb_address = 936; | 
 | 			break; | 
 | 	case 0x26: | 
 | 			apb_address = 937; | 
 | 			break; | 
 | 	case 0x27: | 
 | 			apb_address = 938; | 
 | 			break; | 
 | 	case 0x28: | 
 | 			apb_address = 939; | 
 | 			break; | 
 | 	case 0x1d: | 
 | 			/* get sad sel request */ | 
 | 			i = ((dib8000_read_word(state, 921) >> 12)&0x3); | 
 | 			word = dib8000_read_word(state, 924+i); | 
 | 			msg[1].buf[0] = (word >> 8) & 0xff; | 
 | 			msg[1].buf[1] = (word) & 0xff; | 
 | 			return num; | 
 | 	case 0x1f: | 
 | 			if (num == 1) {	/* write */ | 
 | 				word = (u16) ((msg[0].buf[1] << 8) | | 
 | 						msg[0].buf[2]); | 
 | 				/* in the VGAMODE Sel are located on bit 0/1 */ | 
 | 				word &= 0x3; | 
 | 				word = (dib8000_read_word(state, 921) & | 
 | 						~(3<<12)) | (word<<12); | 
 | 				/* Set the proper input */ | 
 | 				dib8000_write_word(state, 921, word); | 
 | 				return num; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	if (apb_address != 0) /* R/W acces via APB */ | 
 | 		return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address); | 
 | 	else  /* R/W access via SERPAR  */ | 
 | 		return dib8096p_tuner_rw_serpar(i2c_adap, msg, num); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 dib8096p_i2c_func(struct i2c_adapter *adapter) | 
 | { | 
 | 	return I2C_FUNC_I2C; | 
 | } | 
 |  | 
 | static const struct i2c_algorithm dib8096p_tuner_xfer_algo = { | 
 | 	.master_xfer = dib8096p_tuner_xfer, | 
 | 	.functionality = dib8096p_i2c_func, | 
 | }; | 
 |  | 
 | static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *st = fe->demodulator_priv; | 
 | 	return &st->dib8096p_tuner_adap; | 
 | } | 
 |  | 
 | static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 en_cur_state; | 
 |  | 
 | 	dprintk("sleep dib8096p: %d\n", onoff); | 
 |  | 
 | 	en_cur_state = dib8000_read_word(state, 1922); | 
 |  | 
 | 	/* LNAs and MIX are ON and therefore it is a valid configuration */ | 
 | 	if (en_cur_state > 0xff) | 
 | 		state->tuner_enable = en_cur_state ; | 
 |  | 
 | 	if (onoff) | 
 | 		en_cur_state &= 0x00ff; | 
 | 	else { | 
 | 		if (state->tuner_enable != 0) | 
 | 			en_cur_state = state->tuner_enable; | 
 | 	} | 
 |  | 
 | 	dib8000_write_word(state, 1922, en_cur_state); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const s32 lut_1000ln_mant[] = | 
 | { | 
 | 	908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600 | 
 | }; | 
 |  | 
 | static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u32 ix = 0, tmp_val = 0, exp = 0, mant = 0; | 
 | 	s32 val; | 
 |  | 
 | 	val = dib8000_read32(state, 384); | 
 | 	if (mode) { | 
 | 		tmp_val = val; | 
 | 		while (tmp_val >>= 1) | 
 | 			exp++; | 
 | 		mant = (val * 1000 / (1<<exp)); | 
 | 		ix = (u8)((mant-1000)/100); /* index of the LUT */ | 
 | 		val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); | 
 | 		val = (val*256)/1000; | 
 | 	} | 
 | 	return val; | 
 | } | 
 |  | 
 | static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	int val = 0; | 
 |  | 
 | 	switch (IQ) { | 
 | 	case 1: | 
 | 			val = dib8000_read_word(state, 403); | 
 | 			break; | 
 | 	case 0: | 
 | 			val = dib8000_read_word(state, 404); | 
 | 			break; | 
 | 	} | 
 | 	if (val  & 0x200) | 
 | 		val -= 1024; | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void dib8000_update_timf(struct dib8000_state *state) | 
 | { | 
 | 	u32 timf = state->timf = dib8000_read32(state, 435); | 
 |  | 
 | 	dib8000_write_word(state, 29, (u16) (timf >> 16)); | 
 | 	dib8000_write_word(state, 30, (u16) (timf & 0xffff)); | 
 | 	dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default); | 
 | } | 
 |  | 
 | static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	switch (op) { | 
 | 	case DEMOD_TIMF_SET: | 
 | 			state->timf = timf; | 
 | 			break; | 
 | 	case DEMOD_TIMF_UPDATE: | 
 | 			dib8000_update_timf(state); | 
 | 			break; | 
 | 	case DEMOD_TIMF_GET: | 
 | 			break; | 
 | 	} | 
 | 	dib8000_set_bandwidth(state->fe[0], 6000); | 
 |  | 
 | 	return state->timf; | 
 | } | 
 |  | 
 | static const u16 adc_target_16dB[11] = { | 
 | 	7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574 | 
 | }; | 
 |  | 
 | static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 }; | 
 |  | 
 | static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation) | 
 | { | 
 | 	u8  cr, constellation, time_intlv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 |  | 
 | 	switch (c->layer[layer_index].modulation) { | 
 | 	case DQPSK: | 
 | 			constellation = 0; | 
 | 			break; | 
 | 	case  QPSK: | 
 | 			constellation = 1; | 
 | 			break; | 
 | 	case QAM_16: | 
 | 			constellation = 2; | 
 | 			break; | 
 | 	case QAM_64: | 
 | 	default: | 
 | 			constellation = 3; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	switch (c->layer[layer_index].fec) { | 
 | 	case FEC_1_2: | 
 | 			cr = 1; | 
 | 			break; | 
 | 	case FEC_2_3: | 
 | 			cr = 2; | 
 | 			break; | 
 | 	case FEC_3_4: | 
 | 			cr = 3; | 
 | 			break; | 
 | 	case FEC_5_6: | 
 | 			cr = 5; | 
 | 			break; | 
 | 	case FEC_7_8: | 
 | 	default: | 
 | 			cr = 7; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	time_intlv = fls(c->layer[layer_index].interleaving); | 
 | 	if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1)) | 
 | 		time_intlv = 0; | 
 |  | 
 | 	dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv); | 
 | 	if (c->layer[layer_index].segment_count > 0) { | 
 | 		switch (max_constellation) { | 
 | 		case DQPSK: | 
 | 		case QPSK: | 
 | 				if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64) | 
 | 					max_constellation = c->layer[layer_index].modulation; | 
 | 				break; | 
 | 		case QAM_16: | 
 | 				if (c->layer[layer_index].modulation == QAM_64) | 
 | 					max_constellation = c->layer[layer_index].modulation; | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return  max_constellation; | 
 | } | 
 |  | 
 | static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */ | 
 | static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */ | 
 | static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3,  P_adp_noise_cnt -0.01,  P_adp_regul_ext 0.1,  P_adp_noise_ext -0.002 */ | 
 | static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation) | 
 | { | 
 | 	u16 i, ana_gain = 0; | 
 | 	const u16 *adp; | 
 |  | 
 | 	/* channel estimation fine configuration */ | 
 | 	switch (max_constellation) { | 
 | 	case QAM_64: | 
 | 			ana_gain = 0x7; | 
 | 			adp = &adp_Q64[0]; | 
 | 			break; | 
 | 	case QAM_16: | 
 | 			ana_gain = 0x7; | 
 | 			adp = &adp_Q16[0]; | 
 | 			break; | 
 | 	default: | 
 | 			ana_gain = 0; | 
 | 			adp = &adp_Qdefault[0]; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 4; i++) | 
 | 		dib8000_write_word(state, 215 + i, adp[i]); | 
 |  | 
 | 	return ana_gain; | 
 | } | 
 |  | 
 | static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain) | 
 | { | 
 | 	u16 i; | 
 |  | 
 | 	dib8000_write_word(state, 116, ana_gain); | 
 |  | 
 | 	/* update ADC target depending on ana_gain */ | 
 | 	if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */ | 
 | 		for (i = 0; i < 10; i++) | 
 | 			dib8000_write_word(state, 80 + i, adc_target_16dB[i]); | 
 | 	} else { /* set -22dB ADC target for ana_gain=0 */ | 
 | 		for (i = 0; i < 10; i++) | 
 | 			dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355); | 
 | 	} | 
 | } | 
 |  | 
 | static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe) | 
 | { | 
 | 	u16 mode = 0; | 
 |  | 
 | 	if (state->isdbt_cfg_loaded == 0) | 
 | 		for (mode = 0; mode < 24; mode++) | 
 | 			dib8000_write_word(state, 117 + mode, ana_fe[mode]); | 
 | } | 
 |  | 
 | static const u16 lut_prbs_2k[14] = { | 
 | 	0, 0x423, 0x009, 0x5C7, 0x7A6, 0x3D8, 0x527, 0x7FF, 0x79B, 0x3D6, 0x3A2, 0x53B, 0x2F4, 0x213 | 
 | }; | 
 | static const u16 lut_prbs_4k[14] = { | 
 | 	0, 0x208, 0x0C3, 0x7B9, 0x423, 0x5C7, 0x3D8, 0x7FF, 0x3D6, 0x53B, 0x213, 0x029, 0x0D0, 0x48E | 
 | }; | 
 | static const u16 lut_prbs_8k[14] = { | 
 | 	0, 0x740, 0x069, 0x7DD, 0x208, 0x7B9, 0x5C7, 0x7FF, 0x53B, 0x029, 0x48E, 0x4C4, 0x367, 0x684 | 
 | }; | 
 |  | 
 | static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel) | 
 | { | 
 | 	int sub_channel_prbs_group = 0; | 
 |  | 
 | 	sub_channel_prbs_group = (subchannel / 3) + 1; | 
 | 	dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", sub_channel_prbs_group, subchannel, lut_prbs_8k[sub_channel_prbs_group]); | 
 |  | 
 | 	switch (state->fe[0]->dtv_property_cache.transmission_mode) { | 
 | 	case TRANSMISSION_MODE_2K: | 
 | 			return lut_prbs_2k[sub_channel_prbs_group]; | 
 | 	case TRANSMISSION_MODE_4K: | 
 | 			return lut_prbs_4k[sub_channel_prbs_group]; | 
 | 	default: | 
 | 	case TRANSMISSION_MODE_8K: | 
 | 			return lut_prbs_8k[sub_channel_prbs_group]; | 
 | 	} | 
 | } | 
 |  | 
 | static void dib8000_set_13seg_channel(struct dib8000_state *state) | 
 | { | 
 | 	u16 i; | 
 | 	u16 coff_pow = 0x2800; | 
 |  | 
 | 	state->seg_mask = 0x1fff; /* All 13 segments enabled */ | 
 |  | 
 | 	/* ---- COFF ---- Carloff, the most robust --- */ | 
 | 	if (state->isdbt_cfg_loaded == 0) {  /* if not Sound Broadcasting mode : put default values for 13 segments */ | 
 | 		dib8000_write_word(state, 180, (16 << 6) | 9); | 
 | 		dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2); | 
 | 		coff_pow = 0x2800; | 
 | 		for (i = 0; i < 6; i++) | 
 | 			dib8000_write_word(state, 181+i, coff_pow); | 
 |  | 
 | 		/* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */ | 
 | 		/* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */ | 
 | 		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1); | 
 |  | 
 | 		/* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */ | 
 | 		dib8000_write_word(state, 340, (8 << 6) | (6 << 0)); | 
 | 		/* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */ | 
 | 		dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); | 
 |  | 
 | 		dib8000_write_word(state, 228, 0);  /* default value */ | 
 | 		dib8000_write_word(state, 265, 31); /* default value */ | 
 | 		dib8000_write_word(state, 205, 0x200f); /* init value */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make the cpil_coff_lock more robust but slower p_coff_winlen | 
 | 	 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) | 
 | 	 */ | 
 |  | 
 | 	if (state->cfg.pll->ifreq == 0) | 
 | 		dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */ | 
 |  | 
 | 	dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg); | 
 | } | 
 |  | 
 | static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs) | 
 | { | 
 | 	u16 reg_1; | 
 |  | 
 | 	reg_1 = dib8000_read_word(state, 1); | 
 | 	dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */ | 
 | } | 
 |  | 
 | static void dib8000_small_fine_tune(struct dib8000_state *state) | 
 | { | 
 | 	u16 i; | 
 | 	const s16 *ncoeff; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 |  | 
 | 	dib8000_write_word(state, 352, state->seg_diff_mask); | 
 | 	dib8000_write_word(state, 353, state->seg_mask); | 
 |  | 
 | 	/* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */ | 
 | 	dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5); | 
 |  | 
 | 	if (c->isdbt_sb_mode) { | 
 | 		/* ---- SMALL ---- */ | 
 | 		switch (c->transmission_mode) { | 
 | 		case TRANSMISSION_MODE_2K: | 
 | 				if (c->isdbt_partial_reception == 0) { /* 1-seg */ | 
 | 					if (c->layer[0].modulation == DQPSK) /* DQPSK */ | 
 | 						ncoeff = coeff_2k_sb_1seg_dqpsk; | 
 | 					else /* QPSK or QAM */ | 
 | 						ncoeff = coeff_2k_sb_1seg; | 
 | 				} else { /* 3-segments */ | 
 | 					if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ | 
 | 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ | 
 | 							ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk; | 
 | 						else /* QPSK or QAM on external segments */ | 
 | 							ncoeff = coeff_2k_sb_3seg_0dqpsk; | 
 | 					} else { /* QPSK or QAM on central segment */ | 
 | 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ | 
 | 							ncoeff = coeff_2k_sb_3seg_1dqpsk; | 
 | 						else /* QPSK or QAM on external segments */ | 
 | 							ncoeff = coeff_2k_sb_3seg; | 
 | 					} | 
 | 				} | 
 | 				break; | 
 | 		case TRANSMISSION_MODE_4K: | 
 | 				if (c->isdbt_partial_reception == 0) { /* 1-seg */ | 
 | 					if (c->layer[0].modulation == DQPSK) /* DQPSK */ | 
 | 						ncoeff = coeff_4k_sb_1seg_dqpsk; | 
 | 					else /* QPSK or QAM */ | 
 | 						ncoeff = coeff_4k_sb_1seg; | 
 | 				} else { /* 3-segments */ | 
 | 					if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ | 
 | 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ | 
 | 							ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk; | 
 | 						else /* QPSK or QAM on external segments */ | 
 | 							ncoeff = coeff_4k_sb_3seg_0dqpsk; | 
 | 					} else { /* QPSK or QAM on central segment */ | 
 | 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ | 
 | 							ncoeff = coeff_4k_sb_3seg_1dqpsk; | 
 | 						else /* QPSK or QAM on external segments */ | 
 | 							ncoeff = coeff_4k_sb_3seg; | 
 | 					} | 
 | 				} | 
 | 				break; | 
 | 		case TRANSMISSION_MODE_AUTO: | 
 | 		case TRANSMISSION_MODE_8K: | 
 | 		default: | 
 | 				if (c->isdbt_partial_reception == 0) { /* 1-seg */ | 
 | 					if (c->layer[0].modulation == DQPSK) /* DQPSK */ | 
 | 						ncoeff = coeff_8k_sb_1seg_dqpsk; | 
 | 					else /* QPSK or QAM */ | 
 | 						ncoeff = coeff_8k_sb_1seg; | 
 | 				} else { /* 3-segments */ | 
 | 					if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ | 
 | 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ | 
 | 							ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk; | 
 | 						else /* QPSK or QAM on external segments */ | 
 | 							ncoeff = coeff_8k_sb_3seg_0dqpsk; | 
 | 					} else { /* QPSK or QAM on central segment */ | 
 | 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ | 
 | 							ncoeff = coeff_8k_sb_3seg_1dqpsk; | 
 | 						else /* QPSK or QAM on external segments */ | 
 | 							ncoeff = coeff_8k_sb_3seg; | 
 | 					} | 
 | 				} | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < 8; i++) | 
 | 			dib8000_write_word(state, 343 + i, ncoeff[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static const u16 coff_thres_1seg[3] = {300, 150, 80}; | 
 | static const u16 coff_thres_3seg[3] = {350, 300, 250}; | 
 | static void dib8000_set_sb_channel(struct dib8000_state *state) | 
 | { | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	const u16 *coff; | 
 | 	u16 i; | 
 |  | 
 | 	if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) { | 
 | 		dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */ | 
 | 		dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */ | 
 | 	} else { | 
 | 		dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */ | 
 | 		dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */ | 
 | 	} | 
 |  | 
 | 	if (c->isdbt_partial_reception == 1) /* 3-segments */ | 
 | 		state->seg_mask = 0x00E0; | 
 | 	else /* 1-segment */ | 
 | 		state->seg_mask = 0x0040; | 
 |  | 
 | 	dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); | 
 |  | 
 | 	/* ---- COFF ---- Carloff, the most robust --- */ | 
 | 	/* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */ | 
 | 	dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3); | 
 |  | 
 | 	dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */ | 
 | 	dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */ | 
 |  | 
 | 	/* Sound Broadcasting mode 1 seg */ | 
 | 	if (c->isdbt_partial_reception == 0) { | 
 | 		/* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */ | 
 | 		if (state->mode == 3) | 
 | 			dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14)); | 
 | 		else | 
 | 			dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14)); | 
 |  | 
 | 		/* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */ | 
 | 		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4); | 
 | 		coff = &coff_thres_1seg[0]; | 
 | 	} else {   /* Sound Broadcasting mode 3 seg */ | 
 | 		dib8000_write_word(state, 180, 0x1fcf | (1 << 14)); | 
 | 		/* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */ | 
 | 		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4); | 
 | 		coff = &coff_thres_3seg[0]; | 
 | 	} | 
 |  | 
 | 	dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */ | 
 | 	dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */ | 
 |  | 
 | 	if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K) | 
 | 		dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */ | 
 |  | 
 | 	/* Write COFF thres */ | 
 | 	for (i = 0 ; i < 3; i++) { | 
 | 		dib8000_write_word(state, 181+i, coff[i]); | 
 | 		dib8000_write_word(state, 184+i, coff[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make the cpil_coff_lock more robust but slower p_coff_winlen | 
 | 	 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) | 
 | 	 */ | 
 |  | 
 | 	dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */ | 
 |  | 
 | 	if (c->isdbt_partial_reception == 0) | 
 | 		dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */ | 
 | 	else | 
 | 		dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ | 
 | } | 
 |  | 
 | static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching) | 
 | { | 
 | 	u16 p_cfr_left_edge  = 0, p_cfr_right_edge = 0; | 
 | 	u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ; | 
 | 	u16 max_constellation = DQPSK; | 
 | 	int init_prbs; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 |  | 
 | 	if (autosearching) | 
 | 		c->isdbt_partial_reception = 1; | 
 |  | 
 | 	/* P_mode */ | 
 | 	dib8000_write_word(state, 10, (seq << 4)); | 
 |  | 
 | 	/* init mode */ | 
 | 	state->mode = fft_to_mode(state); | 
 |  | 
 | 	/* set guard */ | 
 | 	tmp = dib8000_read_word(state, 1); | 
 | 	dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3)); | 
 |  | 
 | 	dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4)); | 
 |  | 
 | 	/* signal optimization parameter */ | 
 | 	if (c->isdbt_partial_reception) { | 
 | 		state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0]; | 
 | 		for (i = 1; i < 3; i++) | 
 | 			nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; | 
 | 		for (i = 0; i < nbseg_diff; i++) | 
 | 			state->seg_diff_mask |= 1 << permu_seg[i+1]; | 
 | 	} else { | 
 | 		for (i = 0; i < 3; i++) | 
 | 			nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; | 
 | 		for (i = 0; i < nbseg_diff; i++) | 
 | 			state->seg_diff_mask |= 1 << permu_seg[i]; | 
 | 	} | 
 |  | 
 | 	if (state->seg_diff_mask) | 
 | 		dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); | 
 | 	else | 
 | 		dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */ | 
 |  | 
 | 	for (i = 0; i < 3; i++) | 
 | 		max_constellation = dib8000_set_layer(state, i, max_constellation); | 
 | 	if (autosearching == 0) { | 
 | 		state->layer_b_nb_seg = c->layer[1].segment_count; | 
 | 		state->layer_c_nb_seg = c->layer[2].segment_count; | 
 | 	} | 
 |  | 
 | 	/* WRITE: Mode & Diff mask */ | 
 | 	dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask); | 
 |  | 
 | 	state->differential_constellation = (state->seg_diff_mask != 0); | 
 |  | 
 | 	/* channel estimation fine configuration */ | 
 | 	ana_gain = dib8000_adp_fine_tune(state, max_constellation); | 
 |  | 
 | 	/* update ana_gain depending on max constellation */ | 
 | 	dib8000_update_ana_gain(state, ana_gain); | 
 |  | 
 | 	/* ---- ANA_FE ---- */ | 
 | 	if (c->isdbt_partial_reception) /* 3-segments */ | 
 | 		dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg); | 
 | 	else | 
 | 		dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */ | 
 |  | 
 | 	/* TSB or ISDBT ? apply it now */ | 
 | 	if (c->isdbt_sb_mode) { | 
 | 		dib8000_set_sb_channel(state); | 
 | 		if (c->isdbt_sb_subchannel < 14) | 
 | 			init_prbs = dib8000_get_init_prbs(state, c->isdbt_sb_subchannel); | 
 | 		else | 
 | 			init_prbs = 0; | 
 | 	} else { | 
 | 		dib8000_set_13seg_channel(state); | 
 | 		init_prbs = 0xfff; | 
 | 	} | 
 |  | 
 | 	/* SMALL */ | 
 | 	dib8000_small_fine_tune(state); | 
 |  | 
 | 	dib8000_set_subchannel_prbs(state, init_prbs); | 
 |  | 
 | 	/* ---- CHAN_BLK ---- */ | 
 | 	for (i = 0; i < 13; i++) { | 
 | 		if ((((~state->seg_diff_mask) >> i) & 1) == 1) { | 
 | 			p_cfr_left_edge  += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0)); | 
 | 			p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0)); | 
 | 		} | 
 | 	} | 
 | 	dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */ | 
 | 	dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */ | 
 | 	/* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */ | 
 |  | 
 | 	dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */ | 
 | 	dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */ | 
 | 	dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */ | 
 |  | 
 | 	if (!autosearching) | 
 | 		dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */ | 
 | 	else | 
 | 		dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */ | 
 |  | 
 | 	dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */ | 
 | 	dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */ | 
 |  | 
 | 	dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ | 
 |  | 
 | 	/* ---- TMCC ---- */ | 
 | 	for (i = 0; i < 3; i++) | 
 | 		tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ; | 
 |  | 
 | 	/* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */ | 
 | 	/* Threshold is set at 1/4 of max power. */ | 
 | 	tmcc_pow *= (1 << (9-2)); | 
 | 	dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */ | 
 | 	dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */ | 
 | 	dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */ | 
 | 	/*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */ | 
 |  | 
 | 	/* ---- PHA3 ---- */ | 
 | 	if (state->isdbt_cfg_loaded == 0) | 
 | 		dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */ | 
 |  | 
 | 	state->isdbt_cfg_loaded = 0; | 
 | } | 
 |  | 
 | static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal, | 
 | 			     u32 wait0_ms, u32 wait1_ms, u32 wait2_ms) | 
 | { | 
 | 	u32 value = 0;	/* P_search_end0 wait time */ | 
 | 	u16 reg = 11;	/* P_search_end0 start addr */ | 
 |  | 
 | 	for (reg = 11; reg < 16; reg += 2) { | 
 | 		if (reg == 11) { | 
 | 			if (state->revision == 0x8090) | 
 | 				value = internal * wait1_ms; | 
 | 			else | 
 | 				value = internal * wait0_ms; | 
 | 		} else if (reg == 13) | 
 | 			value = internal * wait1_ms; | 
 | 		else if (reg == 15) | 
 | 			value = internal * wait2_ms; | 
 | 		dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff)); | 
 | 		dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff)); | 
 | 	} | 
 | 	return value; | 
 | } | 
 |  | 
 | static int dib8000_autosearch_start(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	u8 slist = 0; | 
 | 	u32 value, internal = state->cfg.pll->internal; | 
 |  | 
 | 	if (state->revision == 0x8090) | 
 | 		internal = dib8000_read32(state, 23) / 1000; | 
 |  | 
 | 	if ((state->revision >= 0x8002) && | 
 | 	    (state->autosearch_state == AS_SEARCHING_FFT)) { | 
 | 		dib8000_write_word(state,  37, 0x0065); /* P_ctrl_pha_off_max default values */ | 
 | 		dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */ | 
 |  | 
 | 		dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */ | 
 | 		dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */ | 
 | 		dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */ | 
 | 		dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */ | 
 | 		dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */ | 
 | 		dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */ | 
 |  | 
 | 		if (state->revision == 0x8090) | 
 | 			value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ | 
 | 		else | 
 | 			value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ | 
 |  | 
 | 		dib8000_write_word(state, 17, 0); | 
 | 		dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */ | 
 | 		dib8000_write_word(state, 19, 0); | 
 | 		dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */ | 
 | 		dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */ | 
 | 		dib8000_write_word(state, 22, value & 0xffff); | 
 |  | 
 | 		if (state->revision == 0x8090) | 
 | 			dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */ | 
 | 		else | 
 | 			dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */ | 
 | 		dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */ | 
 |  | 
 | 		/* P_search_param_select = (1 | 1<<4 | 1 << 8) */ | 
 | 		dib8000_write_word(state, 356, 0); | 
 | 		dib8000_write_word(state, 357, 0x111); | 
 |  | 
 | 		dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */ | 
 | 		dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */ | 
 | 		dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */ | 
 | 	} else if ((state->revision >= 0x8002) && | 
 | 		   (state->autosearch_state == AS_SEARCHING_GUARD)) { | 
 | 		c->transmission_mode = TRANSMISSION_MODE_8K; | 
 | 		c->guard_interval = GUARD_INTERVAL_1_8; | 
 | 		c->inversion = 0; | 
 | 		c->layer[0].modulation = QAM_64; | 
 | 		c->layer[0].fec = FEC_2_3; | 
 | 		c->layer[0].interleaving = 0; | 
 | 		c->layer[0].segment_count = 13; | 
 |  | 
 | 		slist = 16; | 
 | 		c->transmission_mode = state->found_nfft; | 
 |  | 
 | 		dib8000_set_isdbt_common_channel(state, slist, 1); | 
 |  | 
 | 		/* set lock_mask values */ | 
 | 		dib8000_write_word(state, 6, 0x4); | 
 | 		if (state->revision == 0x8090) | 
 | 			dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */ | 
 | 		else | 
 | 			dib8000_write_word(state, 7, 0x8); | 
 | 		dib8000_write_word(state, 8, 0x1000); | 
 |  | 
 | 		/* set lock_mask wait time values */ | 
 | 		if (state->revision == 0x8090) | 
 | 			dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ | 
 | 		else | 
 | 			dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ | 
 |  | 
 | 		dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */ | 
 |  | 
 | 		/* P_search_param_select = 0xf; look for the 4 different guard intervals */ | 
 | 		dib8000_write_word(state, 356, 0); | 
 | 		dib8000_write_word(state, 357, 0xf); | 
 |  | 
 | 		value = dib8000_read_word(state, 0); | 
 | 		dib8000_write_word(state, 0, (u16)((1 << 15) | value)); | 
 | 		dib8000_read_word(state, 1284);  /* reset the INT. n_irq_pending */ | 
 | 		dib8000_write_word(state, 0, (u16)value); | 
 | 	} else { | 
 | 		c->inversion = 0; | 
 | 		c->layer[0].modulation = QAM_64; | 
 | 		c->layer[0].fec = FEC_2_3; | 
 | 		c->layer[0].interleaving = 0; | 
 | 		c->layer[0].segment_count = 13; | 
 | 		if (!c->isdbt_sb_mode) | 
 | 			c->layer[0].segment_count = 13; | 
 |  | 
 | 		/* choose the right list, in sb, always do everything */ | 
 | 		if (c->isdbt_sb_mode) { | 
 | 			slist = 7; | 
 | 			dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); | 
 | 		} else { | 
 | 			if (c->guard_interval == GUARD_INTERVAL_AUTO) { | 
 | 				if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { | 
 | 					c->transmission_mode = TRANSMISSION_MODE_8K; | 
 | 					c->guard_interval = GUARD_INTERVAL_1_8; | 
 | 					slist = 7; | 
 | 					dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));  /* P_mode = 1 to have autosearch start ok with mode2 */ | 
 | 				} else { | 
 | 					c->guard_interval = GUARD_INTERVAL_1_8; | 
 | 					slist = 3; | 
 | 				} | 
 | 			} else { | 
 | 				if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { | 
 | 					c->transmission_mode = TRANSMISSION_MODE_8K; | 
 | 					slist = 2; | 
 | 					dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));  /* P_mode = 1 */ | 
 | 				} else | 
 | 					slist = 0; | 
 | 			} | 
 | 		} | 
 | 		dprintk("Using list for autosearch : %d\n", slist); | 
 |  | 
 | 		dib8000_set_isdbt_common_channel(state, slist, 1); | 
 |  | 
 | 		/* set lock_mask values */ | 
 | 		dib8000_write_word(state, 6, 0x4); | 
 | 		if (state->revision == 0x8090) | 
 | 			dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10)); | 
 | 		else | 
 | 			dib8000_write_word(state, 7, 0x8); | 
 | 		dib8000_write_word(state, 8, 0x1000); | 
 |  | 
 | 		/* set lock_mask wait time values */ | 
 | 		if (state->revision == 0x8090) | 
 | 			dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ | 
 | 		else | 
 | 			dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ | 
 |  | 
 | 		value = dib8000_read_word(state, 0); | 
 | 		dib8000_write_word(state, 0, (u16)((1 << 15) | value)); | 
 | 		dib8000_read_word(state, 1284);  /* reset the INT. n_irq_pending */ | 
 | 		dib8000_write_word(state, 0, (u16)value); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_autosearch_irq(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 irq_pending = dib8000_read_word(state, 1284); | 
 |  | 
 | 	if ((state->revision >= 0x8002) && | 
 | 	    (state->autosearch_state == AS_SEARCHING_FFT)) { | 
 | 		if (irq_pending & 0x1) { | 
 | 			dprintk("dib8000_autosearch_irq: max correlation result available\n"); | 
 | 			return 3; | 
 | 		} | 
 | 	} else { | 
 | 		if (irq_pending & 0x1) {	/* failed */ | 
 | 			dprintk("dib8000_autosearch_irq failed\n"); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		if (irq_pending & 0x2) {	/* succeeded */ | 
 | 			dprintk("dib8000_autosearch_irq succeeded\n"); | 
 | 			return 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0;		// still pending | 
 | } | 
 |  | 
 | static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff) | 
 | { | 
 | 	u16 tmp; | 
 |  | 
 | 	tmp = dib8000_read_word(state, 771); | 
 | 	if (onoff) /* start P_restart_chd : channel_decoder */ | 
 | 		dib8000_write_word(state, 771, tmp & 0xfffd); | 
 | 	else /* stop P_restart_chd : channel_decoder */ | 
 | 		dib8000_write_word(state, 771, tmp | (1<<1)); | 
 | } | 
 |  | 
 | static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz) | 
 | { | 
 | 	s16 unit_khz_dds_val; | 
 | 	u32 abs_offset_khz = abs(offset_khz); | 
 | 	u32 dds = state->cfg.pll->ifreq & 0x1ffffff; | 
 | 	u8 invert = !!(state->cfg.pll->ifreq & (1 << 25)); | 
 | 	u8 ratio; | 
 |  | 
 | 	if (state->revision == 0x8090) { | 
 | 		ratio = 4; | 
 | 		unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000); | 
 | 		if (offset_khz < 0) | 
 | 			dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val); | 
 | 		else | 
 | 			dds = (abs_offset_khz * unit_khz_dds_val); | 
 |  | 
 | 		if (invert) | 
 | 			dds = (1<<26) - dds; | 
 | 	} else { | 
 | 		ratio = 2; | 
 | 		unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal); | 
 |  | 
 | 		if (offset_khz < 0) | 
 | 			unit_khz_dds_val *= -1; | 
 |  | 
 | 		/* IF tuner */ | 
 | 		if (invert) | 
 | 			dds -= abs_offset_khz * unit_khz_dds_val; | 
 | 		else | 
 | 			dds += abs_offset_khz * unit_khz_dds_val; | 
 | 	} | 
 |  | 
 | 	dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val); | 
 |  | 
 | 	if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) { | 
 | 		/* Max dds offset is the half of the demod freq */ | 
 | 		dib8000_write_word(state, 26, invert); | 
 | 		dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff); | 
 | 		dib8000_write_word(state, 28, (u16)(dds & 0xffff)); | 
 | 	} | 
 | } | 
 |  | 
 | static void dib8000_set_frequency_offset(struct dib8000_state *state) | 
 | { | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	int i; | 
 | 	u32 current_rf; | 
 | 	int total_dds_offset_khz; | 
 |  | 
 | 	if (state->fe[0]->ops.tuner_ops.get_frequency) | 
 | 		state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], ¤t_rf); | 
 | 	else | 
 | 		current_rf = c->frequency; | 
 | 	current_rf /= 1000; | 
 | 	total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000; | 
 |  | 
 | 	if (c->isdbt_sb_mode) { | 
 | 		state->subchannel = c->isdbt_sb_subchannel; | 
 |  | 
 | 		i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */ | 
 | 		dib8000_write_word(state, 26, c->inversion ^ i); | 
 |  | 
 | 		if (state->cfg.pll->ifreq == 0) { /* low if tuner */ | 
 | 			if ((c->inversion ^ i) == 0) | 
 | 				dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1); | 
 | 		} else { | 
 | 			if ((c->inversion ^ i) == 0) | 
 | 				total_dds_offset_khz *= -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz); | 
 |  | 
 | 	/* apply dds offset now */ | 
 | 	dib8000_set_dds(state, total_dds_offset_khz); | 
 | } | 
 |  | 
 | static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 }; | 
 |  | 
 | static u32 dib8000_get_symbol_duration(struct dib8000_state *state) | 
 | { | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	u16 i; | 
 |  | 
 | 	switch (c->transmission_mode) { | 
 | 	case TRANSMISSION_MODE_2K: | 
 | 			i = 0; | 
 | 			break; | 
 | 	case TRANSMISSION_MODE_4K: | 
 | 			i = 2; | 
 | 			break; | 
 | 	default: | 
 | 	case TRANSMISSION_MODE_AUTO: | 
 | 	case TRANSMISSION_MODE_8K: | 
 | 			i = 1; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1; | 
 | } | 
 |  | 
 | static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step) | 
 | { | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	u16 reg_32 = 0, reg_37 = 0; | 
 |  | 
 | 	switch (loop_step) { | 
 | 	case LOOP_TUNE_1: | 
 | 			if (c->isdbt_sb_mode)  { | 
 | 				if (c->isdbt_partial_reception == 0) { | 
 | 					reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */ | 
 | 					reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = (10-P_mode)  */ | 
 | 				} else { /* Sound Broadcasting mode 3 seg */ | 
 | 					reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */ | 
 | 					reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = (9-P_mode)  */ | 
 | 				} | 
 | 			} else { /* 13-seg start conf offset loop parameters */ | 
 | 				reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */ | 
 | 				reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = 9  */ | 
 | 			} | 
 | 			break; | 
 | 	case LOOP_TUNE_2: | 
 | 			if (c->isdbt_sb_mode)  { | 
 | 				if (c->isdbt_partial_reception == 0) {  /* Sound Broadcasting mode 1 seg */ | 
 | 					reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/ | 
 | 					reg_37 = (12-state->mode) | ((5 + state->mode) << 5); | 
 | 				} else {  /* Sound Broadcasting mode 3 seg */ | 
 | 					reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */ | 
 | 					reg_37 = (11-state->mode) | ((5 + state->mode) << 5); | 
 | 				} | 
 | 			} else {  /* 13 seg */ | 
 | 				reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */ | 
 | 				reg_37 = ((5+state->mode) << 5) | (10 - state->mode); | 
 | 			} | 
 | 			break; | 
 | 	} | 
 | 	dib8000_write_word(state, 32, reg_32); | 
 | 	dib8000_write_word(state, 37, reg_37); | 
 | } | 
 |  | 
 | static void dib8000_demod_restart(struct dib8000_state *state) | 
 | { | 
 | 	dib8000_write_word(state, 770, 0x4000); | 
 | 	dib8000_write_word(state, 770, 0x0000); | 
 | 	return; | 
 | } | 
 |  | 
 | static void dib8000_set_sync_wait(struct dib8000_state *state) | 
 | { | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	u16 sync_wait = 64; | 
 |  | 
 | 	/* P_dvsy_sync_wait - reuse mode */ | 
 | 	switch (c->transmission_mode) { | 
 | 	case TRANSMISSION_MODE_8K: | 
 | 			sync_wait = 256; | 
 | 			break; | 
 | 	case TRANSMISSION_MODE_4K: | 
 | 			sync_wait = 128; | 
 | 			break; | 
 | 	default: | 
 | 	case TRANSMISSION_MODE_2K: | 
 | 			sync_wait =  64; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (state->cfg.diversity_delay == 0) | 
 | 		sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */ | 
 | 	else | 
 | 		sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */ | 
 |  | 
 | 	dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4)); | 
 | } | 
 |  | 
 | static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode) | 
 | { | 
 | 	if (mode == SYMBOL_DEPENDENT_ON) | 
 | 		delay *= state->symbol_duration; | 
 |  | 
 | 	return jiffies + usecs_to_jiffies(delay * 100); | 
 | } | 
 |  | 
 | static s32 dib8000_get_status(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	return state->status; | 
 | } | 
 |  | 
 | static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	return state->tune_state; | 
 | } | 
 |  | 
 | static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	state->tune_state = tune_state; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	state->status = FE_STATUS_TUNE_PENDING; | 
 | 	state->tune_state = CT_DEMOD_START; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u16 dib8000_read_lock(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	if (state->revision == 0x8090) | 
 | 		return dib8000_read_word(state, 570); | 
 | 	return dib8000_read_word(state, 568); | 
 | } | 
 |  | 
 | static int dib8090p_init_sdram(struct dib8000_state *state) | 
 | { | 
 | 	u16 reg = 0; | 
 | 	dprintk("init sdram\n"); | 
 |  | 
 | 	reg = dib8000_read_word(state, 274) & 0xfff0; | 
 | 	dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */ | 
 |  | 
 | 	dib8000_write_word(state, 1803, (7 << 2)); | 
 |  | 
 | 	reg = dib8000_read_word(state, 1280); | 
 | 	dib8000_write_word(state, 1280,  reg | (1 << 2)); /* force restart P_restart_sdram */ | 
 | 	dib8000_write_word(state, 1280,  reg); /* release restart P_restart_sdram */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * is_manual_mode - Check if TMCC should be used for parameters settings | 
 |  * @c:	struct dvb_frontend_properties | 
 |  * | 
 |  * By default, TMCC table should be used for parameter settings on most | 
 |  * usercases. However, sometimes it is desirable to lock the demod to | 
 |  * use the manual parameters. | 
 |  * | 
 |  * On manual mode, the current dib8000_tune state machine is very restrict: | 
 |  * It requires that both per-layer and per-transponder parameters to be | 
 |  * properly specified, otherwise the device won't lock. | 
 |  * | 
 |  * Check if all those conditions are properly satisfied before allowing | 
 |  * the device to use the manual frequency lock mode. | 
 |  */ | 
 | static int is_manual_mode(struct dtv_frontend_properties *c) | 
 | { | 
 | 	int i, n_segs = 0; | 
 |  | 
 | 	/* Use auto mode on DVB-T compat mode */ | 
 | 	if (c->delivery_system != SYS_ISDBT) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Transmission mode is only detected on auto mode, currently | 
 | 	 */ | 
 | 	if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { | 
 | 		dprintk("transmission mode auto\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Guard interval is only detected on auto mode, currently | 
 | 	 */ | 
 | 	if (c->guard_interval == GUARD_INTERVAL_AUTO) { | 
 | 		dprintk("guard interval auto\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If no layer is enabled, assume auto mode, as at least one | 
 | 	 * layer should be enabled | 
 | 	 */ | 
 | 	if (!c->isdbt_layer_enabled) { | 
 | 		dprintk("no layer modulation specified\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if the per-layer parameters aren't auto and | 
 | 	 * disable a layer if segment count is 0 or invalid. | 
 | 	 */ | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		if (!(c->isdbt_layer_enabled & 1 << i)) | 
 | 			continue; | 
 |  | 
 | 		if ((c->layer[i].segment_count > 13) || | 
 | 		    (c->layer[i].segment_count == 0)) { | 
 | 			c->isdbt_layer_enabled &= ~(1 << i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		n_segs += c->layer[i].segment_count; | 
 |  | 
 | 		if ((c->layer[i].modulation == QAM_AUTO) || | 
 | 		    (c->layer[i].fec == FEC_AUTO)) { | 
 | 			dprintk("layer %c has either modulation or FEC auto\n", | 
 | 				'A' + i); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Userspace specified a wrong number of segments. | 
 | 	 *	fallback to auto mode. | 
 | 	 */ | 
 | 	if (n_segs == 0 || n_segs > 13) { | 
 | 		dprintk("number of segments is invalid\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Everything looks ok for manual mode */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int dib8000_tune(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	enum frontend_tune_state *tune_state = &state->tune_state; | 
 |  | 
 | 	u16 locks, deeper_interleaver = 0, i; | 
 | 	int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */ | 
 |  | 
 | 	unsigned long *timeout = &state->timeout; | 
 | 	unsigned long now = jiffies; | 
 | #ifdef DIB8000_AGC_FREEZE | 
 | 	u16 agc1, agc2; | 
 | #endif | 
 |  | 
 | 	u32 corm[4] = {0, 0, 0, 0}; | 
 | 	u8 find_index, max_value; | 
 |  | 
 | #if 0 | 
 | 	if (*tune_state < CT_DEMOD_STOP) | 
 | 		dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n", | 
 | 			state->channel_parameters_set, *tune_state, state->autosearch_state, now); | 
 | #endif | 
 |  | 
 | 	switch (*tune_state) { | 
 | 	case CT_DEMOD_START: /* 30 */ | 
 | 		dib8000_reset_stats(fe); | 
 |  | 
 | 		if (state->revision == 0x8090) | 
 | 			dib8090p_init_sdram(state); | 
 | 		state->status = FE_STATUS_TUNE_PENDING; | 
 | 		state->channel_parameters_set = is_manual_mode(c); | 
 |  | 
 | 		dprintk("Tuning channel on %s search mode\n", | 
 | 			state->channel_parameters_set ? "manual" : "auto"); | 
 |  | 
 | 		dib8000_viterbi_state(state, 0); /* force chan dec in restart */ | 
 |  | 
 | 		/* Layer monitor */ | 
 | 		dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60); | 
 |  | 
 | 		dib8000_set_frequency_offset(state); | 
 | 		dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000); | 
 |  | 
 | 		if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */ | 
 | #ifdef DIB8000_AGC_FREEZE | 
 | 			if (state->revision != 0x8090) { | 
 | 				state->agc1_max = dib8000_read_word(state, 108); | 
 | 				state->agc1_min = dib8000_read_word(state, 109); | 
 | 				state->agc2_max = dib8000_read_word(state, 110); | 
 | 				state->agc2_min = dib8000_read_word(state, 111); | 
 | 				agc1 = dib8000_read_word(state, 388); | 
 | 				agc2 = dib8000_read_word(state, 389); | 
 | 				dib8000_write_word(state, 108, agc1); | 
 | 				dib8000_write_word(state, 109, agc1); | 
 | 				dib8000_write_word(state, 110, agc2); | 
 | 				dib8000_write_word(state, 111, agc2); | 
 | 			} | 
 | #endif | 
 | 			state->autosearch_state = AS_SEARCHING_FFT; | 
 | 			state->found_nfft = TRANSMISSION_MODE_AUTO; | 
 | 			state->found_guard = GUARD_INTERVAL_AUTO; | 
 | 			*tune_state = CT_DEMOD_SEARCH_NEXT; | 
 | 		} else { /* we already know the channel struct so TUNE only ! */ | 
 | 			state->autosearch_state = AS_DONE; | 
 | 			*tune_state = CT_DEMOD_STEP_3; | 
 | 		} | 
 | 		state->symbol_duration = dib8000_get_symbol_duration(state); | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_SEARCH_NEXT: /* 51 */ | 
 | 		dib8000_autosearch_start(fe); | 
 | 		if (state->revision == 0x8090) | 
 | 			ret = 50; | 
 | 		else | 
 | 			ret = 15; | 
 | 		*tune_state = CT_DEMOD_STEP_1; | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_1: /* 31 */ | 
 | 		switch (dib8000_autosearch_irq(fe)) { | 
 | 		case 1: /* fail */ | 
 | 			state->status = FE_STATUS_TUNE_FAILED; | 
 | 			state->autosearch_state = AS_DONE; | 
 | 			*tune_state = CT_DEMOD_STOP; /* else we are done here */ | 
 | 			break; | 
 | 		case 2: /* Succes */ | 
 | 			state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */ | 
 | 			*tune_state = CT_DEMOD_STEP_3; | 
 | 			if (state->autosearch_state == AS_SEARCHING_GUARD) | 
 | 				*tune_state = CT_DEMOD_STEP_2; | 
 | 			else | 
 | 				state->autosearch_state = AS_DONE; | 
 | 			break; | 
 | 		case 3: /* Autosearch FFT max correlation endded */ | 
 | 			*tune_state = CT_DEMOD_STEP_2; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_2: | 
 | 		switch (state->autosearch_state) { | 
 | 		case AS_SEARCHING_FFT: | 
 | 			/* searching for the correct FFT */ | 
 | 			if (state->revision == 0x8090) { | 
 | 				corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); | 
 | 				corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); | 
 | 				corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601)); | 
 | 			} else { | 
 | 				corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595)); | 
 | 				corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); | 
 | 				corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); | 
 | 			} | 
 | 			/* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */ | 
 |  | 
 | 			max_value = 0; | 
 | 			for (find_index = 1 ; find_index < 3 ; find_index++) { | 
 | 				if (corm[max_value] < corm[find_index]) | 
 | 					max_value = find_index ; | 
 | 			} | 
 |  | 
 | 			switch (max_value) { | 
 | 			case 0: | 
 | 				state->found_nfft = TRANSMISSION_MODE_2K; | 
 | 				break; | 
 | 			case 1: | 
 | 				state->found_nfft = TRANSMISSION_MODE_4K; | 
 | 				break; | 
 | 			case 2: | 
 | 			default: | 
 | 				state->found_nfft = TRANSMISSION_MODE_8K; | 
 | 				break; | 
 | 			} | 
 | 			/* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */ | 
 |  | 
 | 			*tune_state = CT_DEMOD_SEARCH_NEXT; | 
 | 			state->autosearch_state = AS_SEARCHING_GUARD; | 
 | 			if (state->revision == 0x8090) | 
 | 				ret = 50; | 
 | 			else | 
 | 				ret = 10; | 
 | 			break; | 
 | 		case AS_SEARCHING_GUARD: | 
 | 			/* searching for the correct guard interval */ | 
 | 			if (state->revision == 0x8090) | 
 | 				state->found_guard = dib8000_read_word(state, 572) & 0x3; | 
 | 			else | 
 | 				state->found_guard = dib8000_read_word(state, 570) & 0x3; | 
 | 			/* dprintk("guard interval found=%i\n", state->found_guard); */ | 
 |  | 
 | 			*tune_state = CT_DEMOD_STEP_3; | 
 | 			break; | 
 | 		default: | 
 | 			/* the demod should never be in this state */ | 
 | 			state->status = FE_STATUS_TUNE_FAILED; | 
 | 			state->autosearch_state = AS_DONE; | 
 | 			*tune_state = CT_DEMOD_STOP; /* else we are done here */ | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_3: /* 33 */ | 
 | 		dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1); | 
 | 		dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */ | 
 | 		*tune_state = CT_DEMOD_STEP_4; | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_4: /* (34) */ | 
 | 		dib8000_demod_restart(state); | 
 |  | 
 | 		dib8000_set_sync_wait(state); | 
 | 		dib8000_set_diversity_in(state->fe[0], state->diversity_onoff); | 
 |  | 
 | 		locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */ | 
 | 		/* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */ | 
 | 		*timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON); | 
 | 		*tune_state = CT_DEMOD_STEP_5; | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_5: /* (35) */ | 
 | 		locks = dib8000_read_lock(fe); | 
 | 		if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */ | 
 | 			dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */ | 
 | 			if (!state->differential_constellation) { | 
 | 				/* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */ | 
 | 				*timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON); | 
 | 				*tune_state = CT_DEMOD_STEP_7; | 
 | 			} else { | 
 | 				*tune_state = CT_DEMOD_STEP_8; | 
 | 			} | 
 | 		} else if (time_after(now, *timeout)) { | 
 | 			*tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_6: /* (36)  if there is an input (diversity) */ | 
 | 		if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) { | 
 | 			/* if there is a diversity fe in input and this fe is has not already failled : wait here until this this fe has succedeed or failled */ | 
 | 			if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */ | 
 | 				*tune_state = CT_DEMOD_STEP_8; /* go for mpeg */ | 
 | 			else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failled also, break the current one */ | 
 | 				*tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ | 
 | 				dib8000_viterbi_state(state, 1); /* start viterbi chandec */ | 
 | 				dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); | 
 | 				state->status = FE_STATUS_TUNE_FAILED; | 
 | 			} | 
 | 		} else { | 
 | 			dib8000_viterbi_state(state, 1); /* start viterbi chandec */ | 
 | 			dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); | 
 | 			*tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ | 
 | 			state->status = FE_STATUS_TUNE_FAILED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_7: /* 37 */ | 
 | 		locks = dib8000_read_lock(fe); | 
 | 		if (locks & (1<<10)) { /* lmod4_lock */ | 
 | 			ret = 14; /* wait for 14 symbols */ | 
 | 			*tune_state = CT_DEMOD_STEP_8; | 
 | 		} else if (time_after(now, *timeout)) | 
 | 			*tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_8: /* 38 */ | 
 | 		dib8000_viterbi_state(state, 1); /* start viterbi chandec */ | 
 | 		dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); | 
 |  | 
 | 		/* mpeg will never lock on this condition because init_prbs is not set : search for it !*/ | 
 | 		if (c->isdbt_sb_mode | 
 | 		    && c->isdbt_sb_subchannel < 14 | 
 | 		    && !state->differential_constellation) { | 
 | 			state->subchannel = 0; | 
 | 			*tune_state = CT_DEMOD_STEP_11; | 
 | 		} else { | 
 | 			*tune_state = CT_DEMOD_STEP_9; | 
 | 			state->status = FE_STATUS_LOCKED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_9: /* 39 */ | 
 | 		if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */ | 
 | 			/* defines timeout for mpeg lock depending on interleaver length of longest layer */ | 
 | 			for (i = 0; i < 3; i++) { | 
 | 				if (c->layer[i].interleaving >= deeper_interleaver) { | 
 | 					dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving); | 
 | 					if (c->layer[i].segment_count > 0) { /* valid layer */ | 
 | 						deeper_interleaver = c->layer[0].interleaving; | 
 | 						state->longest_intlv_layer = i; | 
 | 					} | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (deeper_interleaver == 0) | 
 | 				locks = 2; /* locks is the tmp local variable name */ | 
 | 			else if (deeper_interleaver == 3) | 
 | 				locks = 8; | 
 | 			else | 
 | 				locks = 2 * deeper_interleaver; | 
 |  | 
 | 			if (state->diversity_onoff != 0) /* because of diversity sync */ | 
 | 				locks *= 2; | 
 |  | 
 | 			*timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */ | 
 | 			dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n", | 
 | 				deeper_interleaver, state->longest_intlv_layer, locks, *timeout); | 
 |  | 
 | 			*tune_state = CT_DEMOD_STEP_10; | 
 | 		} else | 
 | 			*tune_state = CT_DEMOD_STOP; | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_10: /* 40 */ | 
 | 		locks = dib8000_read_lock(fe); | 
 | 		if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */ | 
 | 			dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n", | 
 | 				c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", | 
 | 				c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", | 
 | 				c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); | 
 | 			if (c->isdbt_sb_mode | 
 | 			    && c->isdbt_sb_subchannel < 14 | 
 | 			    && !state->differential_constellation) | 
 | 				/* signal to the upper layer, that there was a channel found and the parameters can be read */ | 
 | 				state->status = FE_STATUS_DEMOD_SUCCESS; | 
 | 			else | 
 | 				state->status = FE_STATUS_DATA_LOCKED; | 
 | 			*tune_state = CT_DEMOD_STOP; | 
 | 		} else if (time_after(now, *timeout)) { | 
 | 			if (c->isdbt_sb_mode | 
 | 			    && c->isdbt_sb_subchannel < 14 | 
 | 			    && !state->differential_constellation) { /* continue to try init prbs autosearch */ | 
 | 				state->subchannel += 3; | 
 | 				*tune_state = CT_DEMOD_STEP_11; | 
 | 			} else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */ | 
 | 				if (locks & (0x7 << 5)) { | 
 | 					dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n", | 
 | 						jiffies_to_msecs(now - *timeout), | 
 | 						c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", | 
 | 						c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", | 
 | 						c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); | 
 |  | 
 | 					state->status = FE_STATUS_DATA_LOCKED; | 
 | 				} else | 
 | 					state->status = FE_STATUS_TUNE_FAILED; | 
 | 				*tune_state = CT_DEMOD_STOP; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_DEMOD_STEP_11:  /* 41 : init prbs autosearch */ | 
 | 		if (state->subchannel <= 41) { | 
 | 			dib8000_set_subchannel_prbs(state, dib8000_get_init_prbs(state, state->subchannel)); | 
 | 			*tune_state = CT_DEMOD_STEP_9; | 
 | 		} else { | 
 | 			*tune_state = CT_DEMOD_STOP; | 
 | 			state->status = FE_STATUS_TUNE_FAILED; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* tuning is finished - cleanup the demod */ | 
 | 	switch (*tune_state) { | 
 | 	case CT_DEMOD_STOP: /* (42) */ | 
 | #ifdef DIB8000_AGC_FREEZE | 
 | 		if ((state->revision != 0x8090) && (state->agc1_max != 0)) { | 
 | 			dib8000_write_word(state, 108, state->agc1_max); | 
 | 			dib8000_write_word(state, 109, state->agc1_min); | 
 | 			dib8000_write_word(state, 110, state->agc2_max); | 
 | 			dib8000_write_word(state, 111, state->agc2_min); | 
 | 			state->agc1_max = 0; | 
 | 			state->agc1_min = 0; | 
 | 			state->agc2_max = 0; | 
 | 			state->agc2_min = 0; | 
 | 		} | 
 | #endif | 
 | 		ret = 0; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3)) | 
 | 		return ret * state->symbol_duration; | 
 | 	if ((ret > 0) && (ret < state->symbol_duration)) | 
 | 		return state->symbol_duration; /* at least one symbol */ | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib8000_wakeup(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u8 index_frontend; | 
 | 	int ret; | 
 |  | 
 | 	dib8000_set_power_mode(state, DIB8000_POWER_ALL); | 
 | 	dib8000_set_adc_state(state, DIBX000_ADC_ON); | 
 | 	if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) | 
 | 		dprintk("could not start Slow ADC\n"); | 
 |  | 
 | 	if (state->revision == 0x8090) | 
 | 		dib8000_sad_calib(state); | 
 |  | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 		ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_sleep(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u8 index_frontend; | 
 | 	int ret; | 
 |  | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 		ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_set_output_mode(fe, OUTMODE_HIGH_Z); | 
 | 	dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); | 
 | 	return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF); | 
 | } | 
 |  | 
 | static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat); | 
 |  | 
 | static int dib8000_get_frontend(struct dvb_frontend *fe, | 
 | 				struct dtv_frontend_properties *c) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 i, val = 0; | 
 | 	enum fe_status stat = 0; | 
 | 	u8 index_frontend, sub_index_frontend; | 
 |  | 
 | 	c->bandwidth_hz = 6000000; | 
 |  | 
 | 	/* | 
 | 	 * If called to early, get_frontend makes dib8000_tune to either | 
 | 	 * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail. | 
 | 	 * So, let's just return if frontend 0 has not locked. | 
 | 	 */ | 
 | 	dib8000_read_status(fe, &stat); | 
 | 	if (!(stat & FE_HAS_SYNC)) | 
 | 		return 0; | 
 |  | 
 | 	dprintk("dib8000_get_frontend: TMCC lock\n"); | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 		state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); | 
 | 		if (stat&FE_HAS_SYNC) { | 
 | 			dprintk("TMCC lock on the slave%i\n", index_frontend); | 
 | 			/* synchronize the cache with the other frontends */ | 
 | 			state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); | 
 | 			for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { | 
 | 				if (sub_index_frontend != index_frontend) { | 
 | 					state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; | 
 | 					state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; | 
 | 					state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; | 
 | 					state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; | 
 | 					state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; | 
 | 					for (i = 0; i < 3; i++) { | 
 | 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; | 
 | 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; | 
 | 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; | 
 | 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1; | 
 |  | 
 | 	if (state->revision == 0x8090) | 
 | 		val = dib8000_read_word(state, 572); | 
 | 	else | 
 | 		val = dib8000_read_word(state, 570); | 
 | 	c->inversion = (val & 0x40) >> 6; | 
 | 	switch ((val & 0x30) >> 4) { | 
 | 	case 1: | 
 | 		c->transmission_mode = TRANSMISSION_MODE_2K; | 
 | 		dprintk("dib8000_get_frontend: transmission mode 2K\n"); | 
 | 		break; | 
 | 	case 2: | 
 | 		c->transmission_mode = TRANSMISSION_MODE_4K; | 
 | 		dprintk("dib8000_get_frontend: transmission mode 4K\n"); | 
 | 		break; | 
 | 	case 3: | 
 | 	default: | 
 | 		c->transmission_mode = TRANSMISSION_MODE_8K; | 
 | 		dprintk("dib8000_get_frontend: transmission mode 8K\n"); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (val & 0x3) { | 
 | 	case 0: | 
 | 		c->guard_interval = GUARD_INTERVAL_1_32; | 
 | 		dprintk("dib8000_get_frontend: Guard Interval = 1/32\n"); | 
 | 		break; | 
 | 	case 1: | 
 | 		c->guard_interval = GUARD_INTERVAL_1_16; | 
 | 		dprintk("dib8000_get_frontend: Guard Interval = 1/16\n"); | 
 | 		break; | 
 | 	case 2: | 
 | 		dprintk("dib8000_get_frontend: Guard Interval = 1/8\n"); | 
 | 		c->guard_interval = GUARD_INTERVAL_1_8; | 
 | 		break; | 
 | 	case 3: | 
 | 		dprintk("dib8000_get_frontend: Guard Interval = 1/4\n"); | 
 | 		c->guard_interval = GUARD_INTERVAL_1_4; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	val = dib8000_read_word(state, 505); | 
 | 	c->isdbt_partial_reception = val & 1; | 
 | 	dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception); | 
 |  | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		int show; | 
 |  | 
 | 		val = dib8000_read_word(state, 493 + i) & 0x0f; | 
 | 		c->layer[i].segment_count = val; | 
 |  | 
 | 		if (val == 0 || val > 13) | 
 | 			show = 0; | 
 | 		else | 
 | 			show = 1; | 
 |  | 
 | 		if (show) | 
 | 			dprintk("dib8000_get_frontend: Layer %d segments = %d\n", | 
 | 				i, c->layer[i].segment_count); | 
 |  | 
 | 		val = dib8000_read_word(state, 499 + i) & 0x3; | 
 | 		/* Interleaving can be 0, 1, 2 or 4 */ | 
 | 		if (val == 3) | 
 | 			val = 4; | 
 | 		c->layer[i].interleaving = val; | 
 | 		if (show) | 
 | 			dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n", | 
 | 				i, c->layer[i].interleaving); | 
 |  | 
 | 		val = dib8000_read_word(state, 481 + i); | 
 | 		switch (val & 0x7) { | 
 | 		case 1: | 
 | 			c->layer[i].fec = FEC_1_2; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i); | 
 | 			break; | 
 | 		case 2: | 
 | 			c->layer[i].fec = FEC_2_3; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i); | 
 | 			break; | 
 | 		case 3: | 
 | 			c->layer[i].fec = FEC_3_4; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i); | 
 | 			break; | 
 | 		case 5: | 
 | 			c->layer[i].fec = FEC_5_6; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i); | 
 | 			break; | 
 | 		default: | 
 | 			c->layer[i].fec = FEC_7_8; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		val = dib8000_read_word(state, 487 + i); | 
 | 		switch (val & 0x3) { | 
 | 		case 0: | 
 | 			c->layer[i].modulation = DQPSK; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i); | 
 | 			break; | 
 | 		case 1: | 
 | 			c->layer[i].modulation = QPSK; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d QPSK\n", i); | 
 | 			break; | 
 | 		case 2: | 
 | 			c->layer[i].modulation = QAM_16; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d QAM16\n", i); | 
 | 			break; | 
 | 		case 3: | 
 | 		default: | 
 | 			c->layer[i].modulation = QAM_64; | 
 | 			if (show) | 
 | 				dprintk("dib8000_get_frontend: Layer %d QAM64\n", i); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* synchronize the cache with the other frontends */ | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 		state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode; | 
 | 		state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; | 
 | 		state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; | 
 | 		state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; | 
 | 		state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception; | 
 | 		for (i = 0; i < 3; i++) { | 
 | 			state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count; | 
 | 			state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving; | 
 | 			state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec; | 
 | 			state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_set_frontend(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	int l, i, active, time, time_slave = 0; | 
 | 	u8 exit_condition, index_frontend; | 
 | 	unsigned long delay, callback_time; | 
 |  | 
 | 	if (c->frequency == 0) { | 
 | 		dprintk("dib8000: must at least specify frequency\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (c->bandwidth_hz == 0) { | 
 | 		dprintk("dib8000: no bandwidth specified, set to default\n"); | 
 | 		c->bandwidth_hz = 6000000; | 
 | 	} | 
 |  | 
 | 	for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 		/* synchronization of the cache */ | 
 | 		state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT; | 
 | 		memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); | 
 |  | 
 | 		/* set output mode and diversity input */ | 
 | 		if (state->revision != 0x8090) { | 
 | 			dib8000_set_diversity_in(state->fe[index_frontend], 1); | 
 | 			if (index_frontend != 0) | 
 | 				dib8000_set_output_mode(state->fe[index_frontend], | 
 | 						OUTMODE_DIVERSITY); | 
 | 			else | 
 | 				dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); | 
 | 		} else { | 
 | 			dib8096p_set_diversity_in(state->fe[index_frontend], 1); | 
 | 			if (index_frontend != 0) | 
 | 				dib8096p_set_output_mode(state->fe[index_frontend], | 
 | 						OUTMODE_DIVERSITY); | 
 | 			else | 
 | 				dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); | 
 | 		} | 
 |  | 
 | 		/* tune the tuner */ | 
 | 		if (state->fe[index_frontend]->ops.tuner_ops.set_params) | 
 | 			state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]); | 
 |  | 
 | 		dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START); | 
 | 	} | 
 |  | 
 | 	/* turn off the diversity of the last chip */ | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_set_diversity_in(state->fe[index_frontend - 1], 0); | 
 | 	else | 
 | 		dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0); | 
 |  | 
 | 	/* start up the AGC */ | 
 | 	do { | 
 | 		time = dib8000_agc_startup(state->fe[0]); | 
 | 		for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 			time_slave = dib8000_agc_startup(state->fe[index_frontend]); | 
 | 			if (time == 0) | 
 | 				time = time_slave; | 
 | 			else if ((time_slave != 0) && (time_slave > time)) | 
 | 				time = time_slave; | 
 | 		} | 
 | 		if (time == 0) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Despite dib8000_agc_startup returns time at a 0.1 ms range, | 
 | 		 * the actual sleep time depends on CONFIG_HZ. The worse case | 
 | 		 * is when CONFIG_HZ=100. In such case, the minimum granularity | 
 | 		 * is 10ms. On some real field tests, the tuner sometimes don't | 
 | 		 * lock when this timer is lower than 10ms. So, enforce a 10ms | 
 | 		 * granularity. | 
 | 		 */ | 
 | 		time = 10 * (time + 99)/100; | 
 | 		usleep_range(time * 1000, (time + 1) * 1000); | 
 | 		exit_condition = 1; | 
 | 		for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 			if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) { | 
 | 				exit_condition = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} while (exit_condition == 0); | 
 |  | 
 | 	for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | 
 | 		dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); | 
 |  | 
 | 	active = 1; | 
 | 	do { | 
 | 		callback_time = 0; | 
 | 		for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 			delay = dib8000_tune(state->fe[index_frontend]); | 
 | 			if (delay != 0) { | 
 | 				delay = jiffies + usecs_to_jiffies(100 * delay); | 
 | 				if (!callback_time || delay < callback_time) | 
 | 					callback_time = delay; | 
 | 			} | 
 |  | 
 | 			/* we are in autosearch */ | 
 | 			if (state->channel_parameters_set == 0) { /* searching */ | 
 | 				if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) { | 
 | 					dprintk("autosearch succeeded on fe%i\n", index_frontend); | 
 | 					dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */ | 
 | 					state->channel_parameters_set = 1; | 
 |  | 
 | 					for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) { | 
 | 						if (l != index_frontend) { /* and for all frontend except the successful one */ | 
 | 							dprintk("Restarting frontend %d\n", l); | 
 | 							dib8000_tune_restart_from_demod(state->fe[l]); | 
 |  | 
 | 							state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; | 
 | 							state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; | 
 | 							state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; | 
 | 							state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; | 
 | 							state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; | 
 | 							for (i = 0; i < 3; i++) { | 
 | 								state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; | 
 | 								state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; | 
 | 								state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; | 
 | 								state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; | 
 | 							} | 
 |  | 
 | 						} | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		/* tuning is done when the master frontend is done (failed or success) */ | 
 | 		if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED || | 
 | 				dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED || | 
 | 				dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) { | 
 | 			active = 0; | 
 | 			/* we need to wait for all frontends to be finished */ | 
 | 			for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 				if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP) | 
 | 					active = 1; | 
 | 			} | 
 | 			if (active == 0) | 
 | 				dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0])); | 
 | 		} | 
 |  | 
 | 		if ((active == 1) && (callback_time == 0)) { | 
 | 			dprintk("strange callback time something went wrong\n"); | 
 | 			active = 0; | 
 | 		} | 
 |  | 
 | 		while ((active == 1) && (time_before(jiffies, callback_time))) | 
 | 			msleep(100); | 
 | 	} while (active); | 
 |  | 
 | 	/* set output mode */ | 
 | 	if (state->revision != 0x8090) | 
 | 		dib8000_set_output_mode(state->fe[0], state->cfg.output_mode); | 
 | 	else { | 
 | 		dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode); | 
 | 		if (state->cfg.enMpegOutput == 0) { | 
 | 			dib8096p_setDibTxMux(state, MPEG_ON_DIBTX); | 
 | 			dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat); | 
 |  | 
 | static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u16 lock_slave = 0, lock; | 
 | 	u8 index_frontend; | 
 |  | 
 | 	lock = dib8000_read_lock(fe); | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | 
 | 		lock_slave |= dib8000_read_lock(state->fe[index_frontend]); | 
 |  | 
 | 	*stat = 0; | 
 |  | 
 | 	if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1)) | 
 | 		*stat |= FE_HAS_SIGNAL; | 
 |  | 
 | 	if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */ | 
 | 		*stat |= FE_HAS_CARRIER; | 
 |  | 
 | 	if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */ | 
 | 		*stat |= FE_HAS_SYNC; | 
 |  | 
 | 	if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */ | 
 | 		*stat |= FE_HAS_LOCK; | 
 |  | 
 | 	if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) { | 
 | 		lock = dib8000_read_word(state, 554); /* Viterbi Layer A */ | 
 | 		if (lock & 0x01) | 
 | 			*stat |= FE_HAS_VITERBI; | 
 |  | 
 | 		lock = dib8000_read_word(state, 555); /* Viterbi Layer B */ | 
 | 		if (lock & 0x01) | 
 | 			*stat |= FE_HAS_VITERBI; | 
 |  | 
 | 		lock = dib8000_read_word(state, 556); /* Viterbi Layer C */ | 
 | 		if (lock & 0x01) | 
 | 			*stat |= FE_HAS_VITERBI; | 
 | 	} | 
 | 	dib8000_get_stats(fe, *stat); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	/* 13 segments */ | 
 | 	if (state->revision == 0x8090) | 
 | 		*ber = (dib8000_read_word(state, 562) << 16) | | 
 | 			dib8000_read_word(state, 563); | 
 | 	else | 
 | 		*ber = (dib8000_read_word(state, 560) << 16) | | 
 | 			dib8000_read_word(state, 561); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	/* packet error on 13 seg */ | 
 | 	if (state->revision == 0x8090) | 
 | 		*unc = dib8000_read_word(state, 567); | 
 | 	else | 
 | 		*unc = dib8000_read_word(state, 565); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u8 index_frontend; | 
 | 	u16 val; | 
 |  | 
 | 	*strength = 0; | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | 
 | 		state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); | 
 | 		if (val > 65535 - *strength) | 
 | 			*strength = 65535; | 
 | 		else | 
 | 			*strength += val; | 
 | 	} | 
 |  | 
 | 	val = 65535 - dib8000_read_word(state, 390); | 
 | 	if (val > 65535 - *strength) | 
 | 		*strength = 65535; | 
 | 	else | 
 | 		*strength += val; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 dib8000_get_snr(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u32 n, s, exp; | 
 | 	u16 val; | 
 |  | 
 | 	if (state->revision != 0x8090) | 
 | 		val = dib8000_read_word(state, 542); | 
 | 	else | 
 | 		val = dib8000_read_word(state, 544); | 
 | 	n = (val >> 6) & 0xff; | 
 | 	exp = (val & 0x3f); | 
 | 	if ((exp & 0x20) != 0) | 
 | 		exp -= 0x40; | 
 | 	n <<= exp+16; | 
 |  | 
 | 	if (state->revision != 0x8090) | 
 | 		val = dib8000_read_word(state, 543); | 
 | 	else | 
 | 		val = dib8000_read_word(state, 545); | 
 | 	s = (val >> 6) & 0xff; | 
 | 	exp = (val & 0x3f); | 
 | 	if ((exp & 0x20) != 0) | 
 | 		exp -= 0x40; | 
 | 	s <<= exp+16; | 
 |  | 
 | 	if (n > 0) { | 
 | 		u32 t = (s/n) << 16; | 
 | 		return t + ((s << 16) - n*t) / n; | 
 | 	} | 
 | 	return 0xffffffff; | 
 | } | 
 |  | 
 | static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u8 index_frontend; | 
 | 	u32 snr_master; | 
 |  | 
 | 	snr_master = dib8000_get_snr(fe); | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | 
 | 		snr_master += dib8000_get_snr(state->fe[index_frontend]); | 
 |  | 
 | 	if ((snr_master >> 16) != 0) { | 
 | 		snr_master = 10*intlog10(snr_master>>16); | 
 | 		*snr = snr_master / ((1 << 24) / 10); | 
 | 	} | 
 | 	else | 
 | 		*snr = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct per_layer_regs { | 
 | 	u16 lock, ber, per; | 
 | }; | 
 |  | 
 | static const struct per_layer_regs per_layer_regs[] = { | 
 | 	{ 554, 560, 562 }, | 
 | 	{ 555, 576, 578 }, | 
 | 	{ 556, 581, 583 }, | 
 | }; | 
 |  | 
 | struct linear_segments { | 
 | 	unsigned x; | 
 | 	signed y; | 
 | }; | 
 |  | 
 | /* | 
 |  * Table to estimate signal strength in dBm. | 
 |  * This table was empirically determinated by measuring the signal | 
 |  * strength generated by a DTA-2111 RF generator directly connected into | 
 |  * a dib8076 device (a PixelView PV-D231U stick), using a good quality | 
 |  * 3 meters RC6 cable and good RC6 connectors. | 
 |  * The real value can actually be different on other devices, depending | 
 |  * on several factors, like if LNA is enabled or not, if diversity is | 
 |  * enabled, type of connectors, etc. | 
 |  * Yet, it is better to use this measure in dB than a random non-linear | 
 |  * percentage value, especially for antenna adjustments. | 
 |  * On my tests, the precision of the measure using this table is about | 
 |  * 0.5 dB, with sounds reasonable enough. | 
 |  */ | 
 | static struct linear_segments strength_to_db_table[] = { | 
 | 	{ 55953, 108500 },	/* -22.5 dBm */ | 
 | 	{ 55394, 108000 }, | 
 | 	{ 53834, 107000 }, | 
 | 	{ 52863, 106000 }, | 
 | 	{ 52239, 105000 }, | 
 | 	{ 52012, 104000 }, | 
 | 	{ 51803, 103000 }, | 
 | 	{ 51566, 102000 }, | 
 | 	{ 51356, 101000 }, | 
 | 	{ 51112, 100000 }, | 
 | 	{ 50869,  99000 }, | 
 | 	{ 50600,  98000 }, | 
 | 	{ 50363,  97000 }, | 
 | 	{ 50117,  96000 },	/* -35 dBm */ | 
 | 	{ 49889,  95000 }, | 
 | 	{ 49680,  94000 }, | 
 | 	{ 49493,  93000 }, | 
 | 	{ 49302,  92000 }, | 
 | 	{ 48929,  91000 }, | 
 | 	{ 48416,  90000 }, | 
 | 	{ 48035,  89000 }, | 
 | 	{ 47593,  88000 }, | 
 | 	{ 47282,  87000 }, | 
 | 	{ 46953,  86000 }, | 
 | 	{ 46698,  85000 }, | 
 | 	{ 45617,  84000 }, | 
 | 	{ 44773,  83000 }, | 
 | 	{ 43845,  82000 }, | 
 | 	{ 43020,  81000 }, | 
 | 	{ 42010,  80000 },	/* -51 dBm */ | 
 | 	{     0,      0 }, | 
 | }; | 
 |  | 
 | static u32 interpolate_value(u32 value, struct linear_segments *segments, | 
 | 			     unsigned len) | 
 | { | 
 | 	u64 tmp64; | 
 | 	u32 dx; | 
 | 	s32 dy; | 
 | 	int i, ret; | 
 |  | 
 | 	if (value >= segments[0].x) | 
 | 		return segments[0].y; | 
 | 	if (value < segments[len-1].x) | 
 | 		return segments[len-1].y; | 
 |  | 
 | 	for (i = 1; i < len - 1; i++) { | 
 | 		/* If value is identical, no need to interpolate */ | 
 | 		if (value == segments[i].x) | 
 | 			return segments[i].y; | 
 | 		if (value > segments[i].x) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Linear interpolation between the two (x,y) points */ | 
 | 	dy = segments[i - 1].y - segments[i].y; | 
 | 	dx = segments[i - 1].x - segments[i].x; | 
 |  | 
 | 	tmp64 = value - segments[i].x; | 
 | 	tmp64 *= dy; | 
 | 	do_div(tmp64, dx); | 
 | 	ret = segments[i].y + tmp64; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	int ini_layer, end_layer, i; | 
 | 	u64 time_us, tmp64; | 
 | 	u32 tmp, denom; | 
 | 	int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs; | 
 | 	int interleaving = 0, fft_div; | 
 |  | 
 | 	if (layer >= 0) { | 
 | 		ini_layer = layer; | 
 | 		end_layer = layer + 1; | 
 | 	} else { | 
 | 		ini_layer = 0; | 
 | 		end_layer = 3; | 
 | 	} | 
 |  | 
 | 	switch (c->guard_interval) { | 
 | 	case GUARD_INTERVAL_1_4: | 
 | 		guard = 4; | 
 | 		break; | 
 | 	case GUARD_INTERVAL_1_8: | 
 | 		guard = 8; | 
 | 		break; | 
 | 	case GUARD_INTERVAL_1_16: | 
 | 		guard = 16; | 
 | 		break; | 
 | 	default: | 
 | 	case GUARD_INTERVAL_1_32: | 
 | 		guard = 32; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (c->transmission_mode) { | 
 | 	case TRANSMISSION_MODE_2K: | 
 | 		fft_div = 4; | 
 | 		break; | 
 | 	case TRANSMISSION_MODE_4K: | 
 | 		fft_div = 2; | 
 | 		break; | 
 | 	default: | 
 | 	case TRANSMISSION_MODE_8K: | 
 | 		fft_div = 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	denom = 0; | 
 | 	for (i = ini_layer; i < end_layer; i++) { | 
 | 		nsegs = c->layer[i].segment_count; | 
 | 		if (nsegs == 0 || nsegs > 13) | 
 | 			continue; | 
 |  | 
 | 		switch (c->layer[i].modulation) { | 
 | 		case DQPSK: | 
 | 		case QPSK: | 
 | 			bits_per_symbol = 2; | 
 | 			break; | 
 | 		case QAM_16: | 
 | 			bits_per_symbol = 4; | 
 | 			break; | 
 | 		default: | 
 | 		case QAM_64: | 
 | 			bits_per_symbol = 6; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		switch (c->layer[i].fec) { | 
 | 		case FEC_1_2: | 
 | 			rate_num = 1; | 
 | 			rate_denum = 2; | 
 | 			break; | 
 | 		case FEC_2_3: | 
 | 			rate_num = 2; | 
 | 			rate_denum = 3; | 
 | 			break; | 
 | 		case FEC_3_4: | 
 | 			rate_num = 3; | 
 | 			rate_denum = 4; | 
 | 			break; | 
 | 		case FEC_5_6: | 
 | 			rate_num = 5; | 
 | 			rate_denum = 6; | 
 | 			break; | 
 | 		default: | 
 | 		case FEC_7_8: | 
 | 			rate_num = 7; | 
 | 			rate_denum = 8; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		interleaving = c->layer[i].interleaving; | 
 |  | 
 | 		denom += bits_per_symbol * rate_num * fft_div * nsegs * 384; | 
 | 	} | 
 |  | 
 | 	/* If all goes wrong, wait for 1s for the next stats */ | 
 | 	if (!denom) | 
 | 		return 0; | 
 |  | 
 | 	/* Estimate the period for the total bit rate */ | 
 | 	time_us = rate_denum * (1008 * 1562500L); | 
 | 	tmp64 = time_us; | 
 | 	do_div(tmp64, guard); | 
 | 	time_us = time_us + tmp64; | 
 | 	time_us += denom / 2; | 
 | 	do_div(time_us, denom); | 
 |  | 
 | 	tmp = 1008 * 96 * interleaving; | 
 | 	time_us += tmp + tmp / guard; | 
 |  | 
 | 	return time_us; | 
 | } | 
 |  | 
 | static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; | 
 | 	int i; | 
 | 	int show_per_stats = 0; | 
 | 	u32 time_us = 0, snr, val; | 
 | 	u64 blocks; | 
 | 	s32 db; | 
 | 	u16 strength; | 
 |  | 
 | 	/* Get Signal strength */ | 
 | 	dib8000_read_signal_strength(fe, &strength); | 
 | 	val = strength; | 
 | 	db = interpolate_value(val, | 
 | 			       strength_to_db_table, | 
 | 			       ARRAY_SIZE(strength_to_db_table)) - 131000; | 
 | 	c->strength.stat[0].svalue = db; | 
 |  | 
 | 	/* UCB/BER/CNR measures require lock */ | 
 | 	if (!(stat & FE_HAS_LOCK)) { | 
 | 		c->cnr.len = 1; | 
 | 		c->block_count.len = 1; | 
 | 		c->block_error.len = 1; | 
 | 		c->post_bit_error.len = 1; | 
 | 		c->post_bit_count.len = 1; | 
 | 		c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 		c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 		c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check if time for stats was elapsed */ | 
 | 	if (time_after(jiffies, state->per_jiffies_stats)) { | 
 | 		state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); | 
 |  | 
 | 		/* Get SNR */ | 
 | 		snr = dib8000_get_snr(fe); | 
 | 		for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) { | 
 | 			if (state->fe[i]) | 
 | 				snr += dib8000_get_snr(state->fe[i]); | 
 | 		} | 
 | 		snr = snr >> 16; | 
 |  | 
 | 		if (snr) { | 
 | 			snr = 10 * intlog10(snr); | 
 | 			snr = (1000L * snr) >> 24; | 
 | 		} else { | 
 | 			snr = 0; | 
 | 		} | 
 | 		c->cnr.stat[0].svalue = snr; | 
 | 		c->cnr.stat[0].scale = FE_SCALE_DECIBEL; | 
 |  | 
 | 		/* Get UCB measures */ | 
 | 		dib8000_read_unc_blocks(fe, &val); | 
 | 		if (val < state->init_ucb) | 
 | 			state->init_ucb += 0x100000000LL; | 
 |  | 
 | 		c->block_error.stat[0].scale = FE_SCALE_COUNTER; | 
 | 		c->block_error.stat[0].uvalue = val + state->init_ucb; | 
 |  | 
 | 		/* Estimate the number of packets based on bitrate */ | 
 | 		if (!time_us) | 
 | 			time_us = dib8000_get_time_us(fe, -1); | 
 |  | 
 | 		if (time_us) { | 
 | 			blocks = 1250000ULL * 1000000ULL; | 
 | 			do_div(blocks, time_us * 8 * 204); | 
 | 			c->block_count.stat[0].scale = FE_SCALE_COUNTER; | 
 | 			c->block_count.stat[0].uvalue += blocks; | 
 | 		} | 
 |  | 
 | 		show_per_stats = 1; | 
 | 	} | 
 |  | 
 | 	/* Get post-BER measures */ | 
 | 	if (time_after(jiffies, state->ber_jiffies_stats)) { | 
 | 		time_us = dib8000_get_time_us(fe, -1); | 
 | 		state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); | 
 |  | 
 | 		dprintk("Next all layers stats available in %u us.\n", time_us); | 
 |  | 
 | 		dib8000_read_ber(fe, &val); | 
 | 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; | 
 | 		c->post_bit_error.stat[0].uvalue += val; | 
 |  | 
 | 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; | 
 | 		c->post_bit_count.stat[0].uvalue += 100000000; | 
 | 	} | 
 |  | 
 | 	if (state->revision < 0x8002) | 
 | 		return 0; | 
 |  | 
 | 	c->block_error.len = 4; | 
 | 	c->post_bit_error.len = 4; | 
 | 	c->post_bit_count.len = 4; | 
 |  | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		unsigned nsegs = c->layer[i].segment_count; | 
 |  | 
 | 		if (nsegs == 0 || nsegs > 13) | 
 | 			continue; | 
 |  | 
 | 		time_us = 0; | 
 |  | 
 | 		if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) { | 
 | 			time_us = dib8000_get_time_us(fe, i); | 
 |  | 
 | 			state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000); | 
 | 			dprintk("Next layer %c  stats will be available in %u us\n", | 
 | 				'A' + i, time_us); | 
 |  | 
 | 			val = dib8000_read_word(state, per_layer_regs[i].ber); | 
 | 			c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; | 
 | 			c->post_bit_error.stat[1 + i].uvalue += val; | 
 |  | 
 | 			c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; | 
 | 			c->post_bit_count.stat[1 + i].uvalue += 100000000; | 
 | 		} | 
 |  | 
 | 		if (show_per_stats) { | 
 | 			val = dib8000_read_word(state, per_layer_regs[i].per); | 
 |  | 
 | 			c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER; | 
 | 			c->block_error.stat[1 + i].uvalue += val; | 
 |  | 
 | 			if (!time_us) | 
 | 				time_us = dib8000_get_time_us(fe, i); | 
 | 			if (time_us) { | 
 | 				blocks = 1250000ULL * 1000000ULL; | 
 | 				do_div(blocks, time_us * 8 * 204); | 
 | 				c->block_count.stat[0].scale = FE_SCALE_COUNTER; | 
 | 				c->block_count.stat[0].uvalue += blocks; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 | 	u8 index_frontend = 1; | 
 |  | 
 | 	while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) | 
 | 		index_frontend++; | 
 | 	if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { | 
 | 		dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); | 
 | 		state->fe[index_frontend] = fe_slave; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	dprintk("too many slave frontend\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) | 
 | { | 
 | 	struct dib8000_state *state = fe->demodulator_priv; | 
 |  | 
 | 	if (slave_index >= MAX_NUMBER_OF_FRONTENDS) | 
 | 		return NULL; | 
 | 	return state->fe[slave_index]; | 
 | } | 
 |  | 
 | static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, | 
 | 		u8 default_addr, u8 first_addr, u8 is_dib8096p) | 
 | { | 
 | 	int k = 0, ret = 0; | 
 | 	u8 new_addr = 0; | 
 | 	struct i2c_device client = {.adap = host }; | 
 |  | 
 | 	client.i2c_write_buffer = kzalloc(4, GFP_KERNEL); | 
 | 	if (!client.i2c_write_buffer) { | 
 | 		dprintk("%s: not enough memory\n", __func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	client.i2c_read_buffer = kzalloc(4, GFP_KERNEL); | 
 | 	if (!client.i2c_read_buffer) { | 
 | 		dprintk("%s: not enough memory\n", __func__); | 
 | 		ret = -ENOMEM; | 
 | 		goto error_memory_read; | 
 | 	} | 
 | 	client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL); | 
 | 	if (!client.i2c_buffer_lock) { | 
 | 		dprintk("%s: not enough memory\n", __func__); | 
 | 		ret = -ENOMEM; | 
 | 		goto error_memory_lock; | 
 | 	} | 
 | 	mutex_init(client.i2c_buffer_lock); | 
 |  | 
 | 	for (k = no_of_demods - 1; k >= 0; k--) { | 
 | 		/* designated i2c address */ | 
 | 		new_addr = first_addr + (k << 1); | 
 |  | 
 | 		client.addr = new_addr; | 
 | 		if (!is_dib8096p) | 
 | 			dib8000_i2c_write16(&client, 1287, 0x0003);	/* sram lead in, rdy */ | 
 | 		if (dib8000_identify(&client) == 0) { | 
 | 			/* sram lead in, rdy */ | 
 | 			if (!is_dib8096p) | 
 | 				dib8000_i2c_write16(&client, 1287, 0x0003); | 
 | 			client.addr = default_addr; | 
 | 			if (dib8000_identify(&client) == 0) { | 
 | 				dprintk("#%d: not identified\n", k); | 
 | 				ret  = -EINVAL; | 
 | 				goto error; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* start diversity to pull_down div_str - just for i2c-enumeration */ | 
 | 		dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6)); | 
 |  | 
 | 		/* set new i2c address and force divstart */ | 
 | 		dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2); | 
 | 		client.addr = new_addr; | 
 | 		dib8000_identify(&client); | 
 |  | 
 | 		dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); | 
 | 	} | 
 |  | 
 | 	for (k = 0; k < no_of_demods; k++) { | 
 | 		new_addr = first_addr | (k << 1); | 
 | 		client.addr = new_addr; | 
 |  | 
 | 		// unforce divstr | 
 | 		dib8000_i2c_write16(&client, 1285, new_addr << 2); | 
 |  | 
 | 		/* deactivate div - it was just for i2c-enumeration */ | 
 | 		dib8000_i2c_write16(&client, 1286, 0); | 
 | 	} | 
 |  | 
 | error: | 
 | 	kfree(client.i2c_buffer_lock); | 
 | error_memory_lock: | 
 | 	kfree(client.i2c_read_buffer); | 
 | error_memory_read: | 
 | 	kfree(client.i2c_write_buffer); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) | 
 | { | 
 | 	tune->min_delay_ms = 1000; | 
 | 	tune->step_size = 0; | 
 | 	tune->max_drift = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dib8000_release(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib8000_state *st = fe->demodulator_priv; | 
 | 	u8 index_frontend; | 
 |  | 
 | 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) | 
 | 		dvb_frontend_detach(st->fe[index_frontend]); | 
 |  | 
 | 	dibx000_exit_i2c_master(&st->i2c_master); | 
 | 	i2c_del_adapter(&st->dib8096p_tuner_adap); | 
 | 	kfree(st->fe[0]); | 
 | 	kfree(st); | 
 | } | 
 |  | 
 | static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) | 
 | { | 
 | 	struct dib8000_state *st = fe->demodulator_priv; | 
 | 	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); | 
 | } | 
 |  | 
 | static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) | 
 | { | 
 | 	struct dib8000_state *st = fe->demodulator_priv; | 
 | 	u16 val = dib8000_read_word(st, 299) & 0xffef; | 
 | 	val |= (onoff & 0x1) << 4; | 
 |  | 
 | 	dprintk("pid filter enabled %d\n", onoff); | 
 | 	return dib8000_write_word(st, 299, val); | 
 | } | 
 |  | 
 | static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) | 
 | { | 
 | 	struct dib8000_state *st = fe->demodulator_priv; | 
 | 	dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); | 
 | 	return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0); | 
 | } | 
 |  | 
 | static const struct dvb_frontend_ops dib8000_ops = { | 
 | 	.delsys = { SYS_ISDBT }, | 
 | 	.info = { | 
 | 		 .name = "DiBcom 8000 ISDB-T", | 
 | 		 .frequency_min_hz =  44250 * kHz, | 
 | 		 .frequency_max_hz = 867250 * kHz, | 
 | 		 .frequency_stepsize_hz = 62500, | 
 | 		 .caps = FE_CAN_INVERSION_AUTO | | 
 | 		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | | 
 | 		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | | 
 | 		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | | 
 | 		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, | 
 | 		 }, | 
 |  | 
 | 	.release = dib8000_release, | 
 |  | 
 | 	.init = dib8000_wakeup, | 
 | 	.sleep = dib8000_sleep, | 
 |  | 
 | 	.set_frontend = dib8000_set_frontend, | 
 | 	.get_tune_settings = dib8000_fe_get_tune_settings, | 
 | 	.get_frontend = dib8000_get_frontend, | 
 |  | 
 | 	.read_status = dib8000_read_status, | 
 | 	.read_ber = dib8000_read_ber, | 
 | 	.read_signal_strength = dib8000_read_signal_strength, | 
 | 	.read_snr = dib8000_read_snr, | 
 | 	.read_ucblocks = dib8000_read_unc_blocks, | 
 | }; | 
 |  | 
 | static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg) | 
 | { | 
 | 	struct dvb_frontend *fe; | 
 | 	struct dib8000_state *state; | 
 |  | 
 | 	dprintk("dib8000_init\n"); | 
 |  | 
 | 	state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL); | 
 | 	if (state == NULL) | 
 | 		return NULL; | 
 | 	fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); | 
 | 	if (fe == NULL) | 
 | 		goto error; | 
 |  | 
 | 	memcpy(&state->cfg, cfg, sizeof(struct dib8000_config)); | 
 | 	state->i2c.adap = i2c_adap; | 
 | 	state->i2c.addr = i2c_addr; | 
 | 	state->i2c.i2c_write_buffer = state->i2c_write_buffer; | 
 | 	state->i2c.i2c_read_buffer = state->i2c_read_buffer; | 
 | 	mutex_init(&state->i2c_buffer_lock); | 
 | 	state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock; | 
 | 	state->gpio_val = cfg->gpio_val; | 
 | 	state->gpio_dir = cfg->gpio_dir; | 
 |  | 
 | 	/* Ensure the output mode remains at the previous default if it's | 
 | 	 * not specifically set by the caller. | 
 | 	 */ | 
 | 	if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) | 
 | 		state->cfg.output_mode = OUTMODE_MPEG2_FIFO; | 
 |  | 
 | 	state->fe[0] = fe; | 
 | 	fe->demodulator_priv = state; | 
 | 	memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops)); | 
 |  | 
 | 	state->timf_default = cfg->pll->timf; | 
 |  | 
 | 	if (dib8000_identify(&state->i2c) == 0) | 
 | 		goto error; | 
 |  | 
 | 	dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr); | 
 |  | 
 | 	/* init 8096p tuner adapter */ | 
 | 	strncpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface", | 
 | 			sizeof(state->dib8096p_tuner_adap.name)); | 
 | 	state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo; | 
 | 	state->dib8096p_tuner_adap.algo_data = NULL; | 
 | 	state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent; | 
 | 	i2c_set_adapdata(&state->dib8096p_tuner_adap, state); | 
 | 	i2c_add_adapter(&state->dib8096p_tuner_adap); | 
 |  | 
 | 	dib8000_reset(fe); | 
 |  | 
 | 	dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));	/* ber_rs_len = 3 */ | 
 | 	state->current_demod_bw = 6000; | 
 |  | 
 | 	return fe; | 
 |  | 
 | error: | 
 | 	kfree(state); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void *dib8000_attach(struct dib8000_ops *ops) | 
 | { | 
 | 	if (!ops) | 
 | 		return NULL; | 
 |  | 
 | 	ops->pwm_agc_reset = dib8000_pwm_agc_reset; | 
 | 	ops->get_dc_power = dib8090p_get_dc_power; | 
 | 	ops->set_gpio = dib8000_set_gpio; | 
 | 	ops->get_slave_frontend = dib8000_get_slave_frontend; | 
 | 	ops->set_tune_state = dib8000_set_tune_state; | 
 | 	ops->pid_filter_ctrl = dib8000_pid_filter_ctrl; | 
 | 	ops->get_adc_power = dib8000_get_adc_power; | 
 | 	ops->update_pll = dib8000_update_pll; | 
 | 	ops->tuner_sleep = dib8096p_tuner_sleep; | 
 | 	ops->get_tune_state = dib8000_get_tune_state; | 
 | 	ops->get_i2c_tuner = dib8096p_get_i2c_tuner; | 
 | 	ops->set_slave_frontend = dib8000_set_slave_frontend; | 
 | 	ops->pid_filter = dib8000_pid_filter; | 
 | 	ops->ctrl_timf = dib8000_ctrl_timf; | 
 | 	ops->init = dib8000_init; | 
 | 	ops->get_i2c_master = dib8000_get_i2c_master; | 
 | 	ops->i2c_enumeration = dib8000_i2c_enumeration; | 
 | 	ops->set_wbd_ref = dib8000_set_wbd_ref; | 
 |  | 
 | 	return ops; | 
 | } | 
 | EXPORT_SYMBOL(dib8000_attach); | 
 |  | 
 | MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>"); | 
 | MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator"); | 
 | MODULE_LICENSE("GPL"); |