blob: 0ef8d3e6573b30eabeeb1eddd14fde7f54abbf4a [file] [log] [blame]
// SPDX-License-Identifier: MediaTekProprietary
/* //device/libs/telephony/ril.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "RILC"
#include "mtk_log.h"
#include <mtk_power.h>
#include <telephony/ril_cdma_sms.h>
#include <telephony/mtk_ril.h>
#include <telephony/mtk_ril_ivt.h>
#include <libmtkrilutils.h>
#include <cutils/sockets.h>
#include <cutils/jstring.h>
#include <telephony/record_stream.h>
#include <log/mtk_log.h>
#include <utils/SystemClock.h>
#include <pthread.h>
#include <binder/Parcel.h>
#include <cutils/jstring.h>
#include <sys/types.h>
#include <limits.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <assert.h>
#include <ctype.h>
#include <sys/un.h>
#include <assert.h>
#include <netinet/in.h>
#include <mtk_properties.h>
#include <RilSapSocket.h>
#include <semaphore.h>
#if !defined(__ANDROID__)
#include <signal.h>
#endif
/// M: eMBMS feature
#include <telephony/mtk_ril_embms_def.h>
#include <telephony/mtk_ril_request_info.h>
#ifdef HAVE_AEE_FEATURE
#include "aee.h"
#endif
#include <netagent/NetAgentService.h>
extern "C" void
RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen);
extern "C" void
RIL_onRequestAck(RIL_Token t);
/// MTK_RIL_ADAPTER @{
extern "C" void
RIL_onIssueLocalRequest(int request, void *data, int len, RIL_SOCKET_ID socket_id);
/// @}
extern void
onRequest (int request, Parcel *parcel, RIL_Token t, RIL_SOCKET_ID socket_id);
namespace android {
#define PHONE_PROCESS "radio"
#define BLUETOOTH_PROCESS "bluetooth"
#define SOCKET_NAME_RIL_NORMAL "rild"
#define SOCKET2_NAME_RIL_NORMAL "rild2"
#define SOCKET3_NAME_RIL_NORMAL "rild3"
#define SOCKET4_NAME_RIL_NORMAL "rild4"
#define SOCKET_NAME_RIL_TEST "rild-test"
#define SOCKET2_NAME_RIL_TEST "rild2-test"
#define SOCKET3_NAME_RIL_TEST "rild3-test"
#define SOCKET4_NAME_RIL_TEST "rild4-test"
const char socket_status[RIL_SLOT_MAX][35]= {
"rild.socket.status1",
"rild.socket.status2",
};
char semName[RIL_SLOT_MAX][20] = {
"/sem_socket1",
"/sem_socket2",
};
extern "C" const char * RIL_getRilSocketNameById(RIL_SOCKET_ID socket_id) {
const char* socket_name;
char test_mode[PROP_VALUE_MAX] = {0};
mtk_property_get("persist.ril.test_mode", test_mode, "0");
if (strcmp(test_mode, "0") == 0) {
switch (socket_id) {
case RIL_SOCKET_1:
socket_name = SOCKET_NAME_RIL_NORMAL;
break;
case RIL_SOCKET_2:
socket_name = SOCKET2_NAME_RIL_NORMAL;
break;
case RIL_SOCKET_3:
socket_name = SOCKET3_NAME_RIL_NORMAL;
break;
case RIL_SOCKET_4:
socket_name = SOCKET4_NAME_RIL_NORMAL;
break;
default:
RLOGE("Socket id is wrong!!");
return NULL;
}
} else { //test mode
RLOGD("getRilSocketNameById %d under debug mode!", socket_id);
switch (socket_id) {
case RIL_SOCKET_1:
socket_name = SOCKET_NAME_RIL_TEST;
break;
case RIL_SOCKET_2:
socket_name = SOCKET2_NAME_RIL_TEST;
break;
case RIL_SOCKET_3:
socket_name = SOCKET3_NAME_RIL_TEST;
break;
case RIL_SOCKET_4:
socket_name = SOCKET4_NAME_RIL_TEST;
break;
default:
RLOGE("Socket id is wrong!!");
return NULL;
}
}
return socket_name;
}
#define SOCKET_NAME_RIL RIL_getRilSocketNameById(RIL_SOCKET_1)
#define SOCKET2_NAME_RIL RIL_getRilSocketNameById(RIL_SOCKET_2)
#define SOCKET3_NAME_RIL RIL_getRilSocketNameById(RIL_SOCKET_3)
#define SOCKET4_NAME_RIL RIL_getRilSocketNameById(RIL_SOCKET_4)
#define SOCKET_NAME_RIL_DEBUG "rild-debug"
#define ANDROID_WAKE_LOCK_NAME "radio-interface"
#define ANDROID_WAKE_LOCK_SECS 0
#define ANDROID_WAKE_LOCK_USECS 200000
#define CONF_CALL_ID_SHIFT 100
#define PROPERTY_RIL_IMPL "gsm.version.ril-impl"
// match with constant in RIL.java
#define MAX_COMMAND_BYTES (20 * 1024)
// Basically: memset buffers that the client library
// shouldn't be using anymore in an attempt to find
// memory usage issues sooner.
#define MEMSET_FREED 1
#define NUM_ELEMS(a) (sizeof (a) / sizeof (a)[0])
#define MIN(a,b) ((a)<(b) ? (a) : (b))
/* Constants for response types */
#define RESPONSE_SOLICITED 0
#define RESPONSE_UNSOLICITED 1
#define RESPONSE_SOLICITED_ACK 2
#define RESPONSE_SOLICITED_ACK_EXP 3
#define RESPONSE_UNSOLICITED_ACK_EXP 4
/* Negative values for private RIL errno's */
#define RIL_ERRNO_INVALID_RESPONSE -1
#define RIL_ERRNO_NO_MEMORY -12
// request, response, and unsolicited msg print macro
#define PRINTBUF_SIZE 8096
// Enable verbose logging
#define VDBG 1
#define RILJDBG 0
// Enable RILC log
#define RILC_LOG 0
#if RILC_LOG
#define startRequest sprintf(printBuf, "(")
#define closeRequest sprintf(printBuf, "%s)", printBuf)
#define printRequest(token, req) \
RLOGD("[%04d]> %s %s", token, requestToString(req), printBuf)
#define startResponse sprintf(printBuf, "%s {", printBuf)
#define closeResponse sprintf(printBuf, "%s}", printBuf)
#define printResponse RLOGD("%s", printBuf)
#define clearPrintBuf printBuf[0] = 0
#define removeLastChar printBuf[strlen(printBuf)-1] = 0
#define appendPrintBuf(x...) snprintf(printBuf, PRINTBUF_SIZE, x)
#else
#define startRequest
#define closeRequest
#define printRequest(token, req)
#define startResponse
#define closeResponse
#define printResponse
#define clearPrintBuf
#define removeLastChar
#define appendPrintBuf(x...)
#endif
enum WakeType {DONT_WAKE, WAKE_PARTIAL};
// MTK-START [mtk80776] WiFi Calling
typedef struct {
int sessionId; /* for +CRLA */
int command; /* one of the commands listed for TS 27.007 +CRSM/CRLA*/
int fileId; /* EF id */
char *path; /* "pathid" from TS 27.007 +CRSM command.
Path is in hex asciii format eg "7f205f70"
Path must always be provided.
*/
int p1;
int p2;
int p3;
char *data; /* May be NULL*/
char *pin2; /* May be NULL*/
char *aidPtr; /* AID value, See ETSI 102.221 8.1 and 101.220 4, NULL if no value. */
} RIL_UICC_IO_v6;
typedef struct {
int session_id;
char *context1;
char *context2;
} RIL_UICC_Authentication;
// [New R8 modem FD]
typedef struct {
int argsNum; // record total number of arguments of this mode
int mode; // allowed mode:0,1,2,3
int parameter1; // only mode 2 and 3 has parameter1 this field
int parameter2; // only mode2 has parameter2 this field
}RIL_FdModeData;
typedef struct {
int type; /* type of the entry, refer to RIL_PhbStorageType */
int index; /* the stored index of the entry */
char *number; /* the phone number */
int ton; /* type of the number */
char * alphaId; /* the alpha ID, using Hexdecimal coding method */
} RIL_PhbEntryStrucutre;
typedef struct {
int requestNumber;
int (*responseFunction) (Parcel &p, void *response, size_t responselen);
WakeType wakeType;
} UnsolResponseInfo;
typedef struct UserCallbackInfo {
RIL_TimedCallback p_callback;
void *userParam;
struct ril_event event;
struct UserCallbackInfo *p_next;
} UserCallbackInfo;
extern "C" const char * requestToString(int request);
extern "C" const char * failCauseToString(RIL_Errno);
extern "C" const char * callStateToString(RIL_CallState);
extern "C" const char * radioStateToString(RIL_RadioState);
extern "C" const char * rilSocketIdToString(RIL_SOCKET_ID socket_id);
extern "C"
char rild[MAX_SOCKET_NAME_LENGTH] = { 0 };
/*******************************************************************/
RIL_RadioFunctions s_callbacks = {0, NULL, NULL, NULL, NULL, NULL};
static int s_registerCalled = 0;
static pthread_t s_tid_dispatch;
static pthread_t s_tid_reader;
static int s_started = 0;
static int s_fdDebug = -1;
static int s_fdDebug_socket2 = -1;
static int s_fdWakeupRead;
static int s_fdWakeupWrite;
int s_wakelock_count = 0;
static struct ril_event s_commands_event;
static struct ril_event s_wakeupfd_event;
static struct ril_event s_listen_event;
static SocketListenParam s_ril_param_socket;
static pthread_mutex_t s_pendingRequestsMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_wakeLockCountMutex = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests = NULL;
static struct ril_event s_commands_event_socket2;
static struct ril_event s_listen_event_socket2;
static SocketListenParam s_ril_param_socket2;
static pthread_mutex_t s_pendingRequestsMutex_socket2 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket2 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket2 = NULL;
static struct ril_event s_commands_event_socket3;
static struct ril_event s_listen_event_socket3;
static SocketListenParam s_ril_param_socket3;
static pthread_mutex_t s_pendingRequestsMutex_socket3 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket3 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket3 = NULL;
static struct ril_event s_commands_event_socket4;
static struct ril_event s_listen_event_socket4;
static SocketListenParam s_ril_param_socket4;
static pthread_mutex_t s_pendingRequestsMutex_socket4 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket4 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket4 = NULL;
// support for multi-client socket
static struct ril_event* s_commands_event_socket_client;
static struct ril_event* s_listen_event_socket_client;
static SocketListenParam* s_ril_param_socket_clients;
static pthread_mutex_t* s_pendingRequestsMutex_socket_client;
static pthread_mutex_t* s_writeMutex_socket_client;
static RequestInfo **s_pendingRequests_socket_client;
/* RILJ client socket @{ */
static struct ril_event s_commands_event_socket_rilj;
static struct ril_event s_listen_event_socket_rilj;
static SocketListenParam s_ril_param_socket_rilj;
static pthread_mutex_t s_pendingRequestsMutex_socket_rilj = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket_rilj = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket_rilj = NULL;
static struct ril_event s_commands_event_socket_rilj2;
static struct ril_event s_listen_event_socket_rilj2;
static SocketListenParam s_ril_param_socket_rilj2;
static pthread_mutex_t s_pendingRequestsMutex_socket_rilj2 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t s_writeMutex_socket_rilj2 = PTHREAD_MUTEX_INITIALIZER;
static RequestInfo *s_pendingRequests_socket_rilj2 = NULL;
static SocketListenParam* s_rilj_socket_params[] = {
&s_ril_param_socket_rilj, &s_ril_param_socket_rilj2 };
static SocketListenParam* s_ril_socket_params[] = { &s_ril_param_socket,
&s_ril_param_socket2, &s_ril_param_socket3, &s_ril_param_socket4,
&s_ril_param_socket_rilj, &s_ril_param_socket_rilj2 };
#define SOCKET_NAME_RILJCLIENT "rild-rilj"
#define SOCKET2_NAME_RILJCLIENT "rild-rilj2"
static int s_riljclient_support = -1;
#define RILJ_CLIENT_SUPPORT_KEY "persist.ril.riljsupport"
/* }@ */
static struct ril_event s_wake_timeout_event;
static struct ril_event s_debug_event;
static const struct timeval TIMEVAL_WAKE_TIMEOUT = {ANDROID_WAKE_LOCK_SECS,ANDROID_WAKE_LOCK_USECS};
static pthread_mutex_t s_startupMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t s_startupCond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t s_dispatchMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t s_dispatchCond = PTHREAD_COND_INITIALIZER;
static RequestInfo *s_toDispatchHead = NULL;
static RequestInfo *s_toDispatchTail = NULL;
static UserCallbackInfo *s_last_wake_timeout_info = NULL;
static void *s_lastNITZTimeData = NULL;
static size_t s_lastNITZTimeDataSize;
#if RILC_LOG
static char printBuf[PRINTBUF_SIZE];
#endif
// M: cache URC when RILJ socket is not connected
typedef struct AtResponseList {
int id;
Parcel* data;
size_t datalen;
AtResponseList *pNext;
} AtResponseList;
void cacheUrc(int unsolResponse, const void *data, size_t datalen, RIL_SOCKET_ID id);
void sendPendedUrcs(RIL_SOCKET_ID socket_id, int fdCommand);
void sendUrc(RIL_SOCKET_ID socket_id, AtResponseList * urcCached);
bool isDsds();
int haveActiveFd(int socket_id);
static AtResponseList* pendedUrcList1 = NULL;
static AtResponseList* pendedUrcList2 = NULL;
static AtResponseList* pendedUrcList3 = NULL;
static AtResponseList* pendedUrcList4 = NULL;
static AtResponseList* pendedUrcList_rilj = NULL;
static AtResponseList* pendedUrcList_rilj2 = NULL;
pthread_mutex_t s_pendingUrcMutex[RIL_SOCKET_NUM];
static int s_fdCommand[RIL_SOCKET_NUM];
// extern "C" int SIM_COUNT = 2;
static pthread_mutex_t s_state_mutex[RIL_SOCKET_NUM];
static int *s_fdCommand_client;
/*******************************************************************/
static int sendResponse (Parcel &p, RIL_SOCKET_ID socket_id, int clientId);
static void dispatchVoid (Parcel& p, RequestInfo *pRI);
static void dispatchString (Parcel& p, RequestInfo *pRI);
static void dispatchStrings (Parcel& p, RequestInfo *pRI);
static void dispatchInts (Parcel& p, RequestInfo *pRI);
static void dispatchDial (Parcel& p, RequestInfo *pRI);
static void dispatchSIM_IO (Parcel& p, RequestInfo *pRI);
static void dispatchSIM_APDU (Parcel& p, RequestInfo *pRI);
static void dispatchCallForward(Parcel& p, RequestInfo *pRI);
static void dispatchCallForwardEx(Parcel& p, RequestInfo *pRI);
static void dispatchRaw(Parcel& p, RequestInfo *pRI);
static void dispatchSmsWrite (Parcel &p, RequestInfo *pRI);
static void dispatchDataCall (Parcel& p, RequestInfo *pRI);
static void dispatchSetInitialAttachApn (Parcel& p, RequestInfo *pRI);
static void dispatchCdmaSms(Parcel &p, RequestInfo *pRI);
static void dispatchImsSms(Parcel &p, RequestInfo *pRI);
static void dispatchImsCdmaSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef);
static void dispatchImsGsmSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef);
static void dispatchCdmaSmsAck(Parcel &p, RequestInfo *pRI);
static void dispatchGsmBrSmsCnf(Parcel &p, RequestInfo *pRI);
static void dispatchCdmaBrSmsCnf(Parcel &p, RequestInfo *pRI);
static void dispatchRilCdmaSmsWriteArgs(Parcel &p, RequestInfo *pRI);
static void dispatchNVReadItem(Parcel &p, RequestInfo *pRI);
static void dispatchNVWriteItem(Parcel &p, RequestInfo *pRI);
static void dispatchUiccSubscripton(Parcel &p, RequestInfo *pRI);
static void dispatchSimAuthentication(Parcel &p, RequestInfo *pRI);
static void dispatchDataProfile(Parcel &p, RequestInfo *pRI);
static void dispatchRadioCapability(Parcel &p, RequestInfo *pRI);
static void dispatchCarrierRestrictions(Parcel &p, RequestInfo *pRI);
//MTK-START [mtk80776] WiFi Calling
static void dispatchUiccIo(Parcel &p, RequestInfo *pRI);
static void dispatchUiccAuthentication(Parcel &p, RequestInfo *pRI);
//MTK-END [mtk80776] WiFi Calling
// New SIM Authentication
static void dispatchSimAuth(Parcel &p, RequestInfo *pRI);
//[New R8 modem FD]
static void dispatchFdMode(Parcel &p, RequestInfo *pRI);
//MTK-START PHB
static void dispatchPhbEntry(Parcel &p, RequestInfo *pRI);
static void dispatchWritePhbEntryExt(Parcel &p, RequestInfo *pRI);
//MTK-END PHB
//MTK-START SMS
static void dispatchSmsParams(Parcel &p, RequestInfo *pRI);
//MTK-END SMS
// MTK-START: SIM OPEN CHANNEL WITH P2
static void dispatchOpenChannelParams(Parcel &p, RequestInfo *pRI);
// MTK-END
// Add for porting telematics
static void dispatchNetworkScan(Parcel &p, RequestInfo *pRI);
static void dispatchLinkCapacityReportingCriteria(Parcel &p, RequestInfo *pRI);
static int responseNetworkScanResult(Parcel &p, void *response, size_t responselen);
static int responseQueryNetworkLock(android::Parcel &p, void *response, size_t responselen);
static void dispatchEcallSetMsd(Parcel &p, RequestInfo *pRI);
static void dispatchFastMakeEcall(Parcel &p, RequestInfo *pRI);
static void dispatchEcallSetNum(Parcel &p, RequestInfo *pRI);
static int responseEcallInd(Parcel &p, void *response, size_t responselen);
// M: [VzW] Data Framework
static int responsePcoDataAfterAttached(Parcel &p, void *response, size_t responselen);
static int responseLinkCapacityEstimate(Parcel &p, void *response, size_t responselen);
static int responseInts(Parcel &p, void *response, size_t responselen);
static int responseFailCause(Parcel &p, void *response, size_t responselen);
static int responseStrings(Parcel &p, void *response, size_t responselen);
static int responseString(Parcel &p, void *response, size_t responselen);
static int responseVoid(Parcel &p, void *response, size_t responselen);
static int responseCallList(Parcel &p, void *response, size_t responselen);
static int responseSMS(Parcel &p, void *response, size_t responselen);
static int responseSIM_IO(Parcel &p, void *response, size_t responselen);
static int responseCallForwards(Parcel &p, void *response, size_t responselen);
static int responseCallForwardsEx(Parcel &p, void *response, size_t responselen);
static int responseDataCallList(Parcel &p, void *response, size_t responselen);
static int responseSetupDataCall(Parcel &p, void *response, size_t responselen);
static int responseRaw(Parcel &p, void *response, size_t responselen);
static int responseSsn(Parcel &p, void *response, size_t responselen);
static int responseSimStatus(Parcel &p, void *response, size_t responselen);
static int responseGsmBrSmsCnf(Parcel &p, void *response, size_t responselen);
static int responseCdmaBrSmsCnf(Parcel &p, void *response, size_t responselen);
static int responseCdmaSms(Parcel &p, void *response, size_t responselen);
static int responseCellList(Parcel &p, void *response, size_t responselen);
static int responseCdmaInformationRecords(Parcel &p,void *response, size_t responselen);
static int responseRilSignalStrength(Parcel &p,void *response, size_t responselen);
static int responseCallRing(Parcel &p, void *response, size_t responselen);
static int responseCdmaSignalInfoRecord(Parcel &p,void *response, size_t responselen);
static int responseCdmaCallWaiting(Parcel &p,void *response, size_t responselen);
static int responseSimRefresh(Parcel &p, void *response, size_t responselen);
static int responseCellInfoList(Parcel &p, void *response, size_t responselen);
static int responseGetSmsSimMemStatusCnf(Parcel &p,void *response, size_t responselen);
static int responseEtwsNotification(Parcel &p, void *response, size_t responselen);
static int responseHardwareConfig(Parcel &p, void *response, size_t responselen);
static int responseDcRtInfo(Parcel &p, void *response, size_t responselen);
static int responseRadioCapability(Parcel &p, void *response, size_t responselen);
static int responseSSData(Parcel &p, void *response, size_t responselen);
static int responseLceStatus(Parcel &p, void *response, size_t responselen);
static int responseLceData(Parcel &p, void *response, size_t responselen);
static int responseActivityData(Parcel &p, void *response, size_t responselen);
static int responseCarrierRestrictions(Parcel &p, void *response, size_t responselen);
static int responsePcoData(Parcel &p, void *response, size_t responselen);
static int responseCrssN(Parcel &p, void *response, size_t responselen);
//MTK-START PHB
static int responsePhbEntries(Parcel &p,void *response, size_t responselen);
static int responseGetPhbMemStorage(Parcel &p,void *response, size_t responselen);
static int responseReadPhbEntryExt(Parcel &p,void *response, size_t responselen);
//MTK-END PHB
static int responseImsBearerNotify(Parcel &p, void *response, size_t responselen);
//MTK-START SMS
static int responseSmsParams(Parcel &p, void *response, size_t responselen);
//MTK-END SMS
static int decodeVoiceRadioTechnology (RIL_RadioState radioState);
static int decodeCdmaSubscriptionSource (RIL_RadioState radioState);
// static RIL_RadioState processRadioState(RIL_RadioState newRadioState);
static void grabPartialWakeLock();
static void releaseWakeLock();
static void wakeTimeoutCallback(void *);
static bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType);
static bool isDebuggable();
/// M: eMBMS feature
static int responseEmbmsEnable(Parcel &p, void *response, size_t responselen);
static int responseEmbmsDisable(Parcel &p, void *response, size_t responselen);
static void dispatchEmbmsStartSessionInfo(Parcel &p, RequestInfo *pRI);
static void dispatchEmbmsStopSessionInfo(Parcel &p, RequestInfo *pRI);
static int responseEmbmsSessionInfo(Parcel &p, void *response, size_t responselen);
static int responseEmbmsNetworkTime(Parcel &p, void *response, size_t responselen);
static int responseEmbmsGetCoverageState(Parcel &p, void *response, size_t responselen);
static int responseEmbmsOosNotify(Parcel &p, void *response, size_t responselen);
static int responseEmbmsActiveSessionNotify(Parcel &p, void *response, size_t responselen);
static int responseEmbmsCellInfoNotify(Parcel &p, void *response, size_t responselen);
static int responseEmbmsSaiNotify(Parcel &p, void *response, size_t responselen);
static int responseEmbmsModemEeNotify(Parcel &p, void *response, size_t responselen);
static int responseVoiceRegState(Parcel &p, void *response, size_t responselen);
static int responseDataRegState(Parcel &p, void *response, size_t responselen);
static int responseKeepaliveStatus(Parcel &p, void *response, size_t responselen);
// External SIM - Start
static void dispatchVsimEvent(Parcel &p, RequestInfo *pRI);
static void dispatchVsimOperationEvent(Parcel &p, RequestInfo *pRI);
static int responseVsimOperationEvent(Parcel &p, void *response, size_t responselen);
static int responseVsimNotificationResponse(Parcel &p, void *response, size_t responselen);
// External SIM - End
/// since vendor ril uses socket id, so change slot id to socket id again
static RIL_SOCKET_ID mapingSlotIdToRilSocketId(RIL_SLOT_ID slot_id);
/// change libril's socket id to slot id to initialize slot id
extern "C" RIL_SLOT_ID mappingSocketIdToSlotId(RIL_SOCKET_ID socket_id);
#ifdef HAVE_AEE_FEATURE
void triggerWarning(char *pErrMsg);
#endif
#ifdef RIL_SHLIB
#if defined(ANDROID_MULTI_SIM)
extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen, RIL_SOCKET_ID socket_id);
#else
extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen);
#endif
#endif
static void RIL_onUnsolicitedResponseInternal(int unsolResponse, const void *data,
size_t datalen, SocketListenParam* socket_param);
#if defined(ANDROID_MULTI_SIM)
#define RIL_UNSOL_RESPONSE(a, b, c, d) RIL_onUnsolicitedResponse((a), (b), (c), (d))
#define CALL_ONREQUEST(a, b, c, d, e) android::s_callbacks.onRequest((a), (b), (c), (d), (e))
#define CALL_ONSTATEREQUEST(a) android::s_callbacks.onStateRequest(a)
#else
#define RIL_UNSOL_RESPONSE(a, b, c, d) RIL_onUnsolicitedResponse((a), (b), (c))
#define CALL_ONREQUEST(a, b, c, d, e) android::s_callbacks.onRequest((a), (b), (c), (d))
#define CALL_ONSTATEREQUEST(a) android::s_callbacks.onStateRequest()
#endif
// Multiple Radio HIDL Client for IMS
static UserCallbackInfo * internalRequestTimedCallback
(RIL_TimedCallback callback, void *param,
const struct timeval *relativeTime);
/** Index == requestNumber */
static CommandInfo s_commands[] = {
#include "telephony/ril_commands.h"
};
static UnsolResponseInfo s_unsolResponses[] = {
#include "telephony/ril_unsol_commands.h"
};
/// M: mtk request table
CommandInfo s_mtk_commands[] = {
#include "telephony/mtk_ril_commands.h"
};
static UnsolResponseInfo s_mtk_unsolResponses[] = {
#include "telephony/mtk_ril_unsol_commands.h"
};
/// M
/// M: mtk ivt request table
CommandInfo s_mtk_ivt_commands[] = {
#include "telephony/mtk_ril_ivt_commands.h"
};
static UnsolResponseInfo s_mtk_ivt_unsolResponses[] = {
#include "telephony/mtk_ril_ivt_unsol_commands.h"
};
/// M
/* For older RILs that do not support new commands RIL_REQUEST_VOICE_RADIO_TECH and
RIL_UNSOL_VOICE_RADIO_TECH_CHANGED messages, decode the voice radio tech from
radio state message and store it. Every time there is a change in Radio State
check to see if voice radio tech changes and notify telephony
*/
int voiceRadioTech = -1;
/* For older RILs that do not support new commands RIL_REQUEST_GET_CDMA_SUBSCRIPTION_SOURCE
and RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED messages, decode the subscription
source from radio state and store it. Every time there is a change in Radio State
check to see if subscription source changed and notify telephony
*/
int cdmaSubscriptionSource = -1;
/* For older RILs that do not send RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, decode the
SIM/RUIM state from radio state and store it. Every time there is a change in Radio State,
check to see if SIM/RUIM status changed and notify telephony
*/
int simRuimStatus = -1;
static void changeClientSoketStatus(int slot_id, int client_id, int value){
long long status = 0;
char property_status[PROP_VALUE_MAX] = {0};
char clientNum[PROP_VALUE_MAX] = {0};
int clientSocketNum = 0;
mtk_property_get("persist.ril.client.num", clientNum, "0");
clientSocketNum = std::stoi(clientNum);
RLOGD("[changeClientSoketStatus] persist.ril.client.num= %d, slot_id=%d, client_id=%d,value=%d",
clientSocketNum, slot_id, client_id, value);
if((0 != value) && (1!=value)){ //value must be 0 or 1
RLOGE("[changeClientSoketStatus]error!value must be 0 or 1");
return;
}
if((slot_id >= RIL_SLOT_MAX) || (client_id >= clientSocketNum) || (client_id >= (8*sizeof(long long) -1))){
RLOGE("[changeClientSoketStatus]error, RIL_SLOT_MAX=%d, slot_id=%d, persist.ril.client.num=%d, client_id=d",
RIL_SLOT_MAX, slot_id, clientSocketNum, client_id);
return;
}
mtk_property_get(socket_status[slot_id], property_status, "0");
RLOGD("[changeClientSoketStatus]before sscanf: %s = %s, status = 0x%llx",
socket_status[slot_id], property_status, status);
sscanf(property_status, "%lld", &status);
RLOGD("[changeClientSoketStatus]before: %s = %s, status = 0x%llx",
socket_status[slot_id], property_status, status);
if(0 == value) {
status = (~(1 << client_id)) & status;
} else if (1 == value) {
status = (1 << client_id) | status;
}
sprintf(property_status, "%lld", status);
mtk_property_set(socket_status[slot_id], property_status);
RLOGD("[changeClientSoketStatus]after: %s = %s, status = 0x%llx", socket_status[slot_id], property_status, status);
}
static char * RIL_getRilSocketName() {
char test_mode[PROP_VALUE_MAX] = { 0 };
if (strlen(rild) == 0) {
strcpy(rild, RIL_getRilSocketNameById(RIL_SOCKET_1));
}
mtk_property_get("persist.ril.test_mode", test_mode, "0");
if (strcmp(test_mode, "0") == 0) {
//no test mode
return rild;
} else {
strcpy(rild, RIL_getRilSocketNameById(RIL_SOCKET_1));
}
return rild;
}
static char *
strdupReadString(Parcel &p) {
size_t stringlen;
const char16_t *s16;
s16 = p.readString16Inplace(&stringlen);
return strndup16to8(s16, stringlen);
}
static status_t
readStringFromParcelInplace(Parcel &p, char *str, size_t maxLen) {
size_t s16Len;
const char16_t *s16;
s16 = p.readString16Inplace(&s16Len);
if (s16 == NULL) {
return NO_MEMORY;
}
size_t strLen = strnlen16to8(s16, s16Len);
if ((strLen + 1) > maxLen) {
return NO_MEMORY;
}
if (strncpy16to8(str, s16, strLen) == NULL) {
return NO_MEMORY;
} else {
return NO_ERROR;
}
}
static void writeStringToParcel(Parcel &p, const char *s) {
char16_t *s16;
size_t s16_len;
s16 = strdup8to16(s, &s16_len);
p.writeString16(s16, s16_len);
free(s16);
}
static void
memsetString (char *s) {
if (s != NULL) {
memset (s, 0, strlen(s));
}
}
void nullParcelReleaseFunction (const uint8_t* data, size_t dataSize,
const size_t* objects, size_t objectsSize,
void* cookie) {
// do nothing -- the data reference lives longer than the Parcel object
}
/**
* To be called from dispatch thread
* Issue a single local request, ensuring that the response
* is not sent back up to the command process
*/
static void
issueLocalRequest(int request, void *data, int len, RIL_SOCKET_ID socket_id) {
RequestInfo *pRI;
int ret;
/* Hook for current context */
/* pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo** pendingRequestsHook = &s_pendingRequests;
if (socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {
/// M: customize for mtk request
if ((request >= (int32_t)NUM_ELEMS(s_commands) && request < RIL_REQUEST_VENDOR_BASE) ||
(request > (RIL_REQUEST_VENDOR_BASE + (int32_t)NUM_ELEMS(s_mtk_commands)) && request < RIL_REQUEST_VENDOR_IVT_BASE) ||
request > (RIL_REQUEST_VENDOR_IVT_BASE + (int32_t)NUM_ELEMS(s_mtk_ivt_commands))) {
/// M
RLOGE("unsupported local request code %d", request);
return;
}
}
pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));
if (pRI == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
return;
}
pRI->local = 1;
pRI->token = 0xffffffff; // token is not used in this context
if (request >= RIL_REQUEST_VENDOR_IVT_BASE) {
pRI->pCI = &(s_mtk_ivt_commands[request - RIL_REQUEST_VENDOR_IVT_BASE]);
} else if (request >= RIL_REQUEST_VENDOR_BASE) {
pRI->pCI = &(s_mtk_commands[request - RIL_REQUEST_VENDOR_BASE]);
} else {
pRI->pCI = &(s_commands[request]);
}
pRI->socket_id = socket_id;
pRI->slot_id = mappingSocketIdToSlotId(socket_id);
ret = pthread_mutex_lock(pendingRequestsMutexHook);
assert (ret == 0);
pRI->p_next = *pendingRequestsHook;
*pendingRequestsHook = pRI;
ret = pthread_mutex_unlock(pendingRequestsMutexHook);
assert (ret == 0);
RLOGD("C[locl]> %s", requestToString(request));
onRequest(request,(Parcel *)data,pRI,pRI->socket_id);
//CALL_ONREQUEST(request, data, len, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
}
static int
processCommandBuffer(void *buffer, size_t buflen, RIL_SOCKET_ID socket_id, int clientId) {
Parcel *p = new Parcel();
status_t status;
int32_t request = 0;
int32_t token;
RequestInfo *pRI;
int ret;
/* Hook for current context */
/* pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo** pendingRequestsHook = &s_pendingRequests;
if(p == NULL) {
RLOGE("processCommandBuffer new parcel fail!!!");
return 0;
}
p->setData((uint8_t *) buffer, buflen);
// status checked at end
status = p->readInt32(&request);
status = p->readInt32 (&token);
/// M: support rilj client @{
if (socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
else if (socket_id == RIL_SOCKET_3) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3;
pendingRequestsHook = &s_pendingRequests_socket3;
}
else if (socket_id == RIL_SOCKET_4) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4;
pendingRequestsHook = &s_pendingRequests_socket4;
}
else if (socket_id == RIL_SOCKET_RILJ) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_rilj;
pendingRequestsHook = &s_pendingRequests_socket_rilj;
} else if (socket_id == RIL_SOCKET_RILJ2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_rilj2;
pendingRequestsHook = &s_pendingRequests_socket_rilj2;
}
if (clientId >= 0) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_client[clientId];
pendingRequestsHook = &s_pendingRequests_socket_client[clientId];
}
/// @}
if (status != NO_ERROR) {
delete(p);
RLOGE("invalid request block");
return 0;
}
// Received an Ack for the previous result sent to RIL.java,
// so release wakelock and exit
if (request == RIL_RESPONSE_ACKNOWLEDGEMENT) {
releaseWakeLock();
delete(p);
return 0;
}
if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {
/// M: customize for mtk request
if ((request >= (int32_t)NUM_ELEMS(s_commands) && request < RIL_REQUEST_VENDOR_BASE) ||
(request >= (RIL_REQUEST_VENDOR_BASE + (int32_t)NUM_ELEMS(s_mtk_commands)) && request < RIL_REQUEST_VENDOR_IVT_BASE) ||
request >= (RIL_REQUEST_VENDOR_IVT_BASE + (int32_t)NUM_ELEMS(s_mtk_ivt_commands))) {
/// M
Parcel pErr;
RLOGE("unsupported request code %d token %d", request, token);
// FIXME this should perhaps return a response
pErr.writeInt32 (RESPONSE_SOLICITED);
pErr.writeInt32 (token);
pErr.writeInt32 (RIL_E_GENERIC_FAILURE);
/// support RILJ client, using real socket id
sendResponse(pErr, socket_id, clientId);
delete(p);
return 0;
}
}
pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));
if (pRI == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
delete(p);
return 0;
}
pRI->token = token;
RLOGD("socket id = %s, token = %d, request = %s(%d)", rilSocketIdToString(socket_id),
token, requestToString(request), request);
/// M: ril proxy
if (request >= RIL_REQUEST_VENDOR_IVT_BASE) {
pRI->pCI = &(s_mtk_ivt_commands[request - RIL_REQUEST_VENDOR_IVT_BASE]);
} else if (request >= RIL_REQUEST_VENDOR_BASE) {
pRI->pCI = &(s_mtk_commands[request - RIL_REQUEST_VENDOR_BASE]);
} else {
pRI->pCI = &(s_commands[request]);
}
/// M
pRI->socket_id = socket_id;
/// M: support rilj client
pRI->slot_id = mappingSocketIdToSlotId(socket_id);
pRI->clientId = clientId;
ret = pthread_mutex_lock(pendingRequestsMutexHook);
assert (ret == 0);
pRI->p_next = *pendingRequestsHook;
*pendingRequestsHook = pRI;
ret = pthread_mutex_unlock(pendingRequestsMutexHook);
assert (ret == 0);
/* sLastDispatchedToken = token; */
// TODO: remove this! temp solution
if (pRI->pCI->dispatchFunction != NULL) {
//pRI->pCI->dispatchFunction(p, pRI);
onRequest(request,p,pRI,pRI->socket_id);
} else {
RIL_onRequestComplete(pRI, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);
}
return 0;
}
static void
invalidCommandBlock (RequestInfo *pRI) {
RLOGE("invalid command block for token %d request %s",
pRI->token, requestToString(pRI->pCI->requestNumber));
}
/** Callee expects NULL */
static void
dispatchVoid (Parcel& p, RequestInfo *pRI) {
clearPrintBuf;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, NULL, 0, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
}
/** Callee expects const char * */
static void
dispatchString (Parcel& p, RequestInfo *pRI) {
status_t status;
size_t datalen;
size_t stringlen;
char *string8 = NULL;
string8 = strdupReadString(p);
startRequest;
appendPrintBuf("%s%s", printBuf, string8);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, string8,
sizeof(char *), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(string8);
#endif
free(string8);
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/** Callee expects const char ** */
static void
dispatchStrings (Parcel &p, RequestInfo *pRI) {
int32_t countStrings;
status_t status;
size_t datalen;
char **pStrings;
status = p.readInt32 (&countStrings);
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
if (countStrings == 0) {
// just some non-null pointer
pStrings = (char **)calloc(1, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
datalen = 0;
} else if (countStrings < 0) {
pStrings = NULL;
datalen = 0;
} else {
datalen = sizeof(char *) * countStrings;
pStrings = (char **)calloc(countStrings, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
for (int i = 0 ; i < countStrings ; i++) {
pStrings[i] = strdupReadString(p);
appendPrintBuf("%s%s,", printBuf, pStrings[i]);
}
}
removeLastChar;
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, pStrings, datalen, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
if (pStrings != NULL) {
for (int i = 0 ; i < countStrings ; i++) {
#ifdef MEMSET_FREED
memsetString (pStrings[i]);
#endif
free(pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, datalen);
#endif
free(pStrings);
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/** Callee expects const int * */
static void
dispatchInts (Parcel &p, RequestInfo *pRI) {
int32_t count = 0;
status_t status;
size_t datalen;
int *pInts;
status = p.readInt32 (&count);
if (status != NO_ERROR || count <= 0) {
goto invalid;
}
datalen = sizeof(int) * count;
pInts = (int *)calloc(count, sizeof(int));
if (pInts == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber));
return;
}
startRequest;
for (int i = 0 ; i < count ; i++) {
int32_t t = 0;
status = p.readInt32(&t);
pInts[i] = (int)t;
appendPrintBuf("%s%d,", printBuf, t);
if (status != NO_ERROR) {
free(pInts);
goto invalid;
}
}
removeLastChar;
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, const_cast<int *>(pInts),
datalen, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(pInts, 0, datalen);
#endif
free(pInts);
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_SMS_WriteArgs *
* Payload is:
* int32_t status
* String pdu
*/
static void
dispatchSmsWrite (Parcel &p, RequestInfo *pRI) {
RIL_SMS_WriteArgs args;
int32_t t = 0;
status_t status;
RLOGD("dispatchSmsWrite");
memset (&args, 0, sizeof(args));
status = p.readInt32(&t);
args.status = (int)t;
args.pdu = strdupReadString(p);
if (status != NO_ERROR || args.pdu == NULL) {
goto invalid;
}
args.smsc = strdupReadString(p);
startRequest;
appendPrintBuf("%s%d,%s,smsc=%s", printBuf, args.status,
(char*)args.pdu, (char*)args.smsc);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString (args.pdu);
#endif
free (args.pdu);
#ifdef MEMSET_FREED
memset(&args, 0, sizeof(args));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_Dial *
* Payload is:
* String address
* int32_t clir
*/
static void
dispatchDial (Parcel &p, RequestInfo *pRI) {
RIL_Dial dial;
RIL_UUS_Info uusInfo;
int32_t sizeOfDial;
int32_t t;
int32_t uusPresent;
status_t status;
RLOGD("dispatchDial");
memset (&dial, 0, sizeof(dial));
dial.address = strdupReadString(p);
status = p.readInt32(&t);
dial.clir = (int)t;
if (status != NO_ERROR || dial.address == NULL) {
goto invalid;
}
if (s_callbacks.version < 3) { // Remove when partners upgrade to version 3
uusPresent = 0;
sizeOfDial = sizeof(dial) - sizeof(RIL_UUS_Info *);
} else {
status = p.readInt32(&uusPresent);
if (status != NO_ERROR) {
goto invalid;
}
if (uusPresent == 0) {
dial.uusInfo = NULL;
} else {
int32_t len;
memset(&uusInfo, 0, sizeof(RIL_UUS_Info));
status = p.readInt32(&t);
uusInfo.uusType = (RIL_UUS_Type) t;
status = p.readInt32(&t);
uusInfo.uusDcs = (RIL_UUS_DCS) t;
status = p.readInt32(&len);
if (status != NO_ERROR) {
goto invalid;
}
// The java code writes -1 for null arrays
if (((int) len) == -1) {
uusInfo.uusData = NULL;
len = 0;
} else {
uusInfo.uusData = (char*) p.readInplace(len);
}
uusInfo.uusLength = len;
dial.uusInfo = &uusInfo;
}
sizeOfDial = sizeof(dial);
}
startRequest;
appendPrintBuf("%snum=%s,clir=%d", printBuf, dial.address, dial.clir);
if (uusPresent) {
appendPrintBuf("%s,uusType=%d,uusDcs=%d,uusLen=%d", printBuf,
dial.uusInfo->uusType, dial.uusInfo->uusDcs,
dial.uusInfo->uusLength);
}
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString (dial.address);
#endif
free (dial.address);
#ifdef MEMSET_FREED
memset(&uusInfo, 0, sizeof(RIL_UUS_Info));
memset(&dial, 0, sizeof(dial));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_SIM_IO *
* Payload is:
* int32_t command
* int32_t fileid
* String path
* int32_t p1, p2, p3
* String data
* String pin2
* String aidPtr
*/
static void
dispatchSIM_IO (Parcel &p, RequestInfo *pRI) {
union RIL_SIM_IO {
RIL_SIM_IO_v6 v6;
RIL_SIM_IO_v5 v5;
} simIO;
int32_t t = 0;
int size;
status_t status;
#if VDBG
RLOGD("dispatchSIM_IO");
#endif
memset (&simIO, 0, sizeof(simIO));
// note we only check status at the end
status = p.readInt32(&t);
simIO.v6.command = (int)t;
status = p.readInt32(&t);
simIO.v6.fileid = (int)t;
simIO.v6.path = strdupReadString(p);
status = p.readInt32(&t);
simIO.v6.p1 = (int)t;
status = p.readInt32(&t);
simIO.v6.p2 = (int)t;
status = p.readInt32(&t);
simIO.v6.p3 = (int)t;
simIO.v6.data = strdupReadString(p);
simIO.v6.pin2 = strdupReadString(p);
simIO.v6.aidPtr = strdupReadString(p);
startRequest;
appendPrintBuf("%scmd=0x%X,efid=0x%X,path=%s,%d,%d,%d,%s,pin2=%s,aid=%s", printBuf,
simIO.v6.command, simIO.v6.fileid, (char*)simIO.v6.path,
simIO.v6.p1, simIO.v6.p2, simIO.v6.p3,
(char*)simIO.v6.data, (char*)simIO.v6.pin2, simIO.v6.aidPtr);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
size = (s_callbacks.version < 6) ? sizeof(simIO.v5) : sizeof(simIO.v6);
CALL_ONREQUEST(pRI->pCI->requestNumber, &simIO, size, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString (simIO.v6.path);
memsetString (simIO.v6.data);
memsetString (simIO.v6.pin2);
memsetString (simIO.v6.aidPtr);
#endif
free (simIO.v6.path);
free (simIO.v6.data);
free (simIO.v6.pin2);
free (simIO.v6.aidPtr);
#ifdef MEMSET_FREED
memset(&simIO, 0, sizeof(simIO));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_SIM_APDU *
* Payload is:
* int32_t sessionid
* int32_t cla
* int32_t instruction
* int32_t p1, p2, p3
* String data
*/
static void
dispatchSIM_APDU (Parcel &p, RequestInfo *pRI) {
int32_t t = 0;
status_t status;
RIL_SIM_APDU apdu;
#if VDBG
RLOGD("dispatchSIM_APDU");
#endif
memset (&apdu, 0, sizeof(RIL_SIM_APDU));
// Note we only check status at the end. Any single failure leads to
// subsequent reads filing.
status = p.readInt32(&t);
apdu.sessionid = (int)t;
status = p.readInt32(&t);
apdu.cla = (int)t;
status = p.readInt32(&t);
apdu.instruction = (int)t;
status = p.readInt32(&t);
apdu.p1 = (int)t;
status = p.readInt32(&t);
apdu.p2 = (int)t;
status = p.readInt32(&t);
apdu.p3 = (int)t;
apdu.data = strdupReadString(p);
startRequest;
appendPrintBuf("%ssessionid=%d,cla=%d,ins=%d,p1=%d,p2=%d,p3=%d,data=%s",
printBuf, apdu.sessionid, apdu.cla, apdu.instruction, apdu.p1, apdu.p2,
apdu.p3, (char*)apdu.data);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &apdu, sizeof(RIL_SIM_APDU), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(apdu.data);
#endif
free(apdu.data);
#ifdef MEMSET_FREED
memset(&apdu, 0, sizeof(RIL_SIM_APDU));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_CallForwardInfo *
* Payload is:
* int32_t status/action
* int32_t reason
* int32_t serviceCode
* int32_t toa
* String number (0 length -> null)
* int32_t timeSeconds
*/
static void
dispatchCallForward(Parcel &p, RequestInfo *pRI) {
RIL_CallForwardInfo cff;
int32_t t = 0;
status_t status;
RLOGD("dispatchCallForward");
memset (&cff, 0, sizeof(cff));
// note we only check status at the end
status = p.readInt32(&t);
cff.status = (int)t;
status = p.readInt32(&t);
cff.reason = (int)t;
status = p.readInt32(&t);
cff.serviceClass = (int)t;
status = p.readInt32(&t);
cff.toa = (int)t;
cff.number = strdupReadString(p);
status = p.readInt32(&t);
cff.timeSeconds = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
// special case: number 0-length fields is null
if (cff.number != NULL && strlen (cff.number) == 0) {
cff.number = NULL;
}
startRequest;
appendPrintBuf("%sstat=%d,reason=%d,serv=%d,toa=%d,%s,tout=%d", printBuf,
cff.status, cff.reason, cff.serviceClass, cff.toa,
(char*)cff.number, cff.timeSeconds);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &cff, sizeof(cff), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(cff.number);
#endif
free (cff.number);
#ifdef MEMSET_FREED
memset(&cff, 0, sizeof(cff));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_CallForwardInfoEx *
* Payload is:
* int32_t status/action
* int32_t reason
* int32_t serviceCode
* int32_t toa
* String number (0 length -> null)
* int32_t timeSeconds
* String timeSlotBegin (0 length -> null)
* String timeSlotEnd (0 length -> null)
*/
static void
dispatchCallForwardEx(Parcel &p, RequestInfo *pRI) {
RIL_CallForwardInfoEx cff;
int32_t t = 0;
status_t status;
RLOGD("dispatchCallForwardEx");
memset (&cff, 0, sizeof(cff));
// note we only check status at the end
status = p.readInt32(&t);
cff.status = (int)t;
status = p.readInt32(&t);
cff.reason = (int)t;
status = p.readInt32(&t);
cff.serviceClass = (int)t;
status = p.readInt32(&t);
cff.toa = (int)t;
cff.number = strdupReadString(p);
status = p.readInt32(&t);
cff.timeSeconds = (int)t;
cff.timeSlotBegin = strdupReadString(p);
cff.timeSlotEnd = strdupReadString(p);
if (status != NO_ERROR) {
goto invalid;
}
// special case: number 0-length fields is null
if (cff.number != NULL && strlen (cff.number) == 0) {
cff.number = NULL;
}
if (cff.timeSlotBegin != NULL && strlen (cff.timeSlotBegin) == 0) {
cff.timeSlotBegin = NULL;
}
if (cff.timeSlotEnd != NULL && strlen (cff.timeSlotEnd) == 0) {
cff.timeSlotEnd = NULL;
}
startRequest;
appendPrintBuf("%sstat=%d,reason=%d,serv=%d,toa=%d,%s,tout=%d,timeSlot=%s,%s", printBuf,
cff.status, cff.reason, cff.serviceClass, cff.toa,
(char*)cff.number, cff.timeSeconds, cff.timeSlotBegin, cff.timeSlotEnd);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &cff, sizeof(cff), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(cff.number);
memsetString(cff.timeSlotBegin);
memsetString(cff.timeSlotEnd);
#endif
free (cff.number);
free (cff.timeSlotBegin);
free (cff.timeSlotEnd);
#ifdef MEMSET_FREED
memset(&cff, 0, sizeof(cff));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchRaw(Parcel &p, RequestInfo *pRI) {
int32_t len;
status_t status;
const void *data;
status = p.readInt32(&len);
if (status != NO_ERROR) {
goto invalid;
}
// The java code writes -1 for null arrays
if (((int)len) == -1) {
data = NULL;
len = 0;
}
data = p.readInplace(len);
startRequest;
appendPrintBuf("%sraw_size=%d", printBuf, len);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, const_cast<void *>(data), len, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static status_t
constructCdmaSms(Parcel &p, RequestInfo *pRI, RIL_CDMA_SMS_Message& rcsm) {
int32_t t = 0;
uint8_t ut = 0;
status_t status;
int32_t digitCount;
int digitLimit;
memset(&rcsm, 0, sizeof(rcsm));
status = p.readInt32(&t);
rcsm.uTeleserviceID = (int) t;
status = p.read(&ut,sizeof(ut));
rcsm.bIsServicePresent = (uint8_t) ut;
status = p.readInt32(&t);
rcsm.uServicecategory = (int) t;
status = p.readInt32(&t);
rcsm.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) t;
status = p.readInt32(&t);
rcsm.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) t;
status = p.readInt32(&t);
rcsm.sAddress.number_type = (RIL_CDMA_SMS_NumberType) t;
status = p.readInt32(&t);
rcsm.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) t;
status = p.read(&ut,sizeof(ut));
rcsm.sAddress.number_of_digits= (uint8_t) ut;
digitLimit= MIN((rcsm.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&ut,sizeof(ut));
rcsm.sAddress.digits[digitCount] = (uint8_t) ut;
}
status = p.readInt32(&t);
rcsm.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) t;
status = p.read(&ut,sizeof(ut));
rcsm.sSubAddress.odd = (uint8_t) ut;
status = p.read(&ut,sizeof(ut));
rcsm.sSubAddress.number_of_digits = (uint8_t) ut;
digitLimit= MIN((rcsm.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&ut,sizeof(ut));
rcsm.sSubAddress.digits[digitCount] = (uint8_t) ut;
}
status = p.readInt32(&t);
rcsm.uBearerDataLen = (int) t;
digitLimit= MIN((rcsm.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&ut, sizeof(ut));
rcsm.aBearerData[digitCount] = (uint8_t) ut;
}
if (status != NO_ERROR) {
return status;
}
startRequest;
appendPrintBuf("%suTeleserviceID=%d, bIsServicePresent=%d, uServicecategory=%d, \
sAddress.digit_mode=%d, sAddress.Number_mode=%d, sAddress.number_type=%d, ",
printBuf, rcsm.uTeleserviceID,rcsm.bIsServicePresent,rcsm.uServicecategory,
rcsm.sAddress.digit_mode, rcsm.sAddress.number_mode,rcsm.sAddress.number_type);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
return status;
}
static void
dispatchCdmaSms(Parcel &p, RequestInfo *pRI) {
RIL_CDMA_SMS_Message rcsm;
RLOGD("dispatchCdmaSms");
if (NO_ERROR != constructCdmaSms(p, pRI, rcsm)) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm),pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&rcsm, 0, sizeof(rcsm));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchImsCdmaSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef) {
RIL_IMS_SMS_Message rism;
RIL_CDMA_SMS_Message rcsm;
RLOGD("dispatchImsCdmaSms: retry=%d, messageRef=%d", retry, messageRef);
if (NO_ERROR != constructCdmaSms(p, pRI, rcsm)) {
goto invalid;
}
memset(&rism, 0, sizeof(rism));
rism.tech = RADIO_TECH_3GPP2;
rism.retry = retry;
rism.messageRef = messageRef;
rism.message.cdmaMessage = &rcsm;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rism,
sizeof(RIL_RadioTechnologyFamily)+sizeof(uint8_t)+sizeof(int32_t)
+sizeof(rcsm),pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&rcsm, 0, sizeof(rcsm));
memset(&rism, 0, sizeof(rism));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchImsGsmSms(Parcel &p, RequestInfo *pRI, uint8_t retry, int32_t messageRef) {
RIL_IMS_SMS_Message rism;
int32_t countStrings;
status_t status;
size_t datalen;
char **pStrings;
RLOGD("dispatchImsGsmSms: retry=%d, messageRef=%d", retry, messageRef);
status = p.readInt32 (&countStrings);
if (status != NO_ERROR) {
goto invalid;
}
memset(&rism, 0, sizeof(rism));
rism.tech = RADIO_TECH_3GPP;
rism.retry = retry;
rism.messageRef = messageRef;
startRequest;
appendPrintBuf("%stech=%d, retry=%d, messageRef=%d, ", printBuf,
(int)rism.tech, (int)rism.retry, rism.messageRef);
if (countStrings == 0) {
// just some non-null pointer
pStrings = (char **)calloc(1, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
datalen = 0;
} else if (countStrings < 0) {
pStrings = NULL;
datalen = 0;
} else {
if ((size_t)countStrings > (INT_MAX/sizeof(char *))) {
RLOGE("Invalid value of countStrings: \n");
closeRequest;
return;
}
datalen = sizeof(char *) * countStrings;
pStrings = (char **)calloc(countStrings, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
closeRequest;
return;
}
for (int i = 0 ; i < countStrings ; i++) {
pStrings[i] = strdupReadString(p);
appendPrintBuf("%s%s,", printBuf, pStrings[i]);
}
RLOGE("ImsGsmSms smsc %s, pdu %s", ((pStrings[0] != NULL)? pStrings[0] : "null"),
((pStrings[1] != NULL)? pStrings[1] : "null"));
}
removeLastChar;
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
rism.message.gsmMessage = pStrings;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rism,
sizeof(RIL_RadioTechnologyFamily)+sizeof(uint8_t)+sizeof(int32_t)
+datalen, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
if (pStrings != NULL) {
for (int i = 0 ; i < countStrings ; i++) {
#ifdef MEMSET_FREED
memsetString (pStrings[i]);
#endif
free(pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, datalen);
#endif
free(pStrings);
}
#ifdef MEMSET_FREED
memset(&rism, 0, sizeof(rism));
#endif
return;
invalid:
ALOGE("dispatchImsGsmSms invalid block");
invalidCommandBlock(pRI);
return;
}
static void
dispatchImsSms(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status = p.readInt32(&t);
RIL_RadioTechnologyFamily format;
uint8_t retry;
int32_t messageRef;
RLOGD("dispatchImsSms");
if (status != NO_ERROR) {
goto invalid;
}
format = (RIL_RadioTechnologyFamily) t;
RLOGE("tech %d", t);
// read retry field
status = p.read(&retry,sizeof(retry));
if (status != NO_ERROR) {
goto invalid;
}
RLOGE("retry %d", retry);
// read messageRef field
status = p.read(&messageRef,sizeof(messageRef));
if (status != NO_ERROR) {
goto invalid;
}
RLOGE("messageRef %d", messageRef);
if (RADIO_TECH_3GPP == format) {
dispatchImsGsmSms(p, pRI, retry, messageRef);
} else if (RADIO_TECH_3GPP2 == format) {
dispatchImsCdmaSms(p, pRI, retry, messageRef);
} else {
ALOGE("requestImsSendSMS invalid format value =%d", format);
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchCdmaSmsAck(Parcel &p, RequestInfo *pRI) {
RIL_CDMA_SMS_Ack rcsa;
int32_t t = 0;
status_t status;
int32_t digitCount;
RLOGD("dispatchCdmaSmsAck");
memset(&rcsa, 0, sizeof(rcsa));
status = p.readInt32(&t);
rcsa.uErrorClass = (RIL_CDMA_SMS_ErrorClass) t;
status = p.readInt32(&t);
rcsa.uSMSCauseCode = (int) t;
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%suErrorClass=%d, uTLStatus=%d, ",
printBuf, rcsa.uErrorClass, rcsa.uSMSCauseCode);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsa, sizeof(rcsa),pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&rcsa, 0, sizeof(rcsa));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchGsmBrSmsCnf(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
int32_t num;
status = p.readInt32(&num);
if (status != NO_ERROR) {
goto invalid;
}
{
RIL_GSM_BroadcastSmsConfigInfo gsmBci[num];
RIL_GSM_BroadcastSmsConfigInfo *gsmBciPtrs[num];
startRequest;
for (int i = 0 ; i < num ; i++ ) {
gsmBciPtrs[i] = &gsmBci[i];
status = p.readInt32(&t);
gsmBci[i].fromServiceId = (int) t;
status = p.readInt32(&t);
gsmBci[i].toServiceId = (int) t;
status = p.readInt32(&t);
gsmBci[i].fromCodeScheme = (int) t;
status = p.readInt32(&t);
gsmBci[i].toCodeScheme = (int) t;
status = p.readInt32(&t);
gsmBci[i].selected = (uint8_t) t;
appendPrintBuf("%s [%d: fromServiceId=%d, toServiceId =%d, \
fromCodeScheme=%d, toCodeScheme=%d, selected =%d]", printBuf, i,
gsmBci[i].fromServiceId, gsmBci[i].toServiceId,
gsmBci[i].fromCodeScheme, gsmBci[i].toCodeScheme,
gsmBci[i].selected);
}
closeRequest;
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber,
gsmBciPtrs,
num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *),
pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(gsmBci, 0, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo));
memset(gsmBciPtrs, 0, num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *));
#endif
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void
dispatchCdmaBrSmsCnf(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
int32_t num;
status = p.readInt32(&num);
if (status != NO_ERROR) {
goto invalid;
}
{
RIL_CDMA_BroadcastSmsConfigInfo cdmaBci[num];
RIL_CDMA_BroadcastSmsConfigInfo *cdmaBciPtrs[num];
startRequest;
for (int i = 0 ; i < num ; i++ ) {
cdmaBciPtrs[i] = &cdmaBci[i];
status = p.readInt32(&t);
cdmaBci[i].service_category = (int) t;
status = p.readInt32(&t);
cdmaBci[i].language = (int) t;
status = p.readInt32(&t);
cdmaBci[i].selected = (uint8_t) t;
appendPrintBuf("%s [%d: service_category=%d, language =%d, \
entries.bSelected =%d]", printBuf, i, cdmaBci[i].service_category,
cdmaBci[i].language, cdmaBci[i].selected);
}
closeRequest;
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber,
cdmaBciPtrs,
num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *),
pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(cdmaBci, 0, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo));
memset(cdmaBciPtrs, 0, num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *));
#endif
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchRilCdmaSmsWriteArgs(Parcel &p, RequestInfo *pRI) {
RIL_CDMA_SMS_WriteArgs rcsw;
int32_t t = 0;
uint32_t ut = 0;
uint8_t uct = 0;
status_t status;
int32_t digitCount;
int32_t digitLimit;
memset(&rcsw, 0, sizeof(rcsw));
status = p.readInt32(&t);
rcsw.status = t;
status = p.readInt32(&t);
rcsw.message.uTeleserviceID = (int) t;
status = p.read(&uct,sizeof(uct));
rcsw.message.bIsServicePresent = (uint8_t) uct;
status = p.readInt32(&t);
rcsw.message.uServicecategory = (int) t;
status = p.readInt32(&t);
rcsw.message.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) t;
status = p.readInt32(&t);
rcsw.message.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) t;
status = p.readInt32(&t);
rcsw.message.sAddress.number_type = (RIL_CDMA_SMS_NumberType) t;
status = p.readInt32(&t);
rcsw.message.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) t;
status = p.read(&uct,sizeof(uct));
rcsw.message.sAddress.number_of_digits = (uint8_t) uct;
digitLimit = MIN((rcsw.message.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&uct,sizeof(uct));
rcsw.message.sAddress.digits[digitCount] = (uint8_t) uct;
}
status = p.readInt32(&t);
rcsw.message.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) t;
status = p.read(&uct,sizeof(uct));
rcsw.message.sSubAddress.odd = (uint8_t) uct;
status = p.read(&uct,sizeof(uct));
rcsw.message.sSubAddress.number_of_digits = (uint8_t) uct;
digitLimit = MIN((rcsw.message.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&uct,sizeof(uct));
rcsw.message.sSubAddress.digits[digitCount] = (uint8_t) uct;
}
status = p.readInt32(&t);
rcsw.message.uBearerDataLen = (int) t;
digitLimit = MIN((rcsw.message.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
for(digitCount = 0 ; digitCount < digitLimit; digitCount ++) {
status = p.read(&uct, sizeof(uct));
rcsw.message.aBearerData[digitCount] = (uint8_t) uct;
}
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%sstatus=%d, message.uTeleserviceID=%d, message.bIsServicePresent=%d, \
message.uServicecategory=%d, message.sAddress.digit_mode=%d, \
message.sAddress.number_mode=%d, \
message.sAddress.number_type=%d, ",
printBuf, rcsw.status, rcsw.message.uTeleserviceID, rcsw.message.bIsServicePresent,
rcsw.message.uServicecategory, rcsw.message.sAddress.digit_mode,
rcsw.message.sAddress.number_mode,
rcsw.message.sAddress.number_type);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsw, sizeof(rcsw),pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&rcsw, 0, sizeof(rcsw));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
// For backwards compatibility in RIL_REQUEST_SETUP_DATA_CALL.
// Version 4 of the RIL interface adds a new PDP type parameter to support
// IPv6 and dual-stack PDP contexts. When dealing with a previous version of
// RIL, remove the parameter from the request.
static void dispatchDataCall(Parcel& p, RequestInfo *pRI) {
// In RIL v3, REQUEST_SETUP_DATA_CALL takes 6 parameters.
const int numParamsRilV3 = 6;
// The first bytes of the RIL parcel contain the request number and the
// serial number - see processCommandBuffer(). Copy them over too.
int pos = p.dataPosition();
int numParams = p.readInt32();
#if defined(__MTK_ANDROID__)
if (s_callbacks.version < 4 && numParams > numParamsRilV3) {
Parcel p2;
p2.appendFrom(&p, 0, pos);
p2.writeInt32(numParamsRilV3);
for(int i = 0; i < numParamsRilV3; i++) {
p2.writeString16(p.readString16());
}
p2.setDataPosition(pos);
dispatchStrings(p2, pRI);
} else {
p.setDataPosition(pos);
dispatchStrings(p, pRI);
}
#else
p.setDataPosition(pos);
dispatchStrings(p, pRI);
#endif
}
static void dispatchSetInitialAttachApn(Parcel &p, RequestInfo *pRI)
{
RIL_InitialAttachApn_v15 pf;
char *roamingProtocol;
int32_t t = 0;
status_t status;
memset(&pf, 0, sizeof(pf));
pf.apn = strdupReadString(p);
pf.protocol = strdupReadString(p);
// compatible for lagecy chip implementation in ril java
//roamingProtocol= strdupReadString(p);
status = p.readInt32(&t);
pf.authtype = (int) t;
pf.username = strdupReadString(p);
pf.password = strdupReadString(p);
startRequest;
appendPrintBuf("%sapn=%s, protocol=%s, authtype=%d, username=%s, password=%s",
printBuf, pf.apn, pf.protocol, pf.authtype, pf.username, pf.password);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(pf.apn);
memsetString(pf.protocol);
memsetString(pf.username);
memsetString(pf.password);
#endif
free(pf.apn);
free(pf.protocol);
free(pf.username);
free(pf.password);
// compatible for lagecy chip implementation in ril java
//free(roamingProtocol);
#ifdef MEMSET_FREED
memset(&pf, 0, sizeof(pf));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchNVReadItem(Parcel &p, RequestInfo *pRI) {
RIL_NV_ReadItem nvri;
int32_t t = 0;
status_t status;
memset(&nvri, 0, sizeof(nvri));
status = p.readInt32(&t);
nvri.itemID = (RIL_NV_Item) t;
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%snvri.itemID=%d, ", printBuf, nvri.itemID);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &nvri, sizeof(nvri), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&nvri, 0, sizeof(nvri));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchNVWriteItem(Parcel &p, RequestInfo *pRI) {
RIL_NV_WriteItem nvwi;
int32_t t = 0;
status_t status;
memset(&nvwi, 0, sizeof(nvwi));
status = p.readInt32(&t);
nvwi.itemID = (RIL_NV_Item) t;
nvwi.value = strdupReadString(p);
if (status != NO_ERROR || nvwi.value == NULL) {
goto invalid;
}
startRequest;
appendPrintBuf("%snvwi.itemID=%d, value=%s, ", printBuf, nvwi.itemID,
nvwi.value);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &nvwi, sizeof(nvwi), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(nvwi.value);
#endif
free(nvwi.value);
#ifdef MEMSET_FREED
memset(&nvwi, 0, sizeof(nvwi));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchUiccSubscripton(Parcel &p, RequestInfo *pRI) {
RIL_SelectUiccSub uicc_sub;
status_t status;
int32_t t;
memset(&uicc_sub, 0, sizeof(uicc_sub));
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.slot = (int) t;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.app_index = (int) t;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.sub_type = (RIL_SubscriptionType) t;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
uicc_sub.act_status = (RIL_UiccSubActStatus) t;
startRequest;
appendPrintBuf("slot=%d, app_index=%d, act_status = %d", uicc_sub.slot, uicc_sub.app_index,
uicc_sub.act_status);
RLOGD("dispatchUiccSubscription, slot=%d, app_index=%d, act_status = %d", uicc_sub.slot,
uicc_sub.app_index, uicc_sub.act_status);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &uicc_sub, sizeof(uicc_sub), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&uicc_sub, 0, sizeof(uicc_sub));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchSimAuthentication(Parcel &p, RequestInfo *pRI)
{
RIL_SimAuthentication pf;
int32_t t = 0;
status_t status;
memset(&pf, 0, sizeof(pf));
status = p.readInt32(&t);
pf.authContext = (int) t;
pf.authData = strdupReadString(p);
pf.aid = strdupReadString(p);
startRequest;
appendPrintBuf("authContext=%s, authData=%s, aid=%s", pf.authContext, pf.authData, pf.aid);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(pf.authData);
memsetString(pf.aid);
#endif
free(pf.authData);
free(pf.aid);
#ifdef MEMSET_FREED
memset(&pf, 0, sizeof(pf));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void memsetAndFreeStrings(int numPointers, ...) {
va_list ap;
va_start(ap, numPointers);
for (int i = 0; i < numPointers; i++) {
char *ptr = va_arg(ap, char *);
if (ptr) {
#ifdef MEMSET_FREED
#define MAX_STRING_LENGTH 4096
memset(ptr, 0, strnlen(ptr, MAX_STRING_LENGTH));
#endif
free(ptr);
}
}
va_end(ap);
}
template <typename T>
static void freeSetDataProfileData(int numProfiles, T *dataProfiles, T **dataProfilePtrs,
int numfields, ...) {
va_list args;
va_start(args, numfields);
// Iterate through each string-type field that need to be free.
for (int i = 0; i < numfields; i++) {
// Iterate through each data profile and free that specific string-type field.
// The type 'char *T::*' is a type of pointer to a 'char *' member inside T structure.
char *T::*ptr = va_arg(args, char *T::*);
for (int j = 0; j < numProfiles; j++) {
memsetAndFreeStrings(1, dataProfiles[j].*ptr);
}
}
va_end(args);
#ifdef MEMSET_FREED
memset(dataProfiles, 0, numProfiles * sizeof(T));
memset(dataProfilePtrs, 0, numProfiles * sizeof(T *));
#endif
free(dataProfiles);
free(dataProfilePtrs);
}
static void dispatchDataProfile(Parcel &p, RequestInfo *pRI) {
int32_t t;
status_t status;
int32_t num = 0;
status = p.readInt32(&num);
if (status != NO_ERROR || num < 0) {
RLOGE("dispatchDataProfile status = %d num = %d,%s ",
status, num,requestToString(pRI->pCI->requestNumber));
goto invalid;
}
{
RIL_MtkDataProfileInfo *dataProfiles =
(RIL_MtkDataProfileInfo *)calloc(num, sizeof(RIL_MtkDataProfileInfo));
if (dataProfiles == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
return;
}
RIL_MtkDataProfileInfo **dataProfilePtrs =
(RIL_MtkDataProfileInfo **)calloc(num, sizeof(RIL_MtkDataProfileInfo *));
if (dataProfilePtrs == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
free(dataProfiles);
return;
}
startRequest;
for (int i = 0 ; i < num ; i++ ) {
dataProfilePtrs[i] = &dataProfiles[i];
status = p.readInt32(&t);
dataProfiles[i].profileId = (int) t;
dataProfiles[i].apn = strdupReadString(p);
dataProfiles[i].protocol = strdupReadString(p);
status = p.readInt32(&t);
dataProfiles[i].authType = (int) t;
dataProfiles[i].user = strdupReadString(p);
dataProfiles[i].password = strdupReadString(p);
status = p.readInt32(&t);
dataProfiles[i].type = (int) t;
status = p.readInt32(&t);
dataProfiles[i].maxConnsTime = (int) t;
status = p.readInt32(&t);
dataProfiles[i].maxConns = (int) t;
status = p.readInt32(&t);
dataProfiles[i].waitTime = (int) t;
status = p.readInt32(&t);
dataProfiles[i].enabled = (int) t;
status = p.readInt32(&t);
dataProfiles[i].supportedTypesBitmask = (int) t;
dataProfiles[i].roamingProtocol = strdupReadString(p);
status = p.readInt32(&t);
dataProfiles[i].bearerBitmask = (int) t;
status = p.readInt32(&t);
dataProfiles[i].mtu = (int) t;
dataProfiles[i].mvnoType = strdupReadString(p);
dataProfiles[i].mvnoMatchData = strdupReadString(p);
// read modemCognitive
status = p.readInt32(&t);
appendPrintBuf("%s [%d: profileId=%d, apn =%s, protocol =%s, authType =%d, \
user =%s, password =%s, type =%d, maxConnsTime =%d, maxConns =%d, \
waitTime =%d, enabled =%d]", printBuf, i, dataProfiles[i].profileId,
dataProfiles[i].apn, dataProfiles[i].protocol, dataProfiles[i].authType,
dataProfiles[i].user, dataProfiles[i].password, dataProfiles[i].type,
dataProfiles[i].maxConnsTime, dataProfiles[i].maxConns,
dataProfiles[i].waitTime, dataProfiles[i].enabled);
}
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
freeSetDataProfileData(num, dataProfiles, dataProfilePtrs, 7,
&RIL_MtkDataProfileInfo::apn, &RIL_MtkDataProfileInfo::protocol,
&RIL_MtkDataProfileInfo::roamingProtocol, &RIL_MtkDataProfileInfo::user,
&RIL_MtkDataProfileInfo::password, &RIL_MtkDataProfileInfo::mvnoType,
&RIL_MtkDataProfileInfo::mvnoMatchData);
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber,
dataProfilePtrs,
num * sizeof(RIL_MtkDataProfileInfo *),
pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
freeSetDataProfileData(num, dataProfiles, dataProfilePtrs, 7,
&RIL_MtkDataProfileInfo::apn, &RIL_MtkDataProfileInfo::protocol,
&RIL_MtkDataProfileInfo::roamingProtocol, &RIL_MtkDataProfileInfo::user,
&RIL_MtkDataProfileInfo::password, &RIL_MtkDataProfileInfo::mvnoType,
&RIL_MtkDataProfileInfo::mvnoMatchData);
}
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchRadioCapability(Parcel &p, RequestInfo *pRI){
RIL_RadioCapability rc;
int32_t t = 0;
status_t status;
memset (&rc, 0, sizeof(RIL_RadioCapability));
status = p.readInt32(&t);
rc.version = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.session= (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.phase= (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.rat = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
status = readStringFromParcelInplace(p, rc.logicalModemUuid, sizeof(rc.logicalModemUuid));
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
rc.status = (int)t;
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%s [version:%d, session:%d, phase:%d, rat:%d, \
logicalModemUuid:%s, status:%d", printBuf, rc.version, rc.session,
rc.phase, rc.rat, rc.logicalModemUuid, rc.session);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber,
&rc,
sizeof(RIL_RadioCapability),
pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
/**
* Callee expects const RIL_CarrierRestrictions *
*/
static void dispatchCarrierRestrictions(Parcel &p, RequestInfo *pRI) {
RIL_CarrierRestrictions cr;
RIL_Carrier * allowed_carriers = NULL;
RIL_Carrier * excluded_carriers = NULL;
int32_t t;
status_t status;
memset(&cr, 0, sizeof(RIL_CarrierRestrictions));
if (s_callbacks.version < 14) {
RLOGE("Unsuppoted RIL version %d, min version expected %d",
s_callbacks.version, 14);
RIL_onRequestComplete(pRI, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);
return;
}
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
allowed_carriers = (RIL_Carrier *)calloc(t, sizeof(RIL_Carrier));
if (allowed_carriers == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber));
goto exit;
}
cr.len_allowed_carriers = t;
cr.allowed_carriers = allowed_carriers;
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
excluded_carriers = (RIL_Carrier *)calloc(t, sizeof(RIL_Carrier));
if (excluded_carriers == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber));
goto exit;
}
cr.len_excluded_carriers = t;
cr.excluded_carriers = excluded_carriers;
startRequest;
appendPrintBuf("%s len_allowed_carriers:%d, len_excluded_carriers:%d,",
printBuf, cr.len_allowed_carriers, cr.len_excluded_carriers);
appendPrintBuf("%s allowed_carriers:", printBuf);
for (int32_t i = 0; i < cr.len_allowed_carriers; i++) {
RIL_Carrier *p_cr = allowed_carriers + i;
p_cr->mcc = strdupReadString(p);
p_cr->mnc = strdupReadString(p);
status = p.readInt32(&t);
p_cr->match_type = static_cast<RIL_CarrierMatchType>(t);
if (status != NO_ERROR) {
goto invalid;
}
p_cr->match_data = strdupReadString(p);
appendPrintBuf("%s [%d mcc:%s, mnc:%s, match_type:%d, match_data:%s],",
printBuf, i, p_cr->mcc, p_cr->mnc, p_cr->match_type, p_cr->match_data);
}
for (int32_t i = 0; i < cr.len_excluded_carriers; i++) {
RIL_Carrier *p_cr = excluded_carriers + i;
p_cr->mcc = strdupReadString(p);
p_cr->mnc = strdupReadString(p);
status = p.readInt32(&t);
p_cr->match_type = static_cast<RIL_CarrierMatchType>(t);
if (status != NO_ERROR) {
goto invalid;
}
p_cr->match_data = strdupReadString(p);
appendPrintBuf("%s [%d mcc:%s, mnc:%s, match_type:%d, match_data:%s],",
printBuf, i, p_cr->mcc, p_cr->mnc, p_cr->match_type, p_cr->match_data);
}
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber,
&cr,
sizeof(RIL_CarrierRestrictions),
pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
goto exit;
invalid:
invalidCommandBlock(pRI);
RIL_onRequestComplete(pRI, RIL_E_INVALID_ARGUMENTS, NULL, 0);
exit:
if (allowed_carriers != NULL) {
free(allowed_carriers);
}
if (excluded_carriers != NULL) {
free(excluded_carriers);
}
return;
}
//MTK-START [mtk80776] WiFi Calling
static void dispatchUiccIo(Parcel &p, RequestInfo *pRI)
{
RIL_UICC_IO_v6 uiccIo;
int32_t t = 0;
status_t status;
memset(&uiccIo, 0, sizeof(uiccIo));
status = p.readInt32(&t);
uiccIo.sessionId = (int)t;
status = p.readInt32(&t);
uiccIo.command = (int)t;
status = p.readInt32(&t);
uiccIo.fileId = (int)t;
uiccIo.path = strdupReadString(p);
status = p.readInt32(&t);
uiccIo.p1 = (int)t;
status = p.readInt32(&t);
uiccIo.p2 = (int)t;
status = p.readInt32(&t);
uiccIo.p3 = (int)t;
uiccIo.data = strdupReadString(p);
uiccIo.pin2 = strdupReadString(p);
startRequest;
appendPrintBuf("%s sessionId=0x%X, cmd=0x%x, efid=0x%x path=%s,%d,%d,%d,%s,pin2=%s", printBuf,
uiccIo.sessionId, uiccIo.command, uiccIo.fileId, (char *)uiccIo.path,
uiccIo.p1, uiccIo.p2, uiccIo.p3, (char *)uiccIo.data, (char *)uiccIo.pin2);
closeRequest;
printRequest(pRI->token, pRI->pCI->reqeustNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &uiccIo, sizeof(RIL_UICC_IO_v6), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(uiccIo.path);
memsetString(uiccIo.data);
memsetString(uiccIo.pin2);
#endif
free(uiccIo.path);
free(uiccIo.data);
free(uiccIo.pin2);
#ifdef MEMSET_FREED
memset(&uiccIo, 0, sizeof(RIL_UICC_IO_v6));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchUiccAuthentication(Parcel &p, RequestInfo *pRI)
{
RIL_UICC_Authentication uiccAuth;
int32_t t = 0;
int32_t len;
status_t status;
RLOGD("dispatchUiccAuthentication Enter...");
memset(&uiccAuth, 0, sizeof(uiccAuth));
status = p.readInt32(&t);
uiccAuth.session_id = (int)t;
uiccAuth.context1 = strdupReadString(p);
uiccAuth.context2 = strdupReadString(p);
startRequest;
appendPrintBuf("%ssessionId=%d, context1=%s, context2=%s", printBuf,
uiccAuth.session_id, uiccAuth.context1, uiccAuth.context2);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &uiccAuth, sizeof(uiccAuth), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(uiccAuth.context1);
memsetString(uiccAuth.context2);
#endif
free(uiccAuth.context1);
free(uiccAuth.context2);
#ifdef MEMSET_FREED
memset(&uiccAuth, 0, sizeof(uiccAuth));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
//MTK-END [mtk80776] WiFi Calling
// New SIM Authentication
static void dispatchSimAuth(Parcel &p, RequestInfo *pRI) {
RIL_SimAuthStructure args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
// Session ID
status = p.readInt32(&t);
args.sessionId = (int) t;
// mode
status = p.readInt32(&t);
args.mode = (int) t;
args.param1 = strdupReadString(p);
args.param2 = strdupReadString(p);
if (args.mode == 1) {
// GBA
status = p.readInt32(&t);
args.tag = (int) t;
}
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
//[New R8 modem FD]
static void dispatchFdMode(Parcel &p, RequestInfo *pRI) {
RIL_FdModeData args;
status_t status;
int t_value = 0;
memset(&args, 0, sizeof(args));
status = p.readInt32(&t_value);
args.argsNum = t_value;
/* AT+EFD=<mode>[,<param1>[,<param2>]] */
/* For all modes: but mode 0 & 1 only has one argument */
if (args.argsNum >= 1) {
status = p.readInt32(&t_value);
args.mode = t_value;
}
/* For mode 2 & 3 */
if (args.argsNum >= 2) {
status = p.readInt32(&t_value);
args.parameter1 = t_value;
}
/* Only mode 2 */
if (args.argsNum >=3) {
status = p.readInt32(&t_value);
args.parameter2 = t_value;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
}
static void dispatchPhbEntry(Parcel &p, RequestInfo *pRI) {
RIL_PhbEntryStrucutre args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
// storage type
status = p.readInt32(&t);
args.type = (int) t;
// index of the entry
status = p.readInt32(&t);
args.index = (int) t;
// phone number
args.number = strdupReadString(p);
// Type of the number
status = p.readInt32(&t);
args.ton = (int) t;
// alpha Id
args.alphaId = strdupReadString(p);
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%s%d,index=%d,num=%s,ton=%d,alphaId=%s", printBuf, args.type,
args.index, (char*)args.number, args.ton, (char*)args.alphaId);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString (args.number);
memsetString (args.alphaId);
#endif
free (args.number);
free (args.alphaId);
#ifdef MEMSET_FREED
memset(&args, 0, sizeof(args));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchWritePhbEntryExt(Parcel &p, RequestInfo *pRI) {
RIL_PHB_ENTRY args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
// index of the entry
status = p.readInt32(&t);
args.index = (int) t;
// phone number
args.number = strdupReadString(p);
// Type of the number
status = p.readInt32(&t);
args.type = (int) t;
//text
args.text = strdupReadString(p);
//hidden
status = p.readInt32(&t);
args.hidden = (int) t;
//group
args.group = strdupReadString(p);
//anr
args.adnumber = strdupReadString(p);
// Type of the adnumber
status = p.readInt32(&t);
args.adtype = (int) t;
//SNE
args.secondtext = strdupReadString(p);
// email
args.email = strdupReadString(p);
if (status != NO_ERROR) {
goto invalid;
}
startRequest;
appendPrintBuf("%s,index=%d,num=%s,type=%d,text=%s,hidden=%d,group=%s,adnumber=%s,adtype=%d,secondtext=%s,email=%s", printBuf,
args.index, (char*)args.number, args.type, (char*)args.text,
args.hidden, (char*)args.group,(char*)args.adnumber, args.adtype,(char*)args.secondtext,(char*)args.email);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString (args.number);
memsetString (args.text);
memsetString (args.group);
memsetString (args.adnumber);
memsetString (args.secondtext);
memsetString (args.email);
#endif
free (args.number);
free (args.text);
free (args.group);
free (args.adnumber);
free (args.secondtext);
free (args.email);
#ifdef MEMSET_FREED
memset(&args, 0, sizeof(args));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static int
blockingWrite(int fd, const void *buffer, size_t len) {
size_t writeOffset = 0;
const uint8_t *toWrite;
toWrite = (const uint8_t *)buffer;
while (writeOffset < len) {
ssize_t written;
do {
written = write (fd, toWrite + writeOffset,
len - writeOffset);
} while (written < 0 && ((errno == EINTR) || (errno == EAGAIN)));
if (written >= 0) {
writeOffset += written;
} else { // written < 0
RLOGE ("RIL Response: unexpected error on write errno:%d", errno);
close(fd);
return -1;
}
}
#if VDBG
RLOGE("RIL Response bytes written:%d", writeOffset);
#endif
return 0;
}
static int
sendResponseRaw (const void *data, size_t dataSize, RIL_SOCKET_ID socket_id, int clientId) {
int fd = s_ril_param_socket.fdCommand;
int ret;
uint32_t header;
pthread_mutex_t * writeMutexHook = &s_writeMutex;
#if VDBG
RLOGE("Send Response to %s %d", rilSocketIdToString(socket_id), clientId);
#endif
if (clientId >= 0) {
fd = s_ril_param_socket_clients[clientId].fdCommand;
writeMutexHook = &(s_writeMutex_socket_client[clientId]);
RLOGD("Send Response to client %d", clientId);
} else {
if (socket_id == RIL_SOCKET_2) {
fd = s_ril_param_socket2.fdCommand;
writeMutexHook = &s_writeMutex_socket2;
}
else if (socket_id == RIL_SOCKET_3) {
fd = s_ril_param_socket3.fdCommand;
writeMutexHook = &s_writeMutex_socket3;
}
else if (socket_id == RIL_SOCKET_4) {
fd = s_ril_param_socket4.fdCommand;
writeMutexHook = &s_writeMutex_socket4;
}
else if (socket_id == RIL_SOCKET_RILJ) {
fd = s_ril_param_socket_rilj.fdCommand;
writeMutexHook = &s_writeMutex_socket_rilj;
}
else if (socket_id == RIL_SOCKET_RILJ2) {
fd = s_ril_param_socket_rilj2.fdCommand;
writeMutexHook = &s_writeMutex_socket_rilj2;
}
}
if (fd < 0) {
return -1;
}
if (dataSize > MAX_COMMAND_BYTES) {
RLOGE("RIL: packet larger than %u (%u)",
MAX_COMMAND_BYTES, (unsigned int )dataSize);
return -1;
}
pthread_mutex_lock(writeMutexHook);
header = htonl(dataSize);
ret = blockingWrite(fd, (void *)&header, sizeof(header));
if (ret < 0) {
pthread_mutex_unlock(writeMutexHook);
return ret;
}
ret = blockingWrite(fd, data, dataSize);
if (ret < 0) {
pthread_mutex_unlock(writeMutexHook);
return ret;
}
pthread_mutex_unlock(writeMutexHook);
return 0;
}
static int
sendResponse (Parcel &p, RIL_SOCKET_ID socket_id, int clientId) {
printResponse;
return sendResponseRaw(p.data(), p.dataSize(), socket_id, clientId);
}
/** response is an int* pointing to an array of ints */
static int
responseInts(Parcel &p, void *response, size_t responselen) {
int numInts;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(int) != 0) {
RLOGE("responseInts: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof(int));
return RIL_ERRNO_INVALID_RESPONSE;
}
int *p_int = (int *) response;
numInts = responselen / sizeof(int);
p.writeInt32 (numInts);
/* each int*/
startResponse;
for (int i = 0 ; i < numInts ; i++) {
appendPrintBuf("%s%d,", printBuf, p_int[i]);
p.writeInt32(p_int[i]);
}
removeLastChar;
closeResponse;
return 0;
}
// Response is an int or RIL_LastCallFailCauseInfo.
// Currently, only Shamu plans to use RIL_LastCallFailCauseInfo.
// TODO(yjl): Let all implementations use RIL_LastCallFailCauseInfo.
static int responseFailCause(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen == sizeof(int)) {
startResponse;
int *p_int = (int *) response;
appendPrintBuf("%s%d,", printBuf, p_int[0]);
p.writeInt32(p_int[0]);
removeLastChar;
closeResponse;
} else if (responselen == sizeof(RIL_LastCallFailCauseInfo)) {
startResponse;
RIL_LastCallFailCauseInfo *p_fail_cause_info = (RIL_LastCallFailCauseInfo *) response;
appendPrintBuf("%s[cause_code=%d,vendor_cause=%s]", printBuf, p_fail_cause_info->cause_code,
p_fail_cause_info->vendor_cause);
p.writeInt32(p_fail_cause_info->cause_code);
writeStringToParcel(p, p_fail_cause_info->vendor_cause);
removeLastChar;
closeResponse;
} else {
RLOGE("responseFailCause: invalid response length %d expected an int or "
"RIL_LastCallFailCauseInfo", (int)responselen);
return RIL_ERRNO_INVALID_RESPONSE;
}
return 0;
}
/** response is a char **, pointing to an array of char *'s
The parcel will begin with the version */
static int responseStringsWithVersion(int version, Parcel &p, void *response, size_t responselen) {
p.writeInt32(version);
return responseStrings(p, response, responselen);
}
/** response is a char **, pointing to an array of char *'s */
static int responseStrings(Parcel &p, void *response, size_t responselen) {
int numStrings;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(char *) != 0) {
RLOGE("responseStrings: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof(char *));
return RIL_ERRNO_INVALID_RESPONSE;
}
if (response == NULL) {
p.writeInt32 (0);
} else {
char **p_cur = (char **) response;
numStrings = responselen / sizeof(char *);
p.writeInt32 (numStrings);
/* each string*/
startResponse;
for (int i = 0 ; i < numStrings ; i++) {
appendPrintBuf("%s%s,", printBuf, (char*)p_cur[i]);
writeStringToParcel (p, p_cur[i]);
}
removeLastChar;
closeResponse;
}
return 0;
}
static void responseRIL_CellIdentity_v16(Parcel &p, RIL_CellIdentity_v16 *ci) {
p.writeInt32(ci->cellInfoType);
switch (ci->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
p.writeInt32(ci->cellIdentityGsm.mcc);
p.writeInt32(ci->cellIdentityGsm.mnc);
p.writeInt32(ci->cellIdentityGsm.mnc_len);
p.writeInt32(ci->cellIdentityGsm.lac);
p.writeInt32(ci->cellIdentityGsm.cid);
p.writeInt32(ci->cellIdentityGsm.arfcn);
p.writeByte(ci->cellIdentityGsm.bsic);
writeStringToParcel(p, (const char *)ci->cellIdentityGsm.operName.long_name);
writeStringToParcel(p, (const char *)ci->cellIdentityGsm.operName.short_name);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
p.writeInt32(ci->cellIdentityWcdma.mcc);
p.writeInt32(ci->cellIdentityWcdma.mnc);
p.writeInt32(ci->cellIdentityWcdma.mnc_len);
p.writeInt32(ci->cellIdentityWcdma.lac);
p.writeInt32(ci->cellIdentityWcdma.cid);
p.writeInt32(ci->cellIdentityWcdma.uarfcn);
writeStringToParcel(p, (const char *)ci->cellIdentityWcdma.operName.long_name);
writeStringToParcel(p, (const char *)ci->cellIdentityWcdma.operName.short_name);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
p.writeInt32(ci->cellIdentityCdma.networkId);
p.writeInt32(ci->cellIdentityCdma.systemId);
p.writeInt32(ci->cellIdentityCdma.basestationId);
p.writeInt32(ci->cellIdentityCdma.longitude);
p.writeInt32(ci->cellIdentityCdma.latitude);
writeStringToParcel(p, (const char *)ci->cellIdentityCdma.operName.long_name);
writeStringToParcel(p, (const char *)ci->cellIdentityCdma.operName.short_name);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
p.writeInt32(ci->cellIdentityLte.mcc);
p.writeInt32(ci->cellIdentityLte.mnc);
p.writeInt32(ci->cellIdentityLte.mnc_len);
p.writeInt32(ci->cellIdentityLte.ci);
p.writeInt32(ci->cellIdentityLte.pci);
p.writeInt32(ci->cellIdentityLte.tac);
p.writeInt32(ci->cellIdentityLte.earfcn);
writeStringToParcel(p, (const char *)ci->cellIdentityLte.operName.long_name);
writeStringToParcel(p, (const char *)ci->cellIdentityLte.operName.short_name);
p.writeInt32(ci->cellIdentityLte.bandwidth);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
p.writeInt32(ci->cellIdentityTdscdma.mcc);
p.writeInt32(ci->cellIdentityTdscdma.mnc);
p.writeInt32(ci->cellIdentityTdscdma.mnc_len);
p.writeInt32(ci->cellIdentityTdscdma.lac);
p.writeInt32(ci->cellIdentityTdscdma.cid);
p.writeInt32(ci->cellIdentityTdscdma.cpid);
writeStringToParcel(p, (const char *)ci->cellIdentityTdscdma.operName.long_name);
writeStringToParcel(p, (const char *)ci->cellIdentityTdscdma.operName.short_name);
break;
}
default: {
break;
}
}
}
static int responseVoiceRegState(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
} else if (s_callbacks.version >= 15) {
if (responselen == sizeof(RIL_VoiceRegistrationStateResponse)) {
RIL_VoiceRegistrationStateResponse *res = (RIL_VoiceRegistrationStateResponse *) response;
p.writeInt32(res->regState);
p.writeInt32(res->rat);
p.writeInt32(res->cssSupported);
p.writeInt32(res->roamingIndicator);
p.writeInt32(res->systemIsInPrl);
p.writeInt32(res->defaultRoamingIndicator);
p.writeInt32(res->reasonForDenial);
responseRIL_CellIdentity_v16(p, &(res->cellIdentity));
} else {
RLOGE("invalid response: size not matched");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else {
responseStrings(p, response, responselen);
}
return 0;
}
static int responseDataRegState(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
} else if (s_callbacks.version >= 15) {
if (responselen == sizeof(RIL_DataRegistrationStateResponse)) {
RIL_DataRegistrationStateResponse *res = (RIL_DataRegistrationStateResponse *) response;
p.writeInt32(res->regState);
p.writeInt32(res->rat);
p.writeInt32(res->reasonDataDenied);
p.writeInt32(res->maxDataCalls);
responseRIL_CellIdentity_v16(p, &(res->cellIdentity));
} else {
RLOGE("invalid response: size not matched");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else {
responseStrings(p, response, responselen);
}
return 0;
}
static int responseKeepaliveStatus(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
} else if (s_callbacks.version >= 15) {
if (responselen == sizeof(RIL_KeepaliveStatus)) {
RIL_KeepaliveStatus *stat = (RIL_KeepaliveStatus *)response;
p.writeInt32(stat->sessionHandle);
p.writeInt32(stat->code);
} else {
RLOGE("invalid response: size not matched");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else {
return responseVoid(p, response, responselen);
}
return 0;
}
/**
* NULL strings are accepted
* FIXME currently ignores responselen
*/
static int responseString(Parcel &p, void *response, size_t responselen) {
/* one string only */
startResponse;
appendPrintBuf("%s%s", printBuf, (char*)response);
closeResponse;
writeStringToParcel(p, (const char *)response);
return 0;
}
static int responseVoid(Parcel &p, void *response, size_t responselen) {
startResponse;
removeLastChar;
return 0;
}
static int responseCallList(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof (RIL_Call *) != 0) {
RLOGE("responseCallList: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_Call *));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
/* number of call info's */
num = responselen / sizeof(RIL_Call *);
/// MTK_RIL_ADAPTER for IMS CC @{
int count = 0;
for (int i = 0 ; i < num ; i++) {
RIL_Call *p_cur = ((RIL_Call **) response)[i];
if (p_cur->index < CONF_CALL_ID_SHIFT) {
count++;
}
}
p.writeInt32(count);
/// @}
for (int i = 0 ; i < num ; i++) {
RIL_Call *p_cur = ((RIL_Call **) response)[i];
/// MTK_RIL_ADAPTER for IMS CC @{
if (p_cur->index >= CONF_CALL_ID_SHIFT) {
continue;
}
/// @}
/* each call info */
p.writeInt32(p_cur->state);
p.writeInt32(p_cur->index);
p.writeInt32(p_cur->toa);
p.writeInt32(p_cur->isMpty);
p.writeInt32(p_cur->isMT);
p.writeInt32(p_cur->als);
p.writeInt32(p_cur->isVoice);
p.writeInt32(p_cur->isVoicePrivacy);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->numberPresentation);
writeStringToParcel(p, p_cur->name);
p.writeInt32(p_cur->namePresentation);
// Remove when partners upgrade to version 3
if ((s_callbacks.version < 3) || (p_cur->uusInfo == NULL || p_cur->uusInfo->uusData == NULL)) {
p.writeInt32(0); /* UUS Information is absent */
} else {
RIL_UUS_Info *uusInfo = p_cur->uusInfo;
p.writeInt32(1); /* UUS Information is present */
p.writeInt32(uusInfo->uusType);
p.writeInt32(uusInfo->uusDcs);
p.writeInt32(uusInfo->uusLength);
p.write(uusInfo->uusData, uusInfo->uusLength);
}
p.writeInt32(p_cur->speechCodec);
appendPrintBuf("%s[id=%d,%s,toa=%d,",
printBuf,
p_cur->index,
callStateToString(p_cur->state),
p_cur->toa);
appendPrintBuf("%s%s,%s,als=%d,%s,%s,",
printBuf,
(p_cur->isMpty)?"conf":"norm",
(p_cur->isMT)?"mt":"mo",
p_cur->als,
(p_cur->isVoice)?"voc":"nonvoc",
(p_cur->isVoicePrivacy)?"evp":"noevp");
appendPrintBuf("%s%s,cli=%d,name='%s',%d]",
printBuf,
p_cur->number,
p_cur->numberPresentation,
p_cur->name,
p_cur->namePresentation);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseSMS(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_SMS_Response) ) {
RLOGE("invalid response length %d expected %d",
(int)responselen, (int)sizeof (RIL_SMS_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SMS_Response *p_cur = (RIL_SMS_Response *) response;
p.writeInt32(p_cur->messageRef);
writeStringToParcel(p, p_cur->ackPDU);
p.writeInt32(p_cur->errorCode);
startResponse;
appendPrintBuf("%s%d,%s,%d", printBuf, p_cur->messageRef,
(char*)p_cur->ackPDU, p_cur->errorCode);
closeResponse;
return 0;
}
static int responseDataCallListV4(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v4) != 0) {
RLOGE("responseDataCallListV4: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v4));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(4);
int num = responselen / sizeof(RIL_Data_Call_Response_v4);
p.writeInt32(num);
RIL_Data_Call_Response_v4 *p_cur = (RIL_Data_Call_Response_v4 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
// apn is not used, so don't send.
writeStringToParcel(p, p_cur[i].address);
appendPrintBuf("%s[cid=%d,%s,%s,%s],", printBuf,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].address);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallListV6(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v6) != 0) {
RLOGE("responseDataCallListV6: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v6));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(6);
int num = responselen / sizeof(RIL_Data_Call_Response_v6);
p.writeInt32(num);
RIL_Data_Call_Response_v6 *p_cur = (RIL_Data_Call_Response_v6 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur[i].status);
p.writeInt32(p_cur[i].suggestedRetryTime);
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
writeStringToParcel(p, p_cur[i].ifname);
writeStringToParcel(p, p_cur[i].addresses);
writeStringToParcel(p, p_cur[i].dnses);
writeStringToParcel(p, p_cur[i].gateways);
appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s],", printBuf,
p_cur[i].status,
p_cur[i].suggestedRetryTime,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].ifname,
(char*)p_cur[i].addresses,
(char*)p_cur[i].dnses,
(char*)p_cur[i].gateways);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallListV9(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_Data_Call_Response_v9) != 0) {
RLOGE("responseDataCallListV9: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_Data_Call_Response_v9));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(10);
int num = responselen / sizeof(RIL_Data_Call_Response_v9);
p.writeInt32(num);
RIL_Data_Call_Response_v9 *p_cur = (RIL_Data_Call_Response_v9 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur[i].status);
p.writeInt32(p_cur[i].suggestedRetryTime);
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
writeStringToParcel(p, p_cur[i].ifname);
writeStringToParcel(p, p_cur[i].addresses);
writeStringToParcel(p, p_cur[i].dnses);
writeStringToParcel(p, p_cur[i].gateways);
writeStringToParcel(p, p_cur[i].pcscf);
appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s,%s],", printBuf,
p_cur[i].status,
p_cur[i].suggestedRetryTime,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].ifname,
(char*)p_cur[i].addresses,
(char*)p_cur[i].dnses,
(char*)p_cur[i].gateways,
(char*)p_cur[i].pcscf);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallListV11(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(MTK_RIL_Data_Call_Response_v11) != 0) {
RLOGE("invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(MTK_RIL_Data_Call_Response_v11));
return RIL_ERRNO_INVALID_RESPONSE;
}
// Write version
p.writeInt32(11);
int num = responselen / sizeof(MTK_RIL_Data_Call_Response_v11);
p.writeInt32(num);
MTK_RIL_Data_Call_Response_v11 *p_cur = (MTK_RIL_Data_Call_Response_v11 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur[i].status);
p.writeInt32(p_cur[i].suggestedRetryTime);
p.writeInt32(p_cur[i].cid);
p.writeInt32(p_cur[i].active);
writeStringToParcel(p, p_cur[i].type);
writeStringToParcel(p, p_cur[i].ifname);
writeStringToParcel(p, p_cur[i].addresses);
writeStringToParcel(p, p_cur[i].dnses);
writeStringToParcel(p, p_cur[i].gateways);
writeStringToParcel(p, p_cur[i].pcscf);
p.writeInt32(p_cur[i].mtu);
p.writeInt32(p_cur[i].rat);
appendPrintBuf("%s[status=%d,retry=%d,cid=%d,%s,%s,%s,%s,%s,%s,%s,%d,rat=%d],", printBuf,
p_cur[i].status,
p_cur[i].suggestedRetryTime,
p_cur[i].cid,
(p_cur[i].active==0)?"down":"up",
(char*)p_cur[i].type,
(char*)p_cur[i].ifname,
(char*)p_cur[i].addresses,
(char*)p_cur[i].dnses,
(char*)p_cur[i].gateways,
(char*)p_cur[i].pcscf,
p_cur[i].mtu,
p_cur[i].rat);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseDataCallList(Parcel &p, void *response, size_t responselen)
{
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (s_callbacks.version < 5) {
RLOGD("responseDataCallList: v4");
return responseDataCallListV4(p, response, responselen);
} else if (responselen % sizeof(RIL_Data_Call_Response_v6) == 0) {
return responseDataCallListV6(p, response, responselen);
} else if (responselen % sizeof(RIL_Data_Call_Response_v9) == 0) {
return responseDataCallListV9(p, response, responselen);
} else {
return responseDataCallListV11(p, response, responselen);
}
} else { // RIL version >= 13
if (responselen % sizeof(MTK_RIL_Data_Call_Response_v11) != 0) {
RLOGE("Data structure expected is MTK_RIL_Data_Call_Response_v11");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
return responseDataCallListV11(p, response, responselen);
}
}
static int responseSetupDataCall(Parcel &p, void *response, size_t responselen)
{
if (s_callbacks.version < 5) {
return responseStringsWithVersion(s_callbacks.version, p, response, responselen);
} else {
return responseDataCallList(p, response, responselen);
}
}
static int responseRaw(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL with responselen != 0");
return RIL_ERRNO_INVALID_RESPONSE;
}
// The java code reads -1 size as null byte array
if (response == NULL) {
p.writeInt32(-1);
} else {
p.writeInt32(responselen);
p.write(response, responselen);
}
return 0;
}
static int responseSIM_IO(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_SIM_IO_Response) ) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SIM_IO_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SIM_IO_Response *p_cur = (RIL_SIM_IO_Response *) response;
p.writeInt32(p_cur->sw1);
p.writeInt32(p_cur->sw2);
writeStringToParcel(p, p_cur->simResponse);
startResponse;
appendPrintBuf("%ssw1=0x%X,sw2=0x%X,%s", printBuf, p_cur->sw1, p_cur->sw2,
(char*)p_cur->simResponse);
closeResponse;
return 0;
}
static int responseCallForwards(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CallForwardInfo *) != 0) {
RLOGE("responseCallForwards: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CallForwardInfo *));
return RIL_ERRNO_INVALID_RESPONSE;
}
/* number of call info's */
num = responselen / sizeof(RIL_CallForwardInfo *);
p.writeInt32(num);
startResponse;
for (int i = 0 ; i < num ; i++) {
RIL_CallForwardInfo *p_cur = ((RIL_CallForwardInfo **) response)[i];
p.writeInt32(p_cur->status);
p.writeInt32(p_cur->reason);
p.writeInt32(p_cur->serviceClass);
p.writeInt32(p_cur->toa);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->timeSeconds);
appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d],", printBuf,
(p_cur->status==1)?"enable":"disable",
p_cur->reason, p_cur->serviceClass, p_cur->toa,
(char*)p_cur->number,
p_cur->timeSeconds);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseCallForwardsEx(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CallForwardInfoEx *) != 0) {
RLOGE("responseCallForwardsEx: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CallForwardInfoEx *));
return RIL_ERRNO_INVALID_RESPONSE;
}
/* number of call info's */
num = responselen / sizeof(RIL_CallForwardInfoEx *);
p.writeInt32(num);
startResponse;
for (int i = 0 ; i < num ; i++) {
RIL_CallForwardInfoEx *p_cur = ((RIL_CallForwardInfoEx **) response)[i];
p.writeInt32(p_cur->status);
p.writeInt32(p_cur->reason);
p.writeInt32(p_cur->serviceClass);
p.writeInt32(p_cur->toa);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->timeSeconds);
writeStringToParcel(p, p_cur->timeSlotBegin);
writeStringToParcel(p, p_cur->timeSlotEnd);
appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d,timeSlot=%s,%s],", printBuf,
(p_cur->status==1)?"enable":"disable",
p_cur->reason, p_cur->serviceClass, p_cur->toa,
(char*)p_cur->number,
p_cur->timeSeconds,
p_cur->timeSlotBegin,
p_cur->timeSlotEnd);
}
removeLastChar;
closeResponse;
return 0;
}
static int responseSsn(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_SuppSvcNotification)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SuppSvcNotification));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SuppSvcNotification *p_cur = (RIL_SuppSvcNotification *) response;
p.writeInt32(p_cur->notificationType);
p.writeInt32(p_cur->code);
p.writeInt32(p_cur->index);
p.writeInt32(p_cur->type);
writeStringToParcel(p, p_cur->number);
startResponse;
appendPrintBuf("%s%s,code=%d,id=%d,type=%d,%s", printBuf,
(p_cur->notificationType==0)?"mo":"mt",
p_cur->code, p_cur->index, p_cur->type,
(char*)p_cur->number);
closeResponse;
return 0;
}
static int responseCellList(Parcel &p, void *response, size_t responselen) {
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof (RIL_NeighboringCell *) != 0) {
RLOGE("responseCellList: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_NeighboringCell *));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
/* number of records */
num = responselen / sizeof(RIL_NeighboringCell *);
p.writeInt32(num);
for (int i = 0 ; i < num ; i++) {
RIL_NeighboringCell *p_cur = ((RIL_NeighboringCell **) response)[i];
p.writeInt32(p_cur->rssi);
writeStringToParcel (p, p_cur->cid);
appendPrintBuf("%s[cid=%s,rssi=%d],", printBuf,
p_cur->cid, p_cur->rssi);
}
removeLastChar;
closeResponse;
return 0;
}
/**
* Marshall the signalInfoRecord into the parcel if it exists.
*/
static void marshallSignalInfoRecord(Parcel &p,
RIL_CDMA_SignalInfoRecord &p_signalInfoRecord) {
p.writeInt32(p_signalInfoRecord.isPresent);
p.writeInt32(p_signalInfoRecord.signalType);
p.writeInt32(p_signalInfoRecord.alertPitch);
p.writeInt32(p_signalInfoRecord.signal);
}
static int responseCdmaInformationRecords(Parcel &p,
void *response, size_t responselen) {
int num;
char* string8 = NULL;
int buffer_lenght;
RIL_CDMA_InformationRecord *infoRec;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_CDMA_InformationRecords)) {
RLOGE("responseCdmaInformationRecords: invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_CDMA_InformationRecords *));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CDMA_InformationRecords *p_cur =
(RIL_CDMA_InformationRecords *) response;
num = MIN(p_cur->numberOfInfoRecs, RIL_CDMA_MAX_NUMBER_OF_INFO_RECS);
startResponse;
p.writeInt32(num);
for (int i = 0 ; i < num ; i++) {
infoRec = &p_cur->infoRec[i];
p.writeInt32(infoRec->name);
switch (infoRec->name) {
case RIL_CDMA_DISPLAY_INFO_REC:
case RIL_CDMA_EXTENDED_DISPLAY_INFO_REC:
if (infoRec->rec.display.alpha_len >
CDMA_ALPHA_INFO_BUFFER_LENGTH) {
RLOGE("invalid display info response length %d \
expected not more than %d\n",
(int)infoRec->rec.display.alpha_len,
CDMA_ALPHA_INFO_BUFFER_LENGTH);
return RIL_ERRNO_INVALID_RESPONSE;
}
string8 = (char*) calloc(infoRec->rec.display.alpha_len + 1, sizeof(char));
if (string8 == NULL) {
RLOGE("Memory allocation failed for responseCdmaInformationRecords");
closeRequest;
return RIL_ERRNO_NO_MEMORY;
}
for (int i = 0 ; i < infoRec->rec.display.alpha_len ; i++) {
string8[i] = infoRec->rec.display.alpha_buf[i];
}
string8[(int)infoRec->rec.display.alpha_len] = '\0';
writeStringToParcel(p, (const char*)string8);
free(string8);
string8 = NULL;
break;
case RIL_CDMA_CALLED_PARTY_NUMBER_INFO_REC:
case RIL_CDMA_CALLING_PARTY_NUMBER_INFO_REC:
case RIL_CDMA_CONNECTED_NUMBER_INFO_REC:
if (infoRec->rec.number.len > CDMA_NUMBER_INFO_BUFFER_LENGTH) {
RLOGE("invalid display info response length %d \
expected not more than %d\n",
(int)infoRec->rec.number.len,
CDMA_NUMBER_INFO_BUFFER_LENGTH);
return RIL_ERRNO_INVALID_RESPONSE;
}
string8 = (char*) calloc(infoRec->rec.number.len + 1, sizeof(char));
if (string8 == NULL) {
RLOGE("Memory allocation failed for responseCdmaInformationRecords");
closeRequest;
return RIL_ERRNO_NO_MEMORY;
}
for (int i = 0 ; i < infoRec->rec.number.len; i++) {
string8[i] = infoRec->rec.number.buf[i];
}
string8[(int)infoRec->rec.number.len] = '\0';
writeStringToParcel(p, (const char*)string8);
free(string8);
string8 = NULL;
p.writeInt32(infoRec->rec.number.number_type);
p.writeInt32(infoRec->rec.number.number_plan);
p.writeInt32(infoRec->rec.number.pi);
p.writeInt32(infoRec->rec.number.si);
break;
case RIL_CDMA_SIGNAL_INFO_REC:
p.writeInt32(infoRec->rec.signal.isPresent);
p.writeInt32(infoRec->rec.signal.signalType);
p.writeInt32(infoRec->rec.signal.alertPitch);
p.writeInt32(infoRec->rec.signal.signal);
appendPrintBuf("%sisPresent=%X, signalType=%X, \
alertPitch=%X, signal=%X, ",
printBuf, (int)infoRec->rec.signal.isPresent,
(int)infoRec->rec.signal.signalType,
(int)infoRec->rec.signal.alertPitch,
(int)infoRec->rec.signal.signal);
removeLastChar;
break;
case RIL_CDMA_REDIRECTING_NUMBER_INFO_REC:
if (infoRec->rec.redir.redirectingNumber.len >
CDMA_NUMBER_INFO_BUFFER_LENGTH) {
RLOGE("invalid display info response length %d \
expected not more than %d\n",
(int)infoRec->rec.redir.redirectingNumber.len,
CDMA_NUMBER_INFO_BUFFER_LENGTH);
return RIL_ERRNO_INVALID_RESPONSE;
}
string8 = (char*) calloc(infoRec->rec.redir.redirectingNumber.len + 1,
sizeof(char));
if (string8 == NULL) {
RLOGE("Memory allocation failed for responseCdmaInformationRecords");
closeRequest;
return RIL_ERRNO_NO_MEMORY;
}
for (int i = 0;
i < infoRec->rec.redir.redirectingNumber.len;
i++) {
string8[i] = infoRec->rec.redir.redirectingNumber.buf[i];
}
string8[(int)infoRec->rec.redir.redirectingNumber.len] = '\0';
writeStringToParcel(p, (const char*)string8);
free(string8);
string8 = NULL;
p.writeInt32(infoRec->rec.redir.redirectingNumber.number_type);
p.writeInt32(infoRec->rec.redir.redirectingNumber.number_plan);
p.writeInt32(infoRec->rec.redir.redirectingNumber.pi);
p.writeInt32(infoRec->rec.redir.redirectingNumber.si);
p.writeInt32(infoRec->rec.redir.redirectingReason);
break;
case RIL_CDMA_LINE_CONTROL_INFO_REC:
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlPolarityIncluded);
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlToggle);
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlReverse);
p.writeInt32(infoRec->rec.lineCtrl.lineCtrlPowerDenial);
appendPrintBuf("%slineCtrlPolarityIncluded=%d, \
lineCtrlToggle=%d, lineCtrlReverse=%d, \
lineCtrlPowerDenial=%d, ", printBuf,
(int)infoRec->rec.lineCtrl.lineCtrlPolarityIncluded,
(int)infoRec->rec.lineCtrl.lineCtrlToggle,
(int)infoRec->rec.lineCtrl.lineCtrlReverse,
(int)infoRec->rec.lineCtrl.lineCtrlPowerDenial);
removeLastChar;
break;
case RIL_CDMA_T53_CLIR_INFO_REC:
p.writeInt32((int)(infoRec->rec.clir.cause));
appendPrintBuf("%scause%d", printBuf, infoRec->rec.clir.cause);
removeLastChar;
break;
case RIL_CDMA_T53_AUDIO_CONTROL_INFO_REC:
p.writeInt32(infoRec->rec.audioCtrl.upLink);
p.writeInt32(infoRec->rec.audioCtrl.downLink);
appendPrintBuf("%supLink=%d, downLink=%d, ", printBuf,
infoRec->rec.audioCtrl.upLink,
infoRec->rec.audioCtrl.downLink);
removeLastChar;
break;
case RIL_CDMA_T53_RELEASE_INFO_REC:
// TODO(Moto): See David Krause, he has the answer:)
RLOGE("RIL_CDMA_T53_RELEASE_INFO_REC: return INVALID_RESPONSE");
return RIL_ERRNO_INVALID_RESPONSE;
default:
RLOGE("Incorrect name value");
return RIL_ERRNO_INVALID_RESPONSE;
}
}
closeResponse;
return 0;
}
static void responseRilSignalStrengthV5(Parcel &p, RIL_SignalStrength_v10 *p_cur) {
p.writeInt32(p_cur->GW_SignalStrength.signalStrength);
p.writeInt32(p_cur->GW_SignalStrength.bitErrorRate);
p.writeInt32(p_cur->CDMA_SignalStrength.dbm);
p.writeInt32(p_cur->CDMA_SignalStrength.ecio);
p.writeInt32(p_cur->EVDO_SignalStrength.dbm);
p.writeInt32(p_cur->EVDO_SignalStrength.ecio);
p.writeInt32(p_cur->EVDO_SignalStrength.signalNoiseRatio);
}
static void responseRilSignalStrengthV6Extra(Parcel &p, RIL_SignalStrength_v10 *p_cur) {
/*
* Fixup LTE for backwards compatibility
*/
// signalStrength: -1 -> 99
if (p_cur->LTE_SignalStrength.signalStrength == -1) {
p_cur->LTE_SignalStrength.signalStrength = 99;
}
// rsrp: -1 -> INT_MAX all other negative value to positive.
// So remap here
if (p_cur->LTE_SignalStrength.rsrp == -1) {
p_cur->LTE_SignalStrength.rsrp = INT_MAX;
} else if (p_cur->LTE_SignalStrength.rsrp < -1) {
p_cur->LTE_SignalStrength.rsrp = -p_cur->LTE_SignalStrength.rsrp;
}
// rsrq: -1 -> INT_MAX
if (p_cur->LTE_SignalStrength.rsrq == -1) {
p_cur->LTE_SignalStrength.rsrq = INT_MAX;
}
// Not remapping rssnr is already using INT_MAX
// cqi: -1 -> INT_MAX
if (p_cur->LTE_SignalStrength.cqi == -1) {
p_cur->LTE_SignalStrength.cqi = INT_MAX;
}
p.writeInt32(p_cur->LTE_SignalStrength.signalStrength);
p.writeInt32(p_cur->LTE_SignalStrength.rsrp);
p.writeInt32(p_cur->LTE_SignalStrength.rsrq);
p.writeInt32(p_cur->LTE_SignalStrength.rssnr);
p.writeInt32(p_cur->LTE_SignalStrength.cqi);
}
static void responseRilSignalStrengthV10(Parcel &p, RIL_SignalStrength_v10 *p_cur) {
responseRilSignalStrengthV5(p, p_cur);
responseRilSignalStrengthV6Extra(p, p_cur);
p.writeInt32(p_cur->TD_SCDMA_SignalStrength.rscp);
}
static int responseRilSignalStrength(Parcel &p,
void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SignalStrength_v10 *p_cur;
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (responselen >= sizeof (RIL_SignalStrength_v5)) {
p_cur = ((RIL_SignalStrength_v10 *) response);
responseRilSignalStrengthV5(p, p_cur);
if (responselen >= sizeof (RIL_SignalStrength_v6)) {
responseRilSignalStrengthV6Extra(p, p_cur);
if (responselen >= sizeof (RIL_SignalStrength_v10)) {
p.writeInt32(p_cur->TD_SCDMA_SignalStrength.rscp);
} else {
p.writeInt32(INT_MAX);
}
} else {
p.writeInt32(99);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
p.writeInt32(INT_MAX);
}
} else {
RLOGE("invalid response length");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_SignalStrength_v10) != 0) {
RLOGE("Data structure expected is RIL_SignalStrength_v10");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
p_cur = ((RIL_SignalStrength_v10 *) response);
responseRilSignalStrengthV10(p, p_cur);
}
startResponse;
appendPrintBuf("%s[signalStrength=%d,bitErrorRate=%d,\
CDMA_SS.dbm=%d,CDMA_SSecio=%d,\
EVDO_SS.dbm=%d,EVDO_SS.ecio=%d,\
EVDO_SS.signalNoiseRatio=%d,\
LTE_SS.signalStrength=%d,LTE_SS.rsrp=%d,LTE_SS.rsrq=%d,\
LTE_SS.rssnr=%d,LTE_SS.cqi=%d,TDSCDMA_SS.rscp=%d]",
printBuf,
p_cur->GW_SignalStrength.signalStrength,
p_cur->GW_SignalStrength.bitErrorRate,
p_cur->CDMA_SignalStrength.dbm,
p_cur->CDMA_SignalStrength.ecio,
p_cur->EVDO_SignalStrength.dbm,
p_cur->EVDO_SignalStrength.ecio,
p_cur->EVDO_SignalStrength.signalNoiseRatio,
p_cur->LTE_SignalStrength.signalStrength,
p_cur->LTE_SignalStrength.rsrp,
p_cur->LTE_SignalStrength.rsrq,
p_cur->LTE_SignalStrength.rssnr,
p_cur->LTE_SignalStrength.cqi,
p_cur->TD_SCDMA_SignalStrength.rscp);
closeResponse;
return 0;
}
static int responseCallRing(Parcel &p, void *response, size_t responselen) {
if ((response == NULL) || (responselen == 0)) {
return responseVoid(p, response, responselen);
} else {
return responseCdmaSignalInfoRecord(p, response, responselen);
}
}
static int responseCdmaSignalInfoRecord(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen == 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_CDMA_SignalInfoRecord)) {
RLOGE("invalid response length %d expected sizeof (RIL_CDMA_SignalInfoRecord) of %d\n",
(int)responselen, (int)sizeof (RIL_CDMA_SignalInfoRecord));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_CDMA_SignalInfoRecord *p_cur = ((RIL_CDMA_SignalInfoRecord *) response);
marshallSignalInfoRecord(p, *p_cur);
appendPrintBuf("%s[isPresent=%d,signalType=%d,alertPitch=%d\
signal=%d]",
printBuf,
p_cur->isPresent,
p_cur->signalType,
p_cur->alertPitch,
p_cur->signal);
closeResponse;
return 0;
}
static int responseCdmaCallWaiting(Parcel &p, void *response,
size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen < sizeof(RIL_CDMA_CallWaiting_v6)) {
RLOGW("Upgrade to ril version %d\n", RIL_VERSION);
}
RIL_CDMA_CallWaiting_v6 *p_cur = ((RIL_CDMA_CallWaiting_v6 *) response);
writeStringToParcel(p, p_cur->number);
p.writeInt32(p_cur->numberPresentation);
writeStringToParcel(p, p_cur->name);
marshallSignalInfoRecord(p, p_cur->signalInfoRecord);
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (responselen >= sizeof(RIL_CDMA_CallWaiting_v6)) {
p.writeInt32(p_cur->number_type);
p.writeInt32(p_cur->number_plan);
} else {
p.writeInt32(0);
p.writeInt32(0);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_CDMA_CallWaiting_v6) != 0) {
RLOGE("Data structure expected is RIL_CDMA_CallWaiting_v6");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
p.writeInt32(p_cur->number_type);
p.writeInt32(p_cur->number_plan);
}
startResponse;
appendPrintBuf("%snumber=%s,numberPresentation=%d, name=%s,\
signalInfoRecord[isPresent=%d,signalType=%d,alertPitch=%d\
signal=%d,number_type=%d,number_plan=%d]",
printBuf,
p_cur->number,
p_cur->numberPresentation,
p_cur->name,
p_cur->signalInfoRecord.isPresent,
p_cur->signalInfoRecord.signalType,
p_cur->signalInfoRecord.alertPitch,
p_cur->signalInfoRecord.signal,
p_cur->number_type,
p_cur->number_plan);
closeResponse;
return 0;
}
static void responseSimRefreshV7(Parcel &p, void *response) {
RIL_SimRefreshResponse_v7 *p_cur = ((RIL_SimRefreshResponse_v7 *) response);
p.writeInt32(p_cur->result);
p.writeInt32(p_cur->ef_id);
writeStringToParcel(p, p_cur->aid);
appendPrintBuf("%sresult=%d, ef_id=%d, aid=%s",
printBuf,
p_cur->result,
p_cur->ef_id,
p_cur->aid);
}
static int responseSimRefresh(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("responseSimRefresh: invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (s_callbacks.version >= 7) {
responseSimRefreshV7(p, response);
} else {
int *p_cur = ((int *) response);
p.writeInt32(p_cur[0]);
p.writeInt32(p_cur[1]);
writeStringToParcel(p, NULL);
appendPrintBuf("%sresult=%d, ef_id=%d",
printBuf,
p_cur[0],
p_cur[1]);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_SimRefreshResponse_v7) != 0) {
RLOGE("Data structure expected is RIL_SimRefreshResponse_v7");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
responseSimRefreshV7(p, response);
}
closeResponse;
return 0;
}
static int responseCellInfoListV6(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CellInfo) != 0) {
RLOGE("responseCellInfoList: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CellInfo));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_CellInfo);
p.writeInt32(num);
RIL_CellInfo *p_cur = (RIL_CellInfo *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur->cellInfoType);
p.writeInt32(p_cur->registered);
p.writeInt32(p_cur->timeStampType);
p.writeInt64(p_cur->timeStamp);
switch(p_cur->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
break;
}
}
p_cur += 1;
}
removeLastChar;
closeResponse;
return 0;
}
static int responseCellInfoListV12(Parcel &p, void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_CellInfo_v12) != 0) {
RLOGE("responseCellInfoList: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_CellInfo_v12));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_CellInfo_v12);
p.writeInt32(num);
RIL_CellInfo_v12 *p_cur = (RIL_CellInfo_v12 *) response;
startResponse;
int i;
for (i = 0; i < num; i++) {
p.writeInt32((int)p_cur->cellInfoType);
p.writeInt32(p_cur->registered);
p.writeInt32(p_cur->timeStampType);
p.writeInt64(p_cur->timeStamp);
switch(p_cur->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.arfcn);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.bsic);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.uarfcn);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.earfcn);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
break;
}
}
p_cur += 1;
}
removeLastChar;
closeResponse;
return 0;
}
static int responseCellInfoList(Parcel &p, void *response, size_t responselen)
{
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (s_callbacks.version < 12) {
RLOGD("responseCellInfoList: v6");
return responseCellInfoListV6(p, response, responselen);
} else {
RLOGD("responseCellInfoList: v12");
return responseCellInfoListV12(p, response, responselen);
}
} else { // RIL version >= 13
if (responselen % sizeof(RIL_CellInfo_v12) != 0) {
RLOGE("Data structure expected is RIL_CellInfo_v12");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
return responseCellInfoListV12(p, response, responselen);
}
return 0;
}
static int responseHardwareConfig(Parcel &p, void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_HardwareConfig) != 0) {
RLOGE("responseHardwareConfig: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_HardwareConfig));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_HardwareConfig);
int i;
RIL_HardwareConfig *p_cur = (RIL_HardwareConfig *) response;
p.writeInt32(num);
startResponse;
for (i = 0; i < num; i++) {
switch (p_cur[i].type) {
case RIL_HARDWARE_CONFIG_MODEM: {
p.writeInt32(p_cur[i].type);
writeStringToParcel(p, p_cur[i].uuid);
p.writeInt32((int)p_cur[i].state);
p.writeInt32(p_cur[i].cfg.modem.rilModel);
p.writeInt32(p_cur[i].cfg.modem.rat);
p.writeInt32(p_cur[i].cfg.modem.maxVoice);
p.writeInt32(p_cur[i].cfg.modem.maxData);
p.writeInt32(p_cur[i].cfg.modem.maxStandby);
appendPrintBuf("%s modem: uuid=%s,state=%d,rat=%08x,maxV=%d,maxD=%d,maxS=%d", printBuf,
p_cur[i].uuid, (int)p_cur[i].state, p_cur[i].cfg.modem.rat,
p_cur[i].cfg.modem.maxVoice, p_cur[i].cfg.modem.maxData, p_cur[i].cfg.modem.maxStandby);
break;
}
case RIL_HARDWARE_CONFIG_SIM: {
p.writeInt32(p_cur[i].type);
writeStringToParcel(p, p_cur[i].uuid);
p.writeInt32((int)p_cur[i].state);
writeStringToParcel(p, p_cur[i].cfg.sim.modemUuid);
appendPrintBuf("%s sim: uuid=%s,state=%d,modem-uuid=%s", printBuf,
p_cur[i].uuid, (int)p_cur[i].state, p_cur[i].cfg.sim.modemUuid);
break;
}
}
}
removeLastChar;
closeResponse;
return 0;
}
static int responseRadioCapability(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_RadioCapability) ) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SIM_IO_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_RadioCapability *p_cur = (RIL_RadioCapability *) response;
p.writeInt32(p_cur->version);
p.writeInt32(p_cur->session);
p.writeInt32(p_cur->phase);
p.writeInt32(p_cur->rat);
writeStringToParcel(p, p_cur->logicalModemUuid);
p.writeInt32(p_cur->status);
startResponse;
appendPrintBuf("%s[version=%d,session=%d,phase=%d,\
rat=%s,logicalModemUuid=%s,status=%d]",
printBuf,
p_cur->version,
p_cur->session,
p_cur->phase,
p_cur->rat,
p_cur->logicalModemUuid,
p_cur->status);
closeResponse;
return 0;
}
static int responseSSData(Parcel &p, void *response, size_t responselen) {
RLOGD("In responseSSData");
int num;
if (response == NULL && responselen != 0) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_SIM_IO_Response));
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_StkCcUnsolSsResponse)) {
RLOGE("invalid response length %d, expected %d",
(int)responselen, (int)sizeof(RIL_StkCcUnsolSsResponse));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_StkCcUnsolSsResponse *p_cur = (RIL_StkCcUnsolSsResponse *) response;
p.writeInt32(p_cur->serviceType);
p.writeInt32(p_cur->requestType);
p.writeInt32(p_cur->teleserviceType);
p.writeInt32(p_cur->serviceClass);
p.writeInt32(p_cur->result);
if (isServiceTypeCfQuery(p_cur->serviceType, p_cur->requestType)) {
RLOGD("responseSSData CF type, num of Cf elements %d", p_cur->cfData.numValidIndexes);
if (p_cur->cfData.numValidIndexes > NUM_SERVICE_CLASSES) {
RLOGE("numValidIndexes is greater than max value %d, "
"truncating it to max value", NUM_SERVICE_CLASSES);
p_cur->cfData.numValidIndexes = NUM_SERVICE_CLASSES;
}
/* number of call info's */
p.writeInt32(p_cur->cfData.numValidIndexes);
for (int i = 0; i < p_cur->cfData.numValidIndexes; i++) {
RIL_CallForwardInfo cf = p_cur->cfData.cfInfo[i];
p.writeInt32(cf.status);
p.writeInt32(cf.reason);
p.writeInt32(cf.serviceClass);
p.writeInt32(cf.toa);
writeStringToParcel(p, cf.number);
p.writeInt32(cf.timeSeconds);
appendPrintBuf("%s[%s,reason=%d,cls=%d,toa=%d,%s,tout=%d],", printBuf,
(cf.status==1)?"enable":"disable", cf.reason, cf.serviceClass, cf.toa,
(char*)cf.number, cf.timeSeconds);
RLOGD("Data: %d,reason=%d,cls=%d,toa=%d,num=%s,tout=%d],", cf.status,
cf.reason, cf.serviceClass, cf.toa, (char*)cf.number, cf.timeSeconds);
}
} else {
p.writeInt32 (SS_INFO_MAX);
/* each int*/
for (int i = 0; i < SS_INFO_MAX; i++) {
appendPrintBuf("%s%d,", printBuf, p_cur->ssInfo[i]);
RLOGD("Data: %d",p_cur->ssInfo[i]);
p.writeInt32(p_cur->ssInfo[i]);
}
}
removeLastChar;
closeResponse;
return 0;
}
static bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType) {
if ((reqType == SS_INTERROGATION) &&
(serType == SS_CFU ||
serType == SS_CF_BUSY ||
serType == SS_CF_NO_REPLY ||
serType == SS_CF_NOT_REACHABLE ||
serType == SS_CF_ALL ||
serType == SS_CF_ALL_CONDITIONAL)) {
return true;
}
return false;
}
static void triggerEvLoop() {
int ret;
if (!pthread_equal(pthread_self(), s_tid_dispatch)) {
/* trigger event loop to wakeup. No reason to do this,
* if we're in the event loop thread */
do {
ret = write (s_fdWakeupWrite, " ", 1);
} while (ret < 0 && errno == EINTR);
}
}
static void rilEventAddWakeup(struct ril_event *ev) {
ril_event_add(ev);
triggerEvLoop();
}
static void sendSimStatusAppInfo(Parcel &p, int num_apps, RIL_AppStatus appStatus[]) {
p.writeInt32(num_apps);
startResponse;
for (int i = 0; i < num_apps; i++) {
p.writeInt32(appStatus[i].app_type);
p.writeInt32(appStatus[i].app_state);
p.writeInt32(appStatus[i].perso_substate);
writeStringToParcel(p, (const char*)(appStatus[i].aid_ptr));
writeStringToParcel(p, (const char*)
(appStatus[i].app_label_ptr));
p.writeInt32(appStatus[i].pin1_replaced);
p.writeInt32(appStatus[i].pin1);
p.writeInt32(appStatus[i].pin2);
appendPrintBuf("%s[app_type=%d,app_state=%d,perso_substate=%d,\
aid_ptr=%s,app_label_ptr=%s,pin1_replaced=%d,pin1=%d,pin2=%d],",
printBuf,
appStatus[i].app_type,
appStatus[i].app_state,
appStatus[i].perso_substate,
appStatus[i].aid_ptr,
appStatus[i].app_label_ptr,
appStatus[i].pin1_replaced,
appStatus[i].pin1,
appStatus[i].pin2);
}
closeResponse;
}
static void responseSimStatusV5(Parcel &p, void *response) {
RIL_CardStatus_v5 *p_cur = ((RIL_CardStatus_v5 *) response);
p.writeInt32(p_cur->card_state);
p.writeInt32(p_cur->universal_pin_state);
p.writeInt32(p_cur->gsm_umts_subscription_app_index);
p.writeInt32(p_cur->cdma_subscription_app_index);
sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications);
}
static void responseSimStatusV6(Parcel &p, void *response) {
RIL_CardStatus_v6 *p_cur = ((RIL_CardStatus_v6 *) response);
p.writeInt32(p_cur->card_state);
p.writeInt32(p_cur->universal_pin_state);
p.writeInt32(p_cur->gsm_umts_subscription_app_index);
p.writeInt32(p_cur->cdma_subscription_app_index);
p.writeInt32(p_cur->ims_subscription_app_index);
sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications);
}
static void responseSimStatusV7(Parcel &p, void *response) {
RIL_CardStatus_v7 *p_cur = ((RIL_CardStatus_v7 *) response);
p.writeInt32(p_cur->card_state);
p.writeInt32(p_cur->universal_pin_state);
p.writeInt32(p_cur->gsm_umts_subscription_app_index);
p.writeInt32(p_cur->cdma_subscription_app_index);
p.writeInt32(p_cur->ims_subscription_app_index);
sendSimStatusAppInfo(p, p_cur->num_applications, p_cur->applications);
p.writeInt32(p_cur->physicalSlotId);
writeStringToParcel(p, (const char *)p_cur->atr);
writeStringToParcel(p, (const char *)p_cur->iccId);
}
static int responseSimStatus(Parcel &p, void *response, size_t responselen) {
int i;
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (s_callbacks.version <= LAST_IMPRECISE_RIL_VERSION) {
if (responselen == sizeof (RIL_CardStatus_v6)) {
responseSimStatusV6(p, response);
} else if (responselen == sizeof (RIL_CardStatus_v5)) {
responseSimStatusV5(p, response);
} else {
RLOGE("responseSimStatus: A RilCardStatus_v6 or _v5 expected\n");
return RIL_ERRNO_INVALID_RESPONSE;
}
} else { // RIL version >= 13
if (responselen == sizeof(RIL_CardStatus_v6)) {
responseSimStatusV6(p, response);
} else if(responselen == sizeof(RIL_CardStatus_v7)) {
responseSimStatusV7(p, response);
} else {
RLOGE("Data structure expected is RIL_CardStatus_v7 or v6");
if (!isDebuggable()) {
return RIL_ERRNO_INVALID_RESPONSE;
} else {
assert(0);
}
}
}
return 0;
}
static int responseGsmBrSmsCnf(Parcel &p, void *response, size_t responselen) {
int num = responselen / sizeof(RIL_GSM_BroadcastSmsConfigInfo *);
p.writeInt32(num);
startResponse;
RIL_GSM_BroadcastSmsConfigInfo **p_cur =
(RIL_GSM_BroadcastSmsConfigInfo **) response;
for (int i = 0; i < num; i++) {
p.writeInt32(p_cur[i]->fromServiceId);
p.writeInt32(p_cur[i]->toServiceId);
p.writeInt32(p_cur[i]->fromCodeScheme);
p.writeInt32(p_cur[i]->toCodeScheme);
p.writeInt32(p_cur[i]->selected);
appendPrintBuf("%s [%d: fromServiceId=%d, toServiceId=%d, \
fromCodeScheme=%d, toCodeScheme=%d, selected =%d]",
printBuf, i, p_cur[i]->fromServiceId, p_cur[i]->toServiceId,
p_cur[i]->fromCodeScheme, p_cur[i]->toCodeScheme,
p_cur[i]->selected);
}
closeResponse;
return 0;
}
static int responseCdmaBrSmsCnf(Parcel &p, void *response, size_t responselen) {
RIL_CDMA_BroadcastSmsConfigInfo **p_cur =
(RIL_CDMA_BroadcastSmsConfigInfo **) response;
int num = responselen / sizeof (RIL_CDMA_BroadcastSmsConfigInfo *);
p.writeInt32(num);
startResponse;
for (int i = 0 ; i < num ; i++ ) {
p.writeInt32(p_cur[i]->service_category);
p.writeInt32(p_cur[i]->language);
p.writeInt32(p_cur[i]->selected);
appendPrintBuf("%s [%d: srvice_category=%d, language =%d, \
selected =%d], ",
printBuf, i, p_cur[i]->service_category, p_cur[i]->language,
p_cur[i]->selected);
}
closeResponse;
return 0;
}
static int responseCdmaSms(Parcel &p, void *response, size_t responselen) {
int num;
int digitCount;
int digitLimit;
uint8_t uct;
void* dest;
RLOGD("Inside responseCdmaSms");
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_CDMA_SMS_Message)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof(RIL_CDMA_SMS_Message));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CDMA_SMS_Message *p_cur = (RIL_CDMA_SMS_Message *) response;
p.writeInt32(p_cur->uTeleserviceID);
p.write(&(p_cur->bIsServicePresent),sizeof(uct));
p.writeInt32(p_cur->uServicecategory);
p.writeInt32(p_cur->sAddress.digit_mode);
p.writeInt32(p_cur->sAddress.number_mode);
p.writeInt32(p_cur->sAddress.number_type);
p.writeInt32(p_cur->sAddress.number_plan);
p.write(&(p_cur->sAddress.number_of_digits), sizeof(uct));
digitLimit= MIN((p_cur->sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
p.write(&(p_cur->sAddress.digits[digitCount]),sizeof(uct));
}
p.writeInt32(p_cur->sSubAddress.subaddressType);
p.write(&(p_cur->sSubAddress.odd),sizeof(uct));
p.write(&(p_cur->sSubAddress.number_of_digits),sizeof(uct));
digitLimit= MIN((p_cur->sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
p.write(&(p_cur->sSubAddress.digits[digitCount]),sizeof(uct));
}
digitLimit= MIN((p_cur->uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
p.writeInt32(p_cur->uBearerDataLen);
for(digitCount =0 ; digitCount < digitLimit; digitCount ++) {
p.write(&(p_cur->aBearerData[digitCount]), sizeof(uct));
}
startResponse;
appendPrintBuf("%suTeleserviceID=%d, bIsServicePresent=%d, uServicecategory=%d, \
sAddress.digit_mode=%d, sAddress.number_mode=%d, sAddress.number_type=%d, ",
printBuf, p_cur->uTeleserviceID,p_cur->bIsServicePresent,p_cur->uServicecategory,
p_cur->sAddress.digit_mode, p_cur->sAddress.number_mode,p_cur->sAddress.number_type);
closeResponse;
return 0;
}
static int responseGetSmsSimMemStatusCnf(Parcel &p,void *response, size_t responselen)
{
if (response == NULL || responselen == 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_SMS_Memory_Status)) {
RLOGE("invalid response length %d expected sizeof (RIL_SMS_Memory_Status) of %d\n",
(int)responselen, (int)sizeof(RIL_SMS_Memory_Status));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_SMS_Memory_Status *mem_status = (RIL_SMS_Memory_Status*)response;
p.writeInt32(mem_status->used);
p.writeInt32(mem_status->total);
appendPrintBuf("%s [used = %d, total = %d]", printBuf, mem_status->used, mem_status->total);
closeResponse;
return 0;
}
static int responseEtwsNotification(Parcel &p, void *response, size_t responselen) {
if(NULL == response) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if(responselen != sizeof(RIL_CBEtwsNotification)) {
RLOGE("invalid response length %d expected %d",
responselen, sizeof(RIL_CBEtwsNotification));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CBEtwsNotification *p_cur = (RIL_CBEtwsNotification *)response;
p.writeInt32(p_cur->warningType);
p.writeInt32(p_cur->messageId);
p.writeInt32(p_cur->serialNumber);
writeStringToParcel(p, p_cur->plmnId);
writeStringToParcel(p, p_cur->securityInfo);
startResponse;
appendPrintBuf("%s%d,%d,%d,%s,%s", printBuf, p_cur->waringType, p_cur->messageId,
p_cur->serialNumber, p_cur->plmnId, p_cur->securityInfo);
closeResponse;
return 0;
}
static int responseDcRtInfo(Parcel &p, void *response, size_t responselen)
{
int num = responselen / sizeof(RIL_DcRtInfo);
if ((responselen % sizeof(RIL_DcRtInfo) != 0) || (num != 1)) {
RLOGE("responseDcRtInfo: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_DcRtInfo));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_DcRtInfo *pDcRtInfo = (RIL_DcRtInfo *)response;
p.writeInt64(pDcRtInfo->time);
p.writeInt32(pDcRtInfo->powerState);
appendPrintBuf("%s[time=%d,powerState=%d]", printBuf,
pDcRtInfo->time,
pDcRtInfo->powerState);
closeResponse;
return 0;
}
static int responseLceStatus(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen != sizeof(RIL_LceStatusInfo)) {
if (response == NULL) {
RLOGE("invalid response: NULL");
}
else {
RLOGE("responseLceStatus: invalid response length %u expecting len: %u",
(unsigned)sizeof(RIL_LceStatusInfo), (unsigned)responselen);
}
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_LceStatusInfo *p_cur = (RIL_LceStatusInfo *)response;
p.write((void *)p_cur, 1); // p_cur->lce_status takes one byte.
p.writeInt32(p_cur->actual_interval_ms);
startResponse;
appendPrintBuf("LCE Status: %d, actual_interval_ms: %d",
p_cur->lce_status, p_cur->actual_interval_ms);
closeResponse;
return 0;
}
static int responseLceData(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen != sizeof(RIL_LceDataInfo)) {
if (response == NULL) {
RLOGE("invalid response: NULL");
}
else {
RLOGE("responseLceData: invalid response length %u expecting len: %u",
(unsigned)sizeof(RIL_LceDataInfo), (unsigned)responselen);
}
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_LceDataInfo *p_cur = (RIL_LceDataInfo *)response;
p.writeInt32(p_cur->last_hop_capacity_kbps);
/* p_cur->confidence_level and p_cur->lce_suspended take 1 byte each.*/
p.write((void *)&(p_cur->confidence_level), 1);
p.write((void *)&(p_cur->lce_suspended), 1);
startResponse;
appendPrintBuf("LCE info received: capacity %d confidence level %d \
and suspended %d",
p_cur->last_hop_capacity_kbps, p_cur->confidence_level,
p_cur->lce_suspended);
closeResponse;
return 0;
}
static int responseActivityData(Parcel &p, void *response, size_t responselen) {
if (response == NULL || responselen != sizeof(RIL_ActivityStatsInfo)) {
if (response == NULL) {
RLOGE("invalid response: NULL");
}
else {
RLOGE("responseActivityData: invalid response length %u expecting len: %u",
(unsigned)sizeof(RIL_ActivityStatsInfo), (unsigned)responselen);
}
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_ActivityStatsInfo *p_cur = (RIL_ActivityStatsInfo *)response;
p.writeInt32(p_cur->sleep_mode_time_ms);
p.writeInt32(p_cur->idle_mode_time_ms);
for(int i = 0; i < RIL_NUM_TX_POWER_LEVELS; i++) {
p.writeInt32(p_cur->tx_mode_time_ms[i]);
}
p.writeInt32(p_cur->rx_mode_time_ms);
startResponse;
appendPrintBuf("Modem activity info received: sleep_mode_time_ms %d idle_mode_time_ms %d \
tx_mode_time_ms %d %d %d %d %d and rx_mode_time_ms %d",
p_cur->sleep_mode_time_ms, p_cur->idle_mode_time_ms, p_cur->tx_mode_time_ms[0],
p_cur->tx_mode_time_ms[1], p_cur->tx_mode_time_ms[2], p_cur->tx_mode_time_ms[3],
p_cur->tx_mode_time_ms[4], p_cur->rx_mode_time_ms);
closeResponse;
return 0;
}
static int responseCarrierRestrictions(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_CarrierRestrictions)) {
RLOGE("responseCarrierRestrictions: invalid response length %u expecting len: %u",
(unsigned)responselen, (unsigned)sizeof(RIL_CarrierRestrictions));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CarrierRestrictions *p_cr = (RIL_CarrierRestrictions *)response;
startResponse;
p.writeInt32(p_cr->len_allowed_carriers);
p.writeInt32(p_cr->len_excluded_carriers);
appendPrintBuf(" %s len_allowed_carriers: %d, len_excluded_carriers: %d,", printBuf,
p_cr->len_allowed_carriers,p_cr->len_excluded_carriers);
appendPrintBuf(" %s allowed_carriers:", printBuf);
for(int32_t i = 0; i < p_cr->len_allowed_carriers; i++) {
RIL_Carrier *carrier = p_cr->allowed_carriers + i;
writeStringToParcel(p, carrier->mcc);
writeStringToParcel(p, carrier->mnc);
p.writeInt32(carrier->match_type);
writeStringToParcel(p, carrier->match_data);
appendPrintBuf(" %s [%d mcc: %s, mnc: %s, match_type: %d, match_data: %s],", printBuf,
i, carrier->mcc, carrier->mnc, carrier->match_type, carrier->match_data);
}
appendPrintBuf(" %s excluded_carriers:", printBuf);
for(int32_t i = 0; i < p_cr->len_excluded_carriers; i++) {
RIL_Carrier *carrier = p_cr->excluded_carriers + i;
writeStringToParcel(p, carrier->mcc);
writeStringToParcel(p, carrier->mnc);
p.writeInt32(carrier->match_type);
writeStringToParcel(p, carrier->match_data);
appendPrintBuf(" %s [%d mcc: %s, mnc: %s, match_type: %d, match_data: %s],", printBuf,
i, carrier->mcc, carrier->mnc, carrier->match_type, carrier->match_data);
}
closeResponse;
return 0;
}
static int responsePcoData(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("responsePcoData: invalid NULL response");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_PCO_Data)) {
RLOGE("responsePcoData: invalid response length %u, expecting %u",
(unsigned)responselen, (unsigned)sizeof(RIL_PCO_Data));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_PCO_Data *p_cur = (RIL_PCO_Data *)response;
p.writeInt32(p_cur->cid);
writeStringToParcel(p, p_cur->bearer_proto);
p.writeInt32(p_cur->pco_id);
p.writeInt32(p_cur->contents_length);
p.write(p_cur->contents, p_cur->contents_length);
startResponse;
appendPrintBuf("PCO data received: cid %d, id %d, length %d",
p_cur->cid, p_cur->pco_id, p_cur->contents_length);
closeResponse;
return 0;
}
static int responseCrssN(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_CrssNotification)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_CrssNotification));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_CrssNotification *p_cur = (RIL_CrssNotification *) response;
p.writeInt32(p_cur->code);
p.writeInt32(p_cur->type);
writeStringToParcel(p, p_cur->number);
writeStringToParcel(p, p_cur->alphaid);
p.writeInt32(p_cur->cli_validity);
return 0;
}
static int responsePhbEntries(Parcel &p,void *response, size_t responselen) {
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof (RIL_PhbEntryStrucutre *) != 0) {
RLOGE("invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_PhbEntryStrucutre *));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_PhbEntryStrucutre *);
p.writeInt32(num);
startResponse;
RIL_PhbEntryStrucutre **p_cur =
(RIL_PhbEntryStrucutre **) response;
for (int i = 0; i < num; i++) {
p.writeInt32(p_cur[i]->type);
p.writeInt32(p_cur[i]->index);
writeStringToParcel(p, p_cur[i]->number);
p.writeInt32(p_cur[i]->ton);
writeStringToParcel(p, p_cur[i]->alphaId);
appendPrintBuf("%s [%d: type=%d, index=%d, \
number=%s, ton=%d, alphaId =%s]",
printBuf, i, p_cur[i]->type, p_cur[i]->index,
p_cur[i]->number, p_cur[i]->ton,
p_cur[i]->alphaId);
}
closeResponse;
return 0;
}
static int responseReadPhbEntryExt(Parcel &p,void *response, size_t responselen)
{
if (response == NULL && responselen != 0) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof (RIL_PHB_ENTRY *) != 0) {
RLOGE("invalid response length %d expected multiple of %d\n",
(int)responselen, (int)sizeof (RIL_PHB_ENTRY *));
return RIL_ERRNO_INVALID_RESPONSE;
}
int num = responselen / sizeof(RIL_PHB_ENTRY *);
p.writeInt32(num);
startResponse;
RIL_PHB_ENTRY **p_cur =
(RIL_PHB_ENTRY **) response;
for (int i = 0; i < num; i++) {
p.writeInt32(p_cur[i]->index);
writeStringToParcel(p, p_cur[i]->number);
p.writeInt32(p_cur[i]->type);
writeStringToParcel(p, p_cur[i]->text);
p.writeInt32(p_cur[i]->hidden);
writeStringToParcel(p, p_cur[i]->group);
writeStringToParcel(p, p_cur[i]->adnumber);
p.writeInt32(p_cur[i]->adtype);
writeStringToParcel(p, p_cur[i]->secondtext);
writeStringToParcel(p, p_cur[i]->email);
appendPrintBuf("%s [%d: index=%d, \
number=%s, type=%d, text =%s, hidden=%d,group=%s,adnumber=%s,adtype=%d,sectext=%s,email=%s]",
printBuf, i, p_cur[i]->index,
p_cur[i]->number, p_cur[i]->type,
p_cur[i]->text, p_cur[i]->hidden,p_cur[i]->group,p_cur[i]->adnumber,
p_cur[i]->adtype,p_cur[i]->secondtext,p_cur[i]->email);
}
closeResponse;
return 0;
}
static int responseGetPhbMemStorage(Parcel &p,void *response, size_t responselen)
{
if (response == NULL || responselen == 0) {
RLOGE("responseGetPhbMemStorage invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_PHB_MEM_STORAGE_RESPONSE)) {
RLOGE("invalid response length %d expected sizeof (RIL_PHB_MEM_STORAGE_RESPONSE) of %d\n",
(int)responselen, (int)sizeof(RIL_PHB_MEM_STORAGE_RESPONSE));
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_PHB_MEM_STORAGE_RESPONSE *mem_status = (RIL_PHB_MEM_STORAGE_RESPONSE*)response;
writeStringToParcel (p, mem_status->storage);
p.writeInt32(mem_status->used);
p.writeInt32(mem_status->total);
appendPrintBuf("%s [storage = %s, used = %d, total = %d]", printBuf, mem_status->storage, mem_status->used, mem_status->total);
closeResponse;
return 0;
}
static int responseImsBearerNotify(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_CrssNotification)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_IMS_BearerNotification));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_IMS_BearerNotification *p_cur = (RIL_IMS_BearerNotification *) response;
p.writeInt32(p_cur->phone);
p.writeInt32(p_cur->aid);
writeStringToParcel(p, p_cur->type);
return 0;
}
//MTK-START SMS
static void dispatchSmsParams(Parcel &p, RequestInfo *pRI) {
RIL_SmsParams smsParams;
int32_t t;
status_t status;
RLOGD("dispatchSmsParams Enter.");
memset(&smsParams, 0, sizeof(smsParams));
status = p.readInt32(&t);
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
smsParams.format = t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
smsParams.vp = t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
smsParams.pid = t;
if (status != NO_ERROR) {
goto invalid;
}
status = p.readInt32(&t);
smsParams.dcs = t;
if (status != NO_ERROR) {
goto invalid;
}
RLOGD("dispatchSmsParams format: %d, vp: %d, pid: %d, dcs: %d", smsParams.format, smsParams.vp,
smsParams.pid, smsParams.dcs);
startRequest;
appendPrintBuf("%sformat=%d,vp=%d,pid=%d,dcs=%d", printBuf,
smsParams.format, smsParams.vp, smsParams.pid, smsParams.dcs);
closeRequest;
CALL_ONREQUEST(pRI->pCI->requestNumber, &smsParams, sizeof(smsParams), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(&smsParams, 0, sizeof(smsParams));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static int responseSmsParams(Parcel &p, void *response, size_t responselen) {
if(response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if(responselen != (int)sizeof(RIL_SmsParams)) {
RLOGE("invalid response length %d expected %d",
(int)responselen, (int)sizeof(RIL_SmsParams));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SmsParams *p_cur = (RIL_SmsParams *)response;
p.writeInt32(p_cur->format);
p.writeInt32(p_cur->vp);
p.writeInt32(p_cur->pid);
p.writeInt32(p_cur->dcs);
startResponse;
appendPrintBuf("%s%d,%d,%d,%d", printBuf, p_cur->format, p_cur->vp,
p_cur->pid, p_cur->dcs);
closeResponse;
return 0;
}
//MTK-END SMS
// External SIM [Start]
static void dispatchVsimEvent(Parcel &p, RequestInfo *pRI) {
RIL_VsimEvent args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
// Transcation id
status = p.readInt32(&t);
args.transaction_id = (int) t;
// Event id
status = p.readInt32(&t);
args.eventId = (int) t;
// Sim type
status = p.readInt32(&t);
args.sim_type = (int) t;
startRequest;
appendPrintBuf("%scmd=0x%X,transaction_id=%d,eventId=%d,sim_type=%d", printBuf,
args.transaction_id, args.eventId, args.sim_type);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchVsimOperationEvent(Parcel &p, RequestInfo *pRI) {
RIL_VsimOperationEvent args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
// Transcation id
status = p.readInt32(&t);
args.transaction_id = (int) t;
// Event id
status = p.readInt32(&t);
args.eventId = (int) t;
// Result
status = p.readInt32(&t);
args.result = (int) t;
// Data length
status = p.readInt32(&t);
args.data_length = (int) t;
// Data array
args.data = (char *)strdupReadString(p);
RLOGI ("[dispatchVsimOperationEvent]%d, %d, %d, %d, data:%s, response_addr:%p",
args.transaction_id, args.eventId, args.result, args.data_length, args.data, &args);
startRequest;
appendPrintBuf("%scmd=0x%X,transaction_id=%d,eventId=%d,result=%d, data_len=%d, data=%s", printBuf,
args.transaction_id, args.eventId, args.result, args.data_length, args.data);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static int responseVsimNotificationResponse(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_VsimEvent)) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_VsimEvent));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_VsimEvent *p_cur = ((RIL_VsimEvent *) response);
p.writeInt32(p_cur->transaction_id);
p.writeInt32(p_cur->eventId);
p.writeInt32(p_cur->sim_type);
startResponse;
appendPrintBuf("%stransaction_id=%d,eventId=%d,simtype=%d", printBuf, p_cur->transaction_id,
p_cur->eventId, p_cur->sim_type);
closeResponse;
return 0;
}
static int responseVsimOperationEvent(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof (RIL_VsimOperationEvent) ) {
RLOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_VsimOperationEvent));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_VsimOperationEvent *p_cur = (RIL_VsimOperationEvent *) response;
p.writeInt32(p_cur->transaction_id);
p.writeInt32(p_cur->eventId);
p.writeInt32(p_cur->result);
p.writeInt32(p_cur->data_length);
writeStringToParcel(p, p_cur->data);
startResponse;
appendPrintBuf("%stransaction_id=%d,eventId=%d,datalen=%d", printBuf, p_cur->transaction_id,
p_cur->eventId, p_cur->data_length);
closeResponse;
return 0;
}
// External SIM [Start]
/**
* A write on the wakeup fd is done just to pop us out of select()
* We empty the buffer here and then ril_event will reset the timers on the
* way back down
*/
static void processWakeupCallback(int fd, short flags, void *param) {
char buff[16];
int ret;
RLOGV("processWakeupCallback");
/* empty our wakeup socket out */
do {
ret = read(s_fdWakeupRead, &buff, sizeof(buff));
} while (ret > 0 || (ret < 0 && errno == EINTR));
}
static void onCommandsSocketClosed(RIL_SOCKET_ID socket_id, int clientId) {
int ret;
RequestInfo *p_cur;
/* Hook for current context
pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t * pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo ** pendingRequestsHook = &s_pendingRequests;
if (socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
else if (socket_id == RIL_SOCKET_3) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3;
pendingRequestsHook = &s_pendingRequests_socket3;
}
else if (socket_id == RIL_SOCKET_4) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4;
pendingRequestsHook = &s_pendingRequests_socket4;
}
else if (socket_id == RIL_SOCKET_RILJ) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_rilj;
pendingRequestsHook = &s_pendingRequests_socket_rilj;
}
else if (socket_id == RIL_SOCKET_RILJ2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_rilj2;
pendingRequestsHook = &s_pendingRequests_socket_rilj2;
}
if (clientId >= 0) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_client[clientId];
pendingRequestsHook = &s_pendingRequests_socket_client[clientId];
}
/// M: Hangup all if the socket is closed.
issueLocalRequest(RIL_REQUEST_HANGUP_ALL, NULL, 0, socket_id);
/* mark pending requests as "cancelled" so we dont report responses */
ret = pthread_mutex_lock(pendingRequestsMutexHook);
assert (ret == 0);
p_cur = *pendingRequestsHook;
for (p_cur = *pendingRequestsHook
; p_cur != NULL
; p_cur = p_cur->p_next
) {
p_cur->cancelled = 1;
}
ret = pthread_mutex_unlock(pendingRequestsMutexHook);
assert (ret == 0);
}
static void processCommandsCallback(int fd, short flags, void *param) {
RecordStream *p_rs;
void *p_record;
size_t recordlen;
int ret;
SocketListenParam *p_info = (SocketListenParam *)param;
int slot_id = p_info->slot_id;
int clientId_tmp = (true == isDsds())? ((p_info->clientId)/2) : (p_info->clientId);
sem_t* sem;
assert(fd == p_info->fdCommand);
p_rs = p_info->p_rs;
for (;;) {
/* loop until EAGAIN/EINTR, end of stream, or other error */
ret = record_stream_get_next(p_rs, &p_record, &recordlen);
if (ret == 0 && p_record == NULL) {
/* end-of-stream */
break;
} else if (ret < 0) {
break;
} else if (ret == 0) { /* && p_record != NULL */
processCommandBuffer(p_record, recordlen, p_info->socket_id, p_info->clientId);
}
}
if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {
/* fatal error or end-of-stream */
if (ret != 0) {
RLOGE("rild error on reading command socket errno:%d\n", errno);
} else {
RLOGW("EOS. Closing command socket.");
}
close(fd);
p_info->fdCommand = -1;
if (p_info->clientId >= 0) {
s_fdCommand_client[p_info->clientId] = -1;
} else {
s_fdCommand[p_info->socket_id] = -1;
}
ril_event_del(p_info->commands_event);
record_stream_free(p_rs);
RLOGD("[processCommandsCallback] get semaphone: %s", semName[slot_id]);
sem = sem_open(semName[slot_id], O_CREAT, 0644, 1);
if(SEM_FAILED == sem) {
RLOGD("[processCommandsCallback]sem_open failed, errno = %d (%s)", errno, strerror(errno));
}
sem_wait(sem);
changeClientSoketStatus(slot_id, clientId_tmp, 0);
sem_post(sem);
RLOGD("[processCommandsCallback] release semaphone: %s", semName[slot_id]);
sem_close(sem);
/* start listening for new connections again */
rilEventAddWakeup(p_info->listen_event);
onCommandsSocketClosed(p_info->socket_id, p_info->clientId);
}
}
static void onNewCommandConnect(RIL_SOCKET_ID socket_id, int clientId) {
// Inform we are connected and the ril version
int rilVer = s_callbacks.version;
/// support rilj client @{
SocketListenParam* soc_params = NULL;
for (int i = 0; i < NUM_ELEMS(s_ril_socket_params); i++) {
/// since vendor ril using socket id, mapping to libril's slot id
if (s_ril_socket_params[i]->socket_id == socket_id) {
soc_params = s_ril_socket_params[i];
break;
}
}
if (clientId >= 0) {
soc_params = &s_ril_param_socket_clients[clientId];
}
if (soc_params == NULL) {
RLOGE("onNewCommandConnect invalid socket id %d", socket_id);
return;
}
RLOGD("onNewCommandConnect rilversion %d",rilVer);
Parcel *parcel = new Parcel();
if(parcel == NULL) {
RLOGE("onNewCommandConnect new parcel fail!!!");
return;
}
parcel->writeInt32(1);
parcel->writeInt32(rilVer);
RIL_onUnsolicitedResponseInternal(RIL_UNSOL_RIL_CONNECTED,
parcel, parcel->dataSize(), soc_params);
// implicit radio state changed
RIL_onUnsolicitedResponseInternal(RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED,
NULL, 0, soc_params);
/// @}
// Send last NITZ time data, in case it was missed
if (s_lastNITZTimeData != NULL) {
RLOGE("onNewCommandConnect send last NTIZ to socket_id=%d", socket_id);
sendResponseRaw(s_lastNITZTimeData, s_lastNITZTimeDataSize, socket_id, clientId);
// for multi user, we keep the nitz data for the next one.
/*
free(s_lastNITZTimeData);
s_lastNITZTimeData = NULL;
*/
}
// Get version string
if (s_callbacks.getVersion != NULL) {
const char *version;
version = s_callbacks.getVersion();
RLOGI("RIL Daemon version: %s\n", version);
mtk_property_set(PROPERTY_RIL_IMPL, version);
} else {
RLOGI("RIL Daemon version: unavailable\n");
mtk_property_set(PROPERTY_RIL_IMPL, "unavailable");
}
delete(parcel);
}
static void listenCallback (int fd, short flags, void *param) {
int ret;
int err;
int is_phone_socket;
int fdCommand = -1;
const char* processName;
RecordStream *p_rs;
MySocketListenParam* listenParam;
RilSocket *sapSocket = NULL;
socketClient *sClient = NULL;
SocketListenParam *p_info = (SocketListenParam *)param;
if(RIL_SAP_SOCKET == p_info->type) {
listenParam = (MySocketListenParam *)param;
sapSocket = listenParam->socket;
}
struct sockaddr_un peeraddr;
socklen_t socklen = sizeof (peeraddr);
struct ucred creds;
socklen_t szCreds = sizeof(creds);
struct passwd *pwd = NULL;
if(NULL == sapSocket) {
assert (p_info->fdCommand < 0);
assert (fd == p_info->fdListen);
processName = PHONE_PROCESS;
} else {
assert (sapSocket->getCommandFd() < 0);
assert (fd == sapSocket->getListenFd());
processName = BLUETOOTH_PROCESS;
}
fdCommand = accept(fd, (sockaddr *) &peeraddr, &socklen);
if (fdCommand < 0 ) {
RLOGE("Error on accept() errno:%d", errno);
/* start listening for new connections again */
if(NULL == sapSocket) {
rilEventAddWakeup(p_info->listen_event);
} else {
rilEventAddWakeup(sapSocket->getListenEvent());
}
return;
}
/* check the credential of the other side and only accept socket from
* phone process
*/
errno = 0;
is_phone_socket = 1;
err = getsockopt(fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);
if (err == 0 && szCreds > 0) {
errno = 0;
pwd = getpwuid(creds.uid);
if (pwd != NULL) {
/*TODO:bringup disable process check
if (strcmp(pwd->pw_name, processName) == 0) {
is_phone_socket = 1;
} else {
RLOGE("RILD can't accept socket from process %s", pwd->pw_name);
}*/
RLOGD("RILD receive socket request from process %s", pwd->pw_name);
is_phone_socket = 1;
} else {
RLOGE("Error on getpwuid() errno: %d", errno);
}
} else {
RLOGD("Error on getsockopt() errno: %d", errno);
}
if (!is_phone_socket) {
RLOGE("RILD must accept socket from %s", processName);
close(fdCommand);
fdCommand = -1;
if(NULL == sapSocket) {
onCommandsSocketClosed(p_info->socket_id, p_info->clientId);
/* start listening for new connections again */
rilEventAddWakeup(p_info->listen_event);
} else {
sapSocket->onCommandsSocketClosed();
/* start listening for new connections again */
rilEventAddWakeup(sapSocket->getListenEvent());
}
return;
}
ret = fcntl(fdCommand, F_SETFL, O_NONBLOCK);
if (ret < 0) {
RLOGE ("Error setting O_NONBLOCK errno:%d", errno);
}
if(NULL == sapSocket) {
RLOGI("libril: new connection to %s, clientId:%d",
rilSocketIdToString(p_info->socket_id), p_info->clientId);
p_info->fdCommand = fdCommand;
p_rs = record_stream_new(p_info->fdCommand, MAX_COMMAND_BYTES);
p_info->p_rs = p_rs;
ril_event_set (p_info->commands_event, p_info->fdCommand, 1,
p_info->processCommandsCallback, p_info);
rilEventAddWakeup (p_info->commands_event);
onNewCommandConnect(p_info->socket_id, p_info->clientId);
// M: ril proxy
pthread_mutex_lock(&s_pendingUrcMutex[p_info->socket_id]);
if (p_info->clientId >= 0) {
s_fdCommand_client[p_info->clientId] = p_info->fdCommand;
} else {
s_fdCommand[p_info->socket_id] = p_info->fdCommand;
}
sendPendedUrcs(p_info->socket_id, p_info->fdCommand);
pthread_mutex_unlock(&s_pendingUrcMutex[p_info->socket_id]);
//
} else {
RLOGI("libril: new connection");
sapSocket->setCommandFd(fdCommand);
p_rs = record_stream_new(sapSocket->getCommandFd(), MAX_COMMAND_BYTES);
sClient = new socketClient(sapSocket,p_rs);
ril_event_set (sapSocket->getCallbackEvent(), sapSocket->getCommandFd(), 1,
sapSocket->getCommandCb(), sClient);
rilEventAddWakeup(sapSocket->getCallbackEvent());
sapSocket->onNewCommandConnect();
}
}
static void freeDebugCallbackArgs(int number, char **args) {
for (int i = 0; i < number; i++) {
if (args[i] != NULL) {
free(args[i]);
}
}
free(args);
}
static void debugCallback (int fd, short flags, void *param) {
int acceptFD, option;
struct sockaddr_un peeraddr;
socklen_t socklen = sizeof (peeraddr);
int data;
unsigned int qxdm_data[6];
const char *deactData[1] = {"1"};
RIL_Dial dialData;
int hangupData[1] = {1};
int number;
char **args;
RIL_SOCKET_ID socket_id = RIL_SOCKET_1;
int MAX_DIAL_ADDRESS = 128;
int sim_id = 0;
RLOGI("debugCallback for socket %s", rilSocketIdToString(socket_id));
acceptFD = accept (fd, (sockaddr *) &peeraddr, &socklen);
if (acceptFD < 0) {
RLOGE ("error accepting on debug port: %d\n", errno);
return;
}
if (recv(acceptFD, &number, sizeof(int), 0) != sizeof(int)) {
RLOGE ("error reading on socket: number of Args: \n");
close(acceptFD);
return;
}
if (number < 0) {
RLOGE ("Invalid number of arguments: \n");
close(acceptFD);
return;
}
args = (char **) calloc(number, sizeof(char*));
if (args == NULL) {
RLOGE("Memory allocation failed for debug args");
close(acceptFD);
return;
}
for (int i = 0; i < number; i++) {
int len;
if (recv(acceptFD, &len, sizeof(int), 0) != sizeof(int)) {
RLOGE ("error reading on socket: Len of Args: \n");
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
if (len == INT_MAX || len < 0) {
RLOGE("Invalid value of len: \n");
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
// +1 for null-term
args[i] = (char *) calloc(len + 1, sizeof(char));
if (args[i] == NULL) {
RLOGE("Memory allocation failed for debug args");
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
if (recv(acceptFD, args[i], sizeof(char) * len, 0)
!= (int)sizeof(char) * len) {
RLOGE ("error reading on socket: Args[%d] \n", i);
freeDebugCallbackArgs(i, args);
close(acceptFD);
return;
}
char * buf = args[i];
buf[len] = 0;
if ((i+1) == number) {
/* The last argument should be sim id 0(SIM1)~3(SIM4) */
sim_id = atoi(args[i]);
switch (sim_id) {
case 0:
socket_id = RIL_SOCKET_1;
break;
case 1:
socket_id = RIL_SOCKET_2;
break;
case 2:
socket_id = RIL_SOCKET_3;
break;
case 3:
socket_id = RIL_SOCKET_4;
break;
default:
socket_id = RIL_SOCKET_1;
break;
}
}
}
switch (atoi(args[0])) {
case 0:
RLOGI ("Connection on debug port: issuing reset.");
issueLocalRequest(RIL_REQUEST_RESET_RADIO, NULL, 0, socket_id);
break;
case 1:
RLOGI ("Connection on debug port: issuing radio power off.");
data = 0;
issueLocalRequest(RIL_REQUEST_RADIO_POWER, &data, sizeof(int), socket_id);
// Close the socket
if (socket_id == RIL_SOCKET_1 && s_ril_param_socket.fdCommand > 0) {
close(s_ril_param_socket.fdCommand);
s_ril_param_socket.fdCommand = -1;
}
else if (socket_id == RIL_SOCKET_2 && s_ril_param_socket2.fdCommand > 0) {
close(s_ril_param_socket2.fdCommand);
s_ril_param_socket2.fdCommand = -1;
}
break;
case 2:
RLOGI ("Debug port: issuing unsolicited voice network change.");
RIL_UNSOL_RESPONSE(RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, NULL, 0, socket_id);
break;
case 3:
RLOGI ("Debug port: QXDM log enable.");
qxdm_data[0] = 65536; // head.func_tag
qxdm_data[1] = 16; // head.len
qxdm_data[2] = 1; // mode: 1 for 'start logging'
qxdm_data[3] = 32; // log_file_size: 32megabytes
qxdm_data[4] = 0; // log_mask
qxdm_data[5] = 8; // log_max_fileindex
issueLocalRequest(RIL_REQUEST_OEM_HOOK_RAW, qxdm_data,
6 * sizeof(int), socket_id);
break;
case 4:
RLOGI ("Debug port: QXDM log disable.");
qxdm_data[0] = 65536;
qxdm_data[1] = 16;
qxdm_data[2] = 0; // mode: 0 for 'stop logging'
qxdm_data[3] = 32;
qxdm_data[4] = 0;
qxdm_data[5] = 8;
issueLocalRequest(RIL_REQUEST_OEM_HOOK_RAW, qxdm_data,
6 * sizeof(int), socket_id);
break;
case 5:
RLOGI("Debug port: Radio On");
data = 1;
issueLocalRequest(RIL_REQUEST_RADIO_POWER, &data, sizeof(int), socket_id);
sleep(2);
// Set network selection automatic.
issueLocalRequest(RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, NULL, 0, socket_id);
break;
case 7:
RLOGI("Debug port: Deactivate Data Call");
issueLocalRequest(RIL_REQUEST_DEACTIVATE_DATA_CALL, &deactData,
sizeof(deactData), socket_id);
break;
case 8:
RLOGI("Debug port: Dial Call");
dialData.clir = 0;
if (strlen(args[1]) > MAX_DIAL_ADDRESS) {
RLOGE("Debug port: Error calling Dial");
freeDebugCallbackArgs(number, args);
close(acceptFD);
return;
}
dialData.address = args[1];
issueLocalRequest(RIL_REQUEST_DIAL, &dialData, sizeof(dialData), socket_id);
break;
case 9:
RLOGI("Debug port: Answer Call");
issueLocalRequest(RIL_REQUEST_ANSWER, NULL, 0, socket_id);
break;
case 10:
RLOGI("Debug port: End Call");
issueLocalRequest(RIL_REQUEST_HANGUP, &hangupData,
sizeof(hangupData), socket_id);
break;
default:
RLOGE ("Invalid request");
break;
}
freeDebugCallbackArgs(number, args);
close(acceptFD);
}
static void userTimerCallback (int fd, short flags, void *param) {
UserCallbackInfo *p_info;
p_info = (UserCallbackInfo *)param;
p_info->p_callback(p_info->userParam);
// FIXME generalize this...there should be a cancel mechanism
if (s_last_wake_timeout_info != NULL && s_last_wake_timeout_info == p_info) {
s_last_wake_timeout_info = NULL;
}
free(p_info);
}
static void *
eventLoop(void *param) {
int ret;
int filedes[2];
ril_event_init();
pthread_mutex_lock(&s_startupMutex);
s_started = 1;
pthread_cond_broadcast(&s_startupCond);
pthread_mutex_unlock(&s_startupMutex);
ret = pipe(filedes);
if (ret < 0) {
RLOGE("Error in pipe() errno:%d", errno);
return NULL;
}
s_fdWakeupRead = filedes[0];
s_fdWakeupWrite = filedes[1];
fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);
ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,
processWakeupCallback, NULL);
rilEventAddWakeup (&s_wakeupfd_event);
// Only returns on error
ril_event_loop();
RLOGE ("error in event_loop_base errno:%d", errno);
// kill self to restart on error
kill(0, SIGKILL);
return NULL;
}
extern "C" void
RIL_startEventLoop(void) {
/* spin up eventLoop thread and wait for it to get started */
s_started = 0;
pthread_mutex_lock(&s_startupMutex);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
int result = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);
if (result != 0) {
RLOGE("Failed to create dispatch thread: %s", strerror(result));
goto done;
}
while (s_started == 0) {
pthread_cond_wait(&s_startupCond, &s_startupMutex);
}
done:
pthread_mutex_unlock(&s_startupMutex);
}
extern "C" void
RIL_startNetagent(void) {
RLOGD("start NetAgentService");
bool bSuccess = false;
do {
bSuccess = NetAgentService::createNetAgentService();
if(!bSuccess) {
RLOGE("Fail to create NetAgent service!");
sleep(10);
/* never returns */
}
} while (!bSuccess);
RLOGD("started NetAgentService");
}
// Used for testing purpose only.
extern "C" void RIL_setcallbacks (const RIL_RadioFunctions *callbacks) {
memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));
}
static void startListen(RIL_SOCKET_ID socket_id, SocketListenParam* socket_listen_p) {
int fdListen = -1;
int ret;
char socket_name[20];
memset(socket_name, 0, sizeof(char)*20);
switch(socket_id) {
case RIL_SOCKET_1:
strncpy(socket_name, RIL_getRilSocketName(), 19);
break;
case RIL_SOCKET_2:
strncpy(socket_name, SOCKET2_NAME_RIL, 19);
break;
case RIL_SOCKET_3:
strncpy(socket_name, SOCKET3_NAME_RIL, 19);
break;
case RIL_SOCKET_4:
strncpy(socket_name, SOCKET4_NAME_RIL, 19);
break;
case RIL_SOCKET_RILJ:
strncpy(socket_name, SOCKET_NAME_RILJCLIENT, 19);
break;
case RIL_SOCKET_RILJ2:
strncpy(socket_name, SOCKET2_NAME_RILJCLIENT, 19);
break;
default:
RLOGE("Socket id is wrong!!");
return;
}
RLOGI("Start to listen %s %s", rilSocketIdToString(socket_id), socket_name);
fdListen = android_get_control_socket(socket_name);
if (fdListen < 0) {
RLOGE("Failed to get socket %s", socket_name);
exit(-1);
}
ret = listen(fdListen, 4);
if (ret < 0) {
RLOGE("Failed to listen on control socket '%d': %s",
fdListen, strerror(errno));
exit(-1);
}
socket_listen_p->fdListen = fdListen;
/* note: non-persistent so we can accept only one connection at a time */
ril_event_set (socket_listen_p->listen_event, fdListen, false,
listenCallback, socket_listen_p);
rilEventAddWakeup (socket_listen_p->listen_event);
}
static bool isRiljEnable() {
if (s_riljclient_support != -1) {
return s_riljclient_support;
} else {
char rilj_support[PROP_VALUE_MAX] = { 0 };
mtk_property_get(RILJ_CLIENT_SUPPORT_KEY, rilj_support, "0");
if (strcmp(rilj_support, "1") == 0) {
return true;
}
return false;
}
}
bool isDsds() {
char isDsdsString[PROP_VALUE_MAX] = {0};
mtk_property_get("persist.radio.multisim.config", isDsdsString, "");
if (strcmp(isDsdsString, "dsds") == 0) {
return true;
} else {
return false;
}
}
static int getDisableSim() {
char disableSimNum[PROP_VALUE_MAX] = {0};
mtk_property_get("persist.radio.dsss.sim.disable", disableSimNum, "");
if (strcmp(disableSimNum, "1") == 0) {
return 1;
} else if (strcmp(disableSimNum, "2") == 0) {
return 2;
} else {
return 0;
}
}
static void initSocketParam(int clientId, int listenFd) {
bool isDsdsClient = isDsds();
int disableSim = getDisableSim();
if (isDsdsClient) {
if((clientId % 2) == 1){
s_ril_param_socket_clients[clientId].socket_id = RIL_SOCKET_2;
s_ril_param_socket_clients[clientId].slot_id = RIL_SLOT_2;
} else {
s_ril_param_socket_clients[clientId].socket_id = RIL_SOCKET_1;
s_ril_param_socket_clients[clientId].slot_id = RIL_SLOT_1;
}
} else {
if (disableSim == 1) {
s_ril_param_socket_clients[clientId].socket_id = RIL_SOCKET_2;
s_ril_param_socket_clients[clientId].slot_id = RIL_SLOT_2;
} else {
s_ril_param_socket_clients[clientId].socket_id = RIL_SOCKET_1;
s_ril_param_socket_clients[clientId].slot_id = RIL_SLOT_1;
}
}
s_ril_param_socket_clients[clientId].fdListen = listenFd;
s_ril_param_socket_clients[clientId].fdCommand = -1;
s_ril_param_socket_clients[clientId].processName = PHONE_PROCESS;
s_ril_param_socket_clients[clientId].commands_event = &s_commands_event_socket_client[clientId];
s_ril_param_socket_clients[clientId].listen_event = &s_listen_event_socket_client[clientId];
s_ril_param_socket_clients[clientId].processCommandsCallback = processCommandsCallback;
s_ril_param_socket_clients[clientId].p_rs = NULL;
s_ril_param_socket_clients[clientId].type = RIL_TELEPHONY_SOCKET;
s_ril_param_socket_clients[clientId].clientId = clientId;
return;
}
static int createClientSocket(char* socketName, int clientId) {
struct sockaddr_un my_addr;
struct sockaddr_un peer_addr;
int ret;
int listenFd = android_get_control_socket(socketName);
//do retry if init.rc didn't define socket
if (listenFd < 0) {
RLOGD("init.rc didn't define, create client socket");
listenFd = socket_local_server(socketName, ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_STREAM);
RLOGD("[createClientSocket]listenFd = %d", listenFd);
}
if (listenFd < 0) {
return listenFd;
}
RLOGI("start listen on fd: %d, socket name: %s", listenFd, socketName);
ret = listen(listenFd, 4);
if (ret < 0) {
RLOGE("Failed to listen on control socket '%d': %s", listenFd, strerror(errno));
close(listenFd);
return -1;
}
RLOGI("createClientSocket start listen end");
initSocketParam(clientId, listenFd);
/* note: non-persistent so we can accept only one connection at a time */
ril_event_set(&s_listen_event_socket_client[clientId], listenFd,
false, listenCallback, &s_ril_param_socket_clients[clientId]);
rilEventAddWakeup(&s_listen_event_socket_client[clientId]);
return listenFd;
}
static int getClientNum() {
char clientNum[PROP_VALUE_MAX] = {0};
int clientSocketNum = 0;
mtk_property_get("persist.ril.client.num", clientNum, "0");
clientSocketNum = std::stoi(clientNum);
if (isDsds()) {
clientSocketNum = clientSocketNum * 2;
}
return clientSocketNum;
}
static void RIL_client_register() {
RLOGI("RIL_client_register enter");
// start listen client socket
int clientSocketNum = getClientNum();
RLOGD("RIL_client_register create socket clientNum %d", clientSocketNum);
for(int i = 0; i < RIL_SLOT_MAX; i++) {
if(0 != strlen(socket_status[i])){
mtk_property_set(socket_status[i], "0"); //init property
}
}
if (clientSocketNum > 0) {
RLOGD("RIL_client_register clientSocketNum >0");
s_ril_param_socket_clients = new SocketListenParam[clientSocketNum];
s_commands_event_socket_client = new ril_event[clientSocketNum];
s_listen_event_socket_client = new ril_event[clientSocketNum];
s_pendingRequestsMutex_socket_client = new pthread_mutex_t[clientSocketNum];
s_writeMutex_socket_client = new pthread_mutex_t[clientSocketNum];
s_pendingRequests_socket_client = new RequestInfo*[clientSocketNum];
s_fdCommand_client = new int[clientSocketNum];
for (int i = 0; i < clientSocketNum; i++) {
RLOGD("RIL_client_register create socket");
s_writeMutex_socket_client[i] = PTHREAD_MUTEX_INITIALIZER;
s_pendingRequestsMutex_socket_client[i] = PTHREAD_MUTEX_INITIALIZER;
s_pendingRequests_socket_client[i] = NULL;
char clientSocketName[20];
if (isDsds()) {
if (i % 2 == 0) {
sprintf(clientSocketName, "%s%d%s", "rild-client", i/2, "-0");
} else {
sprintf(clientSocketName, "%s%d%s", "rild-client", i/2, "-1");
}
} else {
sprintf(clientSocketName, "%s%d", "rild-client", i);
}
RLOGD("RIL_client_register create socket clientSocketName %s", clientSocketName);
s_fdCommand_client[i] = -1;
if (createClientSocket(clientSocketName, i) < 0) {
RLOGE("create client failed");
return;
}
}
}
}
static void RILJ_register () {
/* Initialize RILJ socket parameters */
s_ril_param_socket_rilj = {
RIL_SOCKET_RILJ, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket_rilj, /* commands_event */
&s_listen_event_socket_rilj, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL, /* p_rs */
RIL_TELEPHONY_SOCKET, /* type */
RIL_SLOT_1,
-1 /* clientId */
};
s_ril_param_socket_rilj2 = {
RIL_SOCKET_RILJ2, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket_rilj2, /* commands_event */
&s_listen_event_socket_rilj2, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL, /* p_rs */
RIL_TELEPHONY_SOCKET, /* type */
RIL_SLOT_2,
-1 /* clientId */
};
if(!isRiljEnable()) {
RLOGD("Not Support RILJ CLient");
return;
}
// start listen socket1
startListen(RIL_SOCKET_RILJ, &s_ril_param_socket_rilj);
if (SIM_COUNT >= 2) {
// start listen socket2
startListen(RIL_SOCKET_RILJ2, &s_ril_param_socket_rilj2);
}
}
extern "C" void
RIL_register (const RIL_RadioFunctions *callbacks) {
int ret;
int flags;
RLOGI("SIM_COUNT: %d", SIM_COUNT);
if (callbacks == NULL) {
RLOGE("RIL_register: RIL_RadioFunctions * null");
return;
}
if (callbacks->version < RIL_VERSION_MIN) {
RLOGE("RIL_register: version %d is to old, min version is %d",
callbacks->version, RIL_VERSION_MIN);
return;
}
RLOGE("RIL_register: RIL version %d", callbacks->version);
if (s_registerCalled > 0) {
RLOGE("RIL_register has been called more than once. "
"Subsequent call ignored");
return;
}
memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));
/* Initialize socket1 parameters */
s_ril_param_socket = {
RIL_SOCKET_1, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event, /* commands_event */
&s_listen_event, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL, /* p_rs */
RIL_TELEPHONY_SOCKET, /* type */
RIL_SLOT_1,
-1 /* clientId */
};
s_ril_param_socket2 = {
RIL_SOCKET_2, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket2, /* commands_event */
&s_listen_event_socket2, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL, /* p_rs */
RIL_TELEPHONY_SOCKET, /* type */
RIL_SLOT_2,
-1 /* clientId */
};
/// support RILJ client @{
s_ril_param_socket3 = {
RIL_SOCKET_3, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket3, /* commands_event */
&s_listen_event_socket3, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL, /* p_rs */
RIL_TELEPHONY_SOCKET, /* type */
RIL_SLOT_3,
-1 /* clientId */
};
s_ril_param_socket4 = {
RIL_SOCKET_4, /* socket_id */
-1, /* fdListen */
-1, /* fdCommand */
PHONE_PROCESS, /* processName */
&s_commands_event_socket4, /* commands_event */
&s_listen_event_socket4, /* listen_event */
processCommandsCallback, /* processCommandsCallback */
NULL, /* p_rs */
RIL_TELEPHONY_SOCKET, /* type */
RIL_SLOT_4,
-1 /* clientId */
};
/// @}
s_registerCalled = 1;
RLOGI("s_registerCalled flag set, %d", s_started);
// Little self-check
// for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {
// assert(i == s_commands[i].requestNumber);
// }
//
// for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {
// assert(i + RIL_UNSOL_RESPONSE_BASE
// == s_unsolResponses[i].requestNumber);
// }
// for (int i = 0; i < (int)NUM_ELEMS(s_mtk_commands); i++) {
// if (i + RIL_REQUEST_VENDOR_BASE != s_mtk_commands[i].requestNumber) {
// RLOGE("mtk_ril_commands table error. index : %d, requestNumber = %d",
// i, s_mtk_commands[i].requestNumber);
// #ifdef HAVE_AEE_FEATURE
// char *msg = NULL;
// asprintf(&msg, "mtk_ril_commands table error. index : %d, requestNumber = %d",
// i, s_mtk_commands[i].requestNumber);
// triggerWarning(msg);
// free(msg);
// #else
// assert(0);
// #endif
// }
// }
//
// for (int i = 0; i < (int)NUM_ELEMS(s_mtk_unsolResponses); i++) {
// if (i + RIL_UNSOL_VENDOR_BASE != s_mtk_unsolResponses[i].requestNumber) {
// RLOGE("mtk_ril_unsol_commands table error. index : %d, requestNumber = %d",
// i, s_mtk_unsolResponses[i].requestNumber);
// #ifdef HAVE_AEE_FEATURE
// char *msg = NULL;
// asprintf(&msg, "mtk_ril_unsol_commands table error. index : %d, requestNumber = %d",
// i, s_mtk_unsolResponses[i].requestNumber);
// triggerWarning(msg);
// free(msg);
// #else
// assert(0);
// #endif
// }
// }
// initialize mutex
for (int i = 0; i < RIL_SOCKET_NUM; i++) {
pthread_mutex_init(&s_state_mutex[i], NULL);
pthread_mutex_init(&s_pendingUrcMutex[i], NULL);
s_fdCommand[i] = -1;
}
// New rild impl calls RIL_startEventLoop() first
// old standalone impl wants it here.
if (s_started == 0) {
RIL_startEventLoop();
}
// start listen socket1
startListen(RIL_SOCKET_1, &s_ril_param_socket);
if (SIM_COUNT >= 2) {
// start listen socket2
startListen(RIL_SOCKET_2, &s_ril_param_socket2);
}
if (SIM_COUNT >= 3) {
// start listen socket3
startListen(RIL_SOCKET_3, &s_ril_param_socket3);
}
if (SIM_COUNT >= 4) {
// start listen socket4
startListen(RIL_SOCKET_4, &s_ril_param_socket4);
}
/// @}
RILJ_register();
RIL_client_register();
#if 1
// start debug interface socket
char *inst = NULL;
if (strlen(RIL_getRilSocketName()) >= strlen(SOCKET_NAME_RIL)) {
inst = RIL_getRilSocketName() + strlen(SOCKET_NAME_RIL);
}
char rildebug[MAX_DEBUG_SOCKET_NAME_LENGTH] = SOCKET_NAME_RIL_DEBUG;
if (inst != NULL) {
strncat(rildebug, inst, MAX_DEBUG_SOCKET_NAME_LENGTH);
}
s_fdDebug = android_get_control_socket(rildebug);
if (s_fdDebug < 0) {
RLOGE("Failed to get socket : %s errno:%d", rildebug, errno);
exit(-1);
}
ret = listen(s_fdDebug, 4);
if (ret < 0) {
RLOGE("Failed to listen on ril debug socket '%d': %s",
s_fdDebug, strerror(errno));
exit(-1);
}
ril_event_set (&s_debug_event, s_fdDebug, true,
debugCallback, NULL);
rilEventAddWakeup (&s_debug_event);
#endif
}
extern "C" void
RIL_register_socket (const RIL_RadioFunctions *(*Init)(const struct RIL_Env *, int, char **),RIL_SOCKET_TYPE socketType, int argc, char **argv) {
const RIL_RadioFunctions* UimFuncs = NULL;
if(Init) {
UimFuncs = Init(&RilSapSocket::uimRilEnv, argc, argv);
switch(socketType) {
case RIL_SAP_SOCKET:
RilSapSocket::initSapSocket("sap_uim_socket1", UimFuncs);
if (SIM_COUNT >= 2) {
RilSapSocket::initSapSocket("sap_uim_socket2", UimFuncs);
}
if (SIM_COUNT >= 3) {
RilSapSocket::initSapSocket("sap_uim_socket3", UimFuncs);
}
if (SIM_COUNT >= 4) {
RilSapSocket::initSapSocket("sap_uim_socket4", UimFuncs);
}
break;
default:;
}
}
}
// Check and remove RequestInfo if its a response and not just ack sent back
static int
checkAndDequeueRequestInfoIfAck(struct RequestInfo *pRI, bool isAck) {
int ret = 0;
/* Hook for current context
pendingRequestsMutextHook refer to &s_pendingRequestsMutex */
pthread_mutex_t* pendingRequestsMutexHook = &s_pendingRequestsMutex;
/* pendingRequestsHook refer to &s_pendingRequests */
RequestInfo ** pendingRequestsHook = &s_pendingRequests;
if (pRI == NULL) {
return 0;
}
if (pRI->socket_id == RIL_SOCKET_2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket2;
pendingRequestsHook = &s_pendingRequests_socket2;
}
if (pRI->socket_id == RIL_SOCKET_3) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket3;
pendingRequestsHook = &s_pendingRequests_socket3;
}
if (pRI->socket_id == RIL_SOCKET_4) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket4;
pendingRequestsHook = &s_pendingRequests_socket4;
}
if (pRI->socket_id == RIL_SOCKET_RILJ) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_rilj;
pendingRequestsHook = &s_pendingRequests_socket_rilj;
}
if (pRI->socket_id == RIL_SOCKET_RILJ2) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_rilj2;
pendingRequestsHook = &s_pendingRequests_socket_rilj2;
}
if (pRI->clientId >= 0) {
pendingRequestsMutexHook = &s_pendingRequestsMutex_socket_client[pRI->clientId];
pendingRequestsHook = &s_pendingRequests_socket_client[pRI->clientId];
}
pthread_mutex_lock(pendingRequestsMutexHook);
for(RequestInfo **ppCur = pendingRequestsHook
; *ppCur != NULL
; ppCur = &((*ppCur)->p_next)
) {
if (pRI == *ppCur) {
ret = 1;
if (isAck) { // Async ack
if (pRI->wasAckSent == 1) {
RLOGD("Ack was already sent for %s", requestToString(pRI->pCI->requestNumber));
} else {
pRI->wasAckSent = 1;
}
} else {
*ppCur = (*ppCur)->p_next;
}
break;
}
}
pthread_mutex_unlock(pendingRequestsMutexHook);
return ret;
}
static int findFd(int socket_id, int clientId) {
int fd = -1;
if (clientId >= 0) {
fd = s_ril_param_socket_clients[clientId].fdCommand;
} else {
fd = s_ril_param_socket.fdCommand;
if (socket_id == RIL_SOCKET_2) {
fd = s_ril_param_socket2.fdCommand;
}
if (socket_id == RIL_SOCKET_3) {
fd = s_ril_param_socket3.fdCommand;
}
if (socket_id == RIL_SOCKET_4) {
fd = s_ril_param_socket4.fdCommand;
}
if (socket_id == RIL_SOCKET_RILJ) {
fd = s_ril_param_socket_rilj.fdCommand;
}
if (socket_id == RIL_SOCKET_RILJ2) {
fd = s_ril_param_socket_rilj2.fdCommand;
}
}
RLOGD("findFd end socket_id=%d, clientId =%d, fd=%d", socket_id, clientId, fd);
return fd;
}
/// since vendor ril uses socket id, so change slot id to socket id again
static RIL_SOCKET_ID mapingSlotIdToRilSocketId(RIL_SLOT_ID slot_id) {
RIL_SOCKET_ID soc_id = RIL_SOCKET_1;
switch(slot_id) {
case RIL_SLOT_2:
soc_id = RIL_SOCKET_2;
break;
case RIL_SLOT_3:
soc_id = RIL_SOCKET_3;
break;
case RIL_SLOT_4:
soc_id = RIL_SOCKET_4;
break;
}
return soc_id;
}
/// change libril's socket id to slot id to initialize slot id
extern "C"
RIL_SLOT_ID mappingSocketIdToSlotId(RIL_SOCKET_ID socket_id) {
RIL_SLOT_ID slot_id = RIL_SLOT_1;
for (int i = 0; i < NUM_ELEMS(s_ril_socket_params); i++) {
if (socket_id == s_ril_socket_params[i]->socket_id) {
slot_id = s_ril_socket_params[i]->slot_id;
break;
}
}
return slot_id;
}
extern "C" void
RIL_onRequestAck(RIL_Token t) {
RequestInfo *pRI;
int ret, fd;
size_t errorOffset;
RIL_SOCKET_ID socket_id = RIL_SOCKET_1;
int clientId = -1;
pRI = (RequestInfo *)t;
if (!checkAndDequeueRequestInfoIfAck(pRI, true)) {
RLOGE ("RIL_onRequestAck: invalid RIL_Token");
return;
}
/// support client socket
socket_id = pRI->socket_id;
clientId = pRI->clientId;
fd = findFd(socket_id, clientId);
#if VDBG
RLOGD("Request Ack, %s", rilSocketIdToString(socket_id));
#endif
appendPrintBuf("Ack [%04d]< %s", pRI->token, requestToString(pRI->pCI->requestNumber));
if (pRI->cancelled == 0) {
Parcel p;
p.writeInt32 (RESPONSE_SOLICITED_ACK);
p.writeInt32 (pRI->token);
if (fd < 0) {
RLOGD ("RIL onRequestComplete: Command channel closed");
}
sendResponse(p, socket_id, clientId);
}
}
extern "C" void
RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {
RequestInfo *pRI;
int ret;
int fd;
size_t errorOffset;
RIL_SOCKET_ID socket_id = RIL_SOCKET_1;
pRI = (RequestInfo *)t;
if (!checkAndDequeueRequestInfoIfAck(pRI, false)) {
RLOGE ("RIL_onRequestComplete: invalid RIL_Token");
return;
}
socket_id = pRI->socket_id;
fd = findFd(socket_id, pRI->clientId);
if (fd < 0) {
RLOGD ("RIL onRequestComplete: Command channel closed");
}
#if RILJDBG
RLOGD("RequestComplete, %s, type %d", rilSocketIdToString(socket_id), pRI->type);
#endif
if (pRI->local > 0) {
// Locally issued command...void only!
// response does not go back up the command socket
if (pRI->cancelled == 0) {
RLOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));
}
goto done;
}
appendPrintBuf("[%04d]< %s",
pRI->token, requestToString(pRI->pCI->requestNumber));
RLOGD("RequestComplete, sendResponse, %d",pRI->cancelled);
if (pRI->cancelled == 0) {
Parcel p;
if (s_callbacks.version >= 13 && pRI->wasAckSent == 1) {
// If ack was already sent, then this call is an asynchronous response. So we need to
// send id indicating that we expect an ack from RIL.java as we acquire wakelock here.
p.writeInt32 (RESPONSE_SOLICITED_ACK_EXP);
grabPartialWakeLock();
} else {
p.writeInt32 (RESPONSE_SOLICITED);
}
p.writeInt32 (pRI->token);
errorOffset = p.dataPosition();
p.writeInt32 (e);
if (response != NULL) {
Parcel *resp = (Parcel *) response;
// there is a response payload, no matter success or not.
//ret = pRI->pCI->responseFunction(p, response, responselen);
resp->setDataPosition(0);
ret = p.appendFrom(resp,0,resp->dataSize());
/* if an error occurred, rewind and mark it */
if (ret != 0) {
RLOGE ("responseFunction error, ret %d", ret);
p.setDataPosition(errorOffset);
p.writeInt32 (ret);
}
}
RLOGD("RequestComplete, before sendResponse, %d",responselen);
if (e != RIL_E_SUCCESS) {
appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));
}
sendResponse(p, socket_id, pRI->clientId);
}
done:
free(pRI);
}
extern "C"
void resetWakelock(void) {
RLOGD("reset Wakelock %s", ANDROID_WAKE_LOCK_NAME);
mtk_release_wake_lock(ANDROID_WAKE_LOCK_NAME);
}
/// MTK_RIL_ADAPTER @{
extern "C" void
RIL_onIssueLocalRequest(int request, void *data, int len, RIL_SOCKET_ID socket_id) {
RLOGD("issue local request: %s", requestToString(request));
issueLocalRequest(request, data, len, socket_id); //data changed to parcel* type
}
/// @}
static void
grabPartialWakeLock() {
if (s_callbacks.version >= 13) {
int ret;
ret = pthread_mutex_lock(&s_wakeLockCountMutex);
assert(ret == 0);
mtk_acquire_wake_lock(ANDROID_WAKE_LOCK_NAME);
UserCallbackInfo *p_info =
internalRequestTimedCallback(wakeTimeoutCallback, NULL, &TIMEVAL_WAKE_TIMEOUT);
if (p_info == NULL) {
mtk_release_wake_lock(ANDROID_WAKE_LOCK_NAME);
} else {
s_wakelock_count++;
if (s_last_wake_timeout_info != NULL) {
s_last_wake_timeout_info->userParam = (void *)1;
}
s_last_wake_timeout_info = p_info;
}
ret = pthread_mutex_unlock(&s_wakeLockCountMutex);
assert(ret == 0);
} else {
mtk_acquire_wake_lock(ANDROID_WAKE_LOCK_NAME);
}
}
static void
releaseWakeLock() {
if (s_callbacks.version >= 13) {
int ret;
ret = pthread_mutex_lock(&s_wakeLockCountMutex);
assert(ret == 0);
if (s_wakelock_count > 1) {
s_wakelock_count--;
} else {
s_wakelock_count = 0;
mtk_release_wake_lock(ANDROID_WAKE_LOCK_NAME);
if (s_last_wake_timeout_info != NULL) {
s_last_wake_timeout_info->userParam = (void *)1;
}
}
ret = pthread_mutex_unlock(&s_wakeLockCountMutex);
assert(ret == 0);
} else {
mtk_release_wake_lock(ANDROID_WAKE_LOCK_NAME);
}
}
/**
* Timer callback to put us back to sleep before the default timeout
*/
static void
wakeTimeoutCallback (void *param) {
// We're using "param != NULL" as a cancellation mechanism
if (s_callbacks.version >= 13) {
if (param == NULL) {
int ret;
ret = pthread_mutex_lock(&s_wakeLockCountMutex);
assert(ret == 0);
s_wakelock_count = 0;
mtk_release_wake_lock(ANDROID_WAKE_LOCK_NAME);
ret = pthread_mutex_unlock(&s_wakeLockCountMutex);
assert(ret == 0);
}
} else {
if (param == NULL) {
releaseWakeLock();
}
}
}
static bool is3gpp2(int radioTech) {
switch (radioTech) {
case RADIO_TECH_IS95A:
case RADIO_TECH_IS95B:
case RADIO_TECH_1xRTT:
case RADIO_TECH_EVDO_0:
case RADIO_TECH_EVDO_A:
case RADIO_TECH_EVDO_B:
case RADIO_TECH_EHRPD:
return true;
default:
return false;
}
}
#if defined(ANDROID_MULTI_SIM)
extern "C"
void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen, RIL_SOCKET_ID soc_id)
#else
extern "C"
void RIL_onUnsolicitedResponse(int unsolResponse, const void *data,
size_t datalen)
#endif
{
#if defined(ANDROID_MULTI_SIM)
RIL_SOCKET_ID socId = soc_id;
#else
RIL_SOCKET_ID socId = RIL_SOCKET_1;
#endif
RLOGD("RIL_onUnsolicitedResponse %d\n",unsolResponse);
// alway keeps a copy of NITZ URC so we can use it later.
if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
RLOGD("alway keeps a copy of NITZ URC so we can use it later");
Parcel p;
int64_t timeReceived = elapsedRealtime();
int unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;
p.writeInt32 (RESPONSE_UNSOLICITED);
p.writeInt32 (unsolResponse);
int ret = -1;
if (data != NULL) {
Parcel *parcelUrc = (Parcel *) data;
ret = p.appendFrom(parcelUrc,0,parcelUrc->dataSize());
}
if (ret == 0) {
p.writeInt64(timeReceived);
if (s_lastNITZTimeData != NULL) {
free (s_lastNITZTimeData);
s_lastNITZTimeData = NULL;
}
s_lastNITZTimeData = calloc(p.dataSize(), 1);
if (s_lastNITZTimeData != NULL) {
s_lastNITZTimeDataSize = p.dataSize();
memcpy(s_lastNITZTimeData, p.data(), p.dataSize());
} else {
RLOGE("Memory allocation failed when keep nitz urc");
}
} else {
RLOGE("responseFunction failed when keep nitz urc");
}
}
/// support RILJ Client, and send URC to all the slot client @{
for (int i = 0; i < NUM_ELEMS(s_ril_socket_params); i++) {
/// since vendor ril using socket id, mapping to libril's slot id
if (s_ril_socket_params[i]->socket_id == socId && s_fdCommand[socId] != -1) {
RIL_onUnsolicitedResponseInternal(unsolResponse, data, datalen,
s_ril_socket_params[i]);
}
}
/// @}
int clientNum = getClientNum();
for (int j = 0; j < clientNum; j++) {
if (s_fdCommand_client[j] != -1 && s_ril_param_socket_clients[j].socket_id == socId) {
RIL_onUnsolicitedResponseInternal(unsolResponse, data, datalen,
&s_ril_param_socket_clients[j]);
}
}
}
static void RIL_onUnsolicitedResponseInternal(int unsolResponse, const void *data,
size_t datalen, SocketListenParam* socket_param) {
int unsolResponseIndex;
int ret = 0;
int64_t timeReceived = 0;
bool shouldScheduleTimeout = false;
RIL_RadioState newState;
RIL_SOCKET_ID soc_id = socket_param->socket_id;
RIL_SLOT_ID slot_id = socket_param->slot_id;
int clientId = socket_param->clientId;
int fdCommand;
if (s_registerCalled == 0) {
// Ignore RIL_onUnsolicitedResponse before RIL_register
RLOGW("RIL_onUnsolicitedResponse called before RIL_register");
return;
}
if ((soc_id == RIL_SOCKET_RILJ || soc_id == RIL_SOCKET_RILJ2)
&& !isRiljEnable()) {
/// ignore urc since rilj is not enable
return;
}
unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;
if ((unsolResponseIndex < 0)
|| (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) {
//M: ril proxy
if ((unsolResponse < RIL_UNSOL_VENDOR_BASE) ||
((unsolResponse >= RIL_UNSOL_VENDOR_BASE + (int32_t)NUM_ELEMS(s_mtk_unsolResponses)) &&
unsolResponse < RIL_UNSOL_VENDOR_IVT_BASE) ||
(unsolResponse >= RIL_UNSOL_VENDOR_IVT_BASE + (int32_t)NUM_ELEMS(s_mtk_ivt_unsolResponses))) {
RLOGE("unsupported unsolicited response code %d", unsolResponse);
return;
}
//
}
// M: ril proxy
fdCommand = findFd(soc_id, clientId);
/// @}
if (fdCommand == -1) {
if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
RLOGD("Use default cache to handle RIL_UNSOL_NITZ_TIME_RECEIVED");
} else {
RLOGD("Can't send URC because there is no connection yet."\
"Try to cache request:%s in RIL%s",
requestToString(unsolResponse), rilSocketIdToString(soc_id));
pthread_mutex_lock(&s_pendingUrcMutex[soc_id]);
cacheUrc(unsolResponse, data, datalen , soc_id);
pthread_mutex_unlock(&s_pendingUrcMutex[soc_id]);
return; //cahche then return
}
}
//
// Grab a wake lock if needed for this reponse,
// as we exit we'll either release it immediately
// or set a timer to release it later.
// M: ril proxy
WakeType wakeType;
if (unsolResponse >= RIL_UNSOL_VENDOR_IVT_BASE) {
RLOGD("RIL_onUnsolicitedResponse: ivt");
unsolResponseIndex = unsolResponse - RIL_UNSOL_VENDOR_IVT_BASE;
if (s_mtk_ivt_unsolResponses[unsolResponseIndex].responseFunction == NULL) {
RLOGE("Need add response function to command table");
return;
}
wakeType = s_mtk_ivt_unsolResponses[unsolResponseIndex].wakeType;
} else if (unsolResponse >= RIL_UNSOL_VENDOR_BASE) {
RLOGD("RIL_onUnsolicitedResponse: GSM/C2K");
unsolResponseIndex = unsolResponse - RIL_UNSOL_VENDOR_BASE;
if (s_mtk_unsolResponses[unsolResponseIndex].responseFunction == NULL) {
RLOGE("Need add response function to command table");
return;
}
wakeType = s_mtk_unsolResponses[unsolResponseIndex].wakeType;
} else {
RLOGD("RIL_onUnsolicitedResponse: default");
if (s_unsolResponses[unsolResponseIndex].responseFunction == NULL) {
RLOGE("Need add response function to command table");
return;
}
wakeType = s_unsolResponses[unsolResponseIndex].wakeType;
}
//
switch (wakeType) {
case WAKE_PARTIAL:
grabPartialWakeLock();
shouldScheduleTimeout = true;
break;
case DONT_WAKE:
default:
// No wake lock is grabed so don't set timeout
shouldScheduleTimeout = false;
break;
}
// Mark the time this was received, doing this
// after grabing the wakelock incase getting
// the elapsedRealTime might cause us to goto
// sleep.
if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
timeReceived = elapsedRealtime();
}
appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));
Parcel p;
//if (s_callbacks.version >= 13
// && s_unsolResponses[unsolResponseIndex].wakeType == WAKE_PARTIAL) {
// p.writeInt32 (RESPONSE_UNSOLICITED_ACK_EXP);
//} else {
p.writeInt32 (RESPONSE_UNSOLICITED);
//}
p.writeInt32 (unsolResponse);
#if 0
/// M: ril proxy
if (unsolResponse >= RIL_UNSOL_VENDOR_IVT_BASE) {
ret = s_mtk_ivt_unsolResponses[unsolResponseIndex]
.responseFunction(p, const_cast<void*>(data), datalen);
}
else if (unsolResponse >= RIL_UNSOL_VENDOR_BASE) {
ret = s_mtk_unsolResponses[unsolResponseIndex]
.responseFunction(p, const_cast<void*>(data), datalen);
} else {
ret = s_unsolResponses[unsolResponseIndex]
.responseFunction(p, const_cast<void*>(data), datalen);
}
#else
if (data != NULL) {
Parcel *parcelUrc = (Parcel *) data;
ret = p.appendFrom(parcelUrc,0,parcelUrc->dataSize());
}
#endif
if (ret != 0) {
RLOGI("RIL_onUnsolicitedResponse ret %d", ret);
// Problem with the response. Don't continue;
goto error_exit;
}
// some things get more payload
switch(unsolResponse) {
case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:
/// Add mutex to avoid async error when handle this unsolResponse.@{
/// Such as radio state off send before unavailable.
pthread_mutex_lock(&s_state_mutex[soc_id]);
/// @}
newState = CALL_ONSTATEREQUEST(soc_id);
p.writeInt32(newState);
appendPrintBuf("%s {%s}", printBuf, radioStateToString(CALL_ONSTATEREQUEST(soc_id)));
break;
case RIL_UNSOL_NITZ_TIME_RECEIVED:
// Store the time that this was received so the
// handler of this message can account for
// the time it takes to arrive and process. In
// particular the system has been known to sleep
// before this message can be processed.
p.writeInt64(timeReceived);
break;
}
if (s_callbacks.version < 13) {
if (shouldScheduleTimeout) {
UserCallbackInfo *p_info = internalRequestTimedCallback(wakeTimeoutCallback, NULL,
&TIMEVAL_WAKE_TIMEOUT);
if (p_info == NULL) {
/// relase state lock @{
if (unsolResponse == RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED) {
pthread_mutex_unlock(&s_state_mutex[soc_id]);
}
/// @}
goto error_exit;
} else {
// Cancel the previous request
if (s_last_wake_timeout_info != NULL) {
s_last_wake_timeout_info->userParam = (void *)1;
}
s_last_wake_timeout_info = p_info;
}
}
}
#if VDBG
RLOGI("%s UNSOLICITED: %s length:%d", rilSocketIdToString(soc_id), requestToString(unsolResponse), p.dataSize());
#endif
ret = sendResponse(p, soc_id, socket_param->clientId);
/// release state lock @{
if (unsolResponse == RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED) {
pthread_mutex_unlock(&s_state_mutex[soc_id]);
}
/// @}
if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
// Unfortunately, NITZ time is not poll/update like everything
// else in the system. So, if the upstream client isn't connected,
// keep a copy of the last NITZ response (with receive time noted
// above) around so we can deliver it when it is connected
if (s_lastNITZTimeData != NULL) {
free (s_lastNITZTimeData);
s_lastNITZTimeData = NULL;
}
s_lastNITZTimeData = calloc(p.dataSize(), 1);
if (s_lastNITZTimeData == NULL) {
RLOGE("Memory allocation failed in RIL_onUnsolicitedResponse");
goto error_exit;
}
s_lastNITZTimeDataSize = p.dataSize();
memcpy(s_lastNITZTimeData, p.data(), p.dataSize());
}
// Normal exit
return;
error_exit:
if (shouldScheduleTimeout) {
releaseWakeLock();
}
}
/** FIXME generalize this if you track UserCAllbackInfo, clear it
when the callback occurs
*/
static UserCallbackInfo *
internalRequestTimedCallback (RIL_TimedCallback callback, void *param,
const struct timeval *relativeTime)
{
struct timeval myRelativeTime;
UserCallbackInfo *p_info;
p_info = (UserCallbackInfo *) calloc(1, sizeof(UserCallbackInfo));
if (p_info == NULL) {
RLOGE("Memory allocation failed in internalRequestTimedCallback");
return p_info;
}
p_info->p_callback = callback;
p_info->userParam = param;
if (relativeTime == NULL) {
/* treat null parameter as a 0 relative time */
memset (&myRelativeTime, 0, sizeof(myRelativeTime));
} else {
/* FIXME I think event_add's tv param is really const anyway */
memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));
}
ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);
ril_timer_add(&(p_info->event), &myRelativeTime);
triggerEvLoop();
return p_info;
}
extern "C" void
RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,
const struct timeval *relativeTime) {
internalRequestTimedCallback (callback, param, relativeTime);
}
const char *
failCauseToString(RIL_Errno e) {
switch(e) {
case RIL_E_SUCCESS: return "E_SUCCESS";
case RIL_E_RADIO_NOT_AVAILABLE: return "E_RADIO_NOT_AVAILABLE";
case RIL_E_GENERIC_FAILURE: return "E_GENERIC_FAILURE";
case RIL_E_PASSWORD_INCORRECT: return "E_PASSWORD_INCORRECT";
case RIL_E_SIM_PIN2: return "E_SIM_PIN2";
case RIL_E_SIM_PUK2: return "E_SIM_PUK2";
case RIL_E_REQUEST_NOT_SUPPORTED: return "E_REQUEST_NOT_SUPPORTED";
case RIL_E_CANCELLED: return "E_CANCELLED";
case RIL_E_OP_NOT_ALLOWED_DURING_VOICE_CALL: return "E_OP_NOT_ALLOWED_DURING_VOICE_CALL";
case RIL_E_OP_NOT_ALLOWED_BEFORE_REG_TO_NW: return "E_OP_NOT_ALLOWED_BEFORE_REG_TO_NW";
case RIL_E_SMS_SEND_FAIL_RETRY: return "E_SMS_SEND_FAIL_RETRY";
case RIL_E_SIM_ABSENT:return "E_SIM_ABSENT";
case RIL_E_ILLEGAL_SIM_OR_ME:return "E_ILLEGAL_SIM_OR_ME";
#ifdef FEATURE_MULTIMODE_ANDROID
case RIL_E_SUBSCRIPTION_NOT_AVAILABLE:return "E_SUBSCRIPTION_NOT_AVAILABLE";
case RIL_E_MODE_NOT_SUPPORTED:return "E_MODE_NOT_SUPPORTED";
#endif
case RIL_E_FDN_CHECK_FAILURE: return "E_FDN_CHECK_FAILURE";
case RIL_E_MISSING_RESOURCE: return "E_MISSING_RESOURCE";
case RIL_E_NO_SUCH_ELEMENT: return "E_NO_SUCH_ELEMENT";
case RIL_E_DIAL_MODIFIED_TO_USSD: return "E_DIAL_MODIFIED_TO_USSD";
case RIL_E_DIAL_MODIFIED_TO_SS: return "E_DIAL_MODIFIED_TO_SS";
case RIL_E_DIAL_MODIFIED_TO_DIAL: return "E_DIAL_MODIFIED_TO_DIAL";
case RIL_E_USSD_MODIFIED_TO_DIAL: return "E_USSD_MODIFIED_TO_DIAL";
case RIL_E_USSD_MODIFIED_TO_SS: return "E_USSD_MODIFIED_TO_SS";
case RIL_E_USSD_MODIFIED_TO_USSD: return "E_USSD_MODIFIED_TO_USSD";
case RIL_E_SS_MODIFIED_TO_DIAL: return "E_SS_MODIFIED_TO_DIAL";
case RIL_E_SS_MODIFIED_TO_USSD: return "E_SS_MODIFIED_TO_USSD";
case RIL_E_SUBSCRIPTION_NOT_SUPPORTED: return "E_SUBSCRIPTION_NOT_SUPPORTED";
case RIL_E_SS_MODIFIED_TO_SS: return "E_SS_MODIFIED_TO_SS";
case RIL_E_LCE_NOT_SUPPORTED: return "E_LCE_NOT_SUPPORTED";
case RIL_E_NO_MEMORY: return "E_NO_MEMORY";
case RIL_E_INTERNAL_ERR: return "E_INTERNAL_ERR";
case RIL_E_SYSTEM_ERR: return "E_SYSTEM_ERR";
case RIL_E_MODEM_ERR: return "E_MODEM_ERR";
case RIL_E_INVALID_STATE: return "E_INVALID_STATE";
case RIL_E_NO_RESOURCES: return "E_NO_RESOURCES";
case RIL_E_SIM_ERR: return "E_SIM_ERR";
case RIL_E_INVALID_ARGUMENTS: return "E_INVALID_ARGUMENTS";
case RIL_E_INVALID_SIM_STATE: return "E_INVALID_SIM_STATE";
case RIL_E_INVALID_MODEM_STATE: return "E_INVALID_MODEM_STATE";
case RIL_E_INVALID_CALL_ID: return "E_INVALID_CALL_ID";
case RIL_E_NO_SMS_TO_ACK: return "E_NO_SMS_TO_ACK";
case RIL_E_NETWORK_ERR: return "E_NETWORK_ERR";
case RIL_E_REQUEST_RATE_LIMITED: return "E_REQUEST_RATE_LIMITED";
case RIL_E_SIM_BUSY: return "E_SIM_BUSY";
case RIL_E_SIM_FULL: return "E_SIM_FULL";
case RIL_E_NETWORK_REJECT: return "E_NETWORK_REJECT";
case RIL_E_OPERATION_NOT_ALLOWED: return "E_OPERATION_NOT_ALLOWED";
case RIL_E_EMPTY_RECORD: "E_EMPTY_RECORD";
case RIL_E_INVALID_SMS_FORMAT: return "E_INVALID_SMS_FORMAT";
case RIL_E_ENCODING_ERR: return "E_ENCODING_ERR";
case RIL_E_INVALID_SMSC_ADDRESS: return "E_INVALID_SMSC_ADDRESS";
case RIL_E_NO_SUCH_ENTRY: return "E_NO_SUCH_ENTRY";
case RIL_E_NETWORK_NOT_READY: return "E_NETWORK_NOT_READY";
case RIL_E_NOT_PROVISIONED: return "E_NOT_PROVISIONED";
case RIL_E_NO_SUBSCRIPTION: return "E_NO_SUBSCRIPTION";
case RIL_E_NO_NETWORK_FOUND: return "E_NO_NETWORK_FOUND";
case RIL_E_DEVICE_IN_USE: return "E_DEVICE_IN_USE";
case RIL_E_ABORTED: return "E_ABORTED";
case RIL_E_OEM_ERROR_1: return "E_OEM_ERROR_1";
case RIL_E_OEM_ERROR_2: return "E_OEM_ERROR_2";
case RIL_E_OEM_ERROR_3: return "E_OEM_ERROR_3";
case RIL_E_OEM_ERROR_4: return "E_OEM_ERROR_4";
case RIL_E_OEM_ERROR_5: return "E_OEM_ERROR_5";
case RIL_E_OEM_ERROR_6: return "E_OEM_ERROR_6";
case RIL_E_OEM_ERROR_7: return "E_OEM_ERROR_7";
case RIL_E_OEM_ERROR_8: return "E_OEM_ERROR_8";
case RIL_E_OEM_ERROR_9: return "E_OEM_ERROR_9";
case RIL_E_OEM_ERROR_10: return "E_OEM_ERROR_10";
case RIL_E_OEM_ERROR_11: return "E_OEM_ERROR_11";
case RIL_E_OEM_ERROR_12: return "E_OEM_ERROR_12";
case RIL_E_OEM_ERROR_13: return "E_OEM_ERROR_13";
case RIL_E_OEM_ERROR_14: return "E_OEM_ERROR_14";
case RIL_E_OEM_ERROR_15: return "E_OEM_ERROR_15";
case RIL_E_OEM_ERROR_16: return "E_OEM_ERROR_16";
case RIL_E_OEM_ERROR_17: return "E_OEM_ERROR_17";
case RIL_E_OEM_ERROR_18: return "E_OEM_ERROR_18";
case RIL_E_OEM_ERROR_19: return "E_OEM_ERROR_19";
case RIL_E_OEM_ERROR_20: return "E_OEM_ERROR_20";
case RIL_E_OEM_ERROR_21: return "E_OEM_ERROR_21";
case RIL_E_OEM_ERROR_22: return "E_OEM_ERROR_22";
case RIL_E_OEM_ERROR_23: return "E_OEM_ERROR_23";
case RIL_E_OEM_ERROR_24: return "E_OEM_ERROR_24";
case RIL_E_OEM_ERROR_25: return "E_OEM_ERROR_25";
default: return "<unknown error>";
}
}
const char *
callStateToString(RIL_CallState s) {
switch(s) {
case RIL_CALL_ACTIVE : return "ACTIVE";
case RIL_CALL_HOLDING: return "HOLDING";
case RIL_CALL_DIALING: return "DIALING";
case RIL_CALL_ALERTING: return "ALERTING";
case RIL_CALL_INCOMING: return "INCOMING";
case RIL_CALL_WAITING: return "WAITING";
default: return "<unknown state>";
}
}
const char *
requestToString(int request) {
/*
cat libs/telephony/ril_commands.h \
| egrep "^ *{RIL_" \
| sed -re 's/\{RIL_([^,]+),[^,]+,([^}]+).+/case RIL_\1: return "\1";/'
cat libs/telephony/ril_unsol_commands.h \
| egrep "^ *{RIL_" \
| sed -re 's/\{RIL_([^,]+),([^}]+).+/case RIL_\1: return "\1";/'
*/
switch(request) {
case RIL_REQUEST_GET_SIM_STATUS: return "GET_SIM_STATUS";
case RIL_REQUEST_ENTER_SIM_PIN: return "ENTER_SIM_PIN";
case RIL_REQUEST_ENTER_SIM_PUK: return "ENTER_SIM_PUK";
case RIL_REQUEST_ENTER_SIM_PIN2: return "ENTER_SIM_PIN2";
case RIL_REQUEST_ENTER_SIM_PUK2: return "ENTER_SIM_PUK2";
case RIL_REQUEST_CHANGE_SIM_PIN: return "CHANGE_SIM_PIN";
case RIL_REQUEST_CHANGE_SIM_PIN2: return "CHANGE_SIM_PIN2";
case RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION: return "ENTER_NETWORK_DEPERSONALIZATION";
case RIL_REQUEST_GET_CURRENT_CALLS: return "GET_CURRENT_CALLS";
case RIL_REQUEST_DIAL: return "DIAL";
case RIL_REQUEST_GET_IMSI: return "GET_IMSI";
case RIL_REQUEST_HANGUP: return "HANGUP";
case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND: return "HANGUP_WAITING_OR_BACKGROUND";
case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND: return "HANGUP_FOREGROUND_RESUME_BACKGROUND";
case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE: return "SWITCH_WAITING_OR_HOLDING_AND_ACTIVE";
case RIL_REQUEST_CONFERENCE: return "CONFERENCE";
case RIL_REQUEST_UDUB: return "UDUB";
case RIL_REQUEST_LAST_CALL_FAIL_CAUSE: return "LAST_CALL_FAIL_CAUSE";
case RIL_REQUEST_SIGNAL_STRENGTH: return "SIGNAL_STRENGTH";
case RIL_REQUEST_VOICE_REGISTRATION_STATE: return "VOICE_REGISTRATION_STATE";
case RIL_REQUEST_DATA_REGISTRATION_STATE: return "DATA_REGISTRATION_STATE";
case RIL_REQUEST_OPERATOR: return "OPERATOR";
case RIL_REQUEST_RADIO_POWER: return "RADIO_POWER";
case RIL_REQUEST_DTMF: return "DTMF";
case RIL_REQUEST_SEND_SMS: return "SEND_SMS";
case RIL_REQUEST_SEND_SMS_EXPECT_MORE: return "SEND_SMS_EXPECT_MORE";
case RIL_REQUEST_SETUP_DATA_CALL: return "SETUP_DATA_CALL";
case RIL_REQUEST_SIM_IO: return "SIM_IO";
case RIL_REQUEST_SEND_USSD: return "SEND_USSD";
case RIL_REQUEST_CANCEL_USSD: return "CANCEL_USSD";
case RIL_REQUEST_GET_CLIR: return "GET_CLIR";
case RIL_REQUEST_SET_CLIR: return "SET_CLIR";
case RIL_REQUEST_QUERY_CALL_FORWARD_STATUS: return "QUERY_CALL_FORWARD_STATUS";
case RIL_REQUEST_SET_CALL_FORWARD: return "SET_CALL_FORWARD";
case RIL_REQUEST_QUERY_CALL_WAITING: return "QUERY_CALL_WAITING";
case RIL_REQUEST_SET_CALL_WAITING: return "SET_CALL_WAITING";
case RIL_REQUEST_SMS_ACKNOWLEDGE: return "SMS_ACKNOWLEDGE";
case RIL_REQUEST_GET_IMEI: return "GET_IMEI";
case RIL_REQUEST_GET_IMEISV: return "GET_IMEISV";
case RIL_REQUEST_ANSWER: return "ANSWER";
case RIL_REQUEST_DEACTIVATE_DATA_CALL: return "DEACTIVATE_DATA_CALL";
case RIL_REQUEST_QUERY_FACILITY_LOCK: return "QUERY_FACILITY_LOCK";
case RIL_REQUEST_SET_FACILITY_LOCK: return "SET_FACILITY_LOCK";
case RIL_REQUEST_CHANGE_BARRING_PASSWORD: return "CHANGE_BARRING_PASSWORD";
case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE: return "QUERY_NETWORK_SELECTION_MODE";
case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC: return "SET_NETWORK_SELECTION_AUTOMATIC";
case RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL: return "SET_NETWORK_SELECTION_MANUAL";
case RIL_REQUEST_QUERY_AVAILABLE_NETWORKS : return "QUERY_AVAILABLE_NETWORKS";
case RIL_REQUEST_DTMF_START: return "DTMF_START";
case RIL_REQUEST_DTMF_STOP: return "DTMF_STOP";
case RIL_REQUEST_BASEBAND_VERSION: return "BASEBAND_VERSION";
case RIL_REQUEST_SEPARATE_CONNECTION: return "SEPARATE_CONNECTION";
case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE: return "SET_PREFERRED_NETWORK_TYPE";
case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE: return "GET_PREFERRED_NETWORK_TYPE";
case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS: return "GET_NEIGHBORING_CELL_IDS";
case RIL_REQUEST_SET_MUTE: return "SET_MUTE";
case RIL_REQUEST_GET_MUTE: return "GET_MUTE";
case RIL_REQUEST_QUERY_CLIP: return "QUERY_CLIP";
case RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE: return "LAST_DATA_CALL_FAIL_CAUSE";
case RIL_REQUEST_DATA_CALL_LIST: return "DATA_CALL_LIST";
case RIL_REQUEST_NV_RESET_CONFIG: return "NV_RESET_CONFIG";
case RIL_REQUEST_RESET_RADIO: return "RESET_RADIO";
case RIL_REQUEST_OEM_HOOK_RAW: return "OEM_HOOK_RAW";
case RIL_REQUEST_OEM_HOOK_STRINGS: return "OEM_HOOK_STRINGS";
case RIL_REQUEST_SET_BAND_MODE: return "SET_BAND_MODE";
case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE: return "QUERY_AVAILABLE_BAND_MODE";
case RIL_REQUEST_STK_GET_PROFILE: return "STK_GET_PROFILE";
case RIL_REQUEST_STK_SET_PROFILE: return "STK_SET_PROFILE";
case RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND: return "STK_SEND_ENVELOPE_COMMAND";
case RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE: return "STK_SEND_TERMINAL_RESPONSE";
case RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM: return "STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM";
case RIL_REQUEST_SCREEN_STATE: return "SCREEN_STATE";
case RIL_REQUEST_EXPLICIT_CALL_TRANSFER: return "EXPLICIT_CALL_TRANSFER";
case RIL_REQUEST_SET_LOCATION_UPDATES: return "SET_LOCATION_UPDATES";
case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE:return"CDMA_SET_SUBSCRIPTION_SOURCE";
case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE:return"CDMA_SET_ROAMING_PREFERENCE";
case RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE:return"CDMA_QUERY_ROAMING_PREFERENCE";
case RIL_REQUEST_SET_TTY_MODE:return"SET_TTY_MODE";
case RIL_REQUEST_QUERY_TTY_MODE:return"QUERY_TTY_MODE";
case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE:return"CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE";
case RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE:return"CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE";
case RIL_REQUEST_CDMA_FLASH:return"CDMA_FLASH";
case RIL_REQUEST_CDMA_BURST_DTMF:return"CDMA_BURST_DTMF";
case RIL_REQUEST_CDMA_SEND_SMS:return"CDMA_SEND_SMS";
case RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE:return"CDMA_SMS_ACKNOWLEDGE";
case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:return"GSM_GET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:return"GSM_SET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG:return "CDMA_GET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG:return "CDMA_SET_BROADCAST_SMS_CONFIG";
case RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION:return "CDMA_SMS_BROADCAST_ACTIVATION";
case RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY: return"CDMA_VALIDATE_AND_WRITE_AKEY";
case RIL_REQUEST_CDMA_SUBSCRIPTION: return"CDMA_SUBSCRIPTION";
case RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM: return "CDMA_WRITE_SMS_TO_RUIM";
case RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM: return "CDMA_DELETE_SMS_ON_RUIM";
case RIL_REQUEST_DEVICE_IDENTITY: return "DEVICE_IDENTITY";
case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE: return "EXIT_EMERGENCY_CALLBACK_MODE";
case RIL_REQUEST_GET_SMSC_ADDRESS: return "GET_SMSC_ADDRESS";
case RIL_REQUEST_SET_SMSC_ADDRESS: return "SET_SMSC_ADDRESS";
case RIL_REQUEST_REPORT_SMS_MEMORY_STATUS: return "REPORT_SMS_MEMORY_STATUS";
case RIL_REQUEST_GET_SMS_SIM_MEM_STATUS: return "GET_SMS_SIM_MEM_STATUS";
case RIL_REQUEST_GSM_GET_BROADCAST_LANGUAGE: return "GSM_GET_BROADCAST_LANGUAGE";
case RIL_REQUEST_GSM_SET_BROADCAST_LANGUAGE: return "GSM_SET_BROADCAST_LANGUAGE";
case RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING: return "REPORT_STK_SERVICE_IS_RUNNING";
case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE: return "CDMA_GET_SUBSCRIPTION_SOURCE";
case RIL_REQUEST_ISIM_AUTHENTICATION: return "ISIM_AUTHENTICATION";
case RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU: return "RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU";
case RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS: return "RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS";
case RIL_REQUEST_VOICE_RADIO_TECH: return "VOICE_RADIO_TECH";
case RIL_REQUEST_WRITE_SMS_TO_SIM: return "WRITE_SMS_TO_SIM";
case RIL_REQUEST_GET_CELL_INFO_LIST: return"GET_CELL_INFO_LIST";
case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE: return"SET_UNSOL_CELL_INFO_LIST_RATE";
case RIL_REQUEST_SET_INITIAL_ATTACH_APN: return "RIL_REQUEST_SET_INITIAL_ATTACH_APN";
case RIL_REQUEST_IMS_REGISTRATION_STATE: return "IMS_REGISTRATION_STATE";
case RIL_REQUEST_IMS_SEND_SMS: return "IMS_SEND_SMS";
case RIL_REQUEST_SIM_TRANSMIT_APDU_BASIC: return "SIM_TRANSMIT_APDU_BASIC";
case RIL_REQUEST_SIM_OPEN_CHANNEL: return "SIM_OPEN_CHANNEL";
case RIL_REQUEST_SIM_CLOSE_CHANNEL: return "SIM_CLOSE_CHANNEL";
case RIL_REQUEST_SIM_TRANSMIT_APDU_CHANNEL: return "SIM_TRANSMIT_APDU_CHANNEL";
case RIL_REQUEST_GET_RADIO_CAPABILITY: return "RIL_REQUEST_GET_RADIO_CAPABILITY";
case RIL_REQUEST_SET_RADIO_CAPABILITY: return "RIL_REQUEST_SET_RADIO_CAPABILITY";
case RIL_REQUEST_SET_UICC_SUBSCRIPTION: return "SET_UICC_SUBSCRIPTION";
case RIL_REQUEST_ALLOW_DATA: return "ALLOW_DATA";
case RIL_REQUEST_GET_HARDWARE_CONFIG: return "GET_HARDWARE_CONFIG";
case RIL_REQUEST_SIM_AUTHENTICATION: return "SIM_AUTHENTICATION";
case RIL_REQUEST_GET_DC_RT_INFO: return "GET_DC_RT_INFO";
case RIL_REQUEST_SET_DC_RT_INFO_RATE: return "SET_DC_RT_INFO_RATE";
case RIL_REQUEST_SET_DATA_PROFILE: return "SET_DATA_PROFILE";
case RIL_REQUEST_SET_CARRIER_RESTRICTIONS: return "SET_CARRIER_RESTRICTIONS";
case RIL_REQUEST_GET_CARRIER_RESTRICTIONS: return "GET_CARRIER_RESTRICTIONS";
// case RIL_REQUEST_SET_PSEUDO_BS_ENABLE: return "SET_PSEUDO_BS_ENABLE";
// case RIL_REQUEST_GET_PSEUDO_BS_RECORDS: return "GET_PSEUDO_BS_RECORDS";
case RIL_REQUEST_IMS_BEARER_ACTIVATION_DONE: return "RIL_REQUEST_IMS_BEARER_ACTIVATION_DONE";
case RIL_REQUEST_IMS_BEARER_DEACTIVATION_DONE: return "RIL_REQUEST_IMS_BEARER_DEACTIVATION_DONE";
case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED: return "UNSOL_RESPONSE_RADIO_STATE_CHANGED";
case RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED: return "UNSOL_RESPONSE_CALL_STATE_CHANGED";
case RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED: return "UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED";
case RIL_UNSOL_RESPONSE_NEW_SMS: return "UNSOL_RESPONSE_NEW_SMS";
case RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT: return "UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT";
case RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM: return "UNSOL_RESPONSE_NEW_SMS_ON_SIM";
case RIL_UNSOL_ON_USSD: return "UNSOL_ON_USSD";
case RIL_UNSOL_ON_USSD_REQUEST: return "UNSOL_ON_USSD_REQUEST(obsolete)";
case RIL_UNSOL_NITZ_TIME_RECEIVED: return "UNSOL_NITZ_TIME_RECEIVED";
case RIL_UNSOL_SIGNAL_STRENGTH: return "UNSOL_SIGNAL_STRENGTH";
case RIL_UNSOL_SUPP_SVC_NOTIFICATION: return "UNSOL_SUPP_SVC_NOTIFICATION";
case RIL_UNSOL_STK_SESSION_END: return "UNSOL_STK_SESSION_END";
case RIL_UNSOL_STK_PROACTIVE_COMMAND: return "UNSOL_STK_PROACTIVE_COMMAND";
case RIL_UNSOL_STK_EVENT_NOTIFY: return "UNSOL_STK_EVENT_NOTIFY";
case RIL_UNSOL_STK_CALL_SETUP: return "UNSOL_STK_CALL_SETUP";
case RIL_UNSOL_SIM_SMS_STORAGE_FULL: return "UNSOL_SIM_SMS_STORAGE_FUL";
case RIL_UNSOL_SIM_REFRESH: return "UNSOL_SIM_REFRESH";
case RIL_UNSOL_DATA_CALL_LIST_CHANGED: return "UNSOL_DATA_CALL_LIST_CHANGED";
case RIL_UNSOL_CALL_RING: return "UNSOL_CALL_RING";
case RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED: return "UNSOL_RESPONSE_SIM_STATUS_CHANGED";
case RIL_UNSOL_RESPONSE_CDMA_NEW_SMS: return "UNSOL_NEW_CDMA_SMS";
case RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS: return "UNSOL_NEW_BROADCAST_SMS";
case RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL: return "UNSOL_CDMA_RUIM_SMS_STORAGE_FULL";
case RIL_UNSOL_RESTRICTED_STATE_CHANGED: return "UNSOL_RESTRICTED_STATE_CHANGED";
case RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE: return "UNSOL_ENTER_EMERGENCY_CALLBACK_MODE";
case RIL_UNSOL_CDMA_CALL_WAITING: return "UNSOL_CDMA_CALL_WAITING";
case RIL_UNSOL_CDMA_OTA_PROVISION_STATUS: return "UNSOL_CDMA_OTA_PROVISION_STATUS";
case RIL_UNSOL_CDMA_INFO_REC: return "UNSOL_CDMA_INFO_REC";
case RIL_UNSOL_OEM_HOOK_RAW: return "UNSOL_OEM_HOOK_RAW";
case RIL_UNSOL_RINGBACK_TONE: return "UNSOL_RINGBACK_TONE";
case RIL_UNSOL_RESEND_INCALL_MUTE: return "UNSOL_RESEND_INCALL_MUTE";
case RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED: return "UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED";
case RIL_UNSOL_CDMA_PRL_CHANGED: return "UNSOL_CDMA_PRL_CHANGED";
case RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE: return "UNSOL_EXIT_EMERGENCY_CALLBACK_MODE";
case RIL_UNSOL_RIL_CONNECTED: return "UNSOL_RIL_CONNECTED";
case RIL_UNSOL_VOICE_RADIO_TECH_CHANGED: return "UNSOL_VOICE_RADIO_TECH_CHANGED";
case RIL_UNSOL_CELL_INFO_LIST: return "UNSOL_CELL_INFO_LIST";
case RIL_UNSOL_RESPONSE_IMS_NETWORK_STATE_CHANGED: return "RESPONSE_IMS_NETWORK_STATE_CHANGED";
case RIL_UNSOL_UICC_SUBSCRIPTION_STATUS_CHANGED: return "UNSOL_UICC_SUBSCRIPTION_STATUS_CHANGED";
case RIL_UNSOL_SRVCC_STATE_NOTIFY: return "UNSOL_SRVCC_STATE_NOTIFY";
case RIL_UNSOL_HARDWARE_CONFIG_CHANGED: return "HARDWARE_CONFIG_CHANGED";
case RIL_UNSOL_DC_RT_INFO_CHANGED: return "UNSOL_DC_RT_INFO_CHANGED";
case RIL_REQUEST_SHUTDOWN: return "SHUTDOWN";
case RIL_UNSOL_RADIO_CAPABILITY: return "RIL_UNSOL_RADIO_CAPABILITY";
case RIL_RESPONSE_ACKNOWLEDGEMENT: return "RIL_RESPONSE_ACKNOWLEDGEMENT";
case RIL_UNSOL_PCO_DATA: return "RIL_UNSOL_PCO_DATA";
// case RIL_UNSOL_PSEUDO_BS_INFO_LIST: return "UNSOL_PSEUDO_BS_INFO_LIST";
case RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION: return "RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION";
case RIL_REQUEST_SET_COLR: return "RIL_REQUEST_SET_COLR";
case RIL_REQUEST_GET_COLP: return "RIL_REQUEST_GET_COLP";
case RIL_REQUEST_GET_COLR: return "RIL_REQUEST_GET_COLR";
case RIL_REQUEST_SET_CLIP: return "RIL_REQUEST_SET_CLIP";
case RIL_REQUEST_SET_COLP: return "RIL_REQUEST_SET_COLP";
case RIL_REQUEST_QUERY_CALL_FORWARD_IN_TIME_SLOT: return "RIL_REQUEST_QUERY_CALL_FORWARD_IN_TIME_SLOT";
case RIL_REQUEST_SET_CALL_FORWARD_IN_TIME_SLOT: return "RIL_REQUEST_SET_CALL_FORWARD_IN_TIME_SLOT";
case RIL_REQUEST_RUN_GBA: return "RIL_REQUEST_RUN_GBA";
case RIL_UNSOL_IMS_BEARER_ACTIVATION: return "RIL_UNSOL_IMS_BEARER_ACTIVATION";
case RIL_UNSOL_IMS_BEARER_DEACTIVATION: return "RIL_UNSOL_IMS_BEARER_DEACTIVATION";
case RIL_UNSOL_IMS_BEARER_INIT: return "RIL_UNSOL_IMS_BEARER_INIT";
// case RIL_REQUEST_SETUP_DATA_CALL_ALT: return "RIL_REQUEST_SETUP_DATA_CALL_ALT";
// case RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE_ALT: return "RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE_ALT";
// case RIL_REQUEST_PCSCF_DISCOVERY_PCO_ALT: return "RIL_REQUEST_PCSCF_DISCOVERY_PCO_ALT";
case RIL_REQUEST_SET_MD_IMSCFG: return "RIL_REQUEST_SET_MD_IMSCFG";
// case RIL_REQUEST_SET_IMS_EVS_ENABLE : return "RIL_REQUEST_SET_IMS_EVS_ENABLE";
default: return mtkRequestToString(request);
}
}
const char *
rilSocketIdToString(RIL_SOCKET_ID socket_id)
{
switch(socket_id) {
case RIL_SOCKET_1:
return "RIL_SOCKET_1";
case RIL_SOCKET_2:
return "RIL_SOCKET_2";
case RIL_SOCKET_3:
return "RIL_SOCKET_3";
case RIL_SOCKET_4:
return "RIL_SOCKET_4";
case RIL_SOCKET_RILJ:
return SOCKET_NAME_RILJCLIENT;
case RIL_SOCKET_RILJ2:
return SOCKET2_NAME_RILJCLIENT;
default:
return "not a valid RIL";
}
}
// M: ril proxy
void cacheUrc(int unsolResponse, const void *data, size_t datalen, RIL_SOCKET_ID socket_id){
//Only the URC list we wanted.
if (unsolResponse != RIL_UNSOL_STK_PROACTIVE_COMMAND
&& unsolResponse != RIL_UNSOL_STK_EVENT_NOTIFY
&& unsolResponse != RIL_UNSOL_CALL_FORWARDING
&& unsolResponse != RIL_UNSOL_SMS_READY_NOTIFICATION
&& unsolResponse != RIL_UNSOL_IMEI_LOCK
&& unsolResponse != RIL_UNSOL_PHB_READY_NOTIFICATION
&& unsolResponse != RIL_UNSOL_SIM_SMS_STORAGE_FULL
&& unsolResponse != RIL_UNSOL_ME_SMS_STORAGE_FULL
&& unsolResponse != RIL_UNSOL_RADIO_CAPABILITY
&& unsolResponse != RIL_UNSOL_SIM_PLUG_IN
&& unsolResponse != RIL_UNSOL_SIM_PLUG_OUT
&& unsolResponse != RIL_UNSOL_RESPONSE_PLMN_CHANGED
&& unsolResponse != RIL_UNSOL_RESPONSE_REGISTRATION_SUSPENDED
&& unsolResponse != RIL_UNSOL_VOICE_RADIO_TECH_CHANGED
&& unsolResponse != RIL_UNSOL_WORLD_MODE_CHANGED
&& unsolResponse != RIL_UNSOL_CDMA_CARD_INITIAL_ESN_OR_MEID
&& unsolResponse != RIL_UNSOL_RESPONSE_CDMA_NEW_SMS
&& unsolResponse != RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL
&& unsolResponse != RIL_UNSOL_TX_POWER
&& unsolResponse != RIL_UNSOL_HARDWARE_CONFIG_CHANGED
/*&& unsolResponse != RIL_UNSOL_TRAY_PLUG_IN*/) {
RLOGI("Don't need to cache the request");
return;
}
AtResponseList* urcCur = NULL;
AtResponseList* urcPrev = NULL;
int pendedUrcCount = 0;
switch(socket_id) {
case RIL_SOCKET_1:
urcCur = pendedUrcList1;
break;
case RIL_SOCKET_2:
urcCur = pendedUrcList2;
break;
case RIL_SOCKET_3:
urcCur = pendedUrcList3;
break;
case RIL_SOCKET_4:
urcCur = pendedUrcList4;
break;
case RIL_SOCKET_RILJ:
urcCur = pendedUrcList_rilj;
break;
case RIL_SOCKET_RILJ2:
urcCur = pendedUrcList_rilj2;
break;
default:
RLOGE("Socket id is wrong!!");
return;
}
while (urcCur != NULL) {
RLOGD("Pended URC:%d, RILD:%s, :%s",
pendedUrcCount,
rilSocketIdToString(socket_id),
requestToString(urcCur->id));
urcPrev = urcCur;
urcCur = urcCur->pNext;
pendedUrcCount++;
}
urcCur = (AtResponseList*)calloc(1, sizeof(AtResponseList));
if (urcPrev != NULL)
urcPrev->pNext = urcCur;
urcCur->pNext = NULL;
urcCur->id = unsolResponse;
if (data != NULL) {
urcCur->data = new Parcel();
Parcel *parcelUrc = (Parcel *) data;
urcCur->datalen = parcelUrc->dataSize();
urcCur->data->appendFrom(parcelUrc,0,parcelUrc->dataSize());
}else {
urcCur->data = NULL;
urcCur->datalen = 0;
}
if (pendedUrcCount == 0) {
switch(socket_id) {
case RIL_SOCKET_1:
pendedUrcList1 = urcCur;
break;
case RIL_SOCKET_2:
pendedUrcList2 = urcCur;
break;
case RIL_SOCKET_3:
pendedUrcList3 = urcCur;
break;
case RIL_SOCKET_4:
pendedUrcList4 = urcCur;
break;
case RIL_SOCKET_RILJ:
pendedUrcList_rilj = urcCur;
break;
case RIL_SOCKET_RILJ2:
pendedUrcList_rilj2 = urcCur;
break;
default:
RLOGE("Socket id is wrong!!");
return;
}
}
RLOGD("Current pendedUrcCount = %d", pendedUrcCount + 1);
int activeFd = haveActiveFd(socket_id);
if (activeFd != -1) {
RLOGD("s_fdCommand [%d] = %d, sendUrc again", socket_id, activeFd);
sendPendedUrcs(socket_id, activeFd);
}
}
int haveActiveFd(int socket_id) {
if (s_fdCommand[socket_id] != -1) {
return s_fdCommand[socket_id];
}
int clientNum = getClientNum();
for (int i = 0; i < clientNum; i++) {
if (s_fdCommand_client[i] != -1) {
return s_fdCommand_client[i];
}
}
return -1;
}
void sendUrc(RIL_SOCKET_ID socket_id, AtResponseList* urcCached) {
AtResponseList* urc = urcCached;
AtResponseList* urc_temp;
while (urc != NULL) {
RLOGD("sendPendedUrcs RIL%s, %s",
rilSocketIdToString(socket_id),
requestToString(urc->id));
#if defined(ANDROID_MULTI_SIM)
RIL_onUnsolicitedResponse(urc->id, urc->data, urc->datalen, socket_id);
#else
RIL_onUnsolicitedResponse(urc->id, urc->data, urc->datalen);
#endif
if(urc->data != NULL)
delete urc->data;
urc_temp = urc;
urc = urc->pNext;
free(urc_temp);
}
}
void sendPendedUrcs(RIL_SOCKET_ID socket_id, int fdCommand) {
RLOGD("Ready to send pended URCs, socket:%s, fdCommand:%d",
rilSocketIdToString(socket_id), fdCommand);
if ((RIL_SOCKET_1 == socket_id) && (fdCommand != -1)) {
sendUrc(socket_id, pendedUrcList1);
pendedUrcList1 = NULL;
}
else if ((RIL_SOCKET_2 == socket_id) && (fdCommand != -1)) {
sendUrc(socket_id, pendedUrcList2);
pendedUrcList2 = NULL;
}
else if ((RIL_SOCKET_3 == socket_id) && (fdCommand != -1)) {
sendUrc(socket_id, pendedUrcList3);
pendedUrcList3 = NULL;
}
else if ((RIL_SOCKET_4 == socket_id) && (fdCommand != -1)) {
sendUrc(socket_id, pendedUrcList4);
pendedUrcList4 = NULL;
}
else if ((RIL_SOCKET_RILJ == socket_id || RIL_SOCKET_RILJ2 == socket_id)
&& fdCommand != -1) {
AtResponseList** pendedUrcAddress =
RIL_SOCKET_RILJ == socket_id ? &pendedUrcList_rilj : &pendedUrcList_rilj2;
sendUrc(socket_id, *pendedUrcAddress);
*pendedUrcAddress = NULL;
}
}
//
/*
* Returns true for a debuggable build.
*/
static bool isDebuggable() {
char debuggable[PROP_VALUE_MAX];
mtk_property_get("ro.debuggable", debuggable, "0");
if (strcmp(debuggable, "1") == 0) {
return true;
}
return false;
}
#ifdef HAVE_AEE_FEATURE
void triggerWarning(char *pErrMsg) {
if (pErrMsg != NULL) {
aee_system_warning("ril-proxy", NULL, DB_OPT_DEFAULT, pErrMsg);
exit(0);
} else {
assert(0);
}
}
#endif
/* M: eMBMS feature */
static void dispatchEmbmsStartSessionInfo(Parcel &p, RequestInfo *pRI) {
RIL_EMBMS_StartSessionReq args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
status = p.readInt32(&args.trans_id);
RLOGD("dispatchEmbmsStartSessionInfo, trans_id = %d", args.trans_id);
status = p.readInt32(&t);
args.tmgi_info.tmgi_len = (uint32_t)t;
RLOGD("dispatchEmbmsStartSessionInfo, tmgi_len = %d", args.tmgi_info.tmgi_len);
startRequest;
appendPrintBuf("%strans_id=%d,tmgi_len=%s",
printBuf, args.trans_id, args.tmgi_info.tmgi_len);
if (args.tmgi_info.tmgi_len > EMBMS_MAX_BYTES_TMGI) {
RLOGE("dispatchStartSession Invalid TMGI length %d", args.tmgi_info.tmgi_len);
goto invalid;
}
for (unsigned int i=0; i < args.tmgi_info.tmgi_len; i++) {
uint8_t ut = 0;
status = p.read(&ut, sizeof(ut));
args.tmgi_info.tmgi[i] = (uint8_t)ut;
}
RLOGD("dispatchStartSession, tmgi[%02X,%02X,%02X,%02X,%02X,%02X]",
args.tmgi_info.tmgi[0],
args.tmgi_info.tmgi[1],
args.tmgi_info.tmgi[2],
args.tmgi_info.tmgi[3],
args.tmgi_info.tmgi[4],
args.tmgi_info.tmgi[5]);
status = p.readInt32(&t);
args.earfcnlist_count = (uint32_t)t;
RLOGD("dispatchEmbmsStartSessionInfo, earfcnlist_count = %d", args.earfcnlist_count);
appendPrintBuf("%earfcnlist_count=%d", printBuf, args.earfcnlist_count);
for (unsigned int i = 0 ; i < args.earfcnlist_count ; i++) {
status = p.readInt32(&t);
if (i < EMBMS_MAX_NUM_FREQ) {
args.earfcnlist[i] = t;
RLOGD("searfcnlist[%d]= %d", i, args.earfcnlist[i]);
appendPrintBuf("%searfcnlist=%d", printBuf, args.earfcnlist[i]);
} else {
RLOGD("searfcnlist[%d] out of index", i);
}
}
status = p.readInt32(&t);
args.saiList_valid = (uint8_t)t;
RLOGD("dispatchEmbmsStartSessionInfo, saiList_valid = %d", args.saiList_valid);
appendPrintBuf("%saiList_valid=%d", printBuf, args.saiList_valid);
if (args.saiList_valid) {
status = p.readInt32(&t);
args.saiList_count = (uint32_t)t;
RLOGD("dispatchEmbmsStartSessionInfo, saiList_count = %d", args.saiList_count);
appendPrintBuf("%saiList_count=%d", printBuf, args.saiList_count);
for (unsigned int i = 0 ; i < args.saiList_count ; i++) {
status = p.readInt32(&args.saiList[i]);
RLOGV("saiList[%d]= %d", i, args.saiList[i]);
appendPrintBuf("%ssaiList=%d", printBuf, args.saiList[i]);
}
} else {
args.saiList_count = 0;
RLOGD("dispatchEmbmsStartSessionInfo, saiList_count = 0 due to not valid");
appendPrintBuf("%saiList_count=%d", printBuf, args.saiList_count);
}
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchEmbmsStopSessionInfo(Parcel &p, RequestInfo *pRI) {
RIL_EMBMS_StopSessionReq args;
int32_t t = 0;
status_t status;
memset (&args, 0, sizeof(args));
startRequest;
status = p.readInt32(&t);
args.trans_id = (int)t;
RLOGD("dispatchStopSession, status:%d, trans_id%d", status, args.trans_id);
// readByteArray
status = p.readInt32(&t);
args.tmgi_info.tmgi_len = (uint32_t)t;
RLOGD("dispatchStopSession, tmgi_len status = %d ,tmgi_len = %d ", status , args.tmgi_info.tmgi_len);
if (args.tmgi_info.tmgi_len > EMBMS_MAX_BYTES_TMGI) {
RLOGE("dispatchStopSession Invalid TMGI length %d", args.tmgi_info.tmgi_len);
goto invalid;
}
for (unsigned int i=0; i < args.tmgi_info.tmgi_len; i++) {
uint8_t ut = 0;
status = p.read(&ut, sizeof(ut));
args.tmgi_info.tmgi[i] = (uint8_t)ut;
}
RLOGD("dispatchStopSession, tmgi[%02X,%02X,%02X,%02X,%02X,%02X]",
args.tmgi_info.tmgi[0],
args.tmgi_info.tmgi[1],
args.tmgi_info.tmgi[2],
args.tmgi_info.tmgi[3],
args.tmgi_info.tmgi[4],
args.tmgi_info.tmgi[5]);
appendPrintBuf("%strans_id=%d,tmgi_len=%d",
printBuf, args.trans_id, args.tmgi_info.tmgi_len);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static int responseEmbmsNetworkTime(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_GetTimeResp) != 0) {
RLOGE("responseEmbmsNetworkTime: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_GetTimeResp));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_GetTimeResp *p_cur = (RIL_EMBMS_GetTimeResp *)response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->response);
p.writeInt64(p_cur->milli_sec);
p.writeInt32(p_cur->day_light_saving_valid);
p.writeInt32(p_cur->day_light_saving);
p.writeInt32(p_cur->leap_seconds_valid);
p.writeInt32(p_cur->leap_seconds);
p.writeInt32(p_cur->local_time_offset_valid);
p.writeInt32(p_cur->local_time_offset);
startResponse;
appendPrintBuf("%s%d,%d,%lu,%d,%d,%d,%d,%d,%d", printBuf, p_cur->trans_id, p_cur->response
, p_cur->milli_sec, p_cur->day_light_saving_valid, p_cur->day_light_saving
, p_cur->leap_seconds_valid, p_cur->leap_seconds, p_cur->local_time_offset_valid
, p_cur->local_time_offset);
closeResponse;
return 0;
}
static int responseEmbmsOosNotify(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_OosNotify) != 0) {
RLOGE("responseEmbmsOosNotify: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_OosNotify));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_EMBMS_OosNotify *p_cur = (RIL_EMBMS_OosNotify *)response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->reason);
p.writeInt32(p_cur->tmgi_info_count);
RLOGD("tmgi_info_count, %d", p_cur->tmgi_info_count);
appendPrintBuf("%s%d,%d,%d", printBuf, p_cur->trans_id,
p_cur->reason, p_cur->tmgi_info_count);
for (uint32_t i = 0; i < p_cur->tmgi_info_count; i++) {
// writeByteArray will introduce endian issue
p.writeInt32(p_cur->tmgi_info[i].tmgi_len);
uint8_t uct;
for (uint32_t j=0; j < p_cur->tmgi_info[i].tmgi_len; j++) {
p.write(&(p_cur->tmgi_info[i].tmgi[j]), sizeof(uct));
}
appendPrintBuf("%s%d", printBuf, p_cur->tmgi_info[i].tmgi_len);
}
closeResponse;
return 0;
}
static int responseEmbmsCellInfoNotify(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_CellInfoNotify) != 0) {
RLOGE("responseEmbmsCellInfoNotify: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_CellInfoNotify));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_CellInfoNotify *p_cur = (RIL_EMBMS_CellInfoNotify *) response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->cell_id);
startResponse;
appendPrintBuf("%s%d,%d", printBuf, p_cur->trans_id, p_cur->cell_id);
closeResponse;
return 0;
}
static int responseEmbmsModemEeNotify(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_ModemEeNotify) != 0) {
RLOGE("responseEmbmsModemEeNotify: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_ModemEeNotify));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_ModemEeNotify *p_cur = (RIL_EMBMS_ModemEeNotify *) response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->state);
startResponse;
appendPrintBuf("%s%d,%d", printBuf, p_cur->trans_id, p_cur->state);
closeResponse;
return 0;
}
static int responseEmbmsSaiNotify(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_SaiNotify) != 0) {
RLOGE("responseEmbmsSaiNotify: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_SaiNotify));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_SaiNotify *p_cur = (RIL_EMBMS_SaiNotify *) response;
startResponse;
// trans_id
p.writeInt32(p_cur->trans_id);
// cf_total
p.writeInt32(p_cur->cf_total);
// curFreqData
for (uint32_t i = 0; i < p_cur->cf_total; i++) {
p.writeInt32(p_cur->curFreqData[i]);
}
// csai_count_per_group
for (uint32_t i = 0; i < p_cur->cf_total; i++) {
p.writeInt32(p_cur->csai_count_per_group[i]);
}
// csai_total
p.writeInt32(p_cur->csai_total);
// curSaiData
for (uint32_t i = 0; i < p_cur->csai_total; i++) {
p.writeInt32(p_cur->curSaiData[i]);
}
// nf_total
p.writeInt32(p_cur->nf_total);
// neiFreqData
for (uint32_t i = 0; i < p_cur->nf_total; i++) {
p.writeInt32(p_cur->neiFreqData[i]);
}
// nsai_count_per_group
for (uint32_t i = 0; i < p_cur->nf_total; i++) {
p.writeInt32(p_cur->nsai_count_per_group[i]);
}
// nsai_total
p.writeInt32(p_cur->nsai_total);
// neiSaiData
for (uint32_t i = 0; i < p_cur->nsai_total; i++) {
p.writeInt32(p_cur->neiSaiData[i]);
}
appendPrintBuf("%s%d,%d,%d,%d,%d", printBuf, p_cur->trans_id, p_cur->cf_total
, p_cur->csai_total, p_cur->nf_total, p_cur->nsai_total);
RLOGD("responseEmbmsSaiNotify cf_total[%d], csai_total[%d], nf_total[%d], nf_total[%d]"
, p_cur->cf_total, p_cur->csai_total, p_cur->nf_total, p_cur->nf_total);
closeResponse;
return 0;
}
static int responseEmbmsActiveSessionNotify(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_ActiveSessionNotify) != 0) {
RLOGE("responseEmbmsActiveSessionNotify: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_ActiveSessionNotify));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_EMBMS_ActiveSessionNotify *p_cur = (RIL_EMBMS_ActiveSessionNotify *)response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->tmgi_info_count);
appendPrintBuf("%s%d,%d", printBuf, p_cur->trans_id, p_cur->tmgi_info_count);
for (uint32_t i = 0; i < p_cur->tmgi_info_count; i++) {
// writeByteArray will introduce endian issue
p.writeInt32(p_cur->tmgi_info[i].tmgi_len);
uint8_t uct;
for (uint32_t j=0; j < p_cur->tmgi_info[i].tmgi_len; j++) {
p.write(&(p_cur->tmgi_info[i].tmgi[j]), sizeof(uct));
}
RLOGD("responseAvailableActiveSession, TMGI[%02X,%02X,%02X,%02X,%02X,%02X]",
p_cur->tmgi_info[i].tmgi[0],
p_cur->tmgi_info[i].tmgi[1],
p_cur->tmgi_info[i].tmgi[2],
p_cur->tmgi_info[i].tmgi[3],
p_cur->tmgi_info[i].tmgi[4],
p_cur->tmgi_info[i].tmgi[5]);
}
closeResponse;
return 0;
}
static int responseEmbmsSessionInfo(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_StartSessionResp) != 0) {
RLOGE("responseEmbmsSessionInfo: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_StartSessionResp));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
startResponse;
RIL_EMBMS_StartSessionResp *p_cur = (RIL_EMBMS_StartSessionResp *)response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->response);
p.writeInt32(p_cur->tmgi_info_valid);
RLOGD("responseStartStopSession trans_id=%d, response=%d, tmgi_info_valid=%d, tmgi_len=%d",
p_cur->trans_id, p_cur->response, p_cur->tmgi_info_valid, p_cur->tmgi_info.tmgi_len);
appendPrintBuf("%s%d,%d,%d,%d", printBuf, p_cur->trans_id,
p_cur->response, p_cur->tmgi_info_valid, p_cur->tmgi_info.tmgi_len);
// writeByteArray will introduce endian issue
p.writeInt32(p_cur->tmgi_info.tmgi_len);
uint8_t uct;
for (uint32_t j=0; j < p_cur->tmgi_info.tmgi_len; j++) {
p.write(&(p_cur->tmgi_info.tmgi[j]), sizeof(uct));
}
for (uint32_t i=0; i < p_cur->tmgi_info.tmgi_len; i++) {
appendPrintBuf("%s%d", printBuf, p_cur->tmgi_info.tmgi[i]);
RLOGD("responseStartStopSession tmgi[%d] = %02X", i, p_cur->tmgi_info.tmgi[i]);
}
closeResponse;
return 0;
}
static int responseEmbmsEnable(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_EnableResp) != 0) {
RLOGE("responseEmbmsEnable: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_EnableResp));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_EnableResp *p_cur = (RIL_EMBMS_EnableResp *) response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->response);
p.writeInt32(p_cur->interface_index_valid);
p.writeInt32(p_cur->interface_index);
startResponse;
appendPrintBuf("%s%d,%d,%d,%d", printBuf, p_cur->trans_id, p_cur->response,
p_cur->interface_index_valid, p_cur->interface_index);
closeResponse;
return 0;
}
static int responseEmbmsDisable(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_DisableResp) != 0) {
RLOGE("responseEmbmsDisable: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_DisableResp));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_DisableResp *p_cur = (RIL_EMBMS_DisableResp *) response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->response);
startResponse;
appendPrintBuf("%s%d,%d", printBuf, p_cur->trans_id, p_cur->response);
closeResponse;
return 0;
}
static int responseEmbmsGetCoverageState(Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen % sizeof(RIL_EMBMS_GetCoverageResp) != 0) {
RLOGE("responseEmbmsGetCoverageState: invalid response length %d expected multiple of %d",
(int)responselen, (int)sizeof(RIL_EMBMS_GetCoverageResp));
assert(false);
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_EMBMS_GetCoverageResp *p_cur = (RIL_EMBMS_GetCoverageResp *) response;
p.writeInt32(p_cur->trans_id);
p.writeInt32(p_cur->response);
p.writeInt32(p_cur->coverage_state_valid);
p.writeInt32(p_cur->coverage_state);
startResponse;
appendPrintBuf("%s%d,%d,%d,%d", printBuf, p_cur->trans_id, p_cur->response,
p_cur->coverage_state_valid, p_cur->coverage_state);
closeResponse;
return 0;
}
// MTK-START: SIM OPEN CHANNEL WITH P2
static void dispatchOpenChannelParams(android::Parcel &p, android::RequestInfo *pRI) {
RIL_OpenChannelParams openChannelParams;
int32_t t = 0;
android::status_t status;
RLOGD("dispatchOpenChannelParams Enter.");
memset(&openChannelParams, 0, sizeof(openChannelParams));
openChannelParams.aidPtr = strdupReadString(p);
status = p.readInt32(&t);
openChannelParams.p2 = t;
if (status != android::NO_ERROR) {
goto invalid;
}
RLOGD("dispatchOpenChannelParams aid: %s, p2: %d",
openChannelParams.aidPtr, openChannelParams.p2);
startRequest;
appendPrintBuf("%said=%s,p2=%d", printBuf,
openChannelParams.aidPtr, openChannelParams.p2);
closeRequest;
CALL_ONREQUEST(pRI->pCI->requestNumber, &openChannelParams,
sizeof(openChannelParams), pRI, pRI->socket_id);
#ifdef MEMSET_FREED
android::memsetString(openChannelParams.aidPtr);
#endif
if (openChannelParams.aidPtr != NULL) {
free(openChannelParams.aidPtr);
}
#ifdef MEMSET_FREED
memset(&openChannelParams, 0, sizeof(openChannelParams));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
// ecall start
static void dispatchEcallSetMsd(Parcel &p, RequestInfo *pRI) {
RIL_ECallSetMSD msd;
int32_t id = 0;
int length = 0;
unsigned int value = 0;
int size;
status_t status;
memset(&msd, 0, sizeof(msd));
status = p.readInt32(&id);
msd.call_id= id;
status = p.readInt32(&length);
msd.length = (unsigned int)length;
RLOGD("dispatchEcallSetMsd length=%d, call_id =%d", length, id);
if((msd.msd_data = (unsigned char*)malloc(sizeof(unsigned char)*msd.length)) == NULL){
RLOGD("malloc msd_data fail\n");
return;
}
memset(msd.msd_data, 0, sizeof(unsigned char)*msd.length);
for(int i = 0; i< msd.length; i++){
status = p.readUint32(&value);
msd.msd_data[i] = (unsigned char) value;
//debug
RLOGD("msd_data[%d] = %d",i,msd.msd_data[i]);
}
startRequest;
appendPrintBuf("%scall_id=%d,data_length=%d", printBuf,
msd.call_id,msd.length);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
free(msd.msd_data);
goto invalid;
}
size = sizeof(RIL_ECallSetMSD)+sizeof(unsigned char)*msd.length;
CALL_ONREQUEST(pRI->pCI->requestNumber, &msd, size, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memset(msd.msd_data,0,sizeof(unsigned char)*msd.length);
#endif
free(msd.msd_data);
#ifdef MEMSET_FREED
memset(&msd, 0, sizeof(msd));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchFastMakeEcall(Parcel &p, RequestInfo *pRI) {
RIL_ECallReqMsg eCallReqMsg;
int32_t t = 0;
int size;
status_t status;
unsigned int len;
unsigned int value;
memset(&eCallReqMsg, 0, sizeof(eCallReqMsg));
status = p.readInt32(&t);
eCallReqMsg.ecall_cat = (RIL_ECall_Category)t;
status = p.readInt32(&t);
eCallReqMsg.ecall_variant = (RIL_ECall_Variant)t;
eCallReqMsg.address = strdupReadString(p);
//debug
RLOGD("eCallReqMsg address = %s\n",eCallReqMsg.address);
status = p.readInt32(&t);
eCallReqMsg.length = (unsigned int)t;
if((eCallReqMsg.msd_data = (unsigned char*)malloc(sizeof(unsigned char)*eCallReqMsg.length)) == NULL){
free(eCallReqMsg.address);
return;
}
memset(eCallReqMsg.msd_data, 0, sizeof(unsigned char)*eCallReqMsg.length);
for(int i = 0; i< eCallReqMsg.length; i++){
status = p.readUint32(&value);
eCallReqMsg.msd_data[i] = (unsigned char) value;
//debug
RLOGD("msd_data[%d] = %d",i,eCallReqMsg.msd_data[i]);
}
startRequest;
appendPrintBuf("%secall_cat=%d,ecall_variant=%d,address=%s,length=%d", printBuf,
eCallReqMsg.ecall_cat, eCallReqMsg.ecall_variant, (char*)eCallReqMsg.address,\
eCallReqMsg.length
);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != NO_ERROR) {
free(eCallReqMsg.address);
free(eCallReqMsg.msd_data);
goto invalid;
}
size = sizeof(eCallReqMsg);
CALL_ONREQUEST(pRI->pCI->requestNumber, &eCallReqMsg, size, pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(eCallReqMsg.address);
memset(eCallReqMsg.msd_data,0,eCallReqMsg.length);
#endif
free(eCallReqMsg.address);
free(eCallReqMsg.msd_data);
#ifdef MEMSET_FREED
memset(&eCallReqMsg, 0, sizeof(eCallReqMsg));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchEcallSetNum(Parcel &p, RequestInfo *pRI) {
RIL_ECallSetNum num;
int32_t t = 0;
status_t status;
memset(&num, 0, sizeof(num));
status = p.readInt32(&t);
num.arg_num = t;
status = p.readInt32(&t);
num.type = t;
num.address = strdupReadString(p);
if (status != NO_ERROR) {
goto invalid;
}
RLOGD("dispatchEcallSetNum status: %d, address: %s", num.type, num.address);
startRequest;
appendPrintBuf("%stype=%d,num=%s", printBuf, num.type, (char*)num.address);
closeRequest;
CALL_ONREQUEST(pRI->pCI->requestNumber, &num, sizeof(num), pRI, mapingSlotIdToRilSocketId(pRI->slot_id));
#ifdef MEMSET_FREED
memsetString(num.address);
#endif
if (num.address != NULL) {
free(num.address);
}
#ifdef MEMSET_FREED
memset(&num, 0, sizeof(num));
#endif
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static int responseEcallInd(android::Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
LOGE("invalid response: NULL");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_Ecall_Unsol_Indications)) {
LOGE("invalid response length was %d expected %d",
(int)responselen, (int)sizeof (RIL_Ecall_Unsol_Indications));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_Ecall_Unsol_Indications *p_cur = (RIL_Ecall_Unsol_Indications *)response;
RLOGD("responseEcallInd ind:%d call_id:%d", p_cur->ind, p_cur->call_id);
p.writeInt32(p_cur->ind);
p.writeInt32(p_cur->call_id);
return 0;
}
// MTK-END
static int responseQueryNetworkLock(android::Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("responseQueryNetworkLock: invalid NULL response");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_SimMeLockCatInfo)) {
RLOGE("responseQueryNetworkLock: invalid response length %u, expecting %u",
(unsigned)responselen, (unsigned)sizeof(RIL_SimMeLockCatInfo));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_SimMeLockCatInfo *p_result = (RIL_SimMeLockCatInfo *) response;
p.writeInt32(p_result->catagory);
p.writeInt32(p_result->state);
p.writeInt32(p_result->retry_cnt);
p.writeInt32(p_result->autolock_cnt);
p.writeInt32(p_result->num_set);
p.writeInt32(p_result->total_set);
p.writeInt32(p_result->key_state);
startResponse;
appendPrintBuf("responseQueryNetworkLock result: catagory %d, state %d ,retry_cnt %d "
",autolock_cnt %d ,num_set %d ,total_set %d ,key_state %d",
p_result->catagory, p_result->state, p_result->retry_cnt,
p_result->autolock_cnt, p_result->num_set, p_result->total_set, p_result->key_state);
closeResponse;
return 0;
}
static void dispatchNetworkScan(android::Parcel &p, android::RequestInfo *pRI) {
RIL_NetworkScanRequest args;
int32_t t = 0;
android::status_t status;
memset (&args, 0, sizeof(args));
status = p.readInt32(&t);
args.type = (RIL_ScanType) t;
status = p.readInt32(&t);
args.interval = (int32_t) t;
status = p.readInt32(&t);
args.specifiers_length = (uint32_t) t;
for (int i = 0 ; i < args.specifiers_length ; i++) {
status = p.readInt32(&t);
args.specifiers[i].radio_access_network = (RIL_RadioAccessNetworks) t;
status = p.readInt32(&t);
args.specifiers[i].bands_length = (uint32_t) t;
for (int j = 0 ; j < args.specifiers[i].bands_length ; j++) {
status = p.readInt32(&t);
if (args.specifiers[i].radio_access_network == GERAN) {
args.specifiers[i].bands.geran_bands[j] = (RIL_GeranBands) t;
} else if (args.specifiers[i].radio_access_network == UTRAN) {
args.specifiers[i].bands.utran_bands[j] = (RIL_UtranBands) t;
} else {
args.specifiers[i].bands.eutran_bands[j] = (RIL_EutranBands) t;
}
}
status = p.readInt32(&t);
args.specifiers[i].channels_length = (uint32_t) t;
for (int k = 0 ; k < args.specifiers[i].channels_length ; k++) {
status = p.readInt32(&t);
args.specifiers[i].channels[k] = (uint32_t) t;
}
}
startRequest;
appendPrintBuf("%scmd=0x%X,type=%d,interval=%d,specifiers_length=%d", printBuf,
args.type, args.interval, args.specifiers_length);
closeRequest;
printRequest(pRI->token, pRI->pCI->requestNumber);
if (status != android::NO_ERROR) {
goto invalid;
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &args, sizeof(args), pRI, pRI->socket_id);
return;
invalid:
invalidCommandBlock(pRI);
return;
}
static void dispatchLinkCapacityReportingCriteria(android::Parcel &p, android::RequestInfo *pRI) {
android::status_t status;
int t = 0;
int num = 0;
RIL_LinkCapacityReportingCriteria *data = (RIL_LinkCapacityReportingCriteria *) calloc(1,
sizeof(RIL_LinkCapacityReportingCriteria));
if (data == NULL) {
RLOGE("setLinkCapacityReportingCriteria: data memory allocation failed for request %s",
android::requestToString(pRI->pCI->requestNumber));
return;
}
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
data->hysteresisMs = (int)t;
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
data->hysteresisDlKbps = (int)t;
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
data->hysteresisUlKbps = (int)t;
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
num = (int)t;
data->thresholdDlKbpsNumber = num > MAX_LCE_THRESHOLD_NUMBER ? MAX_LCE_THRESHOLD_NUMBER : num;
for (int i = 0; i < num; i++) {
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
if (i < MAX_LCE_THRESHOLD_NUMBER) {
data->thresholdDlKbpsList[i] = (int)t;
}
}
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
num = (int)t;
data->thresholdUlKbpsNumber = num > MAX_LCE_THRESHOLD_NUMBER ? MAX_LCE_THRESHOLD_NUMBER : num;
for (int i = 0; i < num; i++) {
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
if (i < MAX_LCE_THRESHOLD_NUMBER) {
data->thresholdUlKbpsList[i] = (int)t;
}
}
status = p.readInt32(&t);
if (status != android::NO_ERROR) {
goto invalid;
}
data->accessNetwork = (int)t;
CALL_ONREQUEST(pRI->pCI->requestNumber, data, sizeof(RIL_LinkCapacityReportingCriteria), pRI,
pRI->socket_id);
free(data);
return;
invalid:
RLOGE("setLinkCapacityReportingCriteria: invalidCommandBlock for request %s",
android::requestToString(pRI->pCI->requestNumber));
free(data);
invalidCommandBlock(pRI);
return;
}
static int responseNetworkScanResult(android::Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("responseNetworkScanResult: invalid NULL response");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_NetworkScanResult)) {
RLOGE("responseNetworkScanResult: invalid response length %u, expecting %u",
(unsigned)responselen, (unsigned)sizeof(RIL_NetworkScanResult));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_NetworkScanResult *p_result = (RIL_NetworkScanResult *)response;
p.writeInt32(p_result->status);
p.writeInt32(p_result->network_infos_length);
RIL_CellInfo_v12 *p_cur = (RIL_CellInfo_v12 *) p_result->network_infos;
for (int i = 0; i < p_result->network_infos_length; i++) {
p.writeInt32((int)p_cur->cellInfoType);
p.writeInt32(p_cur->registered);
p.writeInt32(p_cur->timeStampType);
p.writeInt64(p_cur->timeStamp);
switch (p_cur->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mcc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.mnc);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.lac);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.cid);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.arfcn);
p.writeInt32(p_cur->CellInfo.gsm.cellIdentityGsm.bsic);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.signalStrength);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.bitErrorRate);
p.writeInt32(p_cur->CellInfo.gsm.signalStrengthGsm.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mcc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.mnc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.lac);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.cid);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.psc);
p.writeInt32(p_cur->CellInfo.wcdma.cellIdentityWcdma.uarfcn);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.signalStrength);
p.writeInt32(p_cur->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.networkId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.systemId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.basestationId);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.longitude);
p.writeInt32(p_cur->CellInfo.cdma.cellIdentityCdma.latitude);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthCdma.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.dbm);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.ecio);
p.writeInt32(p_cur->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mcc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.mnc);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.ci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.pci);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.tac);
p.writeInt32(p_cur->CellInfo.lte.cellIdentityLte.earfcn);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.signalStrength);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrp);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rsrq);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.rssnr);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.cqi);
p.writeInt32(p_cur->CellInfo.lte.signalStrengthLte.timingAdvance);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.lac);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cid);
p.writeInt32(p_cur->CellInfo.tdscdma.cellIdentityTdscdma.cpid);
p.writeInt32(p_cur->CellInfo.tdscdma.signalStrengthTdscdma.rscp);
break;
}
default: {
break;
}
}
p_cur += 1;
}
startResponse;
appendPrintBuf("Network scan result: status %d, network_infos_length %d",
p_result->status, p_result->network_infos_length);
closeResponse;
return 0;
}
// M: [VzW] Data Framework @{
static int responsePcoDataAfterAttached(android::Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("responsePcoDataAfterAttached: invalid NULL response");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_PCO_Data_attached)) {
RLOGE("responsePcoDataAfterAttached: invalid response length %u, expecting %u",
(unsigned)responselen, (unsigned)sizeof(RIL_PCO_Data_attached));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_PCO_Data_attached *p_cur = (RIL_PCO_Data_attached *)response;
p.writeInt32(p_cur->cid);
writeStringToParcel(p, p_cur->apn_name);
writeStringToParcel(p, p_cur->bearer_proto);
p.writeInt32(p_cur->pco_id);
p.writeInt32(p_cur->contents_length);
p.write(p_cur->contents, p_cur->contents_length);
startResponse;
appendPrintBuf("PCO data received: cid %d, id %d, apn name %s, length %d",
p_cur->cid, p_cur->pco_id, p_cur->apn_name, p_cur->contents_length);
closeResponse;
return 0;
}
// M: [VzW] Data Framework @}
static int responseLinkCapacityEstimate(android::Parcel &p, void *response, size_t responselen) {
if (response == NULL) {
RLOGE("responseLinkCapacityEstimate: invalid NULL response");
return RIL_ERRNO_INVALID_RESPONSE;
}
if (responselen != sizeof(RIL_LinkCapacityEstimate)) {
RLOGE("responseLinkCapacityEstimate: invalid response length %d, expecting length: %d",
(int)responselen, (int)sizeof(RIL_LinkCapacityEstimate));
return RIL_ERRNO_INVALID_RESPONSE;
}
RIL_LinkCapacityEstimate *p_cur = (RIL_LinkCapacityEstimate *)response;
p.writeInt32(p_cur->downlinkCapacityKbps);
p.writeInt32(p_cur->uplinkCapacityKbps);
startResponse;
appendPrintBuf("responseLinkCapacityEstimate: downlinkCapacityKbps %d uplinkCapacityKbps %d",
p_cur->downlinkCapacityKbps, p_cur->uplinkCapacityKbps);
closeResponse;
return 0;
}
} /* namespace android */
void rilEventAddWakeup_helper(struct ril_event *ev) {
android::rilEventAddWakeup(ev);
}
void listenCallback_helper(int fd, short flags, void *param) {
android::listenCallback(fd, flags, param);
}
int blockingWrite_helper(int fd, void *buffer, size_t len) {
return android::blockingWrite(fd, buffer, len);
}