| /* | 
 |  * SPI init/core code | 
 |  * | 
 |  * Copyright (C) 2005 David Brownell | 
 |  * Copyright (C) 2008 Secret Lab Technologies Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/device.h> | 
 | #include <linux/init.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/clk/clk-conf.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/spi/spi.h> | 
 | #include <linux/spi/spi-mem.h> | 
 | #include <linux/of_gpio.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/pm_domain.h> | 
 | #include <linux/property.h> | 
 | #include <linux/export.h> | 
 | #include <linux/sched/rt.h> | 
 | #include <uapi/linux/sched/types.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/platform_data/x86/apple.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/spi.h> | 
 |  | 
 | #include "internals.h" | 
 |  | 
 | static DEFINE_IDR(spi_master_idr); | 
 |  | 
 | static void spidev_release(struct device *dev) | 
 | { | 
 | 	struct spi_device	*spi = to_spi_device(dev); | 
 |  | 
 | 	/* spi controllers may cleanup for released devices */ | 
 | 	if (spi->controller->cleanup) | 
 | 		spi->controller->cleanup(spi); | 
 |  | 
 | 	spi_controller_put(spi->controller); | 
 | 	kfree(spi); | 
 | } | 
 |  | 
 | static ssize_t | 
 | modalias_show(struct device *dev, struct device_attribute *a, char *buf) | 
 | { | 
 | 	const struct spi_device	*spi = to_spi_device(dev); | 
 | 	int len; | 
 |  | 
 | 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); | 
 | 	if (len != -ENODEV) | 
 | 		return len; | 
 |  | 
 | 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); | 
 | } | 
 | static DEVICE_ATTR_RO(modalias); | 
 |  | 
 | #define SPI_STATISTICS_ATTRS(field, file)				\ | 
 | static ssize_t spi_controller_##field##_show(struct device *dev,	\ | 
 | 					     struct device_attribute *attr, \ | 
 | 					     char *buf)			\ | 
 | {									\ | 
 | 	struct spi_controller *ctlr = container_of(dev,			\ | 
 | 					 struct spi_controller, dev);	\ | 
 | 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\ | 
 | }									\ | 
 | static struct device_attribute dev_attr_spi_controller_##field = {	\ | 
 | 	.attr = { .name = file, .mode = 0444 },				\ | 
 | 	.show = spi_controller_##field##_show,				\ | 
 | };									\ | 
 | static ssize_t spi_device_##field##_show(struct device *dev,		\ | 
 | 					 struct device_attribute *attr,	\ | 
 | 					char *buf)			\ | 
 | {									\ | 
 | 	struct spi_device *spi = to_spi_device(dev);			\ | 
 | 	return spi_statistics_##field##_show(&spi->statistics, buf);	\ | 
 | }									\ | 
 | static struct device_attribute dev_attr_spi_device_##field = {		\ | 
 | 	.attr = { .name = file, .mode = 0444 },				\ | 
 | 	.show = spi_device_##field##_show,				\ | 
 | } | 
 |  | 
 | #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\ | 
 | static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ | 
 | 					    char *buf)			\ | 
 | {									\ | 
 | 	unsigned long flags;						\ | 
 | 	ssize_t len;							\ | 
 | 	spin_lock_irqsave(&stat->lock, flags);				\ | 
 | 	len = sprintf(buf, format_string, stat->field);			\ | 
 | 	spin_unlock_irqrestore(&stat->lock, flags);			\ | 
 | 	return len;							\ | 
 | }									\ | 
 | SPI_STATISTICS_ATTRS(name, file) | 
 |  | 
 | #define SPI_STATISTICS_SHOW(field, format_string)			\ | 
 | 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\ | 
 | 				 field, format_string) | 
 |  | 
 | SPI_STATISTICS_SHOW(messages, "%lu"); | 
 | SPI_STATISTICS_SHOW(transfers, "%lu"); | 
 | SPI_STATISTICS_SHOW(errors, "%lu"); | 
 | SPI_STATISTICS_SHOW(timedout, "%lu"); | 
 |  | 
 | SPI_STATISTICS_SHOW(spi_sync, "%lu"); | 
 | SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); | 
 | SPI_STATISTICS_SHOW(spi_async, "%lu"); | 
 |  | 
 | SPI_STATISTICS_SHOW(bytes, "%llu"); | 
 | SPI_STATISTICS_SHOW(bytes_rx, "%llu"); | 
 | SPI_STATISTICS_SHOW(bytes_tx, "%llu"); | 
 |  | 
 | #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\ | 
 | 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\ | 
 | 				 "transfer_bytes_histo_" number,	\ | 
 | 				 transfer_bytes_histo[index],  "%lu") | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); | 
 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); | 
 |  | 
 | SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); | 
 |  | 
 | static struct attribute *spi_dev_attrs[] = { | 
 | 	&dev_attr_modalias.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group spi_dev_group = { | 
 | 	.attrs  = spi_dev_attrs, | 
 | }; | 
 |  | 
 | static struct attribute *spi_device_statistics_attrs[] = { | 
 | 	&dev_attr_spi_device_messages.attr, | 
 | 	&dev_attr_spi_device_transfers.attr, | 
 | 	&dev_attr_spi_device_errors.attr, | 
 | 	&dev_attr_spi_device_timedout.attr, | 
 | 	&dev_attr_spi_device_spi_sync.attr, | 
 | 	&dev_attr_spi_device_spi_sync_immediate.attr, | 
 | 	&dev_attr_spi_device_spi_async.attr, | 
 | 	&dev_attr_spi_device_bytes.attr, | 
 | 	&dev_attr_spi_device_bytes_rx.attr, | 
 | 	&dev_attr_spi_device_bytes_tx.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo0.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo1.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo2.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo3.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo4.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo5.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo6.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo7.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo8.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo9.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo10.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo11.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo12.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo13.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo14.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo15.attr, | 
 | 	&dev_attr_spi_device_transfer_bytes_histo16.attr, | 
 | 	&dev_attr_spi_device_transfers_split_maxsize.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group spi_device_statistics_group = { | 
 | 	.name  = "statistics", | 
 | 	.attrs  = spi_device_statistics_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *spi_dev_groups[] = { | 
 | 	&spi_dev_group, | 
 | 	&spi_device_statistics_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute *spi_controller_statistics_attrs[] = { | 
 | 	&dev_attr_spi_controller_messages.attr, | 
 | 	&dev_attr_spi_controller_transfers.attr, | 
 | 	&dev_attr_spi_controller_errors.attr, | 
 | 	&dev_attr_spi_controller_timedout.attr, | 
 | 	&dev_attr_spi_controller_spi_sync.attr, | 
 | 	&dev_attr_spi_controller_spi_sync_immediate.attr, | 
 | 	&dev_attr_spi_controller_spi_async.attr, | 
 | 	&dev_attr_spi_controller_bytes.attr, | 
 | 	&dev_attr_spi_controller_bytes_rx.attr, | 
 | 	&dev_attr_spi_controller_bytes_tx.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo0.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo1.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo2.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo3.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo4.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo5.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo6.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo7.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo8.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo9.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo10.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo11.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo12.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo13.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo14.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo15.attr, | 
 | 	&dev_attr_spi_controller_transfer_bytes_histo16.attr, | 
 | 	&dev_attr_spi_controller_transfers_split_maxsize.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group spi_controller_statistics_group = { | 
 | 	.name  = "statistics", | 
 | 	.attrs  = spi_controller_statistics_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *spi_master_groups[] = { | 
 | 	&spi_controller_statistics_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | void spi_statistics_add_transfer_stats(struct spi_statistics *stats, | 
 | 				       struct spi_transfer *xfer, | 
 | 				       struct spi_controller *ctlr) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; | 
 |  | 
 | 	if (l2len < 0) | 
 | 		l2len = 0; | 
 |  | 
 | 	spin_lock_irqsave(&stats->lock, flags); | 
 |  | 
 | 	stats->transfers++; | 
 | 	stats->transfer_bytes_histo[l2len]++; | 
 |  | 
 | 	stats->bytes += xfer->len; | 
 | 	if ((xfer->tx_buf) && | 
 | 	    (xfer->tx_buf != ctlr->dummy_tx)) | 
 | 		stats->bytes_tx += xfer->len; | 
 | 	if ((xfer->rx_buf) && | 
 | 	    (xfer->rx_buf != ctlr->dummy_rx)) | 
 | 		stats->bytes_rx += xfer->len; | 
 |  | 
 | 	spin_unlock_irqrestore(&stats->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); | 
 |  | 
 | /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, | 
 |  * and the sysfs version makes coldplug work too. | 
 |  */ | 
 |  | 
 | static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, | 
 | 						const struct spi_device *sdev) | 
 | { | 
 | 	while (id->name[0]) { | 
 | 		if (!strcmp(sdev->modalias, id->name)) | 
 | 			return id; | 
 | 		id++; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) | 
 | { | 
 | 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); | 
 |  | 
 | 	return spi_match_id(sdrv->id_table, sdev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_get_device_id); | 
 |  | 
 | static int spi_match_device(struct device *dev, struct device_driver *drv) | 
 | { | 
 | 	const struct spi_device	*spi = to_spi_device(dev); | 
 | 	const struct spi_driver	*sdrv = to_spi_driver(drv); | 
 |  | 
 | 	/* Attempt an OF style match */ | 
 | 	if (of_driver_match_device(dev, drv)) | 
 | 		return 1; | 
 |  | 
 | 	/* Then try ACPI */ | 
 | 	if (acpi_driver_match_device(dev, drv)) | 
 | 		return 1; | 
 |  | 
 | 	if (sdrv->id_table) | 
 | 		return !!spi_match_id(sdrv->id_table, spi); | 
 |  | 
 | 	return strcmp(spi->modalias, drv->name) == 0; | 
 | } | 
 |  | 
 | static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) | 
 | { | 
 | 	const struct spi_device		*spi = to_spi_device(dev); | 
 | 	int rc; | 
 |  | 
 | 	rc = acpi_device_uevent_modalias(dev, env); | 
 | 	if (rc != -ENODEV) | 
 | 		return rc; | 
 |  | 
 | 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); | 
 | } | 
 |  | 
 | struct bus_type spi_bus_type = { | 
 | 	.name		= "spi", | 
 | 	.dev_groups	= spi_dev_groups, | 
 | 	.match		= spi_match_device, | 
 | 	.uevent		= spi_uevent, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(spi_bus_type); | 
 |  | 
 |  | 
 | static int spi_drv_probe(struct device *dev) | 
 | { | 
 | 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
 | 	struct spi_device		*spi = to_spi_device(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = of_clk_set_defaults(dev->of_node, false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (dev->of_node) { | 
 | 		spi->irq = of_irq_get(dev->of_node, 0); | 
 | 		if (spi->irq == -EPROBE_DEFER) | 
 | 			return -EPROBE_DEFER; | 
 | 		if (spi->irq < 0) | 
 | 			spi->irq = 0; | 
 | 	} | 
 |  | 
 | 	ret = dev_pm_domain_attach(dev, true); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = sdrv->probe(spi); | 
 | 	if (ret) | 
 | 		dev_pm_domain_detach(dev, true); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int spi_drv_remove(struct device *dev) | 
 | { | 
 | 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
 | 	int ret; | 
 |  | 
 | 	ret = sdrv->remove(to_spi_device(dev)); | 
 | 	dev_pm_domain_detach(dev, true); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void spi_drv_shutdown(struct device *dev) | 
 | { | 
 | 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
 |  | 
 | 	sdrv->shutdown(to_spi_device(dev)); | 
 | } | 
 |  | 
 | /** | 
 |  * __spi_register_driver - register a SPI driver | 
 |  * @owner: owner module of the driver to register | 
 |  * @sdrv: the driver to register | 
 |  * Context: can sleep | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) | 
 | { | 
 | 	sdrv->driver.owner = owner; | 
 | 	sdrv->driver.bus = &spi_bus_type; | 
 | 	if (sdrv->probe) | 
 | 		sdrv->driver.probe = spi_drv_probe; | 
 | 	if (sdrv->remove) | 
 | 		sdrv->driver.remove = spi_drv_remove; | 
 | 	if (sdrv->shutdown) | 
 | 		sdrv->driver.shutdown = spi_drv_shutdown; | 
 | 	return driver_register(&sdrv->driver); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__spi_register_driver); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* SPI devices should normally not be created by SPI device drivers; that | 
 |  * would make them board-specific.  Similarly with SPI controller drivers. | 
 |  * Device registration normally goes into like arch/.../mach.../board-YYY.c | 
 |  * with other readonly (flashable) information about mainboard devices. | 
 |  */ | 
 |  | 
 | struct boardinfo { | 
 | 	struct list_head	list; | 
 | 	struct spi_board_info	board_info; | 
 | }; | 
 |  | 
 | static LIST_HEAD(board_list); | 
 | static LIST_HEAD(spi_controller_list); | 
 |  | 
 | /* | 
 |  * Used to protect add/del opertion for board_info list and | 
 |  * spi_controller list, and their matching process | 
 |  * also used to protect object of type struct idr | 
 |  */ | 
 | static DEFINE_MUTEX(board_lock); | 
 |  | 
 | /** | 
 |  * spi_alloc_device - Allocate a new SPI device | 
 |  * @ctlr: Controller to which device is connected | 
 |  * Context: can sleep | 
 |  * | 
 |  * Allows a driver to allocate and initialize a spi_device without | 
 |  * registering it immediately.  This allows a driver to directly | 
 |  * fill the spi_device with device parameters before calling | 
 |  * spi_add_device() on it. | 
 |  * | 
 |  * Caller is responsible to call spi_add_device() on the returned | 
 |  * spi_device structure to add it to the SPI controller.  If the caller | 
 |  * needs to discard the spi_device without adding it, then it should | 
 |  * call spi_dev_put() on it. | 
 |  * | 
 |  * Return: a pointer to the new device, or NULL. | 
 |  */ | 
 | struct spi_device *spi_alloc_device(struct spi_controller *ctlr) | 
 | { | 
 | 	struct spi_device	*spi; | 
 |  | 
 | 	if (!spi_controller_get(ctlr)) | 
 | 		return NULL; | 
 |  | 
 | 	spi = kzalloc(sizeof(*spi), GFP_KERNEL); | 
 | 	if (!spi) { | 
 | 		spi_controller_put(ctlr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	spi->master = spi->controller = ctlr; | 
 | 	spi->dev.parent = &ctlr->dev; | 
 | 	spi->dev.bus = &spi_bus_type; | 
 | 	spi->dev.release = spidev_release; | 
 | 	spi->cs_gpio = -ENOENT; | 
 |  | 
 | 	spin_lock_init(&spi->statistics.lock); | 
 |  | 
 | 	device_initialize(&spi->dev); | 
 | 	return spi; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_alloc_device); | 
 |  | 
 | static void spi_dev_set_name(struct spi_device *spi) | 
 | { | 
 | 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev); | 
 |  | 
 | 	if (adev) { | 
 | 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), | 
 | 		     spi->chip_select); | 
 | } | 
 |  | 
 | static int spi_dev_check(struct device *dev, void *data) | 
 | { | 
 | 	struct spi_device *spi = to_spi_device(dev); | 
 | 	struct spi_device *new_spi = data; | 
 |  | 
 | 	if (spi->controller == new_spi->controller && | 
 | 	    spi->chip_select == new_spi->chip_select) | 
 | 		return -EBUSY; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_add_device - Add spi_device allocated with spi_alloc_device | 
 |  * @spi: spi_device to register | 
 |  * | 
 |  * Companion function to spi_alloc_device.  Devices allocated with | 
 |  * spi_alloc_device can be added onto the spi bus with this function. | 
 |  * | 
 |  * Return: 0 on success; negative errno on failure | 
 |  */ | 
 | int spi_add_device(struct spi_device *spi) | 
 | { | 
 | 	static DEFINE_MUTEX(spi_add_lock); | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 | 	struct device *dev = ctlr->dev.parent; | 
 | 	int status; | 
 |  | 
 | 	/* Chipselects are numbered 0..max; validate. */ | 
 | 	if (spi->chip_select >= ctlr->num_chipselect) { | 
 | 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select, | 
 | 			ctlr->num_chipselect); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Set the bus ID string */ | 
 | 	spi_dev_set_name(spi); | 
 |  | 
 | 	/* We need to make sure there's no other device with this | 
 | 	 * chipselect **BEFORE** we call setup(), else we'll trash | 
 | 	 * its configuration.  Lock against concurrent add() calls. | 
 | 	 */ | 
 | 	mutex_lock(&spi_add_lock); | 
 |  | 
 | 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); | 
 | 	if (status) { | 
 | 		dev_err(dev, "chipselect %d already in use\n", | 
 | 				spi->chip_select); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (ctlr->cs_gpios) | 
 | 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; | 
 |  | 
 | 	/* Drivers may modify this initial i/o setup, but will | 
 | 	 * normally rely on the device being setup.  Devices | 
 | 	 * using SPI_CS_HIGH can't coexist well otherwise... | 
 | 	 */ | 
 | 	status = spi_setup(spi); | 
 | 	if (status < 0) { | 
 | 		dev_err(dev, "can't setup %s, status %d\n", | 
 | 				dev_name(&spi->dev), status); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Device may be bound to an active driver when this returns */ | 
 | 	status = device_add(&spi->dev); | 
 | 	if (status < 0) | 
 | 		dev_err(dev, "can't add %s, status %d\n", | 
 | 				dev_name(&spi->dev), status); | 
 | 	else | 
 | 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); | 
 |  | 
 | done: | 
 | 	mutex_unlock(&spi_add_lock); | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_add_device); | 
 |  | 
 | /** | 
 |  * spi_new_device - instantiate one new SPI device | 
 |  * @ctlr: Controller to which device is connected | 
 |  * @chip: Describes the SPI device | 
 |  * Context: can sleep | 
 |  * | 
 |  * On typical mainboards, this is purely internal; and it's not needed | 
 |  * after board init creates the hard-wired devices.  Some development | 
 |  * platforms may not be able to use spi_register_board_info though, and | 
 |  * this is exported so that for example a USB or parport based adapter | 
 |  * driver could add devices (which it would learn about out-of-band). | 
 |  * | 
 |  * Return: the new device, or NULL. | 
 |  */ | 
 | struct spi_device *spi_new_device(struct spi_controller *ctlr, | 
 | 				  struct spi_board_info *chip) | 
 | { | 
 | 	struct spi_device	*proxy; | 
 | 	int			status; | 
 |  | 
 | 	/* NOTE:  caller did any chip->bus_num checks necessary. | 
 | 	 * | 
 | 	 * Also, unless we change the return value convention to use | 
 | 	 * error-or-pointer (not NULL-or-pointer), troubleshootability | 
 | 	 * suggests syslogged diagnostics are best here (ugh). | 
 | 	 */ | 
 |  | 
 | 	proxy = spi_alloc_device(ctlr); | 
 | 	if (!proxy) | 
 | 		return NULL; | 
 |  | 
 | 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); | 
 |  | 
 | 	proxy->chip_select = chip->chip_select; | 
 | 	proxy->max_speed_hz = chip->max_speed_hz; | 
 | 	proxy->mode = chip->mode; | 
 | 	proxy->irq = chip->irq; | 
 | 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); | 
 | 	proxy->dev.platform_data = (void *) chip->platform_data; | 
 | 	proxy->controller_data = chip->controller_data; | 
 | 	proxy->controller_state = NULL; | 
 |  | 
 | 	if (chip->properties) { | 
 | 		status = device_add_properties(&proxy->dev, chip->properties); | 
 | 		if (status) { | 
 | 			dev_err(&ctlr->dev, | 
 | 				"failed to add properties to '%s': %d\n", | 
 | 				chip->modalias, status); | 
 | 			goto err_dev_put; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	status = spi_add_device(proxy); | 
 | 	if (status < 0) | 
 | 		goto err_remove_props; | 
 |  | 
 | 	return proxy; | 
 |  | 
 | err_remove_props: | 
 | 	if (chip->properties) | 
 | 		device_remove_properties(&proxy->dev); | 
 | err_dev_put: | 
 | 	spi_dev_put(proxy); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_new_device); | 
 |  | 
 | /** | 
 |  * spi_unregister_device - unregister a single SPI device | 
 |  * @spi: spi_device to unregister | 
 |  * | 
 |  * Start making the passed SPI device vanish. Normally this would be handled | 
 |  * by spi_unregister_controller(). | 
 |  */ | 
 | void spi_unregister_device(struct spi_device *spi) | 
 | { | 
 | 	if (!spi) | 
 | 		return; | 
 |  | 
 | 	if (spi->dev.of_node) { | 
 | 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED); | 
 | 		of_node_put(spi->dev.of_node); | 
 | 	} | 
 | 	if (ACPI_COMPANION(&spi->dev)) | 
 | 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); | 
 | 	device_unregister(&spi->dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_unregister_device); | 
 |  | 
 | static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, | 
 | 					      struct spi_board_info *bi) | 
 | { | 
 | 	struct spi_device *dev; | 
 |  | 
 | 	if (ctlr->bus_num != bi->bus_num) | 
 | 		return; | 
 |  | 
 | 	dev = spi_new_device(ctlr, bi); | 
 | 	if (!dev) | 
 | 		dev_err(ctlr->dev.parent, "can't create new device for %s\n", | 
 | 			bi->modalias); | 
 | } | 
 |  | 
 | /** | 
 |  * spi_register_board_info - register SPI devices for a given board | 
 |  * @info: array of chip descriptors | 
 |  * @n: how many descriptors are provided | 
 |  * Context: can sleep | 
 |  * | 
 |  * Board-specific early init code calls this (probably during arch_initcall) | 
 |  * with segments of the SPI device table.  Any device nodes are created later, | 
 |  * after the relevant parent SPI controller (bus_num) is defined.  We keep | 
 |  * this table of devices forever, so that reloading a controller driver will | 
 |  * not make Linux forget about these hard-wired devices. | 
 |  * | 
 |  * Other code can also call this, e.g. a particular add-on board might provide | 
 |  * SPI devices through its expansion connector, so code initializing that board | 
 |  * would naturally declare its SPI devices. | 
 |  * | 
 |  * The board info passed can safely be __initdata ... but be careful of | 
 |  * any embedded pointers (platform_data, etc), they're copied as-is. | 
 |  * Device properties are deep-copied though. | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_register_board_info(struct spi_board_info const *info, unsigned n) | 
 | { | 
 | 	struct boardinfo *bi; | 
 | 	int i; | 
 |  | 
 | 	if (!n) | 
 | 		return 0; | 
 |  | 
 | 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); | 
 | 	if (!bi) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < n; i++, bi++, info++) { | 
 | 		struct spi_controller *ctlr; | 
 |  | 
 | 		memcpy(&bi->board_info, info, sizeof(*info)); | 
 | 		if (info->properties) { | 
 | 			bi->board_info.properties = | 
 | 					property_entries_dup(info->properties); | 
 | 			if (IS_ERR(bi->board_info.properties)) | 
 | 				return PTR_ERR(bi->board_info.properties); | 
 | 		} | 
 |  | 
 | 		mutex_lock(&board_lock); | 
 | 		list_add_tail(&bi->list, &board_list); | 
 | 		list_for_each_entry(ctlr, &spi_controller_list, list) | 
 | 			spi_match_controller_to_boardinfo(ctlr, | 
 | 							  &bi->board_info); | 
 | 		mutex_unlock(&board_lock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void spi_set_cs(struct spi_device *spi, bool enable) | 
 | { | 
 | 	if (spi->mode & SPI_CS_HIGH) | 
 | 		enable = !enable; | 
 |  | 
 | 	if (gpio_is_valid(spi->cs_gpio)) { | 
 | 		gpio_set_value_cansleep(spi->cs_gpio, !enable); | 
 | 		/* Some SPI masters need both GPIO CS & slave_select */ | 
 | 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && | 
 | 		    spi->controller->set_cs) | 
 | 			spi->controller->set_cs(spi, !enable); | 
 | 	} else if (spi->controller->set_cs) { | 
 | 		spi->controller->set_cs(spi, !enable); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAS_DMA | 
 | int spi_map_buf(struct spi_controller *ctlr, struct device *dev, | 
 | 		struct sg_table *sgt, void *buf, size_t len, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	const bool vmalloced_buf = is_vmalloc_addr(buf); | 
 | 	unsigned int max_seg_size = dma_get_max_seg_size(dev); | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && | 
 | 				(unsigned long)buf < (PKMAP_BASE + | 
 | 					(LAST_PKMAP * PAGE_SIZE))); | 
 | #else | 
 | 	const bool kmap_buf = false; | 
 | #endif | 
 | 	int desc_len; | 
 | 	int sgs; | 
 | 	struct page *vm_page; | 
 | 	struct scatterlist *sg; | 
 | 	void *sg_buf; | 
 | 	size_t min; | 
 | 	int i, ret; | 
 |  | 
 | 	if (vmalloced_buf || kmap_buf) { | 
 | 		desc_len = min_t(int, max_seg_size, PAGE_SIZE); | 
 | 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); | 
 | 	} else if (virt_addr_valid(buf)) { | 
 | 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); | 
 | 		sgs = DIV_ROUND_UP(len, desc_len); | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	sg = &sgt->sgl[0]; | 
 | 	for (i = 0; i < sgs; i++) { | 
 |  | 
 | 		if (vmalloced_buf || kmap_buf) { | 
 | 			/* | 
 | 			 * Next scatterlist entry size is the minimum between | 
 | 			 * the desc_len and the remaining buffer length that | 
 | 			 * fits in a page. | 
 | 			 */ | 
 | 			min = min_t(size_t, desc_len, | 
 | 				    min_t(size_t, len, | 
 | 					  PAGE_SIZE - offset_in_page(buf))); | 
 | 			if (vmalloced_buf) | 
 | 				vm_page = vmalloc_to_page(buf); | 
 | 			else | 
 | 				vm_page = kmap_to_page(buf); | 
 | 			if (!vm_page) { | 
 | 				sg_free_table(sgt); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			sg_set_page(sg, vm_page, | 
 | 				    min, offset_in_page(buf)); | 
 | 		} else { | 
 | 			min = min_t(size_t, len, desc_len); | 
 | 			sg_buf = buf; | 
 | 			sg_set_buf(sg, sg_buf, min); | 
 | 		} | 
 |  | 
 | 		buf += min; | 
 | 		len -= min; | 
 | 		sg = sg_next(sg); | 
 | 	} | 
 |  | 
 | 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); | 
 | 	if (!ret) | 
 | 		ret = -ENOMEM; | 
 | 	if (ret < 0) { | 
 | 		sg_free_table(sgt); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	sgt->nents = ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, | 
 | 		   struct sg_table *sgt, enum dma_data_direction dir) | 
 | { | 
 | 	if (sgt->orig_nents) { | 
 | 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); | 
 | 		sg_free_table(sgt); | 
 | 	} | 
 | } | 
 |  | 
 | static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) | 
 | { | 
 | 	struct device *tx_dev, *rx_dev; | 
 | 	struct spi_transfer *xfer; | 
 | 	int ret; | 
 |  | 
 | 	if (!ctlr->can_dma) | 
 | 		return 0; | 
 |  | 
 | 	if (ctlr->dma_tx) | 
 | 		tx_dev = ctlr->dma_tx->device->dev; | 
 | 	else | 
 | 		tx_dev = ctlr->dev.parent; | 
 |  | 
 | 	if (ctlr->dma_rx) | 
 | 		rx_dev = ctlr->dma_rx->device->dev; | 
 | 	else | 
 | 		rx_dev = ctlr->dev.parent; | 
 |  | 
 | 	list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
 | 		if (!ctlr->can_dma(ctlr, msg->spi, xfer)) | 
 | 			continue; | 
 |  | 
 | 		if (xfer->tx_buf != NULL) { | 
 | 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, | 
 | 					  (void *)xfer->tx_buf, xfer->len, | 
 | 					  DMA_TO_DEVICE); | 
 | 			if (ret != 0) | 
 | 				return ret; | 
 | 		} | 
 |  | 
 | 		if (xfer->rx_buf != NULL) { | 
 | 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, | 
 | 					  xfer->rx_buf, xfer->len, | 
 | 					  DMA_FROM_DEVICE); | 
 | 			if (ret != 0) { | 
 | 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, | 
 | 					      DMA_TO_DEVICE); | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctlr->cur_msg_mapped = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) | 
 | { | 
 | 	struct spi_transfer *xfer; | 
 | 	struct device *tx_dev, *rx_dev; | 
 |  | 
 | 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma) | 
 | 		return 0; | 
 |  | 
 | 	if (ctlr->dma_tx) | 
 | 		tx_dev = ctlr->dma_tx->device->dev; | 
 | 	else | 
 | 		tx_dev = ctlr->dev.parent; | 
 |  | 
 | 	if (ctlr->dma_rx) | 
 | 		rx_dev = ctlr->dma_rx->device->dev; | 
 | 	else | 
 | 		rx_dev = ctlr->dev.parent; | 
 |  | 
 | 	list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
 | 		if (!ctlr->can_dma(ctlr, msg->spi, xfer)) | 
 | 			continue; | 
 |  | 
 | 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); | 
 | 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else /* !CONFIG_HAS_DMA */ | 
 | static inline int __spi_map_msg(struct spi_controller *ctlr, | 
 | 				struct spi_message *msg) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int __spi_unmap_msg(struct spi_controller *ctlr, | 
 | 				  struct spi_message *msg) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* !CONFIG_HAS_DMA */ | 
 |  | 
 | static inline int spi_unmap_msg(struct spi_controller *ctlr, | 
 | 				struct spi_message *msg) | 
 | { | 
 | 	struct spi_transfer *xfer; | 
 |  | 
 | 	list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
 | 		/* | 
 | 		 * Restore the original value of tx_buf or rx_buf if they are | 
 | 		 * NULL. | 
 | 		 */ | 
 | 		if (xfer->tx_buf == ctlr->dummy_tx) | 
 | 			xfer->tx_buf = NULL; | 
 | 		if (xfer->rx_buf == ctlr->dummy_rx) | 
 | 			xfer->rx_buf = NULL; | 
 | 	} | 
 |  | 
 | 	return __spi_unmap_msg(ctlr, msg); | 
 | } | 
 |  | 
 | static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) | 
 | { | 
 | 	struct spi_transfer *xfer; | 
 | 	void *tmp; | 
 | 	unsigned int max_tx, max_rx; | 
 |  | 
 | 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { | 
 | 		max_tx = 0; | 
 | 		max_rx = 0; | 
 |  | 
 | 		list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
 | 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && | 
 | 			    !xfer->tx_buf) | 
 | 				max_tx = max(xfer->len, max_tx); | 
 | 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && | 
 | 			    !xfer->rx_buf) | 
 | 				max_rx = max(xfer->len, max_rx); | 
 | 		} | 
 |  | 
 | 		if (max_tx) { | 
 | 			tmp = krealloc(ctlr->dummy_tx, max_tx, | 
 | 				       GFP_KERNEL | GFP_DMA); | 
 | 			if (!tmp) | 
 | 				return -ENOMEM; | 
 | 			ctlr->dummy_tx = tmp; | 
 | 			memset(tmp, 0, max_tx); | 
 | 		} | 
 |  | 
 | 		if (max_rx) { | 
 | 			tmp = krealloc(ctlr->dummy_rx, max_rx, | 
 | 				       GFP_KERNEL | GFP_DMA); | 
 | 			if (!tmp) | 
 | 				return -ENOMEM; | 
 | 			ctlr->dummy_rx = tmp; | 
 | 		} | 
 |  | 
 | 		if (max_tx || max_rx) { | 
 | 			list_for_each_entry(xfer, &msg->transfers, | 
 | 					    transfer_list) { | 
 | 				if (!xfer->len) | 
 | 					continue; | 
 | 				if (!xfer->tx_buf) | 
 | 					xfer->tx_buf = ctlr->dummy_tx; | 
 | 				if (!xfer->rx_buf) | 
 | 					xfer->rx_buf = ctlr->dummy_rx; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return __spi_map_msg(ctlr, msg); | 
 | } | 
 |  | 
 | /* | 
 |  * spi_transfer_one_message - Default implementation of transfer_one_message() | 
 |  * | 
 |  * This is a standard implementation of transfer_one_message() for | 
 |  * drivers which implement a transfer_one() operation.  It provides | 
 |  * standard handling of delays and chip select management. | 
 |  */ | 
 | static int spi_transfer_one_message(struct spi_controller *ctlr, | 
 | 				    struct spi_message *msg) | 
 | { | 
 | 	struct spi_transfer *xfer; | 
 | 	bool keep_cs = false; | 
 | 	int ret = 0; | 
 | 	unsigned long long ms = 1; | 
 | 	struct spi_statistics *statm = &ctlr->statistics; | 
 | 	struct spi_statistics *stats = &msg->spi->statistics; | 
 |  | 
 | 	spi_set_cs(msg->spi, true); | 
 |  | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages); | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages); | 
 |  | 
 | 	list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
 | 		trace_spi_transfer_start(msg, xfer); | 
 |  | 
 | 		spi_statistics_add_transfer_stats(statm, xfer, ctlr); | 
 | 		spi_statistics_add_transfer_stats(stats, xfer, ctlr); | 
 |  | 
 | 		if (xfer->tx_buf || xfer->rx_buf) { | 
 | 			reinit_completion(&ctlr->xfer_completion); | 
 |  | 
 | 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer); | 
 | 			if (ret < 0) { | 
 | 				SPI_STATISTICS_INCREMENT_FIELD(statm, | 
 | 							       errors); | 
 | 				SPI_STATISTICS_INCREMENT_FIELD(stats, | 
 | 							       errors); | 
 | 				dev_err(&msg->spi->dev, | 
 | 					"SPI transfer failed: %d\n", ret); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (ret > 0) { | 
 | 				ret = 0; | 
 | 				ms = 8LL * 1000LL * xfer->len; | 
 | 				do_div(ms, xfer->speed_hz); | 
 | 				ms += ms + 200; /* some tolerance */ | 
 |  | 
 | 				if (ms > UINT_MAX) | 
 | 					ms = UINT_MAX; | 
 |  | 
 | 				ms = wait_for_completion_timeout(&ctlr->xfer_completion, | 
 | 								 msecs_to_jiffies(ms)); | 
 | 			} | 
 |  | 
 | 			if (ms == 0) { | 
 | 				SPI_STATISTICS_INCREMENT_FIELD(statm, | 
 | 							       timedout); | 
 | 				SPI_STATISTICS_INCREMENT_FIELD(stats, | 
 | 							       timedout); | 
 | 				dev_err(&msg->spi->dev, | 
 | 					"SPI transfer timed out\n"); | 
 | 				msg->status = -ETIMEDOUT; | 
 | 			} | 
 | 		} else { | 
 | 			if (xfer->len) | 
 | 				dev_err(&msg->spi->dev, | 
 | 					"Bufferless transfer has length %u\n", | 
 | 					xfer->len); | 
 | 		} | 
 |  | 
 | 		trace_spi_transfer_stop(msg, xfer); | 
 |  | 
 | 		if (msg->status != -EINPROGRESS) | 
 | 			goto out; | 
 |  | 
 | 		if (xfer->delay_usecs) { | 
 | 			u16 us = xfer->delay_usecs; | 
 |  | 
 | 			if (us <= 10) | 
 | 				udelay(us); | 
 | 			else | 
 | 				usleep_range(us, us + DIV_ROUND_UP(us, 10)); | 
 | 		} | 
 |  | 
 | 		if (xfer->cs_change) { | 
 | 			if (list_is_last(&xfer->transfer_list, | 
 | 					 &msg->transfers)) { | 
 | 				keep_cs = true; | 
 | 			} else { | 
 | 				spi_set_cs(msg->spi, false); | 
 | 				udelay(10); | 
 | 				spi_set_cs(msg->spi, true); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		msg->actual_length += xfer->len; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (ret != 0 || !keep_cs) | 
 | 		spi_set_cs(msg->spi, false); | 
 |  | 
 | 	if (msg->status == -EINPROGRESS) | 
 | 		msg->status = ret; | 
 |  | 
 | 	if (msg->status && ctlr->handle_err) | 
 | 		ctlr->handle_err(ctlr, msg); | 
 |  | 
 | 	spi_res_release(ctlr, msg); | 
 |  | 
 | 	spi_finalize_current_message(ctlr); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_finalize_current_transfer - report completion of a transfer | 
 |  * @ctlr: the controller reporting completion | 
 |  * | 
 |  * Called by SPI drivers using the core transfer_one_message() | 
 |  * implementation to notify it that the current interrupt driven | 
 |  * transfer has finished and the next one may be scheduled. | 
 |  */ | 
 | void spi_finalize_current_transfer(struct spi_controller *ctlr) | 
 | { | 
 | 	complete(&ctlr->xfer_completion); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); | 
 |  | 
 | /** | 
 |  * __spi_pump_messages - function which processes spi message queue | 
 |  * @ctlr: controller to process queue for | 
 |  * @in_kthread: true if we are in the context of the message pump thread | 
 |  * | 
 |  * This function checks if there is any spi message in the queue that | 
 |  * needs processing and if so call out to the driver to initialize hardware | 
 |  * and transfer each message. | 
 |  * | 
 |  * Note that it is called both from the kthread itself and also from | 
 |  * inside spi_sync(); the queue extraction handling at the top of the | 
 |  * function should deal with this safely. | 
 |  */ | 
 | static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool was_busy = false; | 
 | 	int ret; | 
 |  | 
 | 	/* Lock queue */ | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 |  | 
 | 	/* Make sure we are not already running a message */ | 
 | 	if (ctlr->cur_msg) { | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* If another context is idling the device then defer */ | 
 | 	if (ctlr->idling) { | 
 | 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Check if the queue is idle */ | 
 | 	if (list_empty(&ctlr->queue) || !ctlr->running) { | 
 | 		if (!ctlr->busy) { | 
 | 			spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Only do teardown in the thread */ | 
 | 		if (!in_kthread) { | 
 | 			kthread_queue_work(&ctlr->kworker, | 
 | 					   &ctlr->pump_messages); | 
 | 			spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		ctlr->busy = false; | 
 | 		ctlr->idling = true; | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 		kfree(ctlr->dummy_rx); | 
 | 		ctlr->dummy_rx = NULL; | 
 | 		kfree(ctlr->dummy_tx); | 
 | 		ctlr->dummy_tx = NULL; | 
 | 		if (ctlr->unprepare_transfer_hardware && | 
 | 		    ctlr->unprepare_transfer_hardware(ctlr)) | 
 | 			dev_err(&ctlr->dev, | 
 | 				"failed to unprepare transfer hardware\n"); | 
 | 		if (ctlr->auto_runtime_pm) { | 
 | 			pm_runtime_mark_last_busy(ctlr->dev.parent); | 
 | 			pm_runtime_put_autosuspend(ctlr->dev.parent); | 
 | 		} | 
 | 		trace_spi_controller_idle(ctlr); | 
 |  | 
 | 		spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 | 		ctlr->idling = false; | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Extract head of queue */ | 
 | 	ctlr->cur_msg = | 
 | 		list_first_entry(&ctlr->queue, struct spi_message, queue); | 
 |  | 
 | 	list_del_init(&ctlr->cur_msg->queue); | 
 | 	if (ctlr->busy) | 
 | 		was_busy = true; | 
 | 	else | 
 | 		ctlr->busy = true; | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 	mutex_lock(&ctlr->io_mutex); | 
 |  | 
 | 	if (!was_busy && ctlr->auto_runtime_pm) { | 
 | 		ret = pm_runtime_get_sync(ctlr->dev.parent); | 
 | 		if (ret < 0) { | 
 | 			pm_runtime_put_noidle(ctlr->dev.parent); | 
 | 			dev_err(&ctlr->dev, "Failed to power device: %d\n", | 
 | 				ret); | 
 | 			mutex_unlock(&ctlr->io_mutex); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!was_busy) | 
 | 		trace_spi_controller_busy(ctlr); | 
 |  | 
 | 	if (!was_busy && ctlr->prepare_transfer_hardware) { | 
 | 		ret = ctlr->prepare_transfer_hardware(ctlr); | 
 | 		if (ret) { | 
 | 			dev_err(&ctlr->dev, | 
 | 				"failed to prepare transfer hardware\n"); | 
 |  | 
 | 			if (ctlr->auto_runtime_pm) | 
 | 				pm_runtime_put(ctlr->dev.parent); | 
 | 			mutex_unlock(&ctlr->io_mutex); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	trace_spi_message_start(ctlr->cur_msg); | 
 |  | 
 | 	if (ctlr->prepare_message) { | 
 | 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); | 
 | 		if (ret) { | 
 | 			dev_err(&ctlr->dev, "failed to prepare message: %d\n", | 
 | 				ret); | 
 | 			ctlr->cur_msg->status = ret; | 
 | 			spi_finalize_current_message(ctlr); | 
 | 			goto out; | 
 | 		} | 
 | 		ctlr->cur_msg_prepared = true; | 
 | 	} | 
 |  | 
 | 	ret = spi_map_msg(ctlr, ctlr->cur_msg); | 
 | 	if (ret) { | 
 | 		ctlr->cur_msg->status = ret; | 
 | 		spi_finalize_current_message(ctlr); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); | 
 | 	if (ret) { | 
 | 		dev_err(&ctlr->dev, | 
 | 			"failed to transfer one message from queue\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&ctlr->io_mutex); | 
 |  | 
 | 	/* Prod the scheduler in case transfer_one() was busy waiting */ | 
 | 	if (!ret) | 
 | 		cond_resched(); | 
 | } | 
 |  | 
 | /** | 
 |  * spi_pump_messages - kthread work function which processes spi message queue | 
 |  * @work: pointer to kthread work struct contained in the controller struct | 
 |  */ | 
 | static void spi_pump_messages(struct kthread_work *work) | 
 | { | 
 | 	struct spi_controller *ctlr = | 
 | 		container_of(work, struct spi_controller, pump_messages); | 
 |  | 
 | 	__spi_pump_messages(ctlr, true); | 
 | } | 
 |  | 
 | static int spi_init_queue(struct spi_controller *ctlr) | 
 | { | 
 | 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 
 |  | 
 | 	ctlr->running = false; | 
 | 	ctlr->busy = false; | 
 |  | 
 | 	kthread_init_worker(&ctlr->kworker); | 
 | 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, | 
 | 					 "%s", dev_name(&ctlr->dev)); | 
 | 	if (IS_ERR(ctlr->kworker_task)) { | 
 | 		dev_err(&ctlr->dev, "failed to create message pump task\n"); | 
 | 		return PTR_ERR(ctlr->kworker_task); | 
 | 	} | 
 | 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages); | 
 |  | 
 | 	/* | 
 | 	 * Controller config will indicate if this controller should run the | 
 | 	 * message pump with high (realtime) priority to reduce the transfer | 
 | 	 * latency on the bus by minimising the delay between a transfer | 
 | 	 * request and the scheduling of the message pump thread. Without this | 
 | 	 * setting the message pump thread will remain at default priority. | 
 | 	 */ | 
 | 	if (ctlr->rt) { | 
 | 		dev_info(&ctlr->dev, | 
 | 			"will run message pump with realtime priority\n"); | 
 | 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_get_next_queued_message() - called by driver to check for queued | 
 |  * messages | 
 |  * @ctlr: the controller to check for queued messages | 
 |  * | 
 |  * If there are more messages in the queue, the next message is returned from | 
 |  * this call. | 
 |  * | 
 |  * Return: the next message in the queue, else NULL if the queue is empty. | 
 |  */ | 
 | struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) | 
 | { | 
 | 	struct spi_message *next; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* get a pointer to the next message, if any */ | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 | 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message, | 
 | 					queue); | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 	return next; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_get_next_queued_message); | 
 |  | 
 | /** | 
 |  * spi_finalize_current_message() - the current message is complete | 
 |  * @ctlr: the controller to return the message to | 
 |  * | 
 |  * Called by the driver to notify the core that the message in the front of the | 
 |  * queue is complete and can be removed from the queue. | 
 |  */ | 
 | void spi_finalize_current_message(struct spi_controller *ctlr) | 
 | { | 
 | 	struct spi_message *mesg; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 | 	mesg = ctlr->cur_msg; | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 	spi_unmap_msg(ctlr, mesg); | 
 |  | 
 | 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { | 
 | 		ret = ctlr->unprepare_message(ctlr, mesg); | 
 | 		if (ret) { | 
 | 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n", | 
 | 				ret); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 | 	ctlr->cur_msg = NULL; | 
 | 	ctlr->cur_msg_prepared = false; | 
 | 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 	trace_spi_message_done(mesg); | 
 |  | 
 | 	mesg->state = NULL; | 
 | 	if (mesg->complete) | 
 | 		mesg->complete(mesg->context); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_finalize_current_message); | 
 |  | 
 | static int spi_start_queue(struct spi_controller *ctlr) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 |  | 
 | 	if (ctlr->running || ctlr->busy) { | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	ctlr->running = true; | 
 | 	ctlr->cur_msg = NULL; | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int spi_stop_queue(struct spi_controller *ctlr) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned limit = 500; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * This is a bit lame, but is optimized for the common execution path. | 
 | 	 * A wait_queue on the ctlr->busy could be used, but then the common | 
 | 	 * execution path (pump_messages) would be required to call wake_up or | 
 | 	 * friends on every SPI message. Do this instead. | 
 | 	 */ | 
 | 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 		usleep_range(10000, 11000); | 
 | 		spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&ctlr->queue) || ctlr->busy) | 
 | 		ret = -EBUSY; | 
 | 	else | 
 | 		ctlr->running = false; | 
 |  | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 |  | 
 | 	if (ret) { | 
 | 		dev_warn(&ctlr->dev, "could not stop message queue\n"); | 
 | 		return ret; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int spi_destroy_queue(struct spi_controller *ctlr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = spi_stop_queue(ctlr); | 
 |  | 
 | 	/* | 
 | 	 * kthread_flush_worker will block until all work is done. | 
 | 	 * If the reason that stop_queue timed out is that the work will never | 
 | 	 * finish, then it does no good to call flush/stop thread, so | 
 | 	 * return anyway. | 
 | 	 */ | 
 | 	if (ret) { | 
 | 		dev_err(&ctlr->dev, "problem destroying queue\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	kthread_flush_worker(&ctlr->kworker); | 
 | 	kthread_stop(ctlr->kworker_task); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __spi_queued_transfer(struct spi_device *spi, | 
 | 				 struct spi_message *msg, | 
 | 				 bool need_pump) | 
 | { | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->queue_lock, flags); | 
 |  | 
 | 	if (!ctlr->running) { | 
 | 		spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 | 	msg->actual_length = 0; | 
 | 	msg->status = -EINPROGRESS; | 
 |  | 
 | 	list_add_tail(&msg->queue, &ctlr->queue); | 
 | 	if (!ctlr->busy && need_pump) | 
 | 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); | 
 |  | 
 | 	spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_queued_transfer - transfer function for queued transfers | 
 |  * @spi: spi device which is requesting transfer | 
 |  * @msg: spi message which is to handled is queued to driver queue | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) | 
 | { | 
 | 	return __spi_queued_transfer(spi, msg, true); | 
 | } | 
 |  | 
 | static int spi_controller_initialize_queue(struct spi_controller *ctlr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ctlr->transfer = spi_queued_transfer; | 
 | 	if (!ctlr->transfer_one_message) | 
 | 		ctlr->transfer_one_message = spi_transfer_one_message; | 
 |  | 
 | 	/* Initialize and start queue */ | 
 | 	ret = spi_init_queue(ctlr); | 
 | 	if (ret) { | 
 | 		dev_err(&ctlr->dev, "problem initializing queue\n"); | 
 | 		goto err_init_queue; | 
 | 	} | 
 | 	ctlr->queued = true; | 
 | 	ret = spi_start_queue(ctlr); | 
 | 	if (ret) { | 
 | 		dev_err(&ctlr->dev, "problem starting queue\n"); | 
 | 		goto err_start_queue; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_start_queue: | 
 | 	spi_destroy_queue(ctlr); | 
 | err_init_queue: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_flush_queue - Send all pending messages in the queue from the callers' | 
 |  *		     context | 
 |  * @ctlr: controller to process queue for | 
 |  * | 
 |  * This should be used when one wants to ensure all pending messages have been | 
 |  * sent before doing something. Is used by the spi-mem code to make sure SPI | 
 |  * memory operations do not preempt regular SPI transfers that have been queued | 
 |  * before the spi-mem operation. | 
 |  */ | 
 | void spi_flush_queue(struct spi_controller *ctlr) | 
 | { | 
 | 	if (ctlr->transfer == spi_queued_transfer) | 
 | 		__spi_pump_messages(ctlr, false); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | #if defined(CONFIG_OF) | 
 | static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, | 
 | 			   struct device_node *nc) | 
 | { | 
 | 	u32 value; | 
 | 	int rc; | 
 |  | 
 | 	/* Mode (clock phase/polarity/etc.) */ | 
 | 	if (of_property_read_bool(nc, "spi-cpha")) | 
 | 		spi->mode |= SPI_CPHA; | 
 | 	if (of_property_read_bool(nc, "spi-cpol")) | 
 | 		spi->mode |= SPI_CPOL; | 
 | 	if (of_property_read_bool(nc, "spi-cs-high")) | 
 | 		spi->mode |= SPI_CS_HIGH; | 
 | 	if (of_property_read_bool(nc, "spi-3wire")) | 
 | 		spi->mode |= SPI_3WIRE; | 
 | 	if (of_property_read_bool(nc, "spi-lsb-first")) | 
 | 		spi->mode |= SPI_LSB_FIRST; | 
 |  | 
 | 	/* Device DUAL/QUAD mode */ | 
 | 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { | 
 | 		switch (value) { | 
 | 		case 1: | 
 | 			break; | 
 | 		case 2: | 
 | 			spi->mode |= SPI_TX_DUAL; | 
 | 			break; | 
 | 		case 4: | 
 | 			spi->mode |= SPI_TX_QUAD; | 
 | 			break; | 
 | 		default: | 
 | 			dev_warn(&ctlr->dev, | 
 | 				"spi-tx-bus-width %d not supported\n", | 
 | 				value); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { | 
 | 		switch (value) { | 
 | 		case 1: | 
 | 			break; | 
 | 		case 2: | 
 | 			spi->mode |= SPI_RX_DUAL; | 
 | 			break; | 
 | 		case 4: | 
 | 			spi->mode |= SPI_RX_QUAD; | 
 | 			break; | 
 | 		default: | 
 | 			dev_warn(&ctlr->dev, | 
 | 				"spi-rx-bus-width %d not supported\n", | 
 | 				value); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (spi_controller_is_slave(ctlr)) { | 
 | 		if (strcmp(nc->name, "slave")) { | 
 | 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", | 
 | 				nc); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Device address */ | 
 | 	rc = of_property_read_u32(nc, "reg", &value); | 
 | 	if (rc) { | 
 | 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", | 
 | 			nc, rc); | 
 | 		return rc; | 
 | 	} | 
 | 	spi->chip_select = value; | 
 |  | 
 | 	/* Device speed */ | 
 | 	rc = of_property_read_u32(nc, "spi-max-frequency", &value); | 
 | 	if (rc) { | 
 | 		dev_err(&ctlr->dev, | 
 | 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); | 
 | 		return rc; | 
 | 	} | 
 | 	spi->max_speed_hz = value; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct spi_device * | 
 | of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) | 
 | { | 
 | 	struct spi_device *spi; | 
 | 	int rc; | 
 |  | 
 | 	/* Alloc an spi_device */ | 
 | 	spi = spi_alloc_device(ctlr); | 
 | 	if (!spi) { | 
 | 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); | 
 | 		rc = -ENOMEM; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	/* Select device driver */ | 
 | 	rc = of_modalias_node(nc, spi->modalias, | 
 | 				sizeof(spi->modalias)); | 
 | 	if (rc < 0) { | 
 | 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	rc = of_spi_parse_dt(ctlr, spi, nc); | 
 | 	if (rc) | 
 | 		goto err_out; | 
 |  | 
 | 	/* Store a pointer to the node in the device structure */ | 
 | 	of_node_get(nc); | 
 | 	spi->dev.of_node = nc; | 
 |  | 
 | 	/* Register the new device */ | 
 | 	rc = spi_add_device(spi); | 
 | 	if (rc) { | 
 | 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); | 
 | 		goto err_of_node_put; | 
 | 	} | 
 |  | 
 | 	return spi; | 
 |  | 
 | err_of_node_put: | 
 | 	of_node_put(nc); | 
 | err_out: | 
 | 	spi_dev_put(spi); | 
 | 	return ERR_PTR(rc); | 
 | } | 
 |  | 
 | /** | 
 |  * of_register_spi_devices() - Register child devices onto the SPI bus | 
 |  * @ctlr:	Pointer to spi_controller device | 
 |  * | 
 |  * Registers an spi_device for each child node of controller node which | 
 |  * represents a valid SPI slave. | 
 |  */ | 
 | static void of_register_spi_devices(struct spi_controller *ctlr) | 
 | { | 
 | 	struct spi_device *spi; | 
 | 	struct device_node *nc; | 
 |  | 
 | 	if (!ctlr->dev.of_node) | 
 | 		return; | 
 |  | 
 | 	for_each_available_child_of_node(ctlr->dev.of_node, nc) { | 
 | 		if (of_node_test_and_set_flag(nc, OF_POPULATED)) | 
 | 			continue; | 
 | 		spi = of_register_spi_device(ctlr, nc); | 
 | 		if (IS_ERR(spi)) { | 
 | 			dev_warn(&ctlr->dev, | 
 | 				 "Failed to create SPI device for %pOF\n", nc); | 
 | 			of_node_clear_flag(nc, OF_POPULATED); | 
 | 		} | 
 | 	} | 
 | } | 
 | #else | 
 | static void of_register_spi_devices(struct spi_controller *ctlr) { } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | static void acpi_spi_parse_apple_properties(struct spi_device *spi) | 
 | { | 
 | 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev); | 
 | 	const union acpi_object *obj; | 
 |  | 
 | 	if (!x86_apple_machine) | 
 | 		return; | 
 |  | 
 | 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) | 
 | 	    && obj->buffer.length >= 4) | 
 | 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; | 
 |  | 
 | 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) | 
 | 	    && obj->buffer.length == 8) | 
 | 		spi->bits_per_word = *(u64 *)obj->buffer.pointer; | 
 |  | 
 | 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) | 
 | 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) | 
 | 		spi->mode |= SPI_LSB_FIRST; | 
 |  | 
 | 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) | 
 | 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer) | 
 | 		spi->mode |= SPI_CPOL; | 
 |  | 
 | 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) | 
 | 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer) | 
 | 		spi->mode |= SPI_CPHA; | 
 | } | 
 |  | 
 | static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) | 
 | { | 
 | 	struct spi_device *spi = data; | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 |  | 
 | 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { | 
 | 		struct acpi_resource_spi_serialbus *sb; | 
 |  | 
 | 		sb = &ares->data.spi_serial_bus; | 
 | 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { | 
 | 			/* | 
 | 			 * ACPI DeviceSelection numbering is handled by the | 
 | 			 * host controller driver in Windows and can vary | 
 | 			 * from driver to driver. In Linux we always expect | 
 | 			 * 0 .. max - 1 so we need to ask the driver to | 
 | 			 * translate between the two schemes. | 
 | 			 */ | 
 | 			if (ctlr->fw_translate_cs) { | 
 | 				int cs = ctlr->fw_translate_cs(ctlr, | 
 | 						sb->device_selection); | 
 | 				if (cs < 0) | 
 | 					return cs; | 
 | 				spi->chip_select = cs; | 
 | 			} else { | 
 | 				spi->chip_select = sb->device_selection; | 
 | 			} | 
 |  | 
 | 			spi->max_speed_hz = sb->connection_speed; | 
 |  | 
 | 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) | 
 | 				spi->mode |= SPI_CPHA; | 
 | 			if (sb->clock_polarity == ACPI_SPI_START_HIGH) | 
 | 				spi->mode |= SPI_CPOL; | 
 | 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) | 
 | 				spi->mode |= SPI_CS_HIGH; | 
 | 		} | 
 | 	} else if (spi->irq < 0) { | 
 | 		struct resource r; | 
 |  | 
 | 		if (acpi_dev_resource_interrupt(ares, 0, &r)) | 
 | 			spi->irq = r.start; | 
 | 	} | 
 |  | 
 | 	/* Always tell the ACPI core to skip this resource */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, | 
 | 					    struct acpi_device *adev) | 
 | { | 
 | 	struct list_head resource_list; | 
 | 	struct spi_device *spi; | 
 | 	int ret; | 
 |  | 
 | 	if (acpi_bus_get_status(adev) || !adev->status.present || | 
 | 	    acpi_device_enumerated(adev)) | 
 | 		return AE_OK; | 
 |  | 
 | 	spi = spi_alloc_device(ctlr); | 
 | 	if (!spi) { | 
 | 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", | 
 | 			dev_name(&adev->dev)); | 
 | 		return AE_NO_MEMORY; | 
 | 	} | 
 |  | 
 | 	ACPI_COMPANION_SET(&spi->dev, adev); | 
 | 	spi->irq = -1; | 
 |  | 
 | 	INIT_LIST_HEAD(&resource_list); | 
 | 	ret = acpi_dev_get_resources(adev, &resource_list, | 
 | 				     acpi_spi_add_resource, spi); | 
 | 	acpi_dev_free_resource_list(&resource_list); | 
 |  | 
 | 	acpi_spi_parse_apple_properties(spi); | 
 |  | 
 | 	if (ret < 0 || !spi->max_speed_hz) { | 
 | 		spi_dev_put(spi); | 
 | 		return AE_OK; | 
 | 	} | 
 |  | 
 | 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, | 
 | 			  sizeof(spi->modalias)); | 
 |  | 
 | 	if (spi->irq < 0) | 
 | 		spi->irq = acpi_dev_gpio_irq_get(adev, 0); | 
 |  | 
 | 	acpi_device_set_enumerated(adev); | 
 |  | 
 | 	adev->power.flags.ignore_parent = true; | 
 | 	if (spi_add_device(spi)) { | 
 | 		adev->power.flags.ignore_parent = false; | 
 | 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", | 
 | 			dev_name(&adev->dev)); | 
 | 		spi_dev_put(spi); | 
 | 	} | 
 |  | 
 | 	return AE_OK; | 
 | } | 
 |  | 
 | static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, | 
 | 				       void *data, void **return_value) | 
 | { | 
 | 	struct spi_controller *ctlr = data; | 
 | 	struct acpi_device *adev; | 
 |  | 
 | 	if (acpi_bus_get_device(handle, &adev)) | 
 | 		return AE_OK; | 
 |  | 
 | 	return acpi_register_spi_device(ctlr, adev); | 
 | } | 
 |  | 
 | static void acpi_register_spi_devices(struct spi_controller *ctlr) | 
 | { | 
 | 	acpi_status status; | 
 | 	acpi_handle handle; | 
 |  | 
 | 	handle = ACPI_HANDLE(ctlr->dev.parent); | 
 | 	if (!handle) | 
 | 		return; | 
 |  | 
 | 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, | 
 | 				     acpi_spi_add_device, NULL, ctlr, NULL); | 
 | 	if (ACPI_FAILURE(status)) | 
 | 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); | 
 | } | 
 | #else | 
 | static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} | 
 | #endif /* CONFIG_ACPI */ | 
 |  | 
 | static void spi_controller_release(struct device *dev) | 
 | { | 
 | 	struct spi_controller *ctlr; | 
 |  | 
 | 	ctlr = container_of(dev, struct spi_controller, dev); | 
 | 	kfree(ctlr); | 
 | } | 
 |  | 
 | static struct class spi_master_class = { | 
 | 	.name		= "spi_master", | 
 | 	.owner		= THIS_MODULE, | 
 | 	.dev_release	= spi_controller_release, | 
 | 	.dev_groups	= spi_master_groups, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SPI_SLAVE | 
 | /** | 
 |  * spi_slave_abort - abort the ongoing transfer request on an SPI slave | 
 |  *		     controller | 
 |  * @spi: device used for the current transfer | 
 |  */ | 
 | int spi_slave_abort(struct spi_device *spi) | 
 | { | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 |  | 
 | 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) | 
 | 		return ctlr->slave_abort(ctlr); | 
 |  | 
 | 	return -ENOTSUPP; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_slave_abort); | 
 |  | 
 | static int match_true(struct device *dev, void *data) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static ssize_t spi_slave_show(struct device *dev, | 
 | 			      struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct spi_controller *ctlr = container_of(dev, struct spi_controller, | 
 | 						   dev); | 
 | 	struct device *child; | 
 |  | 
 | 	child = device_find_child(&ctlr->dev, NULL, match_true); | 
 | 	return sprintf(buf, "%s\n", | 
 | 		       child ? to_spi_device(child)->modalias : NULL); | 
 | } | 
 |  | 
 | static ssize_t spi_slave_store(struct device *dev, | 
 | 			       struct device_attribute *attr, const char *buf, | 
 | 			       size_t count) | 
 | { | 
 | 	struct spi_controller *ctlr = container_of(dev, struct spi_controller, | 
 | 						   dev); | 
 | 	struct spi_device *spi; | 
 | 	struct device *child; | 
 | 	char name[32]; | 
 | 	int rc; | 
 |  | 
 | 	rc = sscanf(buf, "%31s", name); | 
 | 	if (rc != 1 || !name[0]) | 
 | 		return -EINVAL; | 
 |  | 
 | 	child = device_find_child(&ctlr->dev, NULL, match_true); | 
 | 	if (child) { | 
 | 		/* Remove registered slave */ | 
 | 		device_unregister(child); | 
 | 		put_device(child); | 
 | 	} | 
 |  | 
 | 	if (strcmp(name, "(null)")) { | 
 | 		/* Register new slave */ | 
 | 		spi = spi_alloc_device(ctlr); | 
 | 		if (!spi) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		strlcpy(spi->modalias, name, sizeof(spi->modalias)); | 
 |  | 
 | 		rc = spi_add_device(spi); | 
 | 		if (rc) { | 
 | 			spi_dev_put(spi); | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); | 
 |  | 
 | static struct attribute *spi_slave_attrs[] = { | 
 | 	&dev_attr_slave.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group spi_slave_group = { | 
 | 	.attrs = spi_slave_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *spi_slave_groups[] = { | 
 | 	&spi_controller_statistics_group, | 
 | 	&spi_slave_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct class spi_slave_class = { | 
 | 	.name		= "spi_slave", | 
 | 	.owner		= THIS_MODULE, | 
 | 	.dev_release	= spi_controller_release, | 
 | 	.dev_groups	= spi_slave_groups, | 
 | }; | 
 | #else | 
 | extern struct class spi_slave_class;	/* dummy */ | 
 | #endif | 
 |  | 
 | /** | 
 |  * __spi_alloc_controller - allocate an SPI master or slave controller | 
 |  * @dev: the controller, possibly using the platform_bus | 
 |  * @size: how much zeroed driver-private data to allocate; the pointer to this | 
 |  *	memory is in the driver_data field of the returned device, | 
 |  *	accessible with spi_controller_get_devdata(). | 
 |  * @slave: flag indicating whether to allocate an SPI master (false) or SPI | 
 |  *	slave (true) controller | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call is used only by SPI controller drivers, which are the | 
 |  * only ones directly touching chip registers.  It's how they allocate | 
 |  * an spi_controller structure, prior to calling spi_register_controller(). | 
 |  * | 
 |  * This must be called from context that can sleep. | 
 |  * | 
 |  * The caller is responsible for assigning the bus number and initializing the | 
 |  * controller's methods before calling spi_register_controller(); and (after | 
 |  * errors adding the device) calling spi_controller_put() to prevent a memory | 
 |  * leak. | 
 |  * | 
 |  * Return: the SPI controller structure on success, else NULL. | 
 |  */ | 
 | struct spi_controller *__spi_alloc_controller(struct device *dev, | 
 | 					      unsigned int size, bool slave) | 
 | { | 
 | 	struct spi_controller	*ctlr; | 
 |  | 
 | 	if (!dev) | 
 | 		return NULL; | 
 |  | 
 | 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); | 
 | 	if (!ctlr) | 
 | 		return NULL; | 
 |  | 
 | 	device_initialize(&ctlr->dev); | 
 | 	ctlr->bus_num = -1; | 
 | 	ctlr->num_chipselect = 1; | 
 | 	ctlr->slave = slave; | 
 | 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) | 
 | 		ctlr->dev.class = &spi_slave_class; | 
 | 	else | 
 | 		ctlr->dev.class = &spi_master_class; | 
 | 	ctlr->dev.parent = dev; | 
 | 	pm_suspend_ignore_children(&ctlr->dev, true); | 
 | 	spi_controller_set_devdata(ctlr, &ctlr[1]); | 
 |  | 
 | 	return ctlr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__spi_alloc_controller); | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static int of_spi_register_master(struct spi_controller *ctlr) | 
 | { | 
 | 	int nb, i, *cs; | 
 | 	struct device_node *np = ctlr->dev.of_node; | 
 |  | 
 | 	if (!np) | 
 | 		return 0; | 
 |  | 
 | 	nb = of_gpio_named_count(np, "cs-gpios"); | 
 | 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); | 
 |  | 
 | 	/* Return error only for an incorrectly formed cs-gpios property */ | 
 | 	if (nb == 0 || nb == -ENOENT) | 
 | 		return 0; | 
 | 	else if (nb < 0) | 
 | 		return nb; | 
 |  | 
 | 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), | 
 | 			  GFP_KERNEL); | 
 | 	ctlr->cs_gpios = cs; | 
 |  | 
 | 	if (!ctlr->cs_gpios) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < ctlr->num_chipselect; i++) | 
 | 		cs[i] = -ENOENT; | 
 |  | 
 | 	for (i = 0; i < nb; i++) | 
 | 		cs[i] = of_get_named_gpio(np, "cs-gpios", i); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int of_spi_register_master(struct spi_controller *ctlr) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int spi_controller_check_ops(struct spi_controller *ctlr) | 
 | { | 
 | 	/* | 
 | 	 * The controller may implement only the high-level SPI-memory like | 
 | 	 * operations if it does not support regular SPI transfers, and this is | 
 | 	 * valid use case. | 
 | 	 * If ->mem_ops is NULL, we request that at least one of the | 
 | 	 * ->transfer_xxx() method be implemented. | 
 | 	 */ | 
 | 	if (ctlr->mem_ops) { | 
 | 		if (!ctlr->mem_ops->exec_op) | 
 | 			return -EINVAL; | 
 | 	} else if (!ctlr->transfer && !ctlr->transfer_one && | 
 | 		   !ctlr->transfer_one_message) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_register_controller - register SPI master or slave controller | 
 |  * @ctlr: initialized master, originally from spi_alloc_master() or | 
 |  *	spi_alloc_slave() | 
 |  * Context: can sleep | 
 |  * | 
 |  * SPI controllers connect to their drivers using some non-SPI bus, | 
 |  * such as the platform bus.  The final stage of probe() in that code | 
 |  * includes calling spi_register_controller() to hook up to this SPI bus glue. | 
 |  * | 
 |  * SPI controllers use board specific (often SOC specific) bus numbers, | 
 |  * and board-specific addressing for SPI devices combines those numbers | 
 |  * with chip select numbers.  Since SPI does not directly support dynamic | 
 |  * device identification, boards need configuration tables telling which | 
 |  * chip is at which address. | 
 |  * | 
 |  * This must be called from context that can sleep.  It returns zero on | 
 |  * success, else a negative error code (dropping the controller's refcount). | 
 |  * After a successful return, the caller is responsible for calling | 
 |  * spi_unregister_controller(). | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_register_controller(struct spi_controller *ctlr) | 
 | { | 
 | 	struct device		*dev = ctlr->dev.parent; | 
 | 	struct boardinfo	*bi; | 
 | 	int			status = -ENODEV; | 
 | 	int			id, first_dynamic; | 
 |  | 
 | 	if (!dev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * Make sure all necessary hooks are implemented before registering | 
 | 	 * the SPI controller. | 
 | 	 */ | 
 | 	status = spi_controller_check_ops(ctlr); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	if (!spi_controller_is_slave(ctlr)) { | 
 | 		status = of_spi_register_master(ctlr); | 
 | 		if (status) | 
 | 			return status; | 
 | 	} | 
 |  | 
 | 	/* even if it's just one always-selected device, there must | 
 | 	 * be at least one chipselect | 
 | 	 */ | 
 | 	if (ctlr->num_chipselect == 0) | 
 | 		return -EINVAL; | 
 | 	if (ctlr->bus_num >= 0) { | 
 | 		/* devices with a fixed bus num must check-in with the num */ | 
 | 		mutex_lock(&board_lock); | 
 | 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, | 
 | 			ctlr->bus_num + 1, GFP_KERNEL); | 
 | 		mutex_unlock(&board_lock); | 
 | 		if (WARN(id < 0, "couldn't get idr")) | 
 | 			return id == -ENOSPC ? -EBUSY : id; | 
 | 		ctlr->bus_num = id; | 
 | 	} else if (ctlr->dev.of_node) { | 
 | 		/* allocate dynamic bus number using Linux idr */ | 
 | 		id = of_alias_get_id(ctlr->dev.of_node, "spi"); | 
 | 		if (id >= 0) { | 
 | 			ctlr->bus_num = id; | 
 | 			mutex_lock(&board_lock); | 
 | 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, | 
 | 				       ctlr->bus_num + 1, GFP_KERNEL); | 
 | 			mutex_unlock(&board_lock); | 
 | 			if (WARN(id < 0, "couldn't get idr")) | 
 | 				return id == -ENOSPC ? -EBUSY : id; | 
 | 		} | 
 | 	} | 
 | 	if (ctlr->bus_num < 0) { | 
 | 		first_dynamic = of_alias_get_highest_id("spi"); | 
 | 		if (first_dynamic < 0) | 
 | 			first_dynamic = 0; | 
 | 		else | 
 | 			first_dynamic++; | 
 |  | 
 | 		mutex_lock(&board_lock); | 
 | 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, | 
 | 			       0, GFP_KERNEL); | 
 | 		mutex_unlock(&board_lock); | 
 | 		if (WARN(id < 0, "couldn't get idr")) | 
 | 			return id; | 
 | 		ctlr->bus_num = id; | 
 | 	} | 
 | 	INIT_LIST_HEAD(&ctlr->queue); | 
 | 	spin_lock_init(&ctlr->queue_lock); | 
 | 	spin_lock_init(&ctlr->bus_lock_spinlock); | 
 | 	mutex_init(&ctlr->bus_lock_mutex); | 
 | 	mutex_init(&ctlr->io_mutex); | 
 | 	ctlr->bus_lock_flag = 0; | 
 | 	init_completion(&ctlr->xfer_completion); | 
 | 	if (!ctlr->max_dma_len) | 
 | 		ctlr->max_dma_len = INT_MAX; | 
 |  | 
 | 	/* register the device, then userspace will see it. | 
 | 	 * registration fails if the bus ID is in use. | 
 | 	 */ | 
 | 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); | 
 | 	status = device_add(&ctlr->dev); | 
 | 	if (status < 0) { | 
 | 		/* free bus id */ | 
 | 		mutex_lock(&board_lock); | 
 | 		idr_remove(&spi_master_idr, ctlr->bus_num); | 
 | 		mutex_unlock(&board_lock); | 
 | 		goto done; | 
 | 	} | 
 | 	dev_dbg(dev, "registered %s %s\n", | 
 | 			spi_controller_is_slave(ctlr) ? "slave" : "master", | 
 | 			dev_name(&ctlr->dev)); | 
 |  | 
 | 	/* | 
 | 	 * If we're using a queued driver, start the queue. Note that we don't | 
 | 	 * need the queueing logic if the driver is only supporting high-level | 
 | 	 * memory operations. | 
 | 	 */ | 
 | 	if (ctlr->transfer) { | 
 | 		dev_info(dev, "controller is unqueued, this is deprecated\n"); | 
 | 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) { | 
 | 		status = spi_controller_initialize_queue(ctlr); | 
 | 		if (status) { | 
 | 			device_del(&ctlr->dev); | 
 | 			/* free bus id */ | 
 | 			mutex_lock(&board_lock); | 
 | 			idr_remove(&spi_master_idr, ctlr->bus_num); | 
 | 			mutex_unlock(&board_lock); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | 	/* add statistics */ | 
 | 	spin_lock_init(&ctlr->statistics.lock); | 
 |  | 
 | 	mutex_lock(&board_lock); | 
 | 	list_add_tail(&ctlr->list, &spi_controller_list); | 
 | 	list_for_each_entry(bi, &board_list, list) | 
 | 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info); | 
 | 	mutex_unlock(&board_lock); | 
 |  | 
 | 	/* Register devices from the device tree and ACPI */ | 
 | 	of_register_spi_devices(ctlr); | 
 | 	acpi_register_spi_devices(ctlr); | 
 | done: | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_register_controller); | 
 |  | 
 | static void devm_spi_unregister(struct device *dev, void *res) | 
 | { | 
 | 	spi_unregister_controller(*(struct spi_controller **)res); | 
 | } | 
 |  | 
 | /** | 
 |  * devm_spi_register_controller - register managed SPI master or slave | 
 |  *	controller | 
 |  * @dev:    device managing SPI controller | 
 |  * @ctlr: initialized controller, originally from spi_alloc_master() or | 
 |  *	spi_alloc_slave() | 
 |  * Context: can sleep | 
 |  * | 
 |  * Register a SPI device as with spi_register_controller() which will | 
 |  * automatically be unregistered and freed. | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int devm_spi_register_controller(struct device *dev, | 
 | 				 struct spi_controller *ctlr) | 
 | { | 
 | 	struct spi_controller **ptr; | 
 | 	int ret; | 
 |  | 
 | 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); | 
 | 	if (!ptr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = spi_register_controller(ctlr); | 
 | 	if (!ret) { | 
 | 		*ptr = ctlr; | 
 | 		devres_add(dev, ptr); | 
 | 	} else { | 
 | 		devres_free(ptr); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(devm_spi_register_controller); | 
 |  | 
 | static int __unregister(struct device *dev, void *null) | 
 | { | 
 | 	spi_unregister_device(to_spi_device(dev)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_unregister_controller - unregister SPI master or slave controller | 
 |  * @ctlr: the controller being unregistered | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call is used only by SPI controller drivers, which are the | 
 |  * only ones directly touching chip registers. | 
 |  * | 
 |  * This must be called from context that can sleep. | 
 |  * | 
 |  * Note that this function also drops a reference to the controller. | 
 |  */ | 
 | void spi_unregister_controller(struct spi_controller *ctlr) | 
 | { | 
 | 	struct spi_controller *found; | 
 | 	int id = ctlr->bus_num; | 
 | 	int dummy; | 
 |  | 
 | 	/* First make sure that this controller was ever added */ | 
 | 	mutex_lock(&board_lock); | 
 | 	found = idr_find(&spi_master_idr, id); | 
 | 	mutex_unlock(&board_lock); | 
 | 	if (ctlr->queued) { | 
 | 		if (spi_destroy_queue(ctlr)) | 
 | 			dev_err(&ctlr->dev, "queue remove failed\n"); | 
 | 	} | 
 | 	mutex_lock(&board_lock); | 
 | 	list_del(&ctlr->list); | 
 | 	mutex_unlock(&board_lock); | 
 |  | 
 | 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister); | 
 | 	device_unregister(&ctlr->dev); | 
 | 	/* free bus id */ | 
 | 	mutex_lock(&board_lock); | 
 | 	if (found == ctlr) | 
 | 		idr_remove(&spi_master_idr, id); | 
 | 	mutex_unlock(&board_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_unregister_controller); | 
 |  | 
 | int spi_controller_suspend(struct spi_controller *ctlr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* Basically no-ops for non-queued controllers */ | 
 | 	if (!ctlr->queued) | 
 | 		return 0; | 
 |  | 
 | 	ret = spi_stop_queue(ctlr); | 
 | 	if (ret) | 
 | 		dev_err(&ctlr->dev, "queue stop failed\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_controller_suspend); | 
 |  | 
 | int spi_controller_resume(struct spi_controller *ctlr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!ctlr->queued) | 
 | 		return 0; | 
 |  | 
 | 	ret = spi_start_queue(ctlr); | 
 | 	if (ret) | 
 | 		dev_err(&ctlr->dev, "queue restart failed\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_controller_resume); | 
 |  | 
 | static int __spi_controller_match(struct device *dev, const void *data) | 
 | { | 
 | 	struct spi_controller *ctlr; | 
 | 	const u16 *bus_num = data; | 
 |  | 
 | 	ctlr = container_of(dev, struct spi_controller, dev); | 
 | 	return ctlr->bus_num == *bus_num; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_busnum_to_master - look up master associated with bus_num | 
 |  * @bus_num: the master's bus number | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call may be used with devices that are registered after | 
 |  * arch init time.  It returns a refcounted pointer to the relevant | 
 |  * spi_controller (which the caller must release), or NULL if there is | 
 |  * no such master registered. | 
 |  * | 
 |  * Return: the SPI master structure on success, else NULL. | 
 |  */ | 
 | struct spi_controller *spi_busnum_to_master(u16 bus_num) | 
 | { | 
 | 	struct device		*dev; | 
 | 	struct spi_controller	*ctlr = NULL; | 
 |  | 
 | 	dev = class_find_device(&spi_master_class, NULL, &bus_num, | 
 | 				__spi_controller_match); | 
 | 	if (dev) | 
 | 		ctlr = container_of(dev, struct spi_controller, dev); | 
 | 	/* reference got in class_find_device */ | 
 | 	return ctlr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_busnum_to_master); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Core methods for SPI resource management */ | 
 |  | 
 | /** | 
 |  * spi_res_alloc - allocate a spi resource that is life-cycle managed | 
 |  *                 during the processing of a spi_message while using | 
 |  *                 spi_transfer_one | 
 |  * @spi:     the spi device for which we allocate memory | 
 |  * @release: the release code to execute for this resource | 
 |  * @size:    size to alloc and return | 
 |  * @gfp:     GFP allocation flags | 
 |  * | 
 |  * Return: the pointer to the allocated data | 
 |  * | 
 |  * This may get enhanced in the future to allocate from a memory pool | 
 |  * of the @spi_device or @spi_controller to avoid repeated allocations. | 
 |  */ | 
 | void *spi_res_alloc(struct spi_device *spi, | 
 | 		    spi_res_release_t release, | 
 | 		    size_t size, gfp_t gfp) | 
 | { | 
 | 	struct spi_res *sres; | 
 |  | 
 | 	sres = kzalloc(sizeof(*sres) + size, gfp); | 
 | 	if (!sres) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&sres->entry); | 
 | 	sres->release = release; | 
 |  | 
 | 	return sres->data; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_res_alloc); | 
 |  | 
 | /** | 
 |  * spi_res_free - free an spi resource | 
 |  * @res: pointer to the custom data of a resource | 
 |  * | 
 |  */ | 
 | void spi_res_free(void *res) | 
 | { | 
 | 	struct spi_res *sres = container_of(res, struct spi_res, data); | 
 |  | 
 | 	if (!res) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(!list_empty(&sres->entry)); | 
 | 	kfree(sres); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_res_free); | 
 |  | 
 | /** | 
 |  * spi_res_add - add a spi_res to the spi_message | 
 |  * @message: the spi message | 
 |  * @res:     the spi_resource | 
 |  */ | 
 | void spi_res_add(struct spi_message *message, void *res) | 
 | { | 
 | 	struct spi_res *sres = container_of(res, struct spi_res, data); | 
 |  | 
 | 	WARN_ON(!list_empty(&sres->entry)); | 
 | 	list_add_tail(&sres->entry, &message->resources); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_res_add); | 
 |  | 
 | /** | 
 |  * spi_res_release - release all spi resources for this message | 
 |  * @ctlr:  the @spi_controller | 
 |  * @message: the @spi_message | 
 |  */ | 
 | void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) | 
 | { | 
 | 	struct spi_res *res; | 
 |  | 
 | 	while (!list_empty(&message->resources)) { | 
 | 		res = list_last_entry(&message->resources, | 
 | 				      struct spi_res, entry); | 
 |  | 
 | 		if (res->release) | 
 | 			res->release(ctlr, message, res->data); | 
 |  | 
 | 		list_del(&res->entry); | 
 |  | 
 | 		kfree(res); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_res_release); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Core methods for spi_message alterations */ | 
 |  | 
 | static void __spi_replace_transfers_release(struct spi_controller *ctlr, | 
 | 					    struct spi_message *msg, | 
 | 					    void *res) | 
 | { | 
 | 	struct spi_replaced_transfers *rxfer = res; | 
 | 	size_t i; | 
 |  | 
 | 	/* call extra callback if requested */ | 
 | 	if (rxfer->release) | 
 | 		rxfer->release(ctlr, msg, res); | 
 |  | 
 | 	/* insert replaced transfers back into the message */ | 
 | 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); | 
 |  | 
 | 	/* remove the formerly inserted entries */ | 
 | 	for (i = 0; i < rxfer->inserted; i++) | 
 | 		list_del(&rxfer->inserted_transfers[i].transfer_list); | 
 | } | 
 |  | 
 | /** | 
 |  * spi_replace_transfers - replace transfers with several transfers | 
 |  *                         and register change with spi_message.resources | 
 |  * @msg:           the spi_message we work upon | 
 |  * @xfer_first:    the first spi_transfer we want to replace | 
 |  * @remove:        number of transfers to remove | 
 |  * @insert:        the number of transfers we want to insert instead | 
 |  * @release:       extra release code necessary in some circumstances | 
 |  * @extradatasize: extra data to allocate (with alignment guarantees | 
 |  *                 of struct @spi_transfer) | 
 |  * @gfp:           gfp flags | 
 |  * | 
 |  * Returns: pointer to @spi_replaced_transfers, | 
 |  *          PTR_ERR(...) in case of errors. | 
 |  */ | 
 | struct spi_replaced_transfers *spi_replace_transfers( | 
 | 	struct spi_message *msg, | 
 | 	struct spi_transfer *xfer_first, | 
 | 	size_t remove, | 
 | 	size_t insert, | 
 | 	spi_replaced_release_t release, | 
 | 	size_t extradatasize, | 
 | 	gfp_t gfp) | 
 | { | 
 | 	struct spi_replaced_transfers *rxfer; | 
 | 	struct spi_transfer *xfer; | 
 | 	size_t i; | 
 |  | 
 | 	/* allocate the structure using spi_res */ | 
 | 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, | 
 | 			      insert * sizeof(struct spi_transfer) | 
 | 			      + sizeof(struct spi_replaced_transfers) | 
 | 			      + extradatasize, | 
 | 			      gfp); | 
 | 	if (!rxfer) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* the release code to invoke before running the generic release */ | 
 | 	rxfer->release = release; | 
 |  | 
 | 	/* assign extradata */ | 
 | 	if (extradatasize) | 
 | 		rxfer->extradata = | 
 | 			&rxfer->inserted_transfers[insert]; | 
 |  | 
 | 	/* init the replaced_transfers list */ | 
 | 	INIT_LIST_HEAD(&rxfer->replaced_transfers); | 
 |  | 
 | 	/* assign the list_entry after which we should reinsert | 
 | 	 * the @replaced_transfers - it may be spi_message.messages! | 
 | 	 */ | 
 | 	rxfer->replaced_after = xfer_first->transfer_list.prev; | 
 |  | 
 | 	/* remove the requested number of transfers */ | 
 | 	for (i = 0; i < remove; i++) { | 
 | 		/* if the entry after replaced_after it is msg->transfers | 
 | 		 * then we have been requested to remove more transfers | 
 | 		 * than are in the list | 
 | 		 */ | 
 | 		if (rxfer->replaced_after->next == &msg->transfers) { | 
 | 			dev_err(&msg->spi->dev, | 
 | 				"requested to remove more spi_transfers than are available\n"); | 
 | 			/* insert replaced transfers back into the message */ | 
 | 			list_splice(&rxfer->replaced_transfers, | 
 | 				    rxfer->replaced_after); | 
 |  | 
 | 			/* free the spi_replace_transfer structure */ | 
 | 			spi_res_free(rxfer); | 
 |  | 
 | 			/* and return with an error */ | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		} | 
 |  | 
 | 		/* remove the entry after replaced_after from list of | 
 | 		 * transfers and add it to list of replaced_transfers | 
 | 		 */ | 
 | 		list_move_tail(rxfer->replaced_after->next, | 
 | 			       &rxfer->replaced_transfers); | 
 | 	} | 
 |  | 
 | 	/* create copy of the given xfer with identical settings | 
 | 	 * based on the first transfer to get removed | 
 | 	 */ | 
 | 	for (i = 0; i < insert; i++) { | 
 | 		/* we need to run in reverse order */ | 
 | 		xfer = &rxfer->inserted_transfers[insert - 1 - i]; | 
 |  | 
 | 		/* copy all spi_transfer data */ | 
 | 		memcpy(xfer, xfer_first, sizeof(*xfer)); | 
 |  | 
 | 		/* add to list */ | 
 | 		list_add(&xfer->transfer_list, rxfer->replaced_after); | 
 |  | 
 | 		/* clear cs_change and delay_usecs for all but the last */ | 
 | 		if (i) { | 
 | 			xfer->cs_change = false; | 
 | 			xfer->delay_usecs = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* set up inserted */ | 
 | 	rxfer->inserted = insert; | 
 |  | 
 | 	/* and register it with spi_res/spi_message */ | 
 | 	spi_res_add(msg, rxfer); | 
 |  | 
 | 	return rxfer; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_replace_transfers); | 
 |  | 
 | static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, | 
 | 					struct spi_message *msg, | 
 | 					struct spi_transfer **xferp, | 
 | 					size_t maxsize, | 
 | 					gfp_t gfp) | 
 | { | 
 | 	struct spi_transfer *xfer = *xferp, *xfers; | 
 | 	struct spi_replaced_transfers *srt; | 
 | 	size_t offset; | 
 | 	size_t count, i; | 
 |  | 
 | 	/* warn once about this fact that we are splitting a transfer */ | 
 | 	dev_warn_once(&msg->spi->dev, | 
 | 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", | 
 | 		      xfer->len, maxsize); | 
 |  | 
 | 	/* calculate how many we have to replace */ | 
 | 	count = DIV_ROUND_UP(xfer->len, maxsize); | 
 |  | 
 | 	/* create replacement */ | 
 | 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); | 
 | 	if (IS_ERR(srt)) | 
 | 		return PTR_ERR(srt); | 
 | 	xfers = srt->inserted_transfers; | 
 |  | 
 | 	/* now handle each of those newly inserted spi_transfers | 
 | 	 * note that the replacements spi_transfers all are preset | 
 | 	 * to the same values as *xferp, so tx_buf, rx_buf and len | 
 | 	 * are all identical (as well as most others) | 
 | 	 * so we just have to fix up len and the pointers. | 
 | 	 * | 
 | 	 * this also includes support for the depreciated | 
 | 	 * spi_message.is_dma_mapped interface | 
 | 	 */ | 
 |  | 
 | 	/* the first transfer just needs the length modified, so we | 
 | 	 * run it outside the loop | 
 | 	 */ | 
 | 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len); | 
 |  | 
 | 	/* all the others need rx_buf/tx_buf also set */ | 
 | 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { | 
 | 		/* update rx_buf, tx_buf and dma */ | 
 | 		if (xfers[i].rx_buf) | 
 | 			xfers[i].rx_buf += offset; | 
 | 		if (xfers[i].rx_dma) | 
 | 			xfers[i].rx_dma += offset; | 
 | 		if (xfers[i].tx_buf) | 
 | 			xfers[i].tx_buf += offset; | 
 | 		if (xfers[i].tx_dma) | 
 | 			xfers[i].tx_dma += offset; | 
 |  | 
 | 		/* update length */ | 
 | 		xfers[i].len = min(maxsize, xfers[i].len - offset); | 
 | 	} | 
 |  | 
 | 	/* we set up xferp to the last entry we have inserted, | 
 | 	 * so that we skip those already split transfers | 
 | 	 */ | 
 | 	*xferp = &xfers[count - 1]; | 
 |  | 
 | 	/* increment statistics counters */ | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, | 
 | 				       transfers_split_maxsize); | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, | 
 | 				       transfers_split_maxsize); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers | 
 |  *                              when an individual transfer exceeds a | 
 |  *                              certain size | 
 |  * @ctlr:    the @spi_controller for this transfer | 
 |  * @msg:   the @spi_message to transform | 
 |  * @maxsize:  the maximum when to apply this | 
 |  * @gfp: GFP allocation flags | 
 |  * | 
 |  * Return: status of transformation | 
 |  */ | 
 | int spi_split_transfers_maxsize(struct spi_controller *ctlr, | 
 | 				struct spi_message *msg, | 
 | 				size_t maxsize, | 
 | 				gfp_t gfp) | 
 | { | 
 | 	struct spi_transfer *xfer; | 
 | 	int ret; | 
 |  | 
 | 	/* iterate over the transfer_list, | 
 | 	 * but note that xfer is advanced to the last transfer inserted | 
 | 	 * to avoid checking sizes again unnecessarily (also xfer does | 
 | 	 * potentiall belong to a different list by the time the | 
 | 	 * replacement has happened | 
 | 	 */ | 
 | 	list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
 | 		if (xfer->len > maxsize) { | 
 | 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, | 
 | 							   maxsize, gfp); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Core methods for SPI controller protocol drivers.  Some of the | 
 |  * other core methods are currently defined as inline functions. | 
 |  */ | 
 |  | 
 | static int __spi_validate_bits_per_word(struct spi_controller *ctlr, | 
 | 					u8 bits_per_word) | 
 | { | 
 | 	if (ctlr->bits_per_word_mask) { | 
 | 		/* Only 32 bits fit in the mask */ | 
 | 		if (bits_per_word > 32) | 
 | 			return -EINVAL; | 
 | 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_setup - setup SPI mode and clock rate | 
 |  * @spi: the device whose settings are being modified | 
 |  * Context: can sleep, and no requests are queued to the device | 
 |  * | 
 |  * SPI protocol drivers may need to update the transfer mode if the | 
 |  * device doesn't work with its default.  They may likewise need | 
 |  * to update clock rates or word sizes from initial values.  This function | 
 |  * changes those settings, and must be called from a context that can sleep. | 
 |  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take | 
 |  * effect the next time the device is selected and data is transferred to | 
 |  * or from it.  When this function returns, the spi device is deselected. | 
 |  * | 
 |  * Note that this call will fail if the protocol driver specifies an option | 
 |  * that the underlying controller or its driver does not support.  For | 
 |  * example, not all hardware supports wire transfers using nine bit words, | 
 |  * LSB-first wire encoding, or active-high chipselects. | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_setup(struct spi_device *spi) | 
 | { | 
 | 	unsigned	bad_bits, ugly_bits; | 
 | 	int		status; | 
 |  | 
 | 	/* check mode to prevent that DUAL and QUAD set at the same time | 
 | 	 */ | 
 | 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || | 
 | 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { | 
 | 		dev_err(&spi->dev, | 
 | 		"setup: can not select dual and quad at the same time\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden | 
 | 	 */ | 
 | 	if ((spi->mode & SPI_3WIRE) && (spi->mode & | 
 | 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) | 
 | 		return -EINVAL; | 
 | 	/* help drivers fail *cleanly* when they need options | 
 | 	 * that aren't supported with their current controller | 
 | 	 */ | 
 | 	bad_bits = spi->mode & ~spi->controller->mode_bits; | 
 | 	ugly_bits = bad_bits & | 
 | 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); | 
 | 	if (ugly_bits) { | 
 | 		dev_warn(&spi->dev, | 
 | 			 "setup: ignoring unsupported mode bits %x\n", | 
 | 			 ugly_bits); | 
 | 		spi->mode &= ~ugly_bits; | 
 | 		bad_bits &= ~ugly_bits; | 
 | 	} | 
 | 	if (bad_bits) { | 
 | 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n", | 
 | 			bad_bits); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!spi->bits_per_word) | 
 | 		spi->bits_per_word = 8; | 
 |  | 
 | 	status = __spi_validate_bits_per_word(spi->controller, | 
 | 					      spi->bits_per_word); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	if (!spi->max_speed_hz) | 
 | 		spi->max_speed_hz = spi->controller->max_speed_hz; | 
 |  | 
 | 	if (spi->controller->setup) | 
 | 		status = spi->controller->setup(spi); | 
 |  | 
 | 	if (spi->master->auto_runtime_pm && spi->master->set_cs) { | 
 | 		status = pm_runtime_get_sync(spi->master->dev.parent); | 
 | 		if (status < 0) { | 
 | 			pm_runtime_put_noidle(spi->master->dev.parent); | 
 | 			dev_err(&spi->dev, "Failed to power device: %d\n", | 
 | 				status); | 
 | 			return status; | 
 | 		} | 
 | 		spi_set_cs(spi, false); | 
 | 		pm_runtime_mark_last_busy(spi->master->dev.parent); | 
 | 		pm_runtime_put_autosuspend(spi->master->dev.parent); | 
 | 	} else { | 
 | 		spi_set_cs(spi, false); | 
 | 	} | 
 |  | 
 | 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", | 
 | 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)), | 
 | 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", | 
 | 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", | 
 | 			(spi->mode & SPI_3WIRE) ? "3wire, " : "", | 
 | 			(spi->mode & SPI_LOOP) ? "loopback, " : "", | 
 | 			spi->bits_per_word, spi->max_speed_hz, | 
 | 			status); | 
 |  | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_setup); | 
 |  | 
 | static int __spi_validate(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 | 	struct spi_transfer *xfer; | 
 | 	int w_size; | 
 |  | 
 | 	if (list_empty(&message->transfers)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Half-duplex links include original MicroWire, and ones with | 
 | 	 * only one data pin like SPI_3WIRE (switches direction) or where | 
 | 	 * either MOSI or MISO is missing.  They can also be caused by | 
 | 	 * software limitations. | 
 | 	 */ | 
 | 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || | 
 | 	    (spi->mode & SPI_3WIRE)) { | 
 | 		unsigned flags = ctlr->flags; | 
 |  | 
 | 		list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
 | 			if (xfer->rx_buf && xfer->tx_buf) | 
 | 				return -EINVAL; | 
 | 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) | 
 | 				return -EINVAL; | 
 | 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/** | 
 | 	 * Set transfer bits_per_word and max speed as spi device default if | 
 | 	 * it is not set for this transfer. | 
 | 	 * Set transfer tx_nbits and rx_nbits as single transfer default | 
 | 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer. | 
 | 	 */ | 
 | 	message->frame_length = 0; | 
 | 	list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
 | 		message->frame_length += xfer->len; | 
 | 		if (!xfer->bits_per_word) | 
 | 			xfer->bits_per_word = spi->bits_per_word; | 
 |  | 
 | 		if (!xfer->speed_hz) | 
 | 			xfer->speed_hz = spi->max_speed_hz; | 
 | 		if (!xfer->speed_hz) | 
 | 			xfer->speed_hz = ctlr->max_speed_hz; | 
 |  | 
 | 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) | 
 | 			xfer->speed_hz = ctlr->max_speed_hz; | 
 |  | 
 | 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* | 
 | 		 * SPI transfer length should be multiple of SPI word size | 
 | 		 * where SPI word size should be power-of-two multiple | 
 | 		 */ | 
 | 		if (xfer->bits_per_word <= 8) | 
 | 			w_size = 1; | 
 | 		else if (xfer->bits_per_word <= 16) | 
 | 			w_size = 2; | 
 | 		else | 
 | 			w_size = 4; | 
 |  | 
 | 		/* No partial transfers accepted */ | 
 | 		if (xfer->len % w_size) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (xfer->speed_hz && ctlr->min_speed_hz && | 
 | 		    xfer->speed_hz < ctlr->min_speed_hz) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (xfer->tx_buf && !xfer->tx_nbits) | 
 | 			xfer->tx_nbits = SPI_NBITS_SINGLE; | 
 | 		if (xfer->rx_buf && !xfer->rx_nbits) | 
 | 			xfer->rx_nbits = SPI_NBITS_SINGLE; | 
 | 		/* check transfer tx/rx_nbits: | 
 | 		 * 1. check the value matches one of single, dual and quad | 
 | 		 * 2. check tx/rx_nbits match the mode in spi_device | 
 | 		 */ | 
 | 		if (xfer->tx_buf) { | 
 | 			if (xfer->tx_nbits != SPI_NBITS_SINGLE && | 
 | 				xfer->tx_nbits != SPI_NBITS_DUAL && | 
 | 				xfer->tx_nbits != SPI_NBITS_QUAD) | 
 | 				return -EINVAL; | 
 | 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) && | 
 | 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) | 
 | 				return -EINVAL; | 
 | 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) && | 
 | 				!(spi->mode & SPI_TX_QUAD)) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 		/* check transfer rx_nbits */ | 
 | 		if (xfer->rx_buf) { | 
 | 			if (xfer->rx_nbits != SPI_NBITS_SINGLE && | 
 | 				xfer->rx_nbits != SPI_NBITS_DUAL && | 
 | 				xfer->rx_nbits != SPI_NBITS_QUAD) | 
 | 				return -EINVAL; | 
 | 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) && | 
 | 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) | 
 | 				return -EINVAL; | 
 | 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) && | 
 | 				!(spi->mode & SPI_RX_QUAD)) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	message->status = -EINPROGRESS; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __spi_async(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 |  | 
 | 	/* | 
 | 	 * Some controllers do not support doing regular SPI transfers. Return | 
 | 	 * ENOTSUPP when this is the case. | 
 | 	 */ | 
 | 	if (!ctlr->transfer) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	message->spi = spi; | 
 |  | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); | 
 |  | 
 | 	trace_spi_message_submit(message); | 
 |  | 
 | 	return ctlr->transfer(spi, message); | 
 | } | 
 |  | 
 | /** | 
 |  * spi_async - asynchronous SPI transfer | 
 |  * @spi: device with which data will be exchanged | 
 |  * @message: describes the data transfers, including completion callback | 
 |  * Context: any (irqs may be blocked, etc) | 
 |  * | 
 |  * This call may be used in_irq and other contexts which can't sleep, | 
 |  * as well as from task contexts which can sleep. | 
 |  * | 
 |  * The completion callback is invoked in a context which can't sleep. | 
 |  * Before that invocation, the value of message->status is undefined. | 
 |  * When the callback is issued, message->status holds either zero (to | 
 |  * indicate complete success) or a negative error code.  After that | 
 |  * callback returns, the driver which issued the transfer request may | 
 |  * deallocate the associated memory; it's no longer in use by any SPI | 
 |  * core or controller driver code. | 
 |  * | 
 |  * Note that although all messages to a spi_device are handled in | 
 |  * FIFO order, messages may go to different devices in other orders. | 
 |  * Some device might be higher priority, or have various "hard" access | 
 |  * time requirements, for example. | 
 |  * | 
 |  * On detection of any fault during the transfer, processing of | 
 |  * the entire message is aborted, and the device is deselected. | 
 |  * Until returning from the associated message completion callback, | 
 |  * no other spi_message queued to that device will be processed. | 
 |  * (This rule applies equally to all the synchronous transfer calls, | 
 |  * which are wrappers around this core asynchronous primitive.) | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_async(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ret = __spi_validate(spi, message); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
 |  | 
 | 	if (ctlr->bus_lock_flag) | 
 | 		ret = -EBUSY; | 
 | 	else | 
 | 		ret = __spi_async(spi, message); | 
 |  | 
 | 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_async); | 
 |  | 
 | /** | 
 |  * spi_async_locked - version of spi_async with exclusive bus usage | 
 |  * @spi: device with which data will be exchanged | 
 |  * @message: describes the data transfers, including completion callback | 
 |  * Context: any (irqs may be blocked, etc) | 
 |  * | 
 |  * This call may be used in_irq and other contexts which can't sleep, | 
 |  * as well as from task contexts which can sleep. | 
 |  * | 
 |  * The completion callback is invoked in a context which can't sleep. | 
 |  * Before that invocation, the value of message->status is undefined. | 
 |  * When the callback is issued, message->status holds either zero (to | 
 |  * indicate complete success) or a negative error code.  After that | 
 |  * callback returns, the driver which issued the transfer request may | 
 |  * deallocate the associated memory; it's no longer in use by any SPI | 
 |  * core or controller driver code. | 
 |  * | 
 |  * Note that although all messages to a spi_device are handled in | 
 |  * FIFO order, messages may go to different devices in other orders. | 
 |  * Some device might be higher priority, or have various "hard" access | 
 |  * time requirements, for example. | 
 |  * | 
 |  * On detection of any fault during the transfer, processing of | 
 |  * the entire message is aborted, and the device is deselected. | 
 |  * Until returning from the associated message completion callback, | 
 |  * no other spi_message queued to that device will be processed. | 
 |  * (This rule applies equally to all the synchronous transfer calls, | 
 |  * which are wrappers around this core asynchronous primitive.) | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_async_locked(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ret = __spi_validate(spi, message); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
 |  | 
 | 	ret = __spi_async(spi, message); | 
 |  | 
 | 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
 |  | 
 | 	return ret; | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_async_locked); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Utility methods for SPI protocol drivers, layered on | 
 |  * top of the core.  Some other utility methods are defined as | 
 |  * inline functions. | 
 |  */ | 
 |  | 
 | static void spi_complete(void *arg) | 
 | { | 
 | 	complete(arg); | 
 | } | 
 |  | 
 | static int __spi_sync(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK(done); | 
 | 	int status; | 
 | 	struct spi_controller *ctlr = spi->controller; | 
 | 	unsigned long flags; | 
 |  | 
 | 	status = __spi_validate(spi, message); | 
 | 	if (status != 0) | 
 | 		return status; | 
 |  | 
 | 	message->complete = spi_complete; | 
 | 	message->context = &done; | 
 | 	message->spi = spi; | 
 |  | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); | 
 | 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); | 
 |  | 
 | 	/* If we're not using the legacy transfer method then we will | 
 | 	 * try to transfer in the calling context so special case. | 
 | 	 * This code would be less tricky if we could remove the | 
 | 	 * support for driver implemented message queues. | 
 | 	 */ | 
 | 	if (ctlr->transfer == spi_queued_transfer) { | 
 | 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
 |  | 
 | 		trace_spi_message_submit(message); | 
 |  | 
 | 		status = __spi_queued_transfer(spi, message, false); | 
 |  | 
 | 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
 | 	} else { | 
 | 		status = spi_async_locked(spi, message); | 
 | 	} | 
 |  | 
 | 	if (status == 0) { | 
 | 		/* Push out the messages in the calling context if we | 
 | 		 * can. | 
 | 		 */ | 
 | 		if (ctlr->transfer == spi_queued_transfer) { | 
 | 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, | 
 | 						       spi_sync_immediate); | 
 | 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, | 
 | 						       spi_sync_immediate); | 
 | 			__spi_pump_messages(ctlr, false); | 
 | 		} | 
 |  | 
 | 		wait_for_completion(&done); | 
 | 		status = message->status; | 
 | 	} | 
 | 	message->context = NULL; | 
 | 	return status; | 
 | } | 
 |  | 
 | /** | 
 |  * spi_sync - blocking/synchronous SPI data transfers | 
 |  * @spi: device with which data will be exchanged | 
 |  * @message: describes the data transfers | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call may only be used from a context that may sleep.  The sleep | 
 |  * is non-interruptible, and has no timeout.  Low-overhead controller | 
 |  * drivers may DMA directly into and out of the message buffers. | 
 |  * | 
 |  * Note that the SPI device's chip select is active during the message, | 
 |  * and then is normally disabled between messages.  Drivers for some | 
 |  * frequently-used devices may want to minimize costs of selecting a chip, | 
 |  * by leaving it selected in anticipation that the next message will go | 
 |  * to the same chip.  (That may increase power usage.) | 
 |  * | 
 |  * Also, the caller is guaranteeing that the memory associated with the | 
 |  * message will not be freed before this call returns. | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_sync(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&spi->controller->bus_lock_mutex); | 
 | 	ret = __spi_sync(spi, message); | 
 | 	mutex_unlock(&spi->controller->bus_lock_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_sync); | 
 |  | 
 | /** | 
 |  * spi_sync_locked - version of spi_sync with exclusive bus usage | 
 |  * @spi: device with which data will be exchanged | 
 |  * @message: describes the data transfers | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call may only be used from a context that may sleep.  The sleep | 
 |  * is non-interruptible, and has no timeout.  Low-overhead controller | 
 |  * drivers may DMA directly into and out of the message buffers. | 
 |  * | 
 |  * This call should be used by drivers that require exclusive access to the | 
 |  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must | 
 |  * be released by a spi_bus_unlock call when the exclusive access is over. | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_sync_locked(struct spi_device *spi, struct spi_message *message) | 
 | { | 
 | 	return __spi_sync(spi, message); | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_sync_locked); | 
 |  | 
 | /** | 
 |  * spi_bus_lock - obtain a lock for exclusive SPI bus usage | 
 |  * @ctlr: SPI bus master that should be locked for exclusive bus access | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call may only be used from a context that may sleep.  The sleep | 
 |  * is non-interruptible, and has no timeout. | 
 |  * | 
 |  * This call should be used by drivers that require exclusive access to the | 
 |  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the | 
 |  * exclusive access is over. Data transfer must be done by spi_sync_locked | 
 |  * and spi_async_locked calls when the SPI bus lock is held. | 
 |  * | 
 |  * Return: always zero. | 
 |  */ | 
 | int spi_bus_lock(struct spi_controller *ctlr) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	mutex_lock(&ctlr->bus_lock_mutex); | 
 |  | 
 | 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
 | 	ctlr->bus_lock_flag = 1; | 
 | 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
 |  | 
 | 	/* mutex remains locked until spi_bus_unlock is called */ | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_bus_lock); | 
 |  | 
 | /** | 
 |  * spi_bus_unlock - release the lock for exclusive SPI bus usage | 
 |  * @ctlr: SPI bus master that was locked for exclusive bus access | 
 |  * Context: can sleep | 
 |  * | 
 |  * This call may only be used from a context that may sleep.  The sleep | 
 |  * is non-interruptible, and has no timeout. | 
 |  * | 
 |  * This call releases an SPI bus lock previously obtained by an spi_bus_lock | 
 |  * call. | 
 |  * | 
 |  * Return: always zero. | 
 |  */ | 
 | int spi_bus_unlock(struct spi_controller *ctlr) | 
 | { | 
 | 	ctlr->bus_lock_flag = 0; | 
 |  | 
 | 	mutex_unlock(&ctlr->bus_lock_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_bus_unlock); | 
 |  | 
 | /* portable code must never pass more than 32 bytes */ | 
 | #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES) | 
 |  | 
 | static u8	*buf; | 
 |  | 
 | /** | 
 |  * spi_write_then_read - SPI synchronous write followed by read | 
 |  * @spi: device with which data will be exchanged | 
 |  * @txbuf: data to be written (need not be dma-safe) | 
 |  * @n_tx: size of txbuf, in bytes | 
 |  * @rxbuf: buffer into which data will be read (need not be dma-safe) | 
 |  * @n_rx: size of rxbuf, in bytes | 
 |  * Context: can sleep | 
 |  * | 
 |  * This performs a half duplex MicroWire style transaction with the | 
 |  * device, sending txbuf and then reading rxbuf.  The return value | 
 |  * is zero for success, else a negative errno status code. | 
 |  * This call may only be used from a context that may sleep. | 
 |  * | 
 |  * Parameters to this routine are always copied using a small buffer; | 
 |  * portable code should never use this for more than 32 bytes. | 
 |  * Performance-sensitive or bulk transfer code should instead use | 
 |  * spi_{async,sync}() calls with dma-safe buffers. | 
 |  * | 
 |  * Return: zero on success, else a negative error code. | 
 |  */ | 
 | int spi_write_then_read(struct spi_device *spi, | 
 | 		const void *txbuf, unsigned n_tx, | 
 | 		void *rxbuf, unsigned n_rx) | 
 | { | 
 | 	static DEFINE_MUTEX(lock); | 
 |  | 
 | 	int			status; | 
 | 	struct spi_message	message; | 
 | 	struct spi_transfer	x[2]; | 
 | 	u8			*local_buf; | 
 |  | 
 | 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid | 
 | 	 * copying here, (as a pure convenience thing), but we can | 
 | 	 * keep heap costs out of the hot path unless someone else is | 
 | 	 * using the pre-allocated buffer or the transfer is too large. | 
 | 	 */ | 
 | 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { | 
 | 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), | 
 | 				    GFP_KERNEL | GFP_DMA); | 
 | 		if (!local_buf) | 
 | 			return -ENOMEM; | 
 | 	} else { | 
 | 		local_buf = buf; | 
 | 	} | 
 |  | 
 | 	spi_message_init(&message); | 
 | 	memset(x, 0, sizeof(x)); | 
 | 	if (n_tx) { | 
 | 		x[0].len = n_tx; | 
 | 		spi_message_add_tail(&x[0], &message); | 
 | 	} | 
 | 	if (n_rx) { | 
 | 		x[1].len = n_rx; | 
 | 		spi_message_add_tail(&x[1], &message); | 
 | 	} | 
 |  | 
 | 	memcpy(local_buf, txbuf, n_tx); | 
 | 	x[0].tx_buf = local_buf; | 
 | 	x[1].rx_buf = local_buf + n_tx; | 
 |  | 
 | 	/* do the i/o */ | 
 | 	status = spi_sync(spi, &message); | 
 | 	if (status == 0) | 
 | 		memcpy(rxbuf, x[1].rx_buf, n_rx); | 
 |  | 
 | 	if (x[0].tx_buf == buf) | 
 | 		mutex_unlock(&lock); | 
 | 	else | 
 | 		kfree(local_buf); | 
 |  | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL_GPL(spi_write_then_read); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | #if IS_ENABLED(CONFIG_OF_DYNAMIC) | 
 | static int __spi_of_device_match(struct device *dev, void *data) | 
 | { | 
 | 	return dev->of_node == data; | 
 | } | 
 |  | 
 | /* must call put_device() when done with returned spi_device device */ | 
 | static struct spi_device *of_find_spi_device_by_node(struct device_node *node) | 
 | { | 
 | 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node, | 
 | 						__spi_of_device_match); | 
 | 	return dev ? to_spi_device(dev) : NULL; | 
 | } | 
 |  | 
 | static int __spi_of_controller_match(struct device *dev, const void *data) | 
 | { | 
 | 	return dev->of_node == data; | 
 | } | 
 |  | 
 | /* the spi controllers are not using spi_bus, so we find it with another way */ | 
 | static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) | 
 | { | 
 | 	struct device *dev; | 
 |  | 
 | 	dev = class_find_device(&spi_master_class, NULL, node, | 
 | 				__spi_of_controller_match); | 
 | 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) | 
 | 		dev = class_find_device(&spi_slave_class, NULL, node, | 
 | 					__spi_of_controller_match); | 
 | 	if (!dev) | 
 | 		return NULL; | 
 |  | 
 | 	/* reference got in class_find_device */ | 
 | 	return container_of(dev, struct spi_controller, dev); | 
 | } | 
 |  | 
 | static int of_spi_notify(struct notifier_block *nb, unsigned long action, | 
 | 			 void *arg) | 
 | { | 
 | 	struct of_reconfig_data *rd = arg; | 
 | 	struct spi_controller *ctlr; | 
 | 	struct spi_device *spi; | 
 |  | 
 | 	switch (of_reconfig_get_state_change(action, arg)) { | 
 | 	case OF_RECONFIG_CHANGE_ADD: | 
 | 		ctlr = of_find_spi_controller_by_node(rd->dn->parent); | 
 | 		if (ctlr == NULL) | 
 | 			return NOTIFY_OK;	/* not for us */ | 
 |  | 
 | 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { | 
 | 			put_device(&ctlr->dev); | 
 | 			return NOTIFY_OK; | 
 | 		} | 
 |  | 
 | 		spi = of_register_spi_device(ctlr, rd->dn); | 
 | 		put_device(&ctlr->dev); | 
 |  | 
 | 		if (IS_ERR(spi)) { | 
 | 			pr_err("%s: failed to create for '%pOF'\n", | 
 | 					__func__, rd->dn); | 
 | 			of_node_clear_flag(rd->dn, OF_POPULATED); | 
 | 			return notifier_from_errno(PTR_ERR(spi)); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case OF_RECONFIG_CHANGE_REMOVE: | 
 | 		/* already depopulated? */ | 
 | 		if (!of_node_check_flag(rd->dn, OF_POPULATED)) | 
 | 			return NOTIFY_OK; | 
 |  | 
 | 		/* find our device by node */ | 
 | 		spi = of_find_spi_device_by_node(rd->dn); | 
 | 		if (spi == NULL) | 
 | 			return NOTIFY_OK;	/* no? not meant for us */ | 
 |  | 
 | 		/* unregister takes one ref away */ | 
 | 		spi_unregister_device(spi); | 
 |  | 
 | 		/* and put the reference of the find */ | 
 | 		put_device(&spi->dev); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block spi_of_notifier = { | 
 | 	.notifier_call = of_spi_notify, | 
 | }; | 
 | #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ | 
 | extern struct notifier_block spi_of_notifier; | 
 | #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ | 
 |  | 
 | #if IS_ENABLED(CONFIG_ACPI) | 
 | static int spi_acpi_controller_match(struct device *dev, const void *data) | 
 | { | 
 | 	return ACPI_COMPANION(dev->parent) == data; | 
 | } | 
 |  | 
 | static int spi_acpi_device_match(struct device *dev, void *data) | 
 | { | 
 | 	return ACPI_COMPANION(dev) == data; | 
 | } | 
 |  | 
 | static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) | 
 | { | 
 | 	struct device *dev; | 
 |  | 
 | 	dev = class_find_device(&spi_master_class, NULL, adev, | 
 | 				spi_acpi_controller_match); | 
 | 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) | 
 | 		dev = class_find_device(&spi_slave_class, NULL, adev, | 
 | 					spi_acpi_controller_match); | 
 | 	if (!dev) | 
 | 		return NULL; | 
 |  | 
 | 	return container_of(dev, struct spi_controller, dev); | 
 | } | 
 |  | 
 | static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) | 
 | { | 
 | 	struct device *dev; | 
 |  | 
 | 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); | 
 |  | 
 | 	return dev ? to_spi_device(dev) : NULL; | 
 | } | 
 |  | 
 | static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, | 
 | 			   void *arg) | 
 | { | 
 | 	struct acpi_device *adev = arg; | 
 | 	struct spi_controller *ctlr; | 
 | 	struct spi_device *spi; | 
 |  | 
 | 	switch (value) { | 
 | 	case ACPI_RECONFIG_DEVICE_ADD: | 
 | 		ctlr = acpi_spi_find_controller_by_adev(adev->parent); | 
 | 		if (!ctlr) | 
 | 			break; | 
 |  | 
 | 		acpi_register_spi_device(ctlr, adev); | 
 | 		put_device(&ctlr->dev); | 
 | 		break; | 
 | 	case ACPI_RECONFIG_DEVICE_REMOVE: | 
 | 		if (!acpi_device_enumerated(adev)) | 
 | 			break; | 
 |  | 
 | 		spi = acpi_spi_find_device_by_adev(adev); | 
 | 		if (!spi) | 
 | 			break; | 
 |  | 
 | 		spi_unregister_device(spi); | 
 | 		put_device(&spi->dev); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block spi_acpi_notifier = { | 
 | 	.notifier_call = acpi_spi_notify, | 
 | }; | 
 | #else | 
 | extern struct notifier_block spi_acpi_notifier; | 
 | #endif | 
 |  | 
 | static int __init spi_init(void) | 
 | { | 
 | 	int	status; | 
 |  | 
 | 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		status = -ENOMEM; | 
 | 		goto err0; | 
 | 	} | 
 |  | 
 | 	status = bus_register(&spi_bus_type); | 
 | 	if (status < 0) | 
 | 		goto err1; | 
 |  | 
 | 	status = class_register(&spi_master_class); | 
 | 	if (status < 0) | 
 | 		goto err2; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) { | 
 | 		status = class_register(&spi_slave_class); | 
 | 		if (status < 0) | 
 | 			goto err3; | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_OF_DYNAMIC)) | 
 | 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); | 
 | 	if (IS_ENABLED(CONFIG_ACPI)) | 
 | 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err3: | 
 | 	class_unregister(&spi_master_class); | 
 | err2: | 
 | 	bus_unregister(&spi_bus_type); | 
 | err1: | 
 | 	kfree(buf); | 
 | 	buf = NULL; | 
 | err0: | 
 | 	return status; | 
 | } | 
 |  | 
 | /* board_info is normally registered in arch_initcall(), | 
 |  * but even essential drivers wait till later | 
 |  * | 
 |  * REVISIT only boardinfo really needs static linking. the rest (device and | 
 |  * driver registration) _could_ be dynamically linked (modular) ... costs | 
 |  * include needing to have boardinfo data structures be much more public. | 
 |  */ | 
 | postcore_initcall(spi_init); | 
 |  |