| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/cleancache.h> | 
 | #include "extent_io.h" | 
 | #include "extent_map.h" | 
 | #include "ctree.h" | 
 | #include "btrfs_inode.h" | 
 | #include "volumes.h" | 
 | #include "check-integrity.h" | 
 | #include "locking.h" | 
 | #include "rcu-string.h" | 
 | #include "backref.h" | 
 | #include "disk-io.h" | 
 |  | 
 | static struct kmem_cache *extent_state_cache; | 
 | static struct kmem_cache *extent_buffer_cache; | 
 | static struct bio_set btrfs_bioset; | 
 |  | 
 | static inline bool extent_state_in_tree(const struct extent_state *state) | 
 | { | 
 | 	return !RB_EMPTY_NODE(&state->rb_node); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | static LIST_HEAD(buffers); | 
 | static LIST_HEAD(states); | 
 |  | 
 | static DEFINE_SPINLOCK(leak_lock); | 
 |  | 
 | static inline | 
 | void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&leak_lock, flags); | 
 | 	list_add(new, head); | 
 | 	spin_unlock_irqrestore(&leak_lock, flags); | 
 | } | 
 |  | 
 | static inline | 
 | void btrfs_leak_debug_del(struct list_head *entry) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&leak_lock, flags); | 
 | 	list_del(entry); | 
 | 	spin_unlock_irqrestore(&leak_lock, flags); | 
 | } | 
 |  | 
 | static inline | 
 | void btrfs_leak_debug_check(void) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	while (!list_empty(&states)) { | 
 | 		state = list_entry(states.next, struct extent_state, leak_list); | 
 | 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", | 
 | 		       state->start, state->end, state->state, | 
 | 		       extent_state_in_tree(state), | 
 | 		       refcount_read(&state->refs)); | 
 | 		list_del(&state->leak_list); | 
 | 		kmem_cache_free(extent_state_cache, state); | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&buffers)) { | 
 | 		eb = list_entry(buffers.next, struct extent_buffer, leak_list); | 
 | 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", | 
 | 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); | 
 | 		list_del(&eb->leak_list); | 
 | 		kmem_cache_free(extent_buffer_cache, eb); | 
 | 	} | 
 | } | 
 |  | 
 | #define btrfs_debug_check_extent_io_range(tree, start, end)		\ | 
 | 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) | 
 | static inline void __btrfs_debug_check_extent_io_range(const char *caller, | 
 | 		struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	if (tree->ops && tree->ops->check_extent_io_range) | 
 | 		tree->ops->check_extent_io_range(tree->private_data, caller, | 
 | 						 start, end); | 
 | } | 
 | #else | 
 | #define btrfs_leak_debug_add(new, head)	do {} while (0) | 
 | #define btrfs_leak_debug_del(entry)	do {} while (0) | 
 | #define btrfs_leak_debug_check()	do {} while (0) | 
 | #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0) | 
 | #endif | 
 |  | 
 | #define BUFFER_LRU_MAX 64 | 
 |  | 
 | struct tree_entry { | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	struct rb_node rb_node; | 
 | }; | 
 |  | 
 | struct extent_page_data { | 
 | 	struct bio *bio; | 
 | 	struct extent_io_tree *tree; | 
 | 	/* tells writepage not to lock the state bits for this range | 
 | 	 * it still does the unlocking | 
 | 	 */ | 
 | 	unsigned int extent_locked:1; | 
 |  | 
 | 	/* tells the submit_bio code to use REQ_SYNC */ | 
 | 	unsigned int sync_io:1; | 
 | }; | 
 |  | 
 | static int add_extent_changeset(struct extent_state *state, unsigned bits, | 
 | 				 struct extent_changeset *changeset, | 
 | 				 int set) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!changeset) | 
 | 		return 0; | 
 | 	if (set && (state->state & bits) == bits) | 
 | 		return 0; | 
 | 	if (!set && (state->state & bits) == 0) | 
 | 		return 0; | 
 | 	changeset->bytes_changed += state->end - state->start + 1; | 
 | 	ret = ulist_add(&changeset->range_changed, state->start, state->end, | 
 | 			GFP_ATOMIC); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void flush_write_bio(struct extent_page_data *epd); | 
 |  | 
 | int __init extent_io_init(void) | 
 | { | 
 | 	extent_state_cache = kmem_cache_create("btrfs_extent_state", | 
 | 			sizeof(struct extent_state), 0, | 
 | 			SLAB_MEM_SPREAD, NULL); | 
 | 	if (!extent_state_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", | 
 | 			sizeof(struct extent_buffer), 0, | 
 | 			SLAB_MEM_SPREAD, NULL); | 
 | 	if (!extent_buffer_cache) | 
 | 		goto free_state_cache; | 
 |  | 
 | 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, | 
 | 			offsetof(struct btrfs_io_bio, bio), | 
 | 			BIOSET_NEED_BVECS)) | 
 | 		goto free_buffer_cache; | 
 |  | 
 | 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) | 
 | 		goto free_bioset; | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_bioset: | 
 | 	bioset_exit(&btrfs_bioset); | 
 |  | 
 | free_buffer_cache: | 
 | 	kmem_cache_destroy(extent_buffer_cache); | 
 | 	extent_buffer_cache = NULL; | 
 |  | 
 | free_state_cache: | 
 | 	kmem_cache_destroy(extent_state_cache); | 
 | 	extent_state_cache = NULL; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void __cold extent_io_exit(void) | 
 | { | 
 | 	btrfs_leak_debug_check(); | 
 |  | 
 | 	/* | 
 | 	 * Make sure all delayed rcu free are flushed before we | 
 | 	 * destroy caches. | 
 | 	 */ | 
 | 	rcu_barrier(); | 
 | 	kmem_cache_destroy(extent_state_cache); | 
 | 	kmem_cache_destroy(extent_buffer_cache); | 
 | 	bioset_exit(&btrfs_bioset); | 
 | } | 
 |  | 
 | void extent_io_tree_init(struct extent_io_tree *tree, | 
 | 			 void *private_data) | 
 | { | 
 | 	tree->state = RB_ROOT; | 
 | 	tree->ops = NULL; | 
 | 	tree->dirty_bytes = 0; | 
 | 	spin_lock_init(&tree->lock); | 
 | 	tree->private_data = private_data; | 
 | } | 
 |  | 
 | static struct extent_state *alloc_extent_state(gfp_t mask) | 
 | { | 
 | 	struct extent_state *state; | 
 |  | 
 | 	/* | 
 | 	 * The given mask might be not appropriate for the slab allocator, | 
 | 	 * drop the unsupported bits | 
 | 	 */ | 
 | 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); | 
 | 	state = kmem_cache_alloc(extent_state_cache, mask); | 
 | 	if (!state) | 
 | 		return state; | 
 | 	state->state = 0; | 
 | 	state->failrec = NULL; | 
 | 	RB_CLEAR_NODE(&state->rb_node); | 
 | 	btrfs_leak_debug_add(&state->leak_list, &states); | 
 | 	refcount_set(&state->refs, 1); | 
 | 	init_waitqueue_head(&state->wq); | 
 | 	trace_alloc_extent_state(state, mask, _RET_IP_); | 
 | 	return state; | 
 | } | 
 |  | 
 | void free_extent_state(struct extent_state *state) | 
 | { | 
 | 	if (!state) | 
 | 		return; | 
 | 	if (refcount_dec_and_test(&state->refs)) { | 
 | 		WARN_ON(extent_state_in_tree(state)); | 
 | 		btrfs_leak_debug_del(&state->leak_list); | 
 | 		trace_free_extent_state(state, _RET_IP_); | 
 | 		kmem_cache_free(extent_state_cache, state); | 
 | 	} | 
 | } | 
 |  | 
 | static struct rb_node *tree_insert(struct rb_root *root, | 
 | 				   struct rb_node *search_start, | 
 | 				   u64 offset, | 
 | 				   struct rb_node *node, | 
 | 				   struct rb_node ***p_in, | 
 | 				   struct rb_node **parent_in) | 
 | { | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct tree_entry *entry; | 
 |  | 
 | 	if (p_in && parent_in) { | 
 | 		p = *p_in; | 
 | 		parent = *parent_in; | 
 | 		goto do_insert; | 
 | 	} | 
 |  | 
 | 	p = search_start ? &search_start : &root->rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct tree_entry, rb_node); | 
 |  | 
 | 		if (offset < entry->start) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (offset > entry->end) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return parent; | 
 | 	} | 
 |  | 
 | do_insert: | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, | 
 | 				      struct rb_node **prev_ret, | 
 | 				      struct rb_node **next_ret, | 
 | 				      struct rb_node ***p_ret, | 
 | 				      struct rb_node **parent_ret) | 
 | { | 
 | 	struct rb_root *root = &tree->state; | 
 | 	struct rb_node **n = &root->rb_node; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *orig_prev = NULL; | 
 | 	struct tree_entry *entry; | 
 | 	struct tree_entry *prev_entry = NULL; | 
 |  | 
 | 	while (*n) { | 
 | 		prev = *n; | 
 | 		entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		prev_entry = entry; | 
 |  | 
 | 		if (offset < entry->start) | 
 | 			n = &(*n)->rb_left; | 
 | 		else if (offset > entry->end) | 
 | 			n = &(*n)->rb_right; | 
 | 		else | 
 | 			return *n; | 
 | 	} | 
 |  | 
 | 	if (p_ret) | 
 | 		*p_ret = n; | 
 | 	if (parent_ret) | 
 | 		*parent_ret = prev; | 
 |  | 
 | 	if (prev_ret) { | 
 | 		orig_prev = prev; | 
 | 		while (prev && offset > prev_entry->end) { | 
 | 			prev = rb_next(prev); | 
 | 			prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		} | 
 | 		*prev_ret = prev; | 
 | 		prev = orig_prev; | 
 | 	} | 
 |  | 
 | 	if (next_ret) { | 
 | 		prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		while (prev && offset < prev_entry->start) { | 
 | 			prev = rb_prev(prev); | 
 | 			prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		} | 
 | 		*next_ret = prev; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct rb_node * | 
 | tree_search_for_insert(struct extent_io_tree *tree, | 
 | 		       u64 offset, | 
 | 		       struct rb_node ***p_ret, | 
 | 		       struct rb_node **parent_ret) | 
 | { | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *ret; | 
 |  | 
 | 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); | 
 | 	if (!ret) | 
 | 		return prev; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline struct rb_node *tree_search(struct extent_io_tree *tree, | 
 | 					  u64 offset) | 
 | { | 
 | 	return tree_search_for_insert(tree, offset, NULL, NULL); | 
 | } | 
 |  | 
 | static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, | 
 | 		     struct extent_state *other) | 
 | { | 
 | 	if (tree->ops && tree->ops->merge_extent_hook) | 
 | 		tree->ops->merge_extent_hook(tree->private_data, new, other); | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to look for merge candidates inside a given range. | 
 |  * Any extents with matching state are merged together into a single | 
 |  * extent in the tree.  Extents with EXTENT_IO in their state field | 
 |  * are not merged because the end_io handlers need to be able to do | 
 |  * operations on them without sleeping (or doing allocations/splits). | 
 |  * | 
 |  * This should be called with the tree lock held. | 
 |  */ | 
 | static void merge_state(struct extent_io_tree *tree, | 
 | 		        struct extent_state *state) | 
 | { | 
 | 	struct extent_state *other; | 
 | 	struct rb_node *other_node; | 
 |  | 
 | 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) | 
 | 		return; | 
 |  | 
 | 	other_node = rb_prev(&state->rb_node); | 
 | 	if (other_node) { | 
 | 		other = rb_entry(other_node, struct extent_state, rb_node); | 
 | 		if (other->end == state->start - 1 && | 
 | 		    other->state == state->state) { | 
 | 			merge_cb(tree, state, other); | 
 | 			state->start = other->start; | 
 | 			rb_erase(&other->rb_node, &tree->state); | 
 | 			RB_CLEAR_NODE(&other->rb_node); | 
 | 			free_extent_state(other); | 
 | 		} | 
 | 	} | 
 | 	other_node = rb_next(&state->rb_node); | 
 | 	if (other_node) { | 
 | 		other = rb_entry(other_node, struct extent_state, rb_node); | 
 | 		if (other->start == state->end + 1 && | 
 | 		    other->state == state->state) { | 
 | 			merge_cb(tree, state, other); | 
 | 			state->end = other->end; | 
 | 			rb_erase(&other->rb_node, &tree->state); | 
 | 			RB_CLEAR_NODE(&other->rb_node); | 
 | 			free_extent_state(other); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void set_state_cb(struct extent_io_tree *tree, | 
 | 			 struct extent_state *state, unsigned *bits) | 
 | { | 
 | 	if (tree->ops && tree->ops->set_bit_hook) | 
 | 		tree->ops->set_bit_hook(tree->private_data, state, bits); | 
 | } | 
 |  | 
 | static void clear_state_cb(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, unsigned *bits) | 
 | { | 
 | 	if (tree->ops && tree->ops->clear_bit_hook) | 
 | 		tree->ops->clear_bit_hook(tree->private_data, state, bits); | 
 | } | 
 |  | 
 | static void set_state_bits(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, unsigned *bits, | 
 | 			   struct extent_changeset *changeset); | 
 |  | 
 | /* | 
 |  * insert an extent_state struct into the tree.  'bits' are set on the | 
 |  * struct before it is inserted. | 
 |  * | 
 |  * This may return -EEXIST if the extent is already there, in which case the | 
 |  * state struct is freed. | 
 |  * | 
 |  * The tree lock is not taken internally.  This is a utility function and | 
 |  * probably isn't what you want to call (see set/clear_extent_bit). | 
 |  */ | 
 | static int insert_state(struct extent_io_tree *tree, | 
 | 			struct extent_state *state, u64 start, u64 end, | 
 | 			struct rb_node ***p, | 
 | 			struct rb_node **parent, | 
 | 			unsigned *bits, struct extent_changeset *changeset) | 
 | { | 
 | 	struct rb_node *node; | 
 |  | 
 | 	if (end < start) | 
 | 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", | 
 | 		       end, start); | 
 | 	state->start = start; | 
 | 	state->end = end; | 
 |  | 
 | 	set_state_bits(tree, state, bits, changeset); | 
 |  | 
 | 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); | 
 | 	if (node) { | 
 | 		struct extent_state *found; | 
 | 		found = rb_entry(node, struct extent_state, rb_node); | 
 | 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", | 
 | 		       found->start, found->end, start, end); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	merge_state(tree, state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, | 
 | 		     u64 split) | 
 | { | 
 | 	if (tree->ops && tree->ops->split_extent_hook) | 
 | 		tree->ops->split_extent_hook(tree->private_data, orig, split); | 
 | } | 
 |  | 
 | /* | 
 |  * split a given extent state struct in two, inserting the preallocated | 
 |  * struct 'prealloc' as the newly created second half.  'split' indicates an | 
 |  * offset inside 'orig' where it should be split. | 
 |  * | 
 |  * Before calling, | 
 |  * the tree has 'orig' at [orig->start, orig->end].  After calling, there | 
 |  * are two extent state structs in the tree: | 
 |  * prealloc: [orig->start, split - 1] | 
 |  * orig: [ split, orig->end ] | 
 |  * | 
 |  * The tree locks are not taken by this function. They need to be held | 
 |  * by the caller. | 
 |  */ | 
 | static int split_state(struct extent_io_tree *tree, struct extent_state *orig, | 
 | 		       struct extent_state *prealloc, u64 split) | 
 | { | 
 | 	struct rb_node *node; | 
 |  | 
 | 	split_cb(tree, orig, split); | 
 |  | 
 | 	prealloc->start = orig->start; | 
 | 	prealloc->end = split - 1; | 
 | 	prealloc->state = orig->state; | 
 | 	orig->start = split; | 
 |  | 
 | 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, | 
 | 			   &prealloc->rb_node, NULL, NULL); | 
 | 	if (node) { | 
 | 		free_extent_state(prealloc); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct extent_state *next_state(struct extent_state *state) | 
 | { | 
 | 	struct rb_node *next = rb_next(&state->rb_node); | 
 | 	if (next) | 
 | 		return rb_entry(next, struct extent_state, rb_node); | 
 | 	else | 
 | 		return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to clear some bits in an extent state struct. | 
 |  * it will optionally wake up any one waiting on this state (wake == 1). | 
 |  * | 
 |  * If no bits are set on the state struct after clearing things, the | 
 |  * struct is freed and removed from the tree | 
 |  */ | 
 | static struct extent_state *clear_state_bit(struct extent_io_tree *tree, | 
 | 					    struct extent_state *state, | 
 | 					    unsigned *bits, int wake, | 
 | 					    struct extent_changeset *changeset) | 
 | { | 
 | 	struct extent_state *next; | 
 | 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; | 
 | 	int ret; | 
 |  | 
 | 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { | 
 | 		u64 range = state->end - state->start + 1; | 
 | 		WARN_ON(range > tree->dirty_bytes); | 
 | 		tree->dirty_bytes -= range; | 
 | 	} | 
 | 	clear_state_cb(tree, state, bits); | 
 | 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0); | 
 | 	BUG_ON(ret < 0); | 
 | 	state->state &= ~bits_to_clear; | 
 | 	if (wake) | 
 | 		wake_up(&state->wq); | 
 | 	if (state->state == 0) { | 
 | 		next = next_state(state); | 
 | 		if (extent_state_in_tree(state)) { | 
 | 			rb_erase(&state->rb_node, &tree->state); | 
 | 			RB_CLEAR_NODE(&state->rb_node); | 
 | 			free_extent_state(state); | 
 | 		} else { | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 	} else { | 
 | 		merge_state(tree, state); | 
 | 		next = next_state(state); | 
 | 	} | 
 | 	return next; | 
 | } | 
 |  | 
 | static struct extent_state * | 
 | alloc_extent_state_atomic(struct extent_state *prealloc) | 
 | { | 
 | 	if (!prealloc) | 
 | 		prealloc = alloc_extent_state(GFP_ATOMIC); | 
 |  | 
 | 	return prealloc; | 
 | } | 
 |  | 
 | static void extent_io_tree_panic(struct extent_io_tree *tree, int err) | 
 | { | 
 | 	struct inode *inode = tree->private_data; | 
 |  | 
 | 	btrfs_panic(btrfs_sb(inode->i_sb), err, | 
 | 	"locking error: extent tree was modified by another thread while locked"); | 
 | } | 
 |  | 
 | /* | 
 |  * clear some bits on a range in the tree.  This may require splitting | 
 |  * or inserting elements in the tree, so the gfp mask is used to | 
 |  * indicate which allocations or sleeping are allowed. | 
 |  * | 
 |  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove | 
 |  * the given range from the tree regardless of state (ie for truncate). | 
 |  * | 
 |  * the range [start, end] is inclusive. | 
 |  * | 
 |  * This takes the tree lock, and returns 0 on success and < 0 on error. | 
 |  */ | 
 | int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			      unsigned bits, int wake, int delete, | 
 | 			      struct extent_state **cached_state, | 
 | 			      gfp_t mask, struct extent_changeset *changeset) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *cached; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	u64 last_end; | 
 | 	int err; | 
 | 	int clear = 0; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 |  | 
 | 	if (bits & EXTENT_DELALLOC) | 
 | 		bits |= EXTENT_NORESERVE; | 
 |  | 
 | 	if (delete) | 
 | 		bits |= ~EXTENT_CTLBITS; | 
 | 	bits |= EXTENT_FIRST_DELALLOC; | 
 |  | 
 | 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) | 
 | 		clear = 1; | 
 | again: | 
 | 	if (!prealloc && gfpflags_allow_blocking(mask)) { | 
 | 		/* | 
 | 		 * Don't care for allocation failure here because we might end | 
 | 		 * up not needing the pre-allocated extent state at all, which | 
 | 		 * is the case if we only have in the tree extent states that | 
 | 		 * cover our input range and don't cover too any other range. | 
 | 		 * If we end up needing a new extent state we allocate it later. | 
 | 		 */ | 
 | 		prealloc = alloc_extent_state(mask); | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state) { | 
 | 		cached = *cached_state; | 
 |  | 
 | 		if (clear) { | 
 | 			*cached_state = NULL; | 
 | 			cached_state = NULL; | 
 | 		} | 
 |  | 
 | 		if (cached && extent_state_in_tree(cached) && | 
 | 		    cached->start <= start && cached->end > start) { | 
 | 			if (clear) | 
 | 				refcount_dec(&cached->refs); | 
 | 			state = cached; | 
 | 			goto hit_next; | 
 | 		} | 
 | 		if (clear) | 
 | 			free_extent_state(cached); | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find the extents that end after | 
 | 	 * our range starts | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	if (state->start > end) | 
 | 		goto out; | 
 | 	WARN_ON(state->end < start); | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* the state doesn't have the wanted bits, go ahead */ | 
 | 	if (!(state->state & bits)) { | 
 | 		state = next_state(state); | 
 | 		goto next; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 *  | state | or | 
 | 	 *  | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip | 
 | 	 * bits on second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our range, we | 
 | 	 * just split and search again.  It'll get split again | 
 | 	 * the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we clear | 
 | 	 * the desired bit on it. | 
 | 	 */ | 
 |  | 
 | 	if (state->start < start) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			state = clear_state_bit(tree, state, &bits, wake, | 
 | 						changeset); | 
 | 			goto next; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and clear the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		if (wake) | 
 | 			wake_up(&state->wq); | 
 |  | 
 | 		clear_state_bit(tree, prealloc, &bits, wake, changeset); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	state = clear_state_bit(tree, state, &bits, wake, changeset); | 
 | next: | 
 | 	if (last_end == (u64)-1) | 
 | 		goto out; | 
 | 	start = last_end + 1; | 
 | 	if (start <= end && state && !need_resched()) | 
 | 		goto hit_next; | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (gfpflags_allow_blocking(mask)) | 
 | 		cond_resched(); | 
 | 	goto again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | static void wait_on_state(struct extent_io_tree *tree, | 
 | 			  struct extent_state *state) | 
 | 		__releases(tree->lock) | 
 | 		__acquires(tree->lock) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); | 
 | 	spin_unlock(&tree->lock); | 
 | 	schedule(); | 
 | 	spin_lock(&tree->lock); | 
 | 	finish_wait(&state->wq, &wait); | 
 | } | 
 |  | 
 | /* | 
 |  * waits for one or more bits to clear on a range in the state tree. | 
 |  * The range [start, end] is inclusive. | 
 |  * The tree lock is taken by this function | 
 |  */ | 
 | static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			    unsigned long bits) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | again: | 
 | 	while (1) { | 
 | 		/* | 
 | 		 * this search will find all the extents that end after | 
 | 		 * our range starts | 
 | 		 */ | 
 | 		node = tree_search(tree, start); | 
 | process_node: | 
 | 		if (!node) | 
 | 			break; | 
 |  | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (state->start > end) | 
 | 			goto out; | 
 |  | 
 | 		if (state->state & bits) { | 
 | 			start = state->start; | 
 | 			refcount_inc(&state->refs); | 
 | 			wait_on_state(tree, state); | 
 | 			free_extent_state(state); | 
 | 			goto again; | 
 | 		} | 
 | 		start = state->end + 1; | 
 |  | 
 | 		if (start > end) | 
 | 			break; | 
 |  | 
 | 		if (!cond_resched_lock(&tree->lock)) { | 
 | 			node = rb_next(node); | 
 | 			goto process_node; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | } | 
 |  | 
 | static void set_state_bits(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, | 
 | 			   unsigned *bits, struct extent_changeset *changeset) | 
 | { | 
 | 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; | 
 | 	int ret; | 
 |  | 
 | 	set_state_cb(tree, state, bits); | 
 | 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { | 
 | 		u64 range = state->end - state->start + 1; | 
 | 		tree->dirty_bytes += range; | 
 | 	} | 
 | 	ret = add_extent_changeset(state, bits_to_set, changeset, 1); | 
 | 	BUG_ON(ret < 0); | 
 | 	state->state |= bits_to_set; | 
 | } | 
 |  | 
 | static void cache_state_if_flags(struct extent_state *state, | 
 | 				 struct extent_state **cached_ptr, | 
 | 				 unsigned flags) | 
 | { | 
 | 	if (cached_ptr && !(*cached_ptr)) { | 
 | 		if (!flags || (state->state & flags)) { | 
 | 			*cached_ptr = state; | 
 | 			refcount_inc(&state->refs); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cache_state(struct extent_state *state, | 
 | 			struct extent_state **cached_ptr) | 
 | { | 
 | 	return cache_state_if_flags(state, cached_ptr, | 
 | 				    EXTENT_IOBITS | EXTENT_BOUNDARY); | 
 | } | 
 |  | 
 | /* | 
 |  * set some bits on a range in the tree.  This may require allocations or | 
 |  * sleeping, so the gfp mask is used to indicate what is allowed. | 
 |  * | 
 |  * If any of the exclusive bits are set, this will fail with -EEXIST if some | 
 |  * part of the range already has the desired bits set.  The start of the | 
 |  * existing range is returned in failed_start in this case. | 
 |  * | 
 |  * [start, end] is inclusive This takes the tree lock. | 
 |  */ | 
 |  | 
 | static int __must_check | 
 | __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		 unsigned bits, unsigned exclusive_bits, | 
 | 		 u64 *failed_start, struct extent_state **cached_state, | 
 | 		 gfp_t mask, struct extent_changeset *changeset) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent; | 
 | 	int err = 0; | 
 | 	u64 last_start; | 
 | 	u64 last_end; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 |  | 
 | 	bits |= EXTENT_FIRST_DELALLOC; | 
 | again: | 
 | 	if (!prealloc && gfpflags_allow_blocking(mask)) { | 
 | 		/* | 
 | 		 * Don't care for allocation failure here because we might end | 
 | 		 * up not needing the pre-allocated extent state at all, which | 
 | 		 * is the case if we only have in the tree extent states that | 
 | 		 * cover our input range and don't cover too any other range. | 
 | 		 * If we end up needing a new extent state we allocate it later. | 
 | 		 */ | 
 | 		prealloc = alloc_extent_state(mask); | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->start <= start && state->end > start && | 
 | 		    extent_state_in_tree(state)) { | 
 | 			node = &state->rb_node; | 
 | 			goto hit_next; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search_for_insert(tree, start, &p, &parent); | 
 | 	if (!node) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = insert_state(tree, prealloc, start, end, | 
 | 				   &p, &parent, &bits, changeset); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	last_start = state->start; | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 * | 
 | 	 * Just lock what we found and keep going | 
 | 	 */ | 
 | 	if (state->start == start && state->end <= end) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = state->start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		set_state_bits(tree, state, &bits, changeset); | 
 | 		cache_state(state, cached_state); | 
 | 		merge_state(tree, state); | 
 | 		if (last_end == (u64)-1) | 
 | 			goto out; | 
 | 		start = last_end + 1; | 
 | 		state = next_state(state); | 
 | 		if (start < end && state && state->start == start && | 
 | 		    !need_resched()) | 
 | 			goto hit_next; | 
 | 		goto search_again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 *   or | 
 | 	 * | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip bits on | 
 | 	 * second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our | 
 | 	 * range, we just split and search again.  It'll get split | 
 | 	 * again the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we set the | 
 | 	 * desired bit on it. | 
 | 	 */ | 
 | 	if (state->start < start) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			set_state_bits(tree, state, &bits, changeset); | 
 | 			cache_state(state, cached_state); | 
 | 			merge_state(tree, state); | 
 | 			if (last_end == (u64)-1) | 
 | 				goto out; | 
 | 			start = last_end + 1; | 
 | 			state = next_state(state); | 
 | 			if (start < end && state && state->start == start && | 
 | 			    !need_resched()) | 
 | 				goto hit_next; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *     | state | or               | state | | 
 | 	 * | 
 | 	 * There's a hole, we need to insert something in it and | 
 | 	 * ignore the extent we found. | 
 | 	 */ | 
 | 	if (state->start > start) { | 
 | 		u64 this_end; | 
 | 		if (end < last_start) | 
 | 			this_end = end; | 
 | 		else | 
 | 			this_end = last_start - 1; | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 |  | 
 | 		/* | 
 | 		 * Avoid to free 'prealloc' if it can be merged with | 
 | 		 * the later extent. | 
 | 		 */ | 
 | 		err = insert_state(tree, prealloc, start, this_end, | 
 | 				   NULL, NULL, &bits, changeset); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		start = this_end + 1; | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and set the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		set_state_bits(tree, prealloc, &bits, changeset); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		merge_state(tree, prealloc); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (gfpflags_allow_blocking(mask)) | 
 | 		cond_resched(); | 
 | 	goto again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		   unsigned bits, u64 * failed_start, | 
 | 		   struct extent_state **cached_state, gfp_t mask) | 
 | { | 
 | 	return __set_extent_bit(tree, start, end, bits, 0, failed_start, | 
 | 				cached_state, mask, NULL); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * convert_extent_bit - convert all bits in a given range from one bit to | 
 |  * 			another | 
 |  * @tree:	the io tree to search | 
 |  * @start:	the start offset in bytes | 
 |  * @end:	the end offset in bytes (inclusive) | 
 |  * @bits:	the bits to set in this range | 
 |  * @clear_bits:	the bits to clear in this range | 
 |  * @cached_state:	state that we're going to cache | 
 |  * | 
 |  * This will go through and set bits for the given range.  If any states exist | 
 |  * already in this range they are set with the given bit and cleared of the | 
 |  * clear_bits.  This is only meant to be used by things that are mergeable, ie | 
 |  * converting from say DELALLOC to DIRTY.  This is not meant to be used with | 
 |  * boundary bits like LOCK. | 
 |  * | 
 |  * All allocations are done with GFP_NOFS. | 
 |  */ | 
 | int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		       unsigned bits, unsigned clear_bits, | 
 | 		       struct extent_state **cached_state) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent; | 
 | 	int err = 0; | 
 | 	u64 last_start; | 
 | 	u64 last_end; | 
 | 	bool first_iteration = true; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 |  | 
 | again: | 
 | 	if (!prealloc) { | 
 | 		/* | 
 | 		 * Best effort, don't worry if extent state allocation fails | 
 | 		 * here for the first iteration. We might have a cached state | 
 | 		 * that matches exactly the target range, in which case no | 
 | 		 * extent state allocations are needed. We'll only know this | 
 | 		 * after locking the tree. | 
 | 		 */ | 
 | 		prealloc = alloc_extent_state(GFP_NOFS); | 
 | 		if (!prealloc && !first_iteration) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->start <= start && state->end > start && | 
 | 		    extent_state_in_tree(state)) { | 
 | 			node = &state->rb_node; | 
 | 			goto hit_next; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search_for_insert(tree, start, &p, &parent); | 
 | 	if (!node) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		err = insert_state(tree, prealloc, start, end, | 
 | 				   &p, &parent, &bits, NULL); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	last_start = state->start; | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 * | 
 | 	 * Just lock what we found and keep going | 
 | 	 */ | 
 | 	if (state->start == start && state->end <= end) { | 
 | 		set_state_bits(tree, state, &bits, NULL); | 
 | 		cache_state(state, cached_state); | 
 | 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL); | 
 | 		if (last_end == (u64)-1) | 
 | 			goto out; | 
 | 		start = last_end + 1; | 
 | 		if (start < end && state && state->start == start && | 
 | 		    !need_resched()) | 
 | 			goto hit_next; | 
 | 		goto search_again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 *   or | 
 | 	 * | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip bits on | 
 | 	 * second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our | 
 | 	 * range, we just split and search again.  It'll get split | 
 | 	 * again the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we set the | 
 | 	 * desired bit on it. | 
 | 	 */ | 
 | 	if (state->start < start) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			set_state_bits(tree, state, &bits, NULL); | 
 | 			cache_state(state, cached_state); | 
 | 			state = clear_state_bit(tree, state, &clear_bits, 0, | 
 | 						NULL); | 
 | 			if (last_end == (u64)-1) | 
 | 				goto out; | 
 | 			start = last_end + 1; | 
 | 			if (start < end && state && state->start == start && | 
 | 			    !need_resched()) | 
 | 				goto hit_next; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *     | state | or               | state | | 
 | 	 * | 
 | 	 * There's a hole, we need to insert something in it and | 
 | 	 * ignore the extent we found. | 
 | 	 */ | 
 | 	if (state->start > start) { | 
 | 		u64 this_end; | 
 | 		if (end < last_start) | 
 | 			this_end = end; | 
 | 		else | 
 | 			this_end = last_start - 1; | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Avoid to free 'prealloc' if it can be merged with | 
 | 		 * the later extent. | 
 | 		 */ | 
 | 		err = insert_state(tree, prealloc, start, this_end, | 
 | 				   NULL, NULL, &bits, NULL); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		start = this_end + 1; | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and set the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		set_state_bits(tree, prealloc, &bits, NULL); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	cond_resched(); | 
 | 	first_iteration = false; | 
 | 	goto again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* wrappers around set/clear extent bit */ | 
 | int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			   unsigned bits, struct extent_changeset *changeset) | 
 | { | 
 | 	/* | 
 | 	 * We don't support EXTENT_LOCKED yet, as current changeset will | 
 | 	 * record any bits changed, so for EXTENT_LOCKED case, it will | 
 | 	 * either fail with -EEXIST or changeset will record the whole | 
 | 	 * range. | 
 | 	 */ | 
 | 	BUG_ON(bits & EXTENT_LOCKED); | 
 |  | 
 | 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, | 
 | 				changeset); | 
 | } | 
 |  | 
 | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     unsigned bits, int wake, int delete, | 
 | 		     struct extent_state **cached) | 
 | { | 
 | 	return __clear_extent_bit(tree, start, end, bits, wake, delete, | 
 | 				  cached, GFP_NOFS, NULL); | 
 | } | 
 |  | 
 | int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		unsigned bits, struct extent_changeset *changeset) | 
 | { | 
 | 	/* | 
 | 	 * Don't support EXTENT_LOCKED case, same reason as | 
 | 	 * set_record_extent_bits(). | 
 | 	 */ | 
 | 	BUG_ON(bits & EXTENT_LOCKED); | 
 |  | 
 | 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, | 
 | 				  changeset); | 
 | } | 
 |  | 
 | /* | 
 |  * either insert or lock state struct between start and end use mask to tell | 
 |  * us if waiting is desired. | 
 |  */ | 
 | int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     struct extent_state **cached_state) | 
 | { | 
 | 	int err; | 
 | 	u64 failed_start; | 
 |  | 
 | 	while (1) { | 
 | 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, | 
 | 				       EXTENT_LOCKED, &failed_start, | 
 | 				       cached_state, GFP_NOFS, NULL); | 
 | 		if (err == -EEXIST) { | 
 | 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); | 
 | 			start = failed_start; | 
 | 		} else | 
 | 			break; | 
 | 		WARN_ON(start > end); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	int err; | 
 | 	u64 failed_start; | 
 |  | 
 | 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, | 
 | 			       &failed_start, NULL, GFP_NOFS, NULL); | 
 | 	if (err == -EEXIST) { | 
 | 		if (failed_start > start) | 
 | 			clear_extent_bit(tree, start, failed_start - 1, | 
 | 					 EXTENT_LOCKED, 1, 0, NULL); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
 | 		clear_page_dirty_for_io(page); | 
 | 		put_page(page); | 
 | 		index++; | 
 | 	} | 
 | } | 
 |  | 
 | void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
 | 		__set_page_dirty_nobuffers(page); | 
 | 		account_page_redirty(page); | 
 | 		put_page(page); | 
 | 		index++; | 
 | 	} | 
 | } | 
 |  | 
 | /* find the first state struct with 'bits' set after 'start', and | 
 |  * return it.  tree->lock must be held.  NULL will returned if | 
 |  * nothing was found after 'start' | 
 |  */ | 
 | static struct extent_state * | 
 | find_first_extent_bit_state(struct extent_io_tree *tree, | 
 | 			    u64 start, unsigned bits) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->end >= start && (state->state & bits)) | 
 | 			return state; | 
 |  | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find the first offset in the io tree with 'bits' set. zero is | 
 |  * returned if we find something, and *start_ret and *end_ret are | 
 |  * set to reflect the state struct that was found. | 
 |  * | 
 |  * If nothing was found, 1 is returned. If found something, return 0. | 
 |  */ | 
 | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, | 
 | 			  u64 *start_ret, u64 *end_ret, unsigned bits, | 
 | 			  struct extent_state **cached_state) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct rb_node *n; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->end == start - 1 && extent_state_in_tree(state)) { | 
 | 			n = rb_next(&state->rb_node); | 
 | 			while (n) { | 
 | 				state = rb_entry(n, struct extent_state, | 
 | 						 rb_node); | 
 | 				if (state->state & bits) | 
 | 					goto got_it; | 
 | 				n = rb_next(n); | 
 | 			} | 
 | 			free_extent_state(*cached_state); | 
 | 			*cached_state = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		free_extent_state(*cached_state); | 
 | 		*cached_state = NULL; | 
 | 	} | 
 |  | 
 | 	state = find_first_extent_bit_state(tree, start, bits); | 
 | got_it: | 
 | 	if (state) { | 
 | 		cache_state_if_flags(state, cached_state, 0); | 
 | 		*start_ret = state->start; | 
 | 		*end_ret = state->end; | 
 | 		ret = 0; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * find a contiguous range of bytes in the file marked as delalloc, not | 
 |  * more than 'max_bytes'.  start and end are used to return the range, | 
 |  * | 
 |  * 1 is returned if we find something, 0 if nothing was in the tree | 
 |  */ | 
 | static noinline u64 find_delalloc_range(struct extent_io_tree *tree, | 
 | 					u64 *start, u64 *end, u64 max_bytes, | 
 | 					struct extent_state **cached_state) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	u64 cur_start = *start; | 
 | 	u64 found = 0; | 
 | 	u64 total_bytes = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, cur_start); | 
 | 	if (!node) { | 
 | 		if (!found) | 
 | 			*end = (u64)-1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (found && (state->start != cur_start || | 
 | 			      (state->state & EXTENT_BOUNDARY))) { | 
 | 			goto out; | 
 | 		} | 
 | 		if (!(state->state & EXTENT_DELALLOC)) { | 
 | 			if (!found) | 
 | 				*end = state->end; | 
 | 			goto out; | 
 | 		} | 
 | 		if (!found) { | 
 | 			*start = state->start; | 
 | 			*cached_state = state; | 
 | 			refcount_inc(&state->refs); | 
 | 		} | 
 | 		found++; | 
 | 		*end = state->end; | 
 | 		cur_start = state->end + 1; | 
 | 		node = rb_next(node); | 
 | 		total_bytes += state->end - state->start + 1; | 
 | 		if (total_bytes >= max_bytes) | 
 | 			break; | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return found; | 
 | } | 
 |  | 
 | static int __process_pages_contig(struct address_space *mapping, | 
 | 				  struct page *locked_page, | 
 | 				  pgoff_t start_index, pgoff_t end_index, | 
 | 				  unsigned long page_ops, pgoff_t *index_ret); | 
 |  | 
 | static noinline void __unlock_for_delalloc(struct inode *inode, | 
 | 					   struct page *locked_page, | 
 | 					   u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 |  | 
 | 	ASSERT(locked_page); | 
 | 	if (index == locked_page->index && end_index == index) | 
 | 		return; | 
 |  | 
 | 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index, | 
 | 			       PAGE_UNLOCK, NULL); | 
 | } | 
 |  | 
 | static noinline int lock_delalloc_pages(struct inode *inode, | 
 | 					struct page *locked_page, | 
 | 					u64 delalloc_start, | 
 | 					u64 delalloc_end) | 
 | { | 
 | 	unsigned long index = delalloc_start >> PAGE_SHIFT; | 
 | 	unsigned long index_ret = index; | 
 | 	unsigned long end_index = delalloc_end >> PAGE_SHIFT; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(locked_page); | 
 | 	if (index == locked_page->index && index == end_index) | 
 | 		return 0; | 
 |  | 
 | 	ret = __process_pages_contig(inode->i_mapping, locked_page, index, | 
 | 				     end_index, PAGE_LOCK, &index_ret); | 
 | 	if (ret == -EAGAIN) | 
 | 		__unlock_for_delalloc(inode, locked_page, delalloc_start, | 
 | 				      (u64)index_ret << PAGE_SHIFT); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * find a contiguous range of bytes in the file marked as delalloc, not | 
 |  * more than 'max_bytes'.  start and end are used to return the range, | 
 |  * | 
 |  * 1 is returned if we find something, 0 if nothing was in the tree | 
 |  */ | 
 | STATIC u64 find_lock_delalloc_range(struct inode *inode, | 
 | 				    struct extent_io_tree *tree, | 
 | 				    struct page *locked_page, u64 *start, | 
 | 				    u64 *end, u64 max_bytes) | 
 | { | 
 | 	u64 delalloc_start; | 
 | 	u64 delalloc_end; | 
 | 	u64 found; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret; | 
 | 	int loops = 0; | 
 |  | 
 | again: | 
 | 	/* step one, find a bunch of delalloc bytes starting at start */ | 
 | 	delalloc_start = *start; | 
 | 	delalloc_end = 0; | 
 | 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, | 
 | 				    max_bytes, &cached_state); | 
 | 	if (!found || delalloc_end <= *start) { | 
 | 		*start = delalloc_start; | 
 | 		*end = delalloc_end; | 
 | 		free_extent_state(cached_state); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * start comes from the offset of locked_page.  We have to lock | 
 | 	 * pages in order, so we can't process delalloc bytes before | 
 | 	 * locked_page | 
 | 	 */ | 
 | 	if (delalloc_start < *start) | 
 | 		delalloc_start = *start; | 
 |  | 
 | 	/* | 
 | 	 * make sure to limit the number of pages we try to lock down | 
 | 	 */ | 
 | 	if (delalloc_end + 1 - delalloc_start > max_bytes) | 
 | 		delalloc_end = delalloc_start + max_bytes - 1; | 
 |  | 
 | 	/* step two, lock all the pages after the page that has start */ | 
 | 	ret = lock_delalloc_pages(inode, locked_page, | 
 | 				  delalloc_start, delalloc_end); | 
 | 	if (ret == -EAGAIN) { | 
 | 		/* some of the pages are gone, lets avoid looping by | 
 | 		 * shortening the size of the delalloc range we're searching | 
 | 		 */ | 
 | 		free_extent_state(cached_state); | 
 | 		cached_state = NULL; | 
 | 		if (!loops) { | 
 | 			max_bytes = PAGE_SIZE; | 
 | 			loops = 1; | 
 | 			goto again; | 
 | 		} else { | 
 | 			found = 0; | 
 | 			goto out_failed; | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ | 
 |  | 
 | 	/* step three, lock the state bits for the whole range */ | 
 | 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); | 
 |  | 
 | 	/* then test to make sure it is all still delalloc */ | 
 | 	ret = test_range_bit(tree, delalloc_start, delalloc_end, | 
 | 			     EXTENT_DELALLOC, 1, cached_state); | 
 | 	if (!ret) { | 
 | 		unlock_extent_cached(tree, delalloc_start, delalloc_end, | 
 | 				     &cached_state); | 
 | 		__unlock_for_delalloc(inode, locked_page, | 
 | 			      delalloc_start, delalloc_end); | 
 | 		cond_resched(); | 
 | 		goto again; | 
 | 	} | 
 | 	free_extent_state(cached_state); | 
 | 	*start = delalloc_start; | 
 | 	*end = delalloc_end; | 
 | out_failed: | 
 | 	return found; | 
 | } | 
 |  | 
 | static int __process_pages_contig(struct address_space *mapping, | 
 | 				  struct page *locked_page, | 
 | 				  pgoff_t start_index, pgoff_t end_index, | 
 | 				  unsigned long page_ops, pgoff_t *index_ret) | 
 | { | 
 | 	unsigned long nr_pages = end_index - start_index + 1; | 
 | 	unsigned long pages_locked = 0; | 
 | 	pgoff_t index = start_index; | 
 | 	struct page *pages[16]; | 
 | 	unsigned ret; | 
 | 	int err = 0; | 
 | 	int i; | 
 |  | 
 | 	if (page_ops & PAGE_LOCK) { | 
 | 		ASSERT(page_ops == PAGE_LOCK); | 
 | 		ASSERT(index_ret && *index_ret == start_index); | 
 | 	} | 
 |  | 
 | 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) | 
 | 		mapping_set_error(mapping, -EIO); | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		ret = find_get_pages_contig(mapping, index, | 
 | 				     min_t(unsigned long, | 
 | 				     nr_pages, ARRAY_SIZE(pages)), pages); | 
 | 		if (ret == 0) { | 
 | 			/* | 
 | 			 * Only if we're going to lock these pages, | 
 | 			 * can we find nothing at @index. | 
 | 			 */ | 
 | 			ASSERT(page_ops & PAGE_LOCK); | 
 | 			err = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			if (page_ops & PAGE_SET_PRIVATE2) | 
 | 				SetPagePrivate2(pages[i]); | 
 |  | 
 | 			if (pages[i] == locked_page) { | 
 | 				put_page(pages[i]); | 
 | 				pages_locked++; | 
 | 				continue; | 
 | 			} | 
 | 			if (page_ops & PAGE_CLEAR_DIRTY) | 
 | 				clear_page_dirty_for_io(pages[i]); | 
 | 			if (page_ops & PAGE_SET_WRITEBACK) | 
 | 				set_page_writeback(pages[i]); | 
 | 			if (page_ops & PAGE_SET_ERROR) | 
 | 				SetPageError(pages[i]); | 
 | 			if (page_ops & PAGE_END_WRITEBACK) | 
 | 				end_page_writeback(pages[i]); | 
 | 			if (page_ops & PAGE_UNLOCK) | 
 | 				unlock_page(pages[i]); | 
 | 			if (page_ops & PAGE_LOCK) { | 
 | 				lock_page(pages[i]); | 
 | 				if (!PageDirty(pages[i]) || | 
 | 				    pages[i]->mapping != mapping) { | 
 | 					unlock_page(pages[i]); | 
 | 					put_page(pages[i]); | 
 | 					err = -EAGAIN; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 | 			put_page(pages[i]); | 
 | 			pages_locked++; | 
 | 		} | 
 | 		nr_pages -= ret; | 
 | 		index += ret; | 
 | 		cond_resched(); | 
 | 	} | 
 | out: | 
 | 	if (err && index_ret) | 
 | 		*index_ret = start_index + pages_locked - 1; | 
 | 	return err; | 
 | } | 
 |  | 
 | void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, | 
 | 				 u64 delalloc_end, struct page *locked_page, | 
 | 				 unsigned clear_bits, | 
 | 				 unsigned long page_ops) | 
 | { | 
 | 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, | 
 | 			 NULL); | 
 |  | 
 | 	__process_pages_contig(inode->i_mapping, locked_page, | 
 | 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT, | 
 | 			       page_ops, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * count the number of bytes in the tree that have a given bit(s) | 
 |  * set.  This can be fairly slow, except for EXTENT_DIRTY which is | 
 |  * cached.  The total number found is returned. | 
 |  */ | 
 | u64 count_range_bits(struct extent_io_tree *tree, | 
 | 		     u64 *start, u64 search_end, u64 max_bytes, | 
 | 		     unsigned bits, int contig) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	u64 cur_start = *start; | 
 | 	u64 total_bytes = 0; | 
 | 	u64 last = 0; | 
 | 	int found = 0; | 
 |  | 
 | 	if (WARN_ON(search_end <= cur_start)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cur_start == 0 && bits == EXTENT_DIRTY) { | 
 | 		total_bytes = tree->dirty_bytes; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, cur_start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->start > search_end) | 
 | 			break; | 
 | 		if (contig && found && state->start > last + 1) | 
 | 			break; | 
 | 		if (state->end >= cur_start && (state->state & bits) == bits) { | 
 | 			total_bytes += min(search_end, state->end) + 1 - | 
 | 				       max(cur_start, state->start); | 
 | 			if (total_bytes >= max_bytes) | 
 | 				break; | 
 | 			if (!found) { | 
 | 				*start = max(cur_start, state->start); | 
 | 				found = 1; | 
 | 			} | 
 | 			last = state->end; | 
 | 		} else if (contig && found) { | 
 | 			break; | 
 | 		} | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return total_bytes; | 
 | } | 
 |  | 
 | /* | 
 |  * set the private field for a given byte offset in the tree.  If there isn't | 
 |  * an extent_state there already, this does nothing. | 
 |  */ | 
 | static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, | 
 | 		struct io_failure_record *failrec) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | 	if (state->start != start) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state->failrec = failrec; | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, | 
 | 		struct io_failure_record **failrec) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | 	if (state->start != start) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	*failrec = state->failrec; | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * searches a range in the state tree for a given mask. | 
 |  * If 'filled' == 1, this returns 1 only if every extent in the tree | 
 |  * has the bits set.  Otherwise, 1 is returned if any bit in the | 
 |  * range is found set. | 
 |  */ | 
 | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		   unsigned bits, int filled, struct extent_state *cached) | 
 | { | 
 | 	struct extent_state *state = NULL; | 
 | 	struct rb_node *node; | 
 | 	int bitset = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached && extent_state_in_tree(cached) && cached->start <= start && | 
 | 	    cached->end > start) | 
 | 		node = &cached->rb_node; | 
 | 	else | 
 | 		node = tree_search(tree, start); | 
 | 	while (node && start <= end) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (filled && state->start > start) { | 
 | 			bitset = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (state->start > end) | 
 | 			break; | 
 |  | 
 | 		if (state->state & bits) { | 
 | 			bitset = 1; | 
 | 			if (!filled) | 
 | 				break; | 
 | 		} else if (filled) { | 
 | 			bitset = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (state->end == (u64)-1) | 
 | 			break; | 
 |  | 
 | 		start = state->end + 1; | 
 | 		if (start > end) | 
 | 			break; | 
 | 		node = rb_next(node); | 
 | 		if (!node) { | 
 | 			if (filled) | 
 | 				bitset = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&tree->lock); | 
 | 	return bitset; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to set a given page up to date if all the | 
 |  * extents in the tree for that page are up to date | 
 |  */ | 
 | static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) | 
 | { | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) | 
 | 		SetPageUptodate(page); | 
 | } | 
 |  | 
 | int free_io_failure(struct extent_io_tree *failure_tree, | 
 | 		    struct extent_io_tree *io_tree, | 
 | 		    struct io_failure_record *rec) | 
 | { | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	set_state_failrec(failure_tree, rec->start, NULL); | 
 | 	ret = clear_extent_bits(failure_tree, rec->start, | 
 | 				rec->start + rec->len - 1, | 
 | 				EXTENT_LOCKED | EXTENT_DIRTY); | 
 | 	if (ret) | 
 | 		err = ret; | 
 |  | 
 | 	ret = clear_extent_bits(io_tree, rec->start, | 
 | 				rec->start + rec->len - 1, | 
 | 				EXTENT_DAMAGED); | 
 | 	if (ret && !err) | 
 | 		err = ret; | 
 |  | 
 | 	kfree(rec); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * this bypasses the standard btrfs submit functions deliberately, as | 
 |  * the standard behavior is to write all copies in a raid setup. here we only | 
 |  * want to write the one bad copy. so we do the mapping for ourselves and issue | 
 |  * submit_bio directly. | 
 |  * to avoid any synchronization issues, wait for the data after writing, which | 
 |  * actually prevents the read that triggered the error from finishing. | 
 |  * currently, there can be no more than two copies of every data bit. thus, | 
 |  * exactly one rewrite is required. | 
 |  */ | 
 | int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, | 
 | 		      u64 length, u64 logical, struct page *page, | 
 | 		      unsigned int pg_offset, int mirror_num) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct btrfs_device *dev; | 
 | 	u64 map_length = 0; | 
 | 	u64 sector; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); | 
 | 	BUG_ON(!mirror_num); | 
 |  | 
 | 	bio = btrfs_io_bio_alloc(1); | 
 | 	bio->bi_iter.bi_size = 0; | 
 | 	map_length = length; | 
 |  | 
 | 	/* | 
 | 	 * Avoid races with device replace and make sure our bbio has devices | 
 | 	 * associated to its stripes that don't go away while we are doing the | 
 | 	 * read repair operation. | 
 | 	 */ | 
 | 	btrfs_bio_counter_inc_blocked(fs_info); | 
 | 	if (btrfs_is_parity_mirror(fs_info, logical, length)) { | 
 | 		/* | 
 | 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed | 
 | 		 * to update all raid stripes, but here we just want to correct | 
 | 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad | 
 | 		 * stripe's dev and sector. | 
 | 		 */ | 
 | 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, | 
 | 				      &map_length, &bbio, 0); | 
 | 		if (ret) { | 
 | 			btrfs_bio_counter_dec(fs_info); | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		ASSERT(bbio->mirror_num == 1); | 
 | 	} else { | 
 | 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, | 
 | 				      &map_length, &bbio, mirror_num); | 
 | 		if (ret) { | 
 | 			btrfs_bio_counter_dec(fs_info); | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		BUG_ON(mirror_num != bbio->mirror_num); | 
 | 	} | 
 |  | 
 | 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; | 
 | 	bio->bi_iter.bi_sector = sector; | 
 | 	dev = bbio->stripes[bbio->mirror_num - 1].dev; | 
 | 	btrfs_put_bbio(bbio); | 
 | 	if (!dev || !dev->bdev || | 
 | 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { | 
 | 		btrfs_bio_counter_dec(fs_info); | 
 | 		bio_put(bio); | 
 | 		return -EIO; | 
 | 	} | 
 | 	bio_set_dev(bio, dev->bdev); | 
 | 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; | 
 | 	bio_add_page(bio, page, length, pg_offset); | 
 |  | 
 | 	if (btrfsic_submit_bio_wait(bio)) { | 
 | 		/* try to remap that extent elsewhere? */ | 
 | 		btrfs_bio_counter_dec(fs_info); | 
 | 		bio_put(bio); | 
 | 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	btrfs_info_rl_in_rcu(fs_info, | 
 | 		"read error corrected: ino %llu off %llu (dev %s sector %llu)", | 
 | 				  ino, start, | 
 | 				  rcu_str_deref(dev->name), sector); | 
 | 	btrfs_bio_counter_dec(fs_info); | 
 | 	bio_put(bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int repair_eb_io_failure(struct btrfs_fs_info *fs_info, | 
 | 			 struct extent_buffer *eb, int mirror_num) | 
 | { | 
 | 	u64 start = eb->start; | 
 | 	int i, num_pages = num_extent_pages(eb); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sb_rdonly(fs_info->sb)) | 
 | 		return -EROFS; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, | 
 | 					start - page_offset(p), mirror_num); | 
 | 		if (ret) | 
 | 			break; | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * each time an IO finishes, we do a fast check in the IO failure tree | 
 |  * to see if we need to process or clean up an io_failure_record | 
 |  */ | 
 | int clean_io_failure(struct btrfs_fs_info *fs_info, | 
 | 		     struct extent_io_tree *failure_tree, | 
 | 		     struct extent_io_tree *io_tree, u64 start, | 
 | 		     struct page *page, u64 ino, unsigned int pg_offset) | 
 | { | 
 | 	u64 private; | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_state *state; | 
 | 	int num_copies; | 
 | 	int ret; | 
 |  | 
 | 	private = 0; | 
 | 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1, | 
 | 			       EXTENT_DIRTY, 0); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	ret = get_state_failrec(failure_tree, start, &failrec); | 
 | 	if (ret) | 
 | 		return 0; | 
 |  | 
 | 	BUG_ON(!failrec->this_mirror); | 
 |  | 
 | 	if (failrec->in_validation) { | 
 | 		/* there was no real error, just free the record */ | 
 | 		btrfs_debug(fs_info, | 
 | 			"clean_io_failure: freeing dummy error at %llu", | 
 | 			failrec->start); | 
 | 		goto out; | 
 | 	} | 
 | 	if (sb_rdonly(fs_info->sb)) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&io_tree->lock); | 
 | 	state = find_first_extent_bit_state(io_tree, | 
 | 					    failrec->start, | 
 | 					    EXTENT_LOCKED); | 
 | 	spin_unlock(&io_tree->lock); | 
 |  | 
 | 	if (state && state->start <= failrec->start && | 
 | 	    state->end >= failrec->start + failrec->len - 1) { | 
 | 		num_copies = btrfs_num_copies(fs_info, failrec->logical, | 
 | 					      failrec->len); | 
 | 		if (num_copies > 1)  { | 
 | 			repair_io_failure(fs_info, ino, start, failrec->len, | 
 | 					  failrec->logical, page, pg_offset, | 
 | 					  failrec->failed_mirror); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	free_io_failure(failure_tree, io_tree, failrec); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Can be called when | 
 |  * - hold extent lock | 
 |  * - under ordered extent | 
 |  * - the inode is freeing | 
 |  */ | 
 | void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) | 
 | { | 
 | 	struct extent_io_tree *failure_tree = &inode->io_failure_tree; | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_state *state, *next; | 
 |  | 
 | 	if (RB_EMPTY_ROOT(&failure_tree->state)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&failure_tree->lock); | 
 | 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); | 
 | 	while (state) { | 
 | 		if (state->start > end) | 
 | 			break; | 
 |  | 
 | 		ASSERT(state->end <= end); | 
 |  | 
 | 		next = next_state(state); | 
 |  | 
 | 		failrec = state->failrec; | 
 | 		free_extent_state(state); | 
 | 		kfree(failrec); | 
 |  | 
 | 		state = next; | 
 | 	} | 
 | 	spin_unlock(&failure_tree->lock); | 
 | } | 
 |  | 
 | int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, | 
 | 		struct io_failure_record **failrec_ret) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_map *em; | 
 | 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	int ret; | 
 | 	u64 logical; | 
 |  | 
 | 	ret = get_state_failrec(failure_tree, start, &failrec); | 
 | 	if (ret) { | 
 | 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS); | 
 | 		if (!failrec) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		failrec->start = start; | 
 | 		failrec->len = end - start + 1; | 
 | 		failrec->this_mirror = 0; | 
 | 		failrec->bio_flags = 0; | 
 | 		failrec->in_validation = 0; | 
 |  | 
 | 		read_lock(&em_tree->lock); | 
 | 		em = lookup_extent_mapping(em_tree, start, failrec->len); | 
 | 		if (!em) { | 
 | 			read_unlock(&em_tree->lock); | 
 | 			kfree(failrec); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		if (em->start > start || em->start + em->len <= start) { | 
 | 			free_extent_map(em); | 
 | 			em = NULL; | 
 | 		} | 
 | 		read_unlock(&em_tree->lock); | 
 | 		if (!em) { | 
 | 			kfree(failrec); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		logical = start - em->start; | 
 | 		logical = em->block_start + logical; | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
 | 			logical = em->block_start; | 
 | 			failrec->bio_flags = EXTENT_BIO_COMPRESSED; | 
 | 			extent_set_compress_type(&failrec->bio_flags, | 
 | 						 em->compress_type); | 
 | 		} | 
 |  | 
 | 		btrfs_debug(fs_info, | 
 | 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", | 
 | 			logical, start, failrec->len); | 
 |  | 
 | 		failrec->logical = logical; | 
 | 		free_extent_map(em); | 
 |  | 
 | 		/* set the bits in the private failure tree */ | 
 | 		ret = set_extent_bits(failure_tree, start, end, | 
 | 					EXTENT_LOCKED | EXTENT_DIRTY); | 
 | 		if (ret >= 0) | 
 | 			ret = set_state_failrec(failure_tree, start, failrec); | 
 | 		/* set the bits in the inode's tree */ | 
 | 		if (ret >= 0) | 
 | 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); | 
 | 		if (ret < 0) { | 
 | 			kfree(failrec); | 
 | 			return ret; | 
 | 		} | 
 | 	} else { | 
 | 		btrfs_debug(fs_info, | 
 | 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", | 
 | 			failrec->logical, failrec->start, failrec->len, | 
 | 			failrec->in_validation); | 
 | 		/* | 
 | 		 * when data can be on disk more than twice, add to failrec here | 
 | 		 * (e.g. with a list for failed_mirror) to make | 
 | 		 * clean_io_failure() clean all those errors at once. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	*failrec_ret = failrec; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, | 
 | 			   struct io_failure_record *failrec, int failed_mirror) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	int num_copies; | 
 |  | 
 | 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); | 
 | 	if (num_copies == 1) { | 
 | 		/* | 
 | 		 * we only have a single copy of the data, so don't bother with | 
 | 		 * all the retry and error correction code that follows. no | 
 | 		 * matter what the error is, it is very likely to persist. | 
 | 		 */ | 
 | 		btrfs_debug(fs_info, | 
 | 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", | 
 | 			num_copies, failrec->this_mirror, failed_mirror); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * there are two premises: | 
 | 	 *	a) deliver good data to the caller | 
 | 	 *	b) correct the bad sectors on disk | 
 | 	 */ | 
 | 	if (failed_bio_pages > 1) { | 
 | 		/* | 
 | 		 * to fulfill b), we need to know the exact failing sectors, as | 
 | 		 * we don't want to rewrite any more than the failed ones. thus, | 
 | 		 * we need separate read requests for the failed bio | 
 | 		 * | 
 | 		 * if the following BUG_ON triggers, our validation request got | 
 | 		 * merged. we need separate requests for our algorithm to work. | 
 | 		 */ | 
 | 		BUG_ON(failrec->in_validation); | 
 | 		failrec->in_validation = 1; | 
 | 		failrec->this_mirror = failed_mirror; | 
 | 	} else { | 
 | 		/* | 
 | 		 * we're ready to fulfill a) and b) alongside. get a good copy | 
 | 		 * of the failed sector and if we succeed, we have setup | 
 | 		 * everything for repair_io_failure to do the rest for us. | 
 | 		 */ | 
 | 		if (failrec->in_validation) { | 
 | 			BUG_ON(failrec->this_mirror != failed_mirror); | 
 | 			failrec->in_validation = 0; | 
 | 			failrec->this_mirror = 0; | 
 | 		} | 
 | 		failrec->failed_mirror = failed_mirror; | 
 | 		failrec->this_mirror++; | 
 | 		if (failrec->this_mirror == failed_mirror) | 
 | 			failrec->this_mirror++; | 
 | 	} | 
 |  | 
 | 	if (failrec->this_mirror > num_copies) { | 
 | 		btrfs_debug(fs_info, | 
 | 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", | 
 | 			num_copies, failrec->this_mirror, failed_mirror); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 |  | 
 | struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, | 
 | 				    struct io_failure_record *failrec, | 
 | 				    struct page *page, int pg_offset, int icsum, | 
 | 				    bio_end_io_t *endio_func, void *data) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct bio *bio; | 
 | 	struct btrfs_io_bio *btrfs_failed_bio; | 
 | 	struct btrfs_io_bio *btrfs_bio; | 
 |  | 
 | 	bio = btrfs_io_bio_alloc(1); | 
 | 	bio->bi_end_io = endio_func; | 
 | 	bio->bi_iter.bi_sector = failrec->logical >> 9; | 
 | 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev); | 
 | 	bio->bi_iter.bi_size = 0; | 
 | 	bio->bi_private = data; | 
 |  | 
 | 	btrfs_failed_bio = btrfs_io_bio(failed_bio); | 
 | 	if (btrfs_failed_bio->csum) { | 
 | 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 |  | 
 | 		btrfs_bio = btrfs_io_bio(bio); | 
 | 		btrfs_bio->csum = btrfs_bio->csum_inline; | 
 | 		icsum *= csum_size; | 
 | 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, | 
 | 		       csum_size); | 
 | 	} | 
 |  | 
 | 	bio_add_page(bio, page, failrec->len, pg_offset); | 
 |  | 
 | 	return bio; | 
 | } | 
 |  | 
 | /* | 
 |  * this is a generic handler for readpage errors (default | 
 |  * readpage_io_failed_hook). if other copies exist, read those and write back | 
 |  * good data to the failed position. does not investigate in remapping the | 
 |  * failed extent elsewhere, hoping the device will be smart enough to do this as | 
 |  * needed | 
 |  */ | 
 |  | 
 | static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, | 
 | 			      struct page *page, u64 start, u64 end, | 
 | 			      int failed_mirror) | 
 | { | 
 | 	struct io_failure_record *failrec; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 | 	struct bio *bio; | 
 | 	int read_mode = 0; | 
 | 	blk_status_t status; | 
 | 	int ret; | 
 | 	unsigned failed_bio_pages = bio_pages_all(failed_bio); | 
 |  | 
 | 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); | 
 |  | 
 | 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, | 
 | 				    failed_mirror)) { | 
 | 		free_io_failure(failure_tree, tree, failrec); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (failed_bio_pages > 1) | 
 | 		read_mode |= REQ_FAILFAST_DEV; | 
 |  | 
 | 	phy_offset >>= inode->i_sb->s_blocksize_bits; | 
 | 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, | 
 | 				      start - page_offset(page), | 
 | 				      (int)phy_offset, failed_bio->bi_end_io, | 
 | 				      NULL); | 
 | 	bio->bi_opf = REQ_OP_READ | read_mode; | 
 |  | 
 | 	btrfs_debug(btrfs_sb(inode->i_sb), | 
 | 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", | 
 | 		read_mode, failrec->this_mirror, failrec->in_validation); | 
 |  | 
 | 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, | 
 | 					 failrec->bio_flags, 0); | 
 | 	if (status) { | 
 | 		free_io_failure(failure_tree, tree, failrec); | 
 | 		bio_put(bio); | 
 | 		ret = blk_status_to_errno(status); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* lots and lots of room for performance fixes in the end_bio funcs */ | 
 |  | 
 | void end_extent_writepage(struct page *page, int err, u64 start, u64 end) | 
 | { | 
 | 	int uptodate = (err == 0); | 
 | 	struct extent_io_tree *tree; | 
 | 	int ret = 0; | 
 |  | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 |  | 
 | 	if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 		tree->ops->writepage_end_io_hook(page, start, end, NULL, | 
 | 				uptodate); | 
 |  | 
 | 	if (!uptodate) { | 
 | 		ClearPageUptodate(page); | 
 | 		SetPageError(page); | 
 | 		ret = err < 0 ? err : -EIO; | 
 | 		mapping_set_error(page->mapping, ret); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * after a writepage IO is done, we need to: | 
 |  * clear the uptodate bits on error | 
 |  * clear the writeback bits in the extent tree for this IO | 
 |  * end_page_writeback if the page has no more pending IO | 
 |  * | 
 |  * Scheduling is not allowed, so the extent state tree is expected | 
 |  * to have one and only one object corresponding to this IO. | 
 |  */ | 
 | static void end_bio_extent_writepage(struct bio *bio) | 
 | { | 
 | 	int error = blk_status_to_errno(bio->bi_status); | 
 | 	struct bio_vec *bvec; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		struct inode *inode = page->mapping->host; | 
 | 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 |  | 
 | 		/* We always issue full-page reads, but if some block | 
 | 		 * in a page fails to read, blk_update_request() will | 
 | 		 * advance bv_offset and adjust bv_len to compensate. | 
 | 		 * Print a warning for nonzero offsets, and an error | 
 | 		 * if they don't add up to a full page.  */ | 
 | 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { | 
 | 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) | 
 | 				btrfs_err(fs_info, | 
 | 				   "partial page write in btrfs with offset %u and length %u", | 
 | 					bvec->bv_offset, bvec->bv_len); | 
 | 			else | 
 | 				btrfs_info(fs_info, | 
 | 				   "incomplete page write in btrfs with offset %u and length %u", | 
 | 					bvec->bv_offset, bvec->bv_len); | 
 | 		} | 
 |  | 
 | 		start = page_offset(page); | 
 | 		end = start + bvec->bv_offset + bvec->bv_len - 1; | 
 |  | 
 | 		end_extent_writepage(page, error, start, end); | 
 | 		end_page_writeback(page); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void | 
 | endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, | 
 | 			      int uptodate) | 
 | { | 
 | 	struct extent_state *cached = NULL; | 
 | 	u64 end = start + len - 1; | 
 |  | 
 | 	if (uptodate && tree->track_uptodate) | 
 | 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); | 
 | 	unlock_extent_cached_atomic(tree, start, end, &cached); | 
 | } | 
 |  | 
 | /* | 
 |  * after a readpage IO is done, we need to: | 
 |  * clear the uptodate bits on error | 
 |  * set the uptodate bits if things worked | 
 |  * set the page up to date if all extents in the tree are uptodate | 
 |  * clear the lock bit in the extent tree | 
 |  * unlock the page if there are no other extents locked for it | 
 |  * | 
 |  * Scheduling is not allowed, so the extent state tree is expected | 
 |  * to have one and only one object corresponding to this IO. | 
 |  */ | 
 | static void end_bio_extent_readpage(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int uptodate = !bio->bi_status; | 
 | 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); | 
 | 	struct extent_io_tree *tree, *failure_tree; | 
 | 	u64 offset = 0; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	u64 len; | 
 | 	u64 extent_start = 0; | 
 | 	u64 extent_len = 0; | 
 | 	int mirror; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		struct inode *inode = page->mapping->host; | 
 | 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 |  | 
 | 		btrfs_debug(fs_info, | 
 | 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", | 
 | 			(u64)bio->bi_iter.bi_sector, bio->bi_status, | 
 | 			io_bio->mirror_num); | 
 | 		tree = &BTRFS_I(inode)->io_tree; | 
 | 		failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 |  | 
 | 		/* We always issue full-page reads, but if some block | 
 | 		 * in a page fails to read, blk_update_request() will | 
 | 		 * advance bv_offset and adjust bv_len to compensate. | 
 | 		 * Print a warning for nonzero offsets, and an error | 
 | 		 * if they don't add up to a full page.  */ | 
 | 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { | 
 | 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) | 
 | 				btrfs_err(fs_info, | 
 | 					"partial page read in btrfs with offset %u and length %u", | 
 | 					bvec->bv_offset, bvec->bv_len); | 
 | 			else | 
 | 				btrfs_info(fs_info, | 
 | 					"incomplete page read in btrfs with offset %u and length %u", | 
 | 					bvec->bv_offset, bvec->bv_len); | 
 | 		} | 
 |  | 
 | 		start = page_offset(page); | 
 | 		end = start + bvec->bv_offset + bvec->bv_len - 1; | 
 | 		len = bvec->bv_len; | 
 |  | 
 | 		mirror = io_bio->mirror_num; | 
 | 		if (likely(uptodate && tree->ops)) { | 
 | 			ret = tree->ops->readpage_end_io_hook(io_bio, offset, | 
 | 							      page, start, end, | 
 | 							      mirror); | 
 | 			if (ret) | 
 | 				uptodate = 0; | 
 | 			else | 
 | 				clean_io_failure(BTRFS_I(inode)->root->fs_info, | 
 | 						 failure_tree, tree, start, | 
 | 						 page, | 
 | 						 btrfs_ino(BTRFS_I(inode)), 0); | 
 | 		} | 
 |  | 
 | 		if (likely(uptodate)) | 
 | 			goto readpage_ok; | 
 |  | 
 | 		if (tree->ops) { | 
 | 			ret = tree->ops->readpage_io_failed_hook(page, mirror); | 
 | 			if (ret == -EAGAIN) { | 
 | 				/* | 
 | 				 * Data inode's readpage_io_failed_hook() always | 
 | 				 * returns -EAGAIN. | 
 | 				 * | 
 | 				 * The generic bio_readpage_error handles errors | 
 | 				 * the following way: If possible, new read | 
 | 				 * requests are created and submitted and will | 
 | 				 * end up in end_bio_extent_readpage as well (if | 
 | 				 * we're lucky, not in the !uptodate case). In | 
 | 				 * that case it returns 0 and we just go on with | 
 | 				 * the next page in our bio. If it can't handle | 
 | 				 * the error it will return -EIO and we remain | 
 | 				 * responsible for that page. | 
 | 				 */ | 
 | 				ret = bio_readpage_error(bio, offset, page, | 
 | 							 start, end, mirror); | 
 | 				if (ret == 0) { | 
 | 					uptodate = !bio->bi_status; | 
 | 					offset += len; | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * metadata's readpage_io_failed_hook() always returns | 
 | 			 * -EIO and fixes nothing.  -EIO is also returned if | 
 | 			 * data inode error could not be fixed. | 
 | 			 */ | 
 | 			ASSERT(ret == -EIO); | 
 | 		} | 
 | readpage_ok: | 
 | 		if (likely(uptodate)) { | 
 | 			loff_t i_size = i_size_read(inode); | 
 | 			pgoff_t end_index = i_size >> PAGE_SHIFT; | 
 | 			unsigned off; | 
 |  | 
 | 			/* Zero out the end if this page straddles i_size */ | 
 | 			off = i_size & (PAGE_SIZE-1); | 
 | 			if (page->index == end_index && off) | 
 | 				zero_user_segment(page, off, PAGE_SIZE); | 
 | 			SetPageUptodate(page); | 
 | 		} else { | 
 | 			ClearPageUptodate(page); | 
 | 			SetPageError(page); | 
 | 		} | 
 | 		unlock_page(page); | 
 | 		offset += len; | 
 |  | 
 | 		if (unlikely(!uptodate)) { | 
 | 			if (extent_len) { | 
 | 				endio_readpage_release_extent(tree, | 
 | 							      extent_start, | 
 | 							      extent_len, 1); | 
 | 				extent_start = 0; | 
 | 				extent_len = 0; | 
 | 			} | 
 | 			endio_readpage_release_extent(tree, start, | 
 | 						      end - start + 1, 0); | 
 | 		} else if (!extent_len) { | 
 | 			extent_start = start; | 
 | 			extent_len = end + 1 - start; | 
 | 		} else if (extent_start + extent_len == start) { | 
 | 			extent_len += end + 1 - start; | 
 | 		} else { | 
 | 			endio_readpage_release_extent(tree, extent_start, | 
 | 						      extent_len, uptodate); | 
 | 			extent_start = start; | 
 | 			extent_len = end + 1 - start; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (extent_len) | 
 | 		endio_readpage_release_extent(tree, extent_start, extent_len, | 
 | 					      uptodate); | 
 | 	if (io_bio->end_io) | 
 | 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the members up to but not including 'bio'. Use after allocating a | 
 |  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of | 
 |  * 'bio' because use of __GFP_ZERO is not supported. | 
 |  */ | 
 | static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) | 
 | { | 
 | 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); | 
 | } | 
 |  | 
 | /* | 
 |  * The following helpers allocate a bio. As it's backed by a bioset, it'll | 
 |  * never fail.  We're returning a bio right now but you can call btrfs_io_bio | 
 |  * for the appropriate container_of magic | 
 |  */ | 
 | struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); | 
 | 	bio_set_dev(bio, bdev); | 
 | 	bio->bi_iter.bi_sector = first_byte >> 9; | 
 | 	btrfs_io_bio_init(btrfs_io_bio(bio)); | 
 | 	return bio; | 
 | } | 
 |  | 
 | struct bio *btrfs_bio_clone(struct bio *bio) | 
 | { | 
 | 	struct btrfs_io_bio *btrfs_bio; | 
 | 	struct bio *new; | 
 |  | 
 | 	/* Bio allocation backed by a bioset does not fail */ | 
 | 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); | 
 | 	btrfs_bio = btrfs_io_bio(new); | 
 | 	btrfs_io_bio_init(btrfs_bio); | 
 | 	btrfs_bio->iter = bio->bi_iter; | 
 | 	return new; | 
 | } | 
 |  | 
 | struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* Bio allocation backed by a bioset does not fail */ | 
 | 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); | 
 | 	btrfs_io_bio_init(btrfs_io_bio(bio)); | 
 | 	return bio; | 
 | } | 
 |  | 
 | struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct btrfs_io_bio *btrfs_bio; | 
 |  | 
 | 	/* this will never fail when it's backed by a bioset */ | 
 | 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); | 
 | 	ASSERT(bio); | 
 |  | 
 | 	btrfs_bio = btrfs_io_bio(bio); | 
 | 	btrfs_io_bio_init(btrfs_bio); | 
 |  | 
 | 	bio_trim(bio, offset >> 9, size >> 9); | 
 | 	btrfs_bio->iter = bio->bi_iter; | 
 | 	return bio; | 
 | } | 
 |  | 
 | static int __must_check submit_one_bio(struct bio *bio, int mirror_num, | 
 | 				       unsigned long bio_flags) | 
 | { | 
 | 	blk_status_t ret = 0; | 
 | 	struct bio_vec *bvec = bio_last_bvec_all(bio); | 
 | 	struct page *page = bvec->bv_page; | 
 | 	struct extent_io_tree *tree = bio->bi_private; | 
 | 	u64 start; | 
 |  | 
 | 	start = page_offset(page) + bvec->bv_offset; | 
 |  | 
 | 	bio->bi_private = NULL; | 
 |  | 
 | 	if (tree->ops) | 
 | 		ret = tree->ops->submit_bio_hook(tree->private_data, bio, | 
 | 					   mirror_num, bio_flags, start); | 
 | 	else | 
 | 		btrfsic_submit_bio(bio); | 
 |  | 
 | 	return blk_status_to_errno(ret); | 
 | } | 
 |  | 
 | /* | 
 |  * @opf:	bio REQ_OP_* and REQ_* flags as one value | 
 |  * @tree:	tree so we can call our merge_bio hook | 
 |  * @wbc:	optional writeback control for io accounting | 
 |  * @page:	page to add to the bio | 
 |  * @pg_offset:	offset of the new bio or to check whether we are adding | 
 |  *              a contiguous page to the previous one | 
 |  * @size:	portion of page that we want to write | 
 |  * @offset:	starting offset in the page | 
 |  * @bdev:	attach newly created bios to this bdev | 
 |  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there | 
 |  * @end_io_func:     end_io callback for new bio | 
 |  * @mirror_num:	     desired mirror to read/write | 
 |  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one | 
 |  * @bio_flags:	flags of the current bio to see if we can merge them | 
 |  */ | 
 | static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, | 
 | 			      struct writeback_control *wbc, | 
 | 			      struct page *page, u64 offset, | 
 | 			      size_t size, unsigned long pg_offset, | 
 | 			      struct block_device *bdev, | 
 | 			      struct bio **bio_ret, | 
 | 			      bio_end_io_t end_io_func, | 
 | 			      int mirror_num, | 
 | 			      unsigned long prev_bio_flags, | 
 | 			      unsigned long bio_flags, | 
 | 			      bool force_bio_submit) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct bio *bio; | 
 | 	size_t page_size = min_t(size_t, size, PAGE_SIZE); | 
 | 	sector_t sector = offset >> 9; | 
 |  | 
 | 	ASSERT(bio_ret); | 
 |  | 
 | 	if (*bio_ret) { | 
 | 		bool contig; | 
 | 		bool can_merge = true; | 
 |  | 
 | 		bio = *bio_ret; | 
 | 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED) | 
 | 			contig = bio->bi_iter.bi_sector == sector; | 
 | 		else | 
 | 			contig = bio_end_sector(bio) == sector; | 
 |  | 
 | 		if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size, | 
 | 						      bio, bio_flags)) | 
 | 			can_merge = false; | 
 |  | 
 | 		if (prev_bio_flags != bio_flags || !contig || !can_merge || | 
 | 		    force_bio_submit || | 
 | 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) { | 
 | 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags); | 
 | 			if (ret < 0) { | 
 | 				*bio_ret = NULL; | 
 | 				return ret; | 
 | 			} | 
 | 			bio = NULL; | 
 | 		} else { | 
 | 			if (wbc) | 
 | 				wbc_account_io(wbc, page, page_size); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bio = btrfs_bio_alloc(bdev, offset); | 
 | 	bio_add_page(bio, page, page_size, pg_offset); | 
 | 	bio->bi_end_io = end_io_func; | 
 | 	bio->bi_private = tree; | 
 | 	bio->bi_write_hint = page->mapping->host->i_write_hint; | 
 | 	bio->bi_opf = opf; | 
 | 	if (wbc) { | 
 | 		wbc_init_bio(wbc, bio); | 
 | 		wbc_account_io(wbc, page, page_size); | 
 | 	} | 
 |  | 
 | 	*bio_ret = bio; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void attach_extent_buffer_page(struct extent_buffer *eb, | 
 | 				      struct page *page) | 
 | { | 
 | 	if (!PagePrivate(page)) { | 
 | 		SetPagePrivate(page); | 
 | 		get_page(page); | 
 | 		set_page_private(page, (unsigned long)eb); | 
 | 	} else { | 
 | 		WARN_ON(page->private != (unsigned long)eb); | 
 | 	} | 
 | } | 
 |  | 
 | void set_page_extent_mapped(struct page *page) | 
 | { | 
 | 	if (!PagePrivate(page)) { | 
 | 		SetPagePrivate(page); | 
 | 		get_page(page); | 
 | 		set_page_private(page, EXTENT_PAGE_PRIVATE); | 
 | 	} | 
 | } | 
 |  | 
 | static struct extent_map * | 
 | __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, | 
 | 		 u64 start, u64 len, get_extent_t *get_extent, | 
 | 		 struct extent_map **em_cached) | 
 | { | 
 | 	struct extent_map *em; | 
 |  | 
 | 	if (em_cached && *em_cached) { | 
 | 		em = *em_cached; | 
 | 		if (extent_map_in_tree(em) && start >= em->start && | 
 | 		    start < extent_map_end(em)) { | 
 | 			refcount_inc(&em->refs); | 
 | 			return em; | 
 | 		} | 
 |  | 
 | 		free_extent_map(em); | 
 | 		*em_cached = NULL; | 
 | 	} | 
 |  | 
 | 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); | 
 | 	if (em_cached && !IS_ERR_OR_NULL(em)) { | 
 | 		BUG_ON(*em_cached); | 
 | 		refcount_inc(&em->refs); | 
 | 		*em_cached = em; | 
 | 	} | 
 | 	return em; | 
 | } | 
 | /* | 
 |  * basic readpage implementation.  Locked extent state structs are inserted | 
 |  * into the tree that are removed when the IO is done (by the end_io | 
 |  * handlers) | 
 |  * XXX JDM: This needs looking at to ensure proper page locking | 
 |  * return 0 on success, otherwise return error | 
 |  */ | 
 | static int __do_readpage(struct extent_io_tree *tree, | 
 | 			 struct page *page, | 
 | 			 get_extent_t *get_extent, | 
 | 			 struct extent_map **em_cached, | 
 | 			 struct bio **bio, int mirror_num, | 
 | 			 unsigned long *bio_flags, unsigned int read_flags, | 
 | 			 u64 *prev_em_start) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	u64 start = page_offset(page); | 
 | 	const u64 end = start + PAGE_SIZE - 1; | 
 | 	u64 cur = start; | 
 | 	u64 extent_offset; | 
 | 	u64 last_byte = i_size_read(inode); | 
 | 	u64 block_start; | 
 | 	u64 cur_end; | 
 | 	struct extent_map *em; | 
 | 	struct block_device *bdev; | 
 | 	int ret = 0; | 
 | 	int nr = 0; | 
 | 	size_t pg_offset = 0; | 
 | 	size_t iosize; | 
 | 	size_t disk_io_size; | 
 | 	size_t blocksize = inode->i_sb->s_blocksize; | 
 | 	unsigned long this_bio_flag = 0; | 
 |  | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	if (!PageUptodate(page)) { | 
 | 		if (cleancache_get_page(page) == 0) { | 
 | 			BUG_ON(blocksize != PAGE_SIZE); | 
 | 			unlock_extent(tree, start, end); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (page->index == last_byte >> PAGE_SHIFT) { | 
 | 		char *userpage; | 
 | 		size_t zero_offset = last_byte & (PAGE_SIZE - 1); | 
 |  | 
 | 		if (zero_offset) { | 
 | 			iosize = PAGE_SIZE - zero_offset; | 
 | 			userpage = kmap_atomic(page); | 
 | 			memset(userpage + zero_offset, 0, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(userpage); | 
 | 		} | 
 | 	} | 
 | 	while (cur <= end) { | 
 | 		bool force_bio_submit = false; | 
 | 		u64 offset; | 
 |  | 
 | 		if (cur >= last_byte) { | 
 | 			char *userpage; | 
 | 			struct extent_state *cached = NULL; | 
 |  | 
 | 			iosize = PAGE_SIZE - pg_offset; | 
 | 			userpage = kmap_atomic(page); | 
 | 			memset(userpage + pg_offset, 0, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(userpage); | 
 | 			set_extent_uptodate(tree, cur, cur + iosize - 1, | 
 | 					    &cached, GFP_NOFS); | 
 | 			unlock_extent_cached(tree, cur, | 
 | 					     cur + iosize - 1, &cached); | 
 | 			break; | 
 | 		} | 
 | 		em = __get_extent_map(inode, page, pg_offset, cur, | 
 | 				      end - cur + 1, get_extent, em_cached); | 
 | 		if (IS_ERR_OR_NULL(em)) { | 
 | 			SetPageError(page); | 
 | 			unlock_extent(tree, cur, end); | 
 | 			break; | 
 | 		} | 
 | 		extent_offset = cur - em->start; | 
 | 		BUG_ON(extent_map_end(em) <= cur); | 
 | 		BUG_ON(end < cur); | 
 |  | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
 | 			this_bio_flag |= EXTENT_BIO_COMPRESSED; | 
 | 			extent_set_compress_type(&this_bio_flag, | 
 | 						 em->compress_type); | 
 | 		} | 
 |  | 
 | 		iosize = min(extent_map_end(em) - cur, end - cur + 1); | 
 | 		cur_end = min(extent_map_end(em) - 1, end); | 
 | 		iosize = ALIGN(iosize, blocksize); | 
 | 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) { | 
 | 			disk_io_size = em->block_len; | 
 | 			offset = em->block_start; | 
 | 		} else { | 
 | 			offset = em->block_start + extent_offset; | 
 | 			disk_io_size = iosize; | 
 | 		} | 
 | 		bdev = em->bdev; | 
 | 		block_start = em->block_start; | 
 | 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 			block_start = EXTENT_MAP_HOLE; | 
 |  | 
 | 		/* | 
 | 		 * If we have a file range that points to a compressed extent | 
 | 		 * and it's followed by a consecutive file range that points to | 
 | 		 * to the same compressed extent (possibly with a different | 
 | 		 * offset and/or length, so it either points to the whole extent | 
 | 		 * or only part of it), we must make sure we do not submit a | 
 | 		 * single bio to populate the pages for the 2 ranges because | 
 | 		 * this makes the compressed extent read zero out the pages | 
 | 		 * belonging to the 2nd range. Imagine the following scenario: | 
 | 		 * | 
 | 		 *  File layout | 
 | 		 *  [0 - 8K]                     [8K - 24K] | 
 | 		 *    |                               | | 
 | 		 *    |                               | | 
 | 		 * points to extent X,         points to extent X, | 
 | 		 * offset 4K, length of 8K     offset 0, length 16K | 
 | 		 * | 
 | 		 * [extent X, compressed length = 4K uncompressed length = 16K] | 
 | 		 * | 
 | 		 * If the bio to read the compressed extent covers both ranges, | 
 | 		 * it will decompress extent X into the pages belonging to the | 
 | 		 * first range and then it will stop, zeroing out the remaining | 
 | 		 * pages that belong to the other range that points to extent X. | 
 | 		 * So here we make sure we submit 2 bios, one for the first | 
 | 		 * range and another one for the third range. Both will target | 
 | 		 * the same physical extent from disk, but we can't currently | 
 | 		 * make the compressed bio endio callback populate the pages | 
 | 		 * for both ranges because each compressed bio is tightly | 
 | 		 * coupled with a single extent map, and each range can have | 
 | 		 * an extent map with a different offset value relative to the | 
 | 		 * uncompressed data of our extent and different lengths. This | 
 | 		 * is a corner case so we prioritize correctness over | 
 | 		 * non-optimal behavior (submitting 2 bios for the same extent). | 
 | 		 */ | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && | 
 | 		    prev_em_start && *prev_em_start != (u64)-1 && | 
 | 		    *prev_em_start != em->start) | 
 | 			force_bio_submit = true; | 
 |  | 
 | 		if (prev_em_start) | 
 | 			*prev_em_start = em->start; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 |  | 
 | 		/* we've found a hole, just zero and go on */ | 
 | 		if (block_start == EXTENT_MAP_HOLE) { | 
 | 			char *userpage; | 
 | 			struct extent_state *cached = NULL; | 
 |  | 
 | 			userpage = kmap_atomic(page); | 
 | 			memset(userpage + pg_offset, 0, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(userpage); | 
 |  | 
 | 			set_extent_uptodate(tree, cur, cur + iosize - 1, | 
 | 					    &cached, GFP_NOFS); | 
 | 			unlock_extent_cached(tree, cur, | 
 | 					     cur + iosize - 1, &cached); | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* the get_extent function already copied into the page */ | 
 | 		if (test_range_bit(tree, cur, cur_end, | 
 | 				   EXTENT_UPTODATE, 1, NULL)) { | 
 | 			check_page_uptodate(tree, page); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1); | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* we have an inline extent but it didn't get marked up | 
 | 		 * to date.  Error out | 
 | 		 */ | 
 | 		if (block_start == EXTENT_MAP_INLINE) { | 
 | 			SetPageError(page); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1); | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, | 
 | 					 page, offset, disk_io_size, | 
 | 					 pg_offset, bdev, bio, | 
 | 					 end_bio_extent_readpage, mirror_num, | 
 | 					 *bio_flags, | 
 | 					 this_bio_flag, | 
 | 					 force_bio_submit); | 
 | 		if (!ret) { | 
 | 			nr++; | 
 | 			*bio_flags = this_bio_flag; | 
 | 		} else { | 
 | 			SetPageError(page); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1); | 
 | 			goto out; | 
 | 		} | 
 | 		cur = cur + iosize; | 
 | 		pg_offset += iosize; | 
 | 	} | 
 | out: | 
 | 	if (!nr) { | 
 | 		if (!PageError(page)) | 
 | 			SetPageUptodate(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline void __do_contiguous_readpages(struct extent_io_tree *tree, | 
 | 					     struct page *pages[], int nr_pages, | 
 | 					     u64 start, u64 end, | 
 | 					     struct extent_map **em_cached, | 
 | 					     struct bio **bio, | 
 | 					     unsigned long *bio_flags, | 
 | 					     u64 *prev_em_start) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	int index; | 
 |  | 
 | 	inode = pages[0]->mapping->host; | 
 | 	while (1) { | 
 | 		lock_extent(tree, start, end); | 
 | 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, | 
 | 						     end - start + 1); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		unlock_extent(tree, start, end); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 	} | 
 |  | 
 | 	for (index = 0; index < nr_pages; index++) { | 
 | 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached, | 
 | 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); | 
 | 		put_page(pages[index]); | 
 | 	} | 
 | } | 
 |  | 
 | static void __extent_readpages(struct extent_io_tree *tree, | 
 | 			       struct page *pages[], | 
 | 			       int nr_pages, | 
 | 			       struct extent_map **em_cached, | 
 | 			       struct bio **bio, unsigned long *bio_flags, | 
 | 			       u64 *prev_em_start) | 
 | { | 
 | 	u64 start = 0; | 
 | 	u64 end = 0; | 
 | 	u64 page_start; | 
 | 	int index; | 
 | 	int first_index = 0; | 
 |  | 
 | 	for (index = 0; index < nr_pages; index++) { | 
 | 		page_start = page_offset(pages[index]); | 
 | 		if (!end) { | 
 | 			start = page_start; | 
 | 			end = start + PAGE_SIZE - 1; | 
 | 			first_index = index; | 
 | 		} else if (end + 1 == page_start) { | 
 | 			end += PAGE_SIZE; | 
 | 		} else { | 
 | 			__do_contiguous_readpages(tree, &pages[first_index], | 
 | 						  index - first_index, start, | 
 | 						  end, em_cached, | 
 | 						  bio, bio_flags, | 
 | 						  prev_em_start); | 
 | 			start = page_start; | 
 | 			end = start + PAGE_SIZE - 1; | 
 | 			first_index = index; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (end) | 
 | 		__do_contiguous_readpages(tree, &pages[first_index], | 
 | 					  index - first_index, start, | 
 | 					  end, em_cached, bio, | 
 | 					  bio_flags, prev_em_start); | 
 | } | 
 |  | 
 | static int __extent_read_full_page(struct extent_io_tree *tree, | 
 | 				   struct page *page, | 
 | 				   get_extent_t *get_extent, | 
 | 				   struct bio **bio, int mirror_num, | 
 | 				   unsigned long *bio_flags, | 
 | 				   unsigned int read_flags) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	int ret; | 
 |  | 
 | 	while (1) { | 
 | 		lock_extent(tree, start, end); | 
 | 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, | 
 | 						PAGE_SIZE); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		unlock_extent(tree, start, end); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 	} | 
 |  | 
 | 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, | 
 | 			    bio_flags, read_flags, NULL); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_read_full_page(struct extent_io_tree *tree, struct page *page, | 
 | 			    get_extent_t *get_extent, int mirror_num) | 
 | { | 
 | 	struct bio *bio = NULL; | 
 | 	unsigned long bio_flags = 0; | 
 | 	int ret; | 
 |  | 
 | 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, | 
 | 				      &bio_flags, 0); | 
 | 	if (bio) | 
 | 		ret = submit_one_bio(bio, mirror_num, bio_flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void update_nr_written(struct writeback_control *wbc, | 
 | 			      unsigned long nr_written) | 
 | { | 
 | 	wbc->nr_to_write -= nr_written; | 
 | } | 
 |  | 
 | /* | 
 |  * helper for __extent_writepage, doing all of the delayed allocation setup. | 
 |  * | 
 |  * This returns 1 if btrfs_run_delalloc_range function did all the work required | 
 |  * to write the page (copy into inline extent).  In this case the IO has | 
 |  * been started and the page is already unlocked. | 
 |  * | 
 |  * This returns 0 if all went well (page still locked) | 
 |  * This returns < 0 if there were errors (page still locked) | 
 |  */ | 
 | static noinline_for_stack int writepage_delalloc(struct inode *inode, | 
 | 			      struct page *page, struct writeback_control *wbc, | 
 | 			      struct extent_page_data *epd, | 
 | 			      u64 delalloc_start, | 
 | 			      unsigned long *nr_written) | 
 | { | 
 | 	struct extent_io_tree *tree = epd->tree; | 
 | 	u64 page_end = delalloc_start + PAGE_SIZE - 1; | 
 | 	u64 nr_delalloc; | 
 | 	u64 delalloc_to_write = 0; | 
 | 	u64 delalloc_end = 0; | 
 | 	int ret; | 
 | 	int page_started = 0; | 
 |  | 
 | 	if (epd->extent_locked) | 
 | 		return 0; | 
 |  | 
 | 	while (delalloc_end < page_end) { | 
 | 		nr_delalloc = find_lock_delalloc_range(inode, tree, | 
 | 					       page, | 
 | 					       &delalloc_start, | 
 | 					       &delalloc_end, | 
 | 					       BTRFS_MAX_EXTENT_SIZE); | 
 | 		if (nr_delalloc == 0) { | 
 | 			delalloc_start = delalloc_end + 1; | 
 | 			continue; | 
 | 		} | 
 | 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start, | 
 | 				delalloc_end, &page_started, nr_written, wbc); | 
 | 		/* File system has been set read-only */ | 
 | 		if (ret) { | 
 | 			SetPageError(page); | 
 | 			/* | 
 | 			 * btrfs_run_delalloc_range should return < 0 for error | 
 | 			 * but just in case, we use > 0 here meaning the IO is | 
 | 			 * started, so we don't want to return > 0 unless | 
 | 			 * things are going well. | 
 | 			 */ | 
 | 			ret = ret < 0 ? ret : -EIO; | 
 | 			goto done; | 
 | 		} | 
 | 		/* | 
 | 		 * delalloc_end is already one less than the total length, so | 
 | 		 * we don't subtract one from PAGE_SIZE | 
 | 		 */ | 
 | 		delalloc_to_write += (delalloc_end - delalloc_start + | 
 | 				      PAGE_SIZE) >> PAGE_SHIFT; | 
 | 		delalloc_start = delalloc_end + 1; | 
 | 	} | 
 | 	if (wbc->nr_to_write < delalloc_to_write) { | 
 | 		int thresh = 8192; | 
 |  | 
 | 		if (delalloc_to_write < thresh * 2) | 
 | 			thresh = delalloc_to_write; | 
 | 		wbc->nr_to_write = min_t(u64, delalloc_to_write, | 
 | 					 thresh); | 
 | 	} | 
 |  | 
 | 	/* did the fill delalloc function already unlock and start | 
 | 	 * the IO? | 
 | 	 */ | 
 | 	if (page_started) { | 
 | 		/* | 
 | 		 * we've unlocked the page, so we can't update | 
 | 		 * the mapping's writeback index, just update | 
 | 		 * nr_to_write. | 
 | 		 */ | 
 | 		wbc->nr_to_write -= *nr_written; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper for __extent_writepage.  This calls the writepage start hooks, | 
 |  * and does the loop to map the page into extents and bios. | 
 |  * | 
 |  * We return 1 if the IO is started and the page is unlocked, | 
 |  * 0 if all went well (page still locked) | 
 |  * < 0 if there were errors (page still locked) | 
 |  */ | 
 | static noinline_for_stack int __extent_writepage_io(struct inode *inode, | 
 | 				 struct page *page, | 
 | 				 struct writeback_control *wbc, | 
 | 				 struct extent_page_data *epd, | 
 | 				 loff_t i_size, | 
 | 				 unsigned long nr_written, | 
 | 				 unsigned int write_flags, int *nr_ret) | 
 | { | 
 | 	struct extent_io_tree *tree = epd->tree; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 page_end = start + PAGE_SIZE - 1; | 
 | 	u64 end; | 
 | 	u64 cur = start; | 
 | 	u64 extent_offset; | 
 | 	u64 block_start; | 
 | 	u64 iosize; | 
 | 	struct extent_map *em; | 
 | 	struct block_device *bdev; | 
 | 	size_t pg_offset = 0; | 
 | 	size_t blocksize; | 
 | 	int ret = 0; | 
 | 	int nr = 0; | 
 | 	bool compressed; | 
 |  | 
 | 	if (tree->ops && tree->ops->writepage_start_hook) { | 
 | 		ret = tree->ops->writepage_start_hook(page, start, | 
 | 						      page_end); | 
 | 		if (ret) { | 
 | 			/* Fixup worker will requeue */ | 
 | 			if (ret == -EBUSY) | 
 | 				wbc->pages_skipped++; | 
 | 			else | 
 | 				redirty_page_for_writepage(wbc, page); | 
 |  | 
 | 			update_nr_written(wbc, nr_written); | 
 | 			unlock_page(page); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we don't want to touch the inode after unlocking the page, | 
 | 	 * so we update the mapping writeback index now | 
 | 	 */ | 
 | 	update_nr_written(wbc, nr_written + 1); | 
 |  | 
 | 	end = page_end; | 
 | 	if (i_size <= start) { | 
 | 		if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 			tree->ops->writepage_end_io_hook(page, start, | 
 | 							 page_end, NULL, 1); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	blocksize = inode->i_sb->s_blocksize; | 
 |  | 
 | 	while (cur <= end) { | 
 | 		u64 em_end; | 
 | 		u64 offset; | 
 |  | 
 | 		if (cur >= i_size) { | 
 | 			if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 				tree->ops->writepage_end_io_hook(page, cur, | 
 | 							 page_end, NULL, 1); | 
 | 			break; | 
 | 		} | 
 | 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, | 
 | 				     end - cur + 1, 1); | 
 | 		if (IS_ERR_OR_NULL(em)) { | 
 | 			SetPageError(page); | 
 | 			ret = PTR_ERR_OR_ZERO(em); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		extent_offset = cur - em->start; | 
 | 		em_end = extent_map_end(em); | 
 | 		BUG_ON(em_end <= cur); | 
 | 		BUG_ON(end < cur); | 
 | 		iosize = min(em_end - cur, end - cur + 1); | 
 | 		iosize = ALIGN(iosize, blocksize); | 
 | 		offset = em->block_start + extent_offset; | 
 | 		bdev = em->bdev; | 
 | 		block_start = em->block_start; | 
 | 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 |  | 
 | 		/* | 
 | 		 * compressed and inline extents are written through other | 
 | 		 * paths in the FS | 
 | 		 */ | 
 | 		if (compressed || block_start == EXTENT_MAP_HOLE || | 
 | 		    block_start == EXTENT_MAP_INLINE) { | 
 | 			/* | 
 | 			 * end_io notification does not happen here for | 
 | 			 * compressed extents | 
 | 			 */ | 
 | 			if (!compressed && tree->ops && | 
 | 			    tree->ops->writepage_end_io_hook) | 
 | 				tree->ops->writepage_end_io_hook(page, cur, | 
 | 							 cur + iosize - 1, | 
 | 							 NULL, 1); | 
 | 			else if (compressed) { | 
 | 				/* we don't want to end_page_writeback on | 
 | 				 * a compressed extent.  this happens | 
 | 				 * elsewhere | 
 | 				 */ | 
 | 				nr++; | 
 | 			} | 
 |  | 
 | 			cur += iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1); | 
 | 		if (!PageWriteback(page)) { | 
 | 			btrfs_err(BTRFS_I(inode)->root->fs_info, | 
 | 				   "page %lu not writeback, cur %llu end %llu", | 
 | 			       page->index, cur, end); | 
 | 		} | 
 |  | 
 | 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, | 
 | 					 page, offset, iosize, pg_offset, | 
 | 					 bdev, &epd->bio, | 
 | 					 end_bio_extent_writepage, | 
 | 					 0, 0, 0, false); | 
 | 		if (ret) { | 
 | 			SetPageError(page); | 
 | 			if (PageWriteback(page)) | 
 | 				end_page_writeback(page); | 
 | 		} | 
 |  | 
 | 		cur = cur + iosize; | 
 | 		pg_offset += iosize; | 
 | 		nr++; | 
 | 	} | 
 | done: | 
 | 	*nr_ret = nr; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the writepage semantics are similar to regular writepage.  extent | 
 |  * records are inserted to lock ranges in the tree, and as dirty areas | 
 |  * are found, they are marked writeback.  Then the lock bits are removed | 
 |  * and the end_io handler clears the writeback ranges | 
 |  */ | 
 | static int __extent_writepage(struct page *page, struct writeback_control *wbc, | 
 | 			      struct extent_page_data *epd) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 page_end = start + PAGE_SIZE - 1; | 
 | 	int ret; | 
 | 	int nr = 0; | 
 | 	size_t pg_offset = 0; | 
 | 	loff_t i_size = i_size_read(inode); | 
 | 	unsigned long end_index = i_size >> PAGE_SHIFT; | 
 | 	unsigned int write_flags = 0; | 
 | 	unsigned long nr_written = 0; | 
 |  | 
 | 	write_flags = wbc_to_write_flags(wbc); | 
 |  | 
 | 	trace___extent_writepage(page, inode, wbc); | 
 |  | 
 | 	WARN_ON(!PageLocked(page)); | 
 |  | 
 | 	ClearPageError(page); | 
 |  | 
 | 	pg_offset = i_size & (PAGE_SIZE - 1); | 
 | 	if (page->index > end_index || | 
 | 	   (page->index == end_index && !pg_offset)) { | 
 | 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); | 
 | 		unlock_page(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (page->index == end_index) { | 
 | 		char *userpage; | 
 |  | 
 | 		userpage = kmap_atomic(page); | 
 | 		memset(userpage + pg_offset, 0, | 
 | 		       PAGE_SIZE - pg_offset); | 
 | 		kunmap_atomic(userpage); | 
 | 		flush_dcache_page(page); | 
 | 	} | 
 |  | 
 | 	pg_offset = 0; | 
 |  | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); | 
 | 	if (ret == 1) | 
 | 		goto done_unlocked; | 
 | 	if (ret) | 
 | 		goto done; | 
 |  | 
 | 	ret = __extent_writepage_io(inode, page, wbc, epd, | 
 | 				    i_size, nr_written, write_flags, &nr); | 
 | 	if (ret == 1) | 
 | 		goto done_unlocked; | 
 |  | 
 | done: | 
 | 	if (nr == 0) { | 
 | 		/* make sure the mapping tag for page dirty gets cleared */ | 
 | 		set_page_writeback(page); | 
 | 		end_page_writeback(page); | 
 | 	} | 
 | 	if (PageError(page)) { | 
 | 		ret = ret < 0 ? ret : -EIO; | 
 | 		end_extent_writepage(page, ret, start, page_end); | 
 | 	} | 
 | 	unlock_page(page); | 
 | 	return ret; | 
 |  | 
 | done_unlocked: | 
 | 	return 0; | 
 | } | 
 |  | 
 | void wait_on_extent_buffer_writeback(struct extent_buffer *eb) | 
 | { | 
 | 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, | 
 | 		       TASK_UNINTERRUPTIBLE); | 
 | } | 
 |  | 
 | static noinline_for_stack int | 
 | lock_extent_buffer_for_io(struct extent_buffer *eb, | 
 | 			  struct btrfs_fs_info *fs_info, | 
 | 			  struct extent_page_data *epd) | 
 | { | 
 | 	int i, num_pages; | 
 | 	int flush = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!btrfs_try_tree_write_lock(eb)) { | 
 | 		flush = 1; | 
 | 		flush_write_bio(epd); | 
 | 		btrfs_tree_lock(eb); | 
 | 	} | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { | 
 | 		btrfs_tree_unlock(eb); | 
 | 		if (!epd->sync_io) | 
 | 			return 0; | 
 | 		if (!flush) { | 
 | 			flush_write_bio(epd); | 
 | 			flush = 1; | 
 | 		} | 
 | 		while (1) { | 
 | 			wait_on_extent_buffer_writeback(eb); | 
 | 			btrfs_tree_lock(eb); | 
 | 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) | 
 | 				break; | 
 | 			btrfs_tree_unlock(eb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to do this to prevent races in people who check if the eb is | 
 | 	 * under IO since we can end up having no IO bits set for a short period | 
 | 	 * of time. | 
 | 	 */ | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
 | 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
 | 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
 | 					 -eb->len, | 
 | 					 fs_info->dirty_metadata_batch); | 
 | 		ret = 1; | 
 | 	} else { | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 	} | 
 |  | 
 | 	btrfs_tree_unlock(eb); | 
 |  | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		if (!trylock_page(p)) { | 
 | 			if (!flush) { | 
 | 				flush_write_bio(epd); | 
 | 				flush = 1; | 
 | 			} | 
 | 			lock_page(p); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void end_extent_buffer_writeback(struct extent_buffer *eb) | 
 | { | 
 | 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); | 
 | } | 
 |  | 
 | static void set_btree_ioerr(struct page *page) | 
 | { | 
 | 	struct extent_buffer *eb = (struct extent_buffer *)page->private; | 
 |  | 
 | 	SetPageError(page); | 
 | 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If writeback for a btree extent that doesn't belong to a log tree | 
 | 	 * failed, increment the counter transaction->eb_write_errors. | 
 | 	 * We do this because while the transaction is running and before it's | 
 | 	 * committing (when we call filemap_fdata[write|wait]_range against | 
 | 	 * the btree inode), we might have | 
 | 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it | 
 | 	 * returns an error or an error happens during writeback, when we're | 
 | 	 * committing the transaction we wouldn't know about it, since the pages | 
 | 	 * can be no longer dirty nor marked anymore for writeback (if a | 
 | 	 * subsequent modification to the extent buffer didn't happen before the | 
 | 	 * transaction commit), which makes filemap_fdata[write|wait]_range not | 
 | 	 * able to find the pages tagged with SetPageError at transaction | 
 | 	 * commit time. So if this happens we must abort the transaction, | 
 | 	 * otherwise we commit a super block with btree roots that point to | 
 | 	 * btree nodes/leafs whose content on disk is invalid - either garbage | 
 | 	 * or the content of some node/leaf from a past generation that got | 
 | 	 * cowed or deleted and is no longer valid. | 
 | 	 * | 
 | 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would | 
 | 	 * not be enough - we need to distinguish between log tree extents vs | 
 | 	 * non-log tree extents, and the next filemap_fdatawait_range() call | 
 | 	 * will catch and clear such errors in the mapping - and that call might | 
 | 	 * be from a log sync and not from a transaction commit. Also, checking | 
 | 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is | 
 | 	 * not done and would not be reliable - the eb might have been released | 
 | 	 * from memory and reading it back again means that flag would not be | 
 | 	 * set (since it's a runtime flag, not persisted on disk). | 
 | 	 * | 
 | 	 * Using the flags below in the btree inode also makes us achieve the | 
 | 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started | 
 | 	 * writeback for all dirty pages and before filemap_fdatawait_range() | 
 | 	 * is called, the writeback for all dirty pages had already finished | 
 | 	 * with errors - because we were not using AS_EIO/AS_ENOSPC, | 
 | 	 * filemap_fdatawait_range() would return success, as it could not know | 
 | 	 * that writeback errors happened (the pages were no longer tagged for | 
 | 	 * writeback). | 
 | 	 */ | 
 | 	switch (eb->log_index) { | 
 | 	case -1: | 
 | 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); | 
 | 		break; | 
 | 	case 0: | 
 | 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); | 
 | 		break; | 
 | 	case 1: | 
 | 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); /* unexpected, logic error */ | 
 | 	} | 
 | } | 
 |  | 
 | static void end_bio_extent_buffer_writepage(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	struct extent_buffer *eb; | 
 | 	int i, done; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		struct page *page = bvec->bv_page; | 
 |  | 
 | 		eb = (struct extent_buffer *)page->private; | 
 | 		BUG_ON(!eb); | 
 | 		done = atomic_dec_and_test(&eb->io_pages); | 
 |  | 
 | 		if (bio->bi_status || | 
 | 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { | 
 | 			ClearPageUptodate(page); | 
 | 			set_btree_ioerr(page); | 
 | 		} | 
 |  | 
 | 		end_page_writeback(page); | 
 |  | 
 | 		if (!done) | 
 | 			continue; | 
 |  | 
 | 		end_extent_buffer_writeback(eb); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static noinline_for_stack int write_one_eb(struct extent_buffer *eb, | 
 | 			struct btrfs_fs_info *fs_info, | 
 | 			struct writeback_control *wbc, | 
 | 			struct extent_page_data *epd) | 
 | { | 
 | 	struct block_device *bdev = fs_info->fs_devices->latest_bdev; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; | 
 | 	u64 offset = eb->start; | 
 | 	u32 nritems; | 
 | 	int i, num_pages; | 
 | 	unsigned long start, end; | 
 | 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; | 
 | 	int ret = 0; | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	atomic_set(&eb->io_pages, num_pages); | 
 |  | 
 | 	/* set btree blocks beyond nritems with 0 to avoid stale content. */ | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	if (btrfs_header_level(eb) > 0) { | 
 | 		end = btrfs_node_key_ptr_offset(nritems); | 
 |  | 
 | 		memzero_extent_buffer(eb, end, eb->len - end); | 
 | 	} else { | 
 | 		/* | 
 | 		 * leaf: | 
 | 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 | 
 | 		 */ | 
 | 		start = btrfs_item_nr_offset(nritems); | 
 | 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); | 
 | 		memzero_extent_buffer(eb, start, end - start); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		clear_page_dirty_for_io(p); | 
 | 		set_page_writeback(p); | 
 | 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, | 
 | 					 p, offset, PAGE_SIZE, 0, bdev, | 
 | 					 &epd->bio, | 
 | 					 end_bio_extent_buffer_writepage, | 
 | 					 0, 0, 0, false); | 
 | 		if (ret) { | 
 | 			set_btree_ioerr(p); | 
 | 			if (PageWriteback(p)) | 
 | 				end_page_writeback(p); | 
 | 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) | 
 | 				end_extent_buffer_writeback(eb); | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		offset += PAGE_SIZE; | 
 | 		update_nr_written(wbc, 1); | 
 | 		unlock_page(p); | 
 | 	} | 
 |  | 
 | 	if (unlikely(ret)) { | 
 | 		for (; i < num_pages; i++) { | 
 | 			struct page *p = eb->pages[i]; | 
 | 			clear_page_dirty_for_io(p); | 
 | 			unlock_page(p); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btree_write_cache_pages(struct address_space *mapping, | 
 | 				   struct writeback_control *wbc) | 
 | { | 
 | 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; | 
 | 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
 | 	struct extent_buffer *eb, *prev_eb = NULL; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = tree, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 | 	int ret = 0; | 
 | 	int done = 0; | 
 | 	int nr_to_write_done = 0; | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	pgoff_t index; | 
 | 	pgoff_t end;		/* Inclusive */ | 
 | 	int scanned = 0; | 
 | 	int tag; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	if (wbc->range_cyclic) { | 
 | 		index = mapping->writeback_index; /* Start from prev offset */ | 
 | 		end = -1; | 
 | 	} else { | 
 | 		index = wbc->range_start >> PAGE_SHIFT; | 
 | 		end = wbc->range_end >> PAGE_SHIFT; | 
 | 		scanned = 1; | 
 | 	} | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		tag = PAGECACHE_TAG_TOWRITE; | 
 | 	else | 
 | 		tag = PAGECACHE_TAG_DIRTY; | 
 | retry: | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		tag_pages_for_writeback(mapping, index, end); | 
 | 	while (!done && !nr_to_write_done && (index <= end) && | 
 | 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, | 
 | 			tag))) { | 
 | 		unsigned i; | 
 |  | 
 | 		scanned = 1; | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			if (!PagePrivate(page)) | 
 | 				continue; | 
 |  | 
 | 			spin_lock(&mapping->private_lock); | 
 | 			if (!PagePrivate(page)) { | 
 | 				spin_unlock(&mapping->private_lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			eb = (struct extent_buffer *)page->private; | 
 |  | 
 | 			/* | 
 | 			 * Shouldn't happen and normally this would be a BUG_ON | 
 | 			 * but no sense in crashing the users box for something | 
 | 			 * we can survive anyway. | 
 | 			 */ | 
 | 			if (WARN_ON(!eb)) { | 
 | 				spin_unlock(&mapping->private_lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (eb == prev_eb) { | 
 | 				spin_unlock(&mapping->private_lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ret = atomic_inc_not_zero(&eb->refs); | 
 | 			spin_unlock(&mapping->private_lock); | 
 | 			if (!ret) | 
 | 				continue; | 
 |  | 
 | 			prev_eb = eb; | 
 | 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd); | 
 | 			if (!ret) { | 
 | 				free_extent_buffer(eb); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ret = write_one_eb(eb, fs_info, wbc, &epd); | 
 | 			if (ret) { | 
 | 				done = 1; | 
 | 				free_extent_buffer(eb); | 
 | 				break; | 
 | 			} | 
 | 			free_extent_buffer(eb); | 
 |  | 
 | 			/* | 
 | 			 * the filesystem may choose to bump up nr_to_write. | 
 | 			 * We have to make sure to honor the new nr_to_write | 
 | 			 * at any time | 
 | 			 */ | 
 | 			nr_to_write_done = wbc->nr_to_write <= 0; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!scanned && !done) { | 
 | 		/* | 
 | 		 * We hit the last page and there is more work to be done: wrap | 
 | 		 * back to the start of the file | 
 | 		 */ | 
 | 		scanned = 1; | 
 | 		index = 0; | 
 | 		goto retry; | 
 | 	} | 
 | 	flush_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 
 |  * @mapping: address space structure to write | 
 |  * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
 |  * @data: data passed to __extent_writepage function | 
 |  * | 
 |  * If a page is already under I/O, write_cache_pages() skips it, even | 
 |  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
 |  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
 |  * and msync() need to guarantee that all the data which was dirty at the time | 
 |  * the call was made get new I/O started against them.  If wbc->sync_mode is | 
 |  * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
 |  * existing IO to complete. | 
 |  */ | 
 | static int extent_write_cache_pages(struct address_space *mapping, | 
 | 			     struct writeback_control *wbc, | 
 | 			     struct extent_page_data *epd) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	int ret = 0; | 
 | 	int done = 0; | 
 | 	int nr_to_write_done = 0; | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	pgoff_t index; | 
 | 	pgoff_t end;		/* Inclusive */ | 
 | 	pgoff_t done_index; | 
 | 	int range_whole = 0; | 
 | 	int scanned = 0; | 
 | 	int tag; | 
 |  | 
 | 	/* | 
 | 	 * We have to hold onto the inode so that ordered extents can do their | 
 | 	 * work when the IO finishes.  The alternative to this is failing to add | 
 | 	 * an ordered extent if the igrab() fails there and that is a huge pain | 
 | 	 * to deal with, so instead just hold onto the inode throughout the | 
 | 	 * writepages operation.  If it fails here we are freeing up the inode | 
 | 	 * anyway and we'd rather not waste our time writing out stuff that is | 
 | 	 * going to be truncated anyway. | 
 | 	 */ | 
 | 	if (!igrab(inode)) | 
 | 		return 0; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	if (wbc->range_cyclic) { | 
 | 		index = mapping->writeback_index; /* Start from prev offset */ | 
 | 		end = -1; | 
 | 	} else { | 
 | 		index = wbc->range_start >> PAGE_SHIFT; | 
 | 		end = wbc->range_end >> PAGE_SHIFT; | 
 | 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
 | 			range_whole = 1; | 
 | 		scanned = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do the tagged writepage as long as the snapshot flush bit is set | 
 | 	 * and we are the first one who do the filemap_flush() on this inode. | 
 | 	 * | 
 | 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do | 
 | 	 * not race in and drop the bit. | 
 | 	 */ | 
 | 	if (range_whole && wbc->nr_to_write == LONG_MAX && | 
 | 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
 | 			       &BTRFS_I(inode)->runtime_flags)) | 
 | 		wbc->tagged_writepages = 1; | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 		tag = PAGECACHE_TAG_TOWRITE; | 
 | 	else | 
 | 		tag = PAGECACHE_TAG_DIRTY; | 
 | retry: | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 		tag_pages_for_writeback(mapping, index, end); | 
 | 	done_index = index; | 
 | 	while (!done && !nr_to_write_done && (index <= end) && | 
 | 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping, | 
 | 						&index, end, tag))) { | 
 | 		unsigned i; | 
 |  | 
 | 		scanned = 1; | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			done_index = page->index + 1; | 
 | 			/* | 
 | 			 * At this point we hold neither the i_pages lock nor | 
 | 			 * the page lock: the page may be truncated or | 
 | 			 * invalidated (changing page->mapping to NULL), | 
 | 			 * or even swizzled back from swapper_space to | 
 | 			 * tmpfs file mapping | 
 | 			 */ | 
 | 			if (!trylock_page(page)) { | 
 | 				flush_write_bio(epd); | 
 | 				lock_page(page); | 
 | 			} | 
 |  | 
 | 			if (unlikely(page->mapping != mapping)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (wbc->sync_mode != WB_SYNC_NONE) { | 
 | 				if (PageWriteback(page)) | 
 | 					flush_write_bio(epd); | 
 | 				wait_on_page_writeback(page); | 
 | 			} | 
 |  | 
 | 			if (PageWriteback(page) || | 
 | 			    !clear_page_dirty_for_io(page)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ret = __extent_writepage(page, wbc, epd); | 
 |  | 
 | 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { | 
 | 				unlock_page(page); | 
 | 				ret = 0; | 
 | 			} | 
 | 			if (ret < 0) { | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * the filesystem may choose to bump up nr_to_write. | 
 | 			 * We have to make sure to honor the new nr_to_write | 
 | 			 * at any time | 
 | 			 */ | 
 | 			nr_to_write_done = wbc->nr_to_write <= 0; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!scanned && !done) { | 
 | 		/* | 
 | 		 * We hit the last page and there is more work to be done: wrap | 
 | 		 * back to the start of the file | 
 | 		 */ | 
 | 		scanned = 1; | 
 | 		index = 0; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) | 
 | 		mapping->writeback_index = done_index; | 
 |  | 
 | 	btrfs_add_delayed_iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void flush_write_bio(struct extent_page_data *epd) | 
 | { | 
 | 	if (epd->bio) { | 
 | 		int ret; | 
 |  | 
 | 		ret = submit_one_bio(epd->bio, 0, 0); | 
 | 		BUG_ON(ret < 0); /* -ENOMEM */ | 
 | 		epd->bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | int extent_write_full_page(struct page *page, struct writeback_control *wbc) | 
 | { | 
 | 	int ret; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = &BTRFS_I(page->mapping->host)->io_tree, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 |  | 
 | 	ret = __extent_writepage(page, wbc, &epd); | 
 |  | 
 | 	flush_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_write_locked_range(struct inode *inode, u64 start, u64 end, | 
 | 			      int mode) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct page *page; | 
 | 	unsigned long nr_pages = (end - start + PAGE_SIZE) >> | 
 | 		PAGE_SHIFT; | 
 |  | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = tree, | 
 | 		.extent_locked = 1, | 
 | 		.sync_io = mode == WB_SYNC_ALL, | 
 | 	}; | 
 | 	struct writeback_control wbc_writepages = { | 
 | 		.sync_mode	= mode, | 
 | 		.nr_to_write	= nr_pages * 2, | 
 | 		.range_start	= start, | 
 | 		.range_end	= end + 1, | 
 | 	}; | 
 |  | 
 | 	while (start <= end) { | 
 | 		page = find_get_page(mapping, start >> PAGE_SHIFT); | 
 | 		if (clear_page_dirty_for_io(page)) | 
 | 			ret = __extent_writepage(page, &wbc_writepages, &epd); | 
 | 		else { | 
 | 			if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 				tree->ops->writepage_end_io_hook(page, start, | 
 | 						 start + PAGE_SIZE - 1, | 
 | 						 NULL, 1); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		put_page(page); | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	flush_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_writepages(struct address_space *mapping, | 
 | 		      struct writeback_control *wbc) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = &BTRFS_I(mapping->host)->io_tree, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 |  | 
 | 	ret = extent_write_cache_pages(mapping, wbc, &epd); | 
 | 	flush_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_readpages(struct address_space *mapping, struct list_head *pages, | 
 | 		     unsigned nr_pages) | 
 | { | 
 | 	struct bio *bio = NULL; | 
 | 	unsigned page_idx; | 
 | 	unsigned long bio_flags = 0; | 
 | 	struct page *pagepool[16]; | 
 | 	struct page *page; | 
 | 	struct extent_map *em_cached = NULL; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; | 
 | 	int nr = 0; | 
 | 	u64 prev_em_start = (u64)-1; | 
 |  | 
 | 	for (page_idx = 0; page_idx < nr_pages; page_idx++) { | 
 | 		page = list_entry(pages->prev, struct page, lru); | 
 |  | 
 | 		prefetchw(&page->flags); | 
 | 		list_del(&page->lru); | 
 | 		if (add_to_page_cache_lru(page, mapping, | 
 | 					page->index, | 
 | 					readahead_gfp_mask(mapping))) { | 
 | 			put_page(page); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pagepool[nr++] = page; | 
 | 		if (nr < ARRAY_SIZE(pagepool)) | 
 | 			continue; | 
 | 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio, | 
 | 				&bio_flags, &prev_em_start); | 
 | 		nr = 0; | 
 | 	} | 
 | 	if (nr) | 
 | 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio, | 
 | 				&bio_flags, &prev_em_start); | 
 |  | 
 | 	if (em_cached) | 
 | 		free_extent_map(em_cached); | 
 |  | 
 | 	BUG_ON(!list_empty(pages)); | 
 | 	if (bio) | 
 | 		return submit_one_bio(bio, 0, bio_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * basic invalidatepage code, this waits on any locked or writeback | 
 |  * ranges corresponding to the page, and then deletes any extent state | 
 |  * records from the tree | 
 |  */ | 
 | int extent_invalidatepage(struct extent_io_tree *tree, | 
 | 			  struct page *page, unsigned long offset) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	size_t blocksize = page->mapping->host->i_sb->s_blocksize; | 
 |  | 
 | 	start += ALIGN(offset, blocksize); | 
 | 	if (start > end) | 
 | 		return 0; | 
 |  | 
 | 	lock_extent_bits(tree, start, end, &cached_state); | 
 | 	wait_on_page_writeback(page); | 
 | 	clear_extent_bit(tree, start, end, | 
 | 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 			 EXTENT_DO_ACCOUNTING, | 
 | 			 1, 1, &cached_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper for releasepage, this tests for areas of the page that | 
 |  * are locked or under IO and drops the related state bits if it is safe | 
 |  * to drop the page. | 
 |  */ | 
 | static int try_release_extent_state(struct extent_io_tree *tree, | 
 | 				    struct page *page, gfp_t mask) | 
 | { | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	int ret = 1; | 
 |  | 
 | 	if (test_range_bit(tree, start, end, | 
 | 			   EXTENT_IOBITS, 0, NULL)) | 
 | 		ret = 0; | 
 | 	else { | 
 | 		/* | 
 | 		 * at this point we can safely clear everything except the | 
 | 		 * locked bit and the nodatasum bit | 
 | 		 */ | 
 | 		ret = __clear_extent_bit(tree, start, end, | 
 | 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM), | 
 | 				 0, 0, NULL, mask, NULL); | 
 |  | 
 | 		/* if clear_extent_bit failed for enomem reasons, | 
 | 		 * we can't allow the release to continue. | 
 | 		 */ | 
 | 		if (ret < 0) | 
 | 			ret = 0; | 
 | 		else | 
 | 			ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper for releasepage.  As long as there are no locked extents | 
 |  * in the range corresponding to the page, both state records and extent | 
 |  * map records are removed | 
 |  */ | 
 | int try_release_extent_mapping(struct page *page, gfp_t mask) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); | 
 | 	struct extent_io_tree *tree = &btrfs_inode->io_tree; | 
 | 	struct extent_map_tree *map = &btrfs_inode->extent_tree; | 
 |  | 
 | 	if (gfpflags_allow_blocking(mask) && | 
 | 	    page->mapping->host->i_size > SZ_16M) { | 
 | 		u64 len; | 
 | 		while (start <= end) { | 
 | 			len = end - start + 1; | 
 | 			write_lock(&map->lock); | 
 | 			em = lookup_extent_mapping(map, start, len); | 
 | 			if (!em) { | 
 | 				write_unlock(&map->lock); | 
 | 				break; | 
 | 			} | 
 | 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || | 
 | 			    em->start != start) { | 
 | 				write_unlock(&map->lock); | 
 | 				free_extent_map(em); | 
 | 				break; | 
 | 			} | 
 | 			if (!test_range_bit(tree, em->start, | 
 | 					    extent_map_end(em) - 1, | 
 | 					    EXTENT_LOCKED | EXTENT_WRITEBACK, | 
 | 					    0, NULL)) { | 
 | 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 					&btrfs_inode->runtime_flags); | 
 | 				remove_extent_mapping(map, em); | 
 | 				/* once for the rb tree */ | 
 | 				free_extent_map(em); | 
 | 			} | 
 | 			start = extent_map_end(em); | 
 | 			write_unlock(&map->lock); | 
 |  | 
 | 			/* once for us */ | 
 | 			free_extent_map(em); | 
 | 		} | 
 | 	} | 
 | 	return try_release_extent_state(tree, page, mask); | 
 | } | 
 |  | 
 | /* | 
 |  * helper function for fiemap, which doesn't want to see any holes. | 
 |  * This maps until we find something past 'last' | 
 |  */ | 
 | static struct extent_map *get_extent_skip_holes(struct inode *inode, | 
 | 						u64 offset, u64 last) | 
 | { | 
 | 	u64 sectorsize = btrfs_inode_sectorsize(inode); | 
 | 	struct extent_map *em; | 
 | 	u64 len; | 
 |  | 
 | 	if (offset >= last) | 
 | 		return NULL; | 
 |  | 
 | 	while (1) { | 
 | 		len = last - offset; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		len = ALIGN(len, sectorsize); | 
 | 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, | 
 | 				len, 0); | 
 | 		if (IS_ERR_OR_NULL(em)) | 
 | 			return em; | 
 |  | 
 | 		/* if this isn't a hole return it */ | 
 | 		if (em->block_start != EXTENT_MAP_HOLE) | 
 | 			return em; | 
 |  | 
 | 		/* this is a hole, advance to the next extent */ | 
 | 		offset = extent_map_end(em); | 
 | 		free_extent_map(em); | 
 | 		if (offset >= last) | 
 | 			break; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * To cache previous fiemap extent | 
 |  * | 
 |  * Will be used for merging fiemap extent | 
 |  */ | 
 | struct fiemap_cache { | 
 | 	u64 offset; | 
 | 	u64 phys; | 
 | 	u64 len; | 
 | 	u32 flags; | 
 | 	bool cached; | 
 | }; | 
 |  | 
 | /* | 
 |  * Helper to submit fiemap extent. | 
 |  * | 
 |  * Will try to merge current fiemap extent specified by @offset, @phys, | 
 |  * @len and @flags with cached one. | 
 |  * And only when we fails to merge, cached one will be submitted as | 
 |  * fiemap extent. | 
 |  * | 
 |  * Return value is the same as fiemap_fill_next_extent(). | 
 |  */ | 
 | static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, | 
 | 				struct fiemap_cache *cache, | 
 | 				u64 offset, u64 phys, u64 len, u32 flags) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!cache->cached) | 
 | 		goto assign; | 
 |  | 
 | 	/* | 
 | 	 * Sanity check, extent_fiemap() should have ensured that new | 
 | 	 * fiemap extent won't overlap with cahced one. | 
 | 	 * Not recoverable. | 
 | 	 * | 
 | 	 * NOTE: Physical address can overlap, due to compression | 
 | 	 */ | 
 | 	if (cache->offset + cache->len > offset) { | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only merges fiemap extents if | 
 | 	 * 1) Their logical addresses are continuous | 
 | 	 * | 
 | 	 * 2) Their physical addresses are continuous | 
 | 	 *    So truly compressed (physical size smaller than logical size) | 
 | 	 *    extents won't get merged with each other | 
 | 	 * | 
 | 	 * 3) Share same flags except FIEMAP_EXTENT_LAST | 
 | 	 *    So regular extent won't get merged with prealloc extent | 
 | 	 */ | 
 | 	if (cache->offset + cache->len  == offset && | 
 | 	    cache->phys + cache->len == phys  && | 
 | 	    (cache->flags & ~FIEMAP_EXTENT_LAST) == | 
 | 			(flags & ~FIEMAP_EXTENT_LAST)) { | 
 | 		cache->len += len; | 
 | 		cache->flags |= flags; | 
 | 		goto try_submit_last; | 
 | 	} | 
 |  | 
 | 	/* Not mergeable, need to submit cached one */ | 
 | 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
 | 				      cache->len, cache->flags); | 
 | 	cache->cached = false; | 
 | 	if (ret) | 
 | 		return ret; | 
 | assign: | 
 | 	cache->cached = true; | 
 | 	cache->offset = offset; | 
 | 	cache->phys = phys; | 
 | 	cache->len = len; | 
 | 	cache->flags = flags; | 
 | try_submit_last: | 
 | 	if (cache->flags & FIEMAP_EXTENT_LAST) { | 
 | 		ret = fiemap_fill_next_extent(fieinfo, cache->offset, | 
 | 				cache->phys, cache->len, cache->flags); | 
 | 		cache->cached = false; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Emit last fiemap cache | 
 |  * | 
 |  * The last fiemap cache may still be cached in the following case: | 
 |  * 0		      4k		    8k | 
 |  * |<- Fiemap range ->| | 
 |  * |<------------  First extent ----------->| | 
 |  * | 
 |  * In this case, the first extent range will be cached but not emitted. | 
 |  * So we must emit it before ending extent_fiemap(). | 
 |  */ | 
 | static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, | 
 | 				  struct fiemap_extent_info *fieinfo, | 
 | 				  struct fiemap_cache *cache) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!cache->cached) | 
 | 		return 0; | 
 |  | 
 | 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
 | 				      cache->len, cache->flags); | 
 | 	cache->cached = false; | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		__u64 start, __u64 len) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 off = start; | 
 | 	u64 max = start + len; | 
 | 	u32 flags = 0; | 
 | 	u32 found_type; | 
 | 	u64 last; | 
 | 	u64 last_for_get_extent = 0; | 
 | 	u64 disko = 0; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_map *em = NULL; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct fiemap_cache cache = { 0 }; | 
 | 	int end = 0; | 
 | 	u64 em_start = 0; | 
 | 	u64 em_len = 0; | 
 | 	u64 em_end = 0; | 
 |  | 
 | 	if (len == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	start = round_down(start, btrfs_inode_sectorsize(inode)); | 
 | 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start; | 
 |  | 
 | 	/* | 
 | 	 * lookup the last file extent.  We're not using i_size here | 
 | 	 * because there might be preallocation past i_size | 
 | 	 */ | 
 | 	ret = btrfs_lookup_file_extent(NULL, root, path, | 
 | 			btrfs_ino(BTRFS_I(inode)), -1, 0); | 
 | 	if (ret < 0) { | 
 | 		btrfs_free_path(path); | 
 | 		return ret; | 
 | 	} else { | 
 | 		WARN_ON(!ret); | 
 | 		if (ret == 1) | 
 | 			ret = 0; | 
 | 	} | 
 |  | 
 | 	path->slots[0]--; | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
 | 	found_type = found_key.type; | 
 |  | 
 | 	/* No extents, but there might be delalloc bits */ | 
 | 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || | 
 | 	    found_type != BTRFS_EXTENT_DATA_KEY) { | 
 | 		/* have to trust i_size as the end */ | 
 | 		last = (u64)-1; | 
 | 		last_for_get_extent = isize; | 
 | 	} else { | 
 | 		/* | 
 | 		 * remember the start of the last extent.  There are a | 
 | 		 * bunch of different factors that go into the length of the | 
 | 		 * extent, so its much less complex to remember where it started | 
 | 		 */ | 
 | 		last = found_key.offset; | 
 | 		last_for_get_extent = last + 1; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * we might have some extents allocated but more delalloc past those | 
 | 	 * extents.  so, we trust isize unless the start of the last extent is | 
 | 	 * beyond isize | 
 | 	 */ | 
 | 	if (last < isize) { | 
 | 		last = (u64)-1; | 
 | 		last_for_get_extent = isize; | 
 | 	} | 
 |  | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, | 
 | 			 &cached_state); | 
 |  | 
 | 	em = get_extent_skip_holes(inode, start, last_for_get_extent); | 
 | 	if (!em) | 
 | 		goto out; | 
 | 	if (IS_ERR(em)) { | 
 | 		ret = PTR_ERR(em); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (!end) { | 
 | 		u64 offset_in_extent = 0; | 
 |  | 
 | 		/* break if the extent we found is outside the range */ | 
 | 		if (em->start >= max || extent_map_end(em) < off) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * get_extent may return an extent that starts before our | 
 | 		 * requested range.  We have to make sure the ranges | 
 | 		 * we return to fiemap always move forward and don't | 
 | 		 * overlap, so adjust the offsets here | 
 | 		 */ | 
 | 		em_start = max(em->start, off); | 
 |  | 
 | 		/* | 
 | 		 * record the offset from the start of the extent | 
 | 		 * for adjusting the disk offset below.  Only do this if the | 
 | 		 * extent isn't compressed since our in ram offset may be past | 
 | 		 * what we have actually allocated on disk. | 
 | 		 */ | 
 | 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
 | 			offset_in_extent = em_start - em->start; | 
 | 		em_end = extent_map_end(em); | 
 | 		em_len = em_end - em_start; | 
 | 		flags = 0; | 
 | 		if (em->block_start < EXTENT_MAP_LAST_BYTE) | 
 | 			disko = em->block_start + offset_in_extent; | 
 | 		else | 
 | 			disko = 0; | 
 |  | 
 | 		/* | 
 | 		 * bump off for our next call to get_extent | 
 | 		 */ | 
 | 		off = extent_map_end(em); | 
 | 		if (off >= max) | 
 | 			end = 1; | 
 |  | 
 | 		if (em->block_start == EXTENT_MAP_LAST_BYTE) { | 
 | 			end = 1; | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 		} else if (em->block_start == EXTENT_MAP_INLINE) { | 
 | 			flags |= (FIEMAP_EXTENT_DATA_INLINE | | 
 | 				  FIEMAP_EXTENT_NOT_ALIGNED); | 
 | 		} else if (em->block_start == EXTENT_MAP_DELALLOC) { | 
 | 			flags |= (FIEMAP_EXTENT_DELALLOC | | 
 | 				  FIEMAP_EXTENT_UNKNOWN); | 
 | 		} else if (fieinfo->fi_extents_max) { | 
 | 			u64 bytenr = em->block_start - | 
 | 				(em->start - em->orig_start); | 
 |  | 
 | 			/* | 
 | 			 * As btrfs supports shared space, this information | 
 | 			 * can be exported to userspace tools via | 
 | 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0 | 
 | 			 * then we're just getting a count and we can skip the | 
 | 			 * lookup stuff. | 
 | 			 */ | 
 | 			ret = btrfs_check_shared(root, | 
 | 						 btrfs_ino(BTRFS_I(inode)), | 
 | 						 bytenr); | 
 | 			if (ret < 0) | 
 | 				goto out_free; | 
 | 			if (ret) | 
 | 				flags |= FIEMAP_EXTENT_SHARED; | 
 | 			ret = 0; | 
 | 		} | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
 | 			flags |= FIEMAP_EXTENT_ENCODED; | 
 | 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 			flags |= FIEMAP_EXTENT_UNWRITTEN; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 | 		if ((em_start >= last) || em_len == (u64)-1 || | 
 | 		   (last == (u64)-1 && isize <= em_end)) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			end = 1; | 
 | 		} | 
 |  | 
 | 		/* now scan forward to see if this is really the last extent. */ | 
 | 		em = get_extent_skip_holes(inode, off, last_for_get_extent); | 
 | 		if (IS_ERR(em)) { | 
 | 			ret = PTR_ERR(em); | 
 | 			goto out; | 
 | 		} | 
 | 		if (!em) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			end = 1; | 
 | 		} | 
 | 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, | 
 | 					   em_len, flags); | 
 | 		if (ret) { | 
 | 			if (ret == 1) | 
 | 				ret = 0; | 
 | 			goto out_free; | 
 | 		} | 
 | 	} | 
 | out_free: | 
 | 	if (!ret) | 
 | 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); | 
 | 	free_extent_map(em); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, | 
 | 			     &cached_state); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __free_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	btrfs_leak_debug_del(&eb->leak_list); | 
 | 	kmem_cache_free(extent_buffer_cache, eb); | 
 | } | 
 |  | 
 | int extent_buffer_under_io(struct extent_buffer *eb) | 
 | { | 
 | 	return (atomic_read(&eb->io_pages) || | 
 | 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || | 
 | 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
 | } | 
 |  | 
 | /* | 
 |  * Release all pages attached to the extent buffer. | 
 |  */ | 
 | static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 | 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
 |  | 
 | 	BUG_ON(extent_buffer_under_io(eb)); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *page = eb->pages[i]; | 
 |  | 
 | 		if (!page) | 
 | 			continue; | 
 | 		if (mapped) | 
 | 			spin_lock(&page->mapping->private_lock); | 
 | 		/* | 
 | 		 * We do this since we'll remove the pages after we've | 
 | 		 * removed the eb from the radix tree, so we could race | 
 | 		 * and have this page now attached to the new eb.  So | 
 | 		 * only clear page_private if it's still connected to | 
 | 		 * this eb. | 
 | 		 */ | 
 | 		if (PagePrivate(page) && | 
 | 		    page->private == (unsigned long)eb) { | 
 | 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
 | 			BUG_ON(PageDirty(page)); | 
 | 			BUG_ON(PageWriteback(page)); | 
 | 			/* | 
 | 			 * We need to make sure we haven't be attached | 
 | 			 * to a new eb. | 
 | 			 */ | 
 | 			ClearPagePrivate(page); | 
 | 			set_page_private(page, 0); | 
 | 			/* One for the page private */ | 
 | 			put_page(page); | 
 | 		} | 
 |  | 
 | 		if (mapped) | 
 | 			spin_unlock(&page->mapping->private_lock); | 
 |  | 
 | 		/* One for when we allocated the page */ | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Helper for releasing the extent buffer. | 
 |  */ | 
 | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	btrfs_release_extent_buffer_pages(eb); | 
 | 	__free_extent_buffer(eb); | 
 | } | 
 |  | 
 | static struct extent_buffer * | 
 | __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, | 
 | 		      unsigned long len) | 
 | { | 
 | 	struct extent_buffer *eb = NULL; | 
 |  | 
 | 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); | 
 | 	eb->start = start; | 
 | 	eb->len = len; | 
 | 	eb->fs_info = fs_info; | 
 | 	eb->bflags = 0; | 
 | 	rwlock_init(&eb->lock); | 
 | 	atomic_set(&eb->write_locks, 0); | 
 | 	atomic_set(&eb->read_locks, 0); | 
 | 	atomic_set(&eb->blocking_readers, 0); | 
 | 	atomic_set(&eb->blocking_writers, 0); | 
 | 	atomic_set(&eb->spinning_readers, 0); | 
 | 	atomic_set(&eb->spinning_writers, 0); | 
 | 	eb->lock_nested = 0; | 
 | 	init_waitqueue_head(&eb->write_lock_wq); | 
 | 	init_waitqueue_head(&eb->read_lock_wq); | 
 |  | 
 | 	btrfs_leak_debug_add(&eb->leak_list, &buffers); | 
 |  | 
 | 	spin_lock_init(&eb->refs_lock); | 
 | 	atomic_set(&eb->refs, 1); | 
 | 	atomic_set(&eb->io_pages, 0); | 
 |  | 
 | 	/* | 
 | 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages | 
 | 	 */ | 
 | 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE | 
 | 		> MAX_INLINE_EXTENT_BUFFER_SIZE); | 
 | 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); | 
 |  | 
 | 	return eb; | 
 | } | 
 |  | 
 | struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) | 
 | { | 
 | 	int i; | 
 | 	struct page *p; | 
 | 	struct extent_buffer *new; | 
 | 	int num_pages = num_extent_pages(src); | 
 |  | 
 | 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len); | 
 | 	if (new == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		p = alloc_page(GFP_NOFS); | 
 | 		if (!p) { | 
 | 			btrfs_release_extent_buffer(new); | 
 | 			return NULL; | 
 | 		} | 
 | 		attach_extent_buffer_page(new, p); | 
 | 		WARN_ON(PageDirty(p)); | 
 | 		SetPageUptodate(p); | 
 | 		new->pages[i] = p; | 
 | 		copy_page(page_address(p), page_address(src->pages[i])); | 
 | 	} | 
 |  | 
 | 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); | 
 | 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); | 
 |  | 
 | 	return new; | 
 | } | 
 |  | 
 | struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 						  u64 start, unsigned long len) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 | 	int num_pages; | 
 | 	int i; | 
 |  | 
 | 	eb = __alloc_extent_buffer(fs_info, start, len); | 
 | 	if (!eb) | 
 | 		return NULL; | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		eb->pages[i] = alloc_page(GFP_NOFS); | 
 | 		if (!eb->pages[i]) | 
 | 			goto err; | 
 | 	} | 
 | 	set_extent_buffer_uptodate(eb); | 
 | 	btrfs_set_header_nritems(eb, 0); | 
 | 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
 |  | 
 | 	return eb; | 
 | err: | 
 | 	for (; i > 0; i--) | 
 | 		__free_page(eb->pages[i - 1]); | 
 | 	__free_extent_buffer(eb); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 						u64 start) | 
 | { | 
 | 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); | 
 | } | 
 |  | 
 | static void check_buffer_tree_ref(struct extent_buffer *eb) | 
 | { | 
 | 	int refs; | 
 | 	/* the ref bit is tricky.  We have to make sure it is set | 
 | 	 * if we have the buffer dirty.   Otherwise the | 
 | 	 * code to free a buffer can end up dropping a dirty | 
 | 	 * page | 
 | 	 * | 
 | 	 * Once the ref bit is set, it won't go away while the | 
 | 	 * buffer is dirty or in writeback, and it also won't | 
 | 	 * go away while we have the reference count on the | 
 | 	 * eb bumped. | 
 | 	 * | 
 | 	 * We can't just set the ref bit without bumping the | 
 | 	 * ref on the eb because free_extent_buffer might | 
 | 	 * see the ref bit and try to clear it.  If this happens | 
 | 	 * free_extent_buffer might end up dropping our original | 
 | 	 * ref by mistake and freeing the page before we are able | 
 | 	 * to add one more ref. | 
 | 	 * | 
 | 	 * So bump the ref count first, then set the bit.  If someone | 
 | 	 * beat us to it, drop the ref we added. | 
 | 	 */ | 
 | 	refs = atomic_read(&eb->refs); | 
 | 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		atomic_inc(&eb->refs); | 
 | 	spin_unlock(&eb->refs_lock); | 
 | } | 
 |  | 
 | static void mark_extent_buffer_accessed(struct extent_buffer *eb, | 
 | 		struct page *accessed) | 
 | { | 
 | 	int num_pages, i; | 
 |  | 
 | 	check_buffer_tree_ref(eb); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		if (p != accessed) | 
 | 			mark_page_accessed(p); | 
 | 	} | 
 | } | 
 |  | 
 | struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 					 u64 start) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	eb = radix_tree_lookup(&fs_info->buffer_radix, | 
 | 			       start >> PAGE_SHIFT); | 
 | 	if (eb && atomic_inc_not_zero(&eb->refs)) { | 
 | 		rcu_read_unlock(); | 
 | 		/* | 
 | 		 * Lock our eb's refs_lock to avoid races with | 
 | 		 * free_extent_buffer. When we get our eb it might be flagged | 
 | 		 * with EXTENT_BUFFER_STALE and another task running | 
 | 		 * free_extent_buffer might have seen that flag set, | 
 | 		 * eb->refs == 2, that the buffer isn't under IO (dirty and | 
 | 		 * writeback flags not set) and it's still in the tree (flag | 
 | 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process | 
 | 		 * of decrementing the extent buffer's reference count twice. | 
 | 		 * So here we could race and increment the eb's reference count, | 
 | 		 * clear its stale flag, mark it as dirty and drop our reference | 
 | 		 * before the other task finishes executing free_extent_buffer, | 
 | 		 * which would later result in an attempt to free an extent | 
 | 		 * buffer that is dirty. | 
 | 		 */ | 
 | 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { | 
 | 			spin_lock(&eb->refs_lock); | 
 | 			spin_unlock(&eb->refs_lock); | 
 | 		} | 
 | 		mark_extent_buffer_accessed(eb, NULL); | 
 | 		return eb; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 					u64 start) | 
 | { | 
 | 	struct extent_buffer *eb, *exists = NULL; | 
 | 	int ret; | 
 |  | 
 | 	eb = find_extent_buffer(fs_info, start); | 
 | 	if (eb) | 
 | 		return eb; | 
 | 	eb = alloc_dummy_extent_buffer(fs_info, start); | 
 | 	if (!eb) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	eb->fs_info = fs_info; | 
 | again: | 
 | 	ret = radix_tree_preload(GFP_NOFS); | 
 | 	if (ret) { | 
 | 		exists = ERR_PTR(ret); | 
 | 		goto free_eb; | 
 | 	} | 
 | 	spin_lock(&fs_info->buffer_lock); | 
 | 	ret = radix_tree_insert(&fs_info->buffer_radix, | 
 | 				start >> PAGE_SHIFT, eb); | 
 | 	spin_unlock(&fs_info->buffer_lock); | 
 | 	radix_tree_preload_end(); | 
 | 	if (ret == -EEXIST) { | 
 | 		exists = find_extent_buffer(fs_info, start); | 
 | 		if (exists) | 
 | 			goto free_eb; | 
 | 		else | 
 | 			goto again; | 
 | 	} | 
 | 	check_buffer_tree_ref(eb); | 
 | 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
 |  | 
 | 	/* | 
 | 	 * We will free dummy extent buffer's if they come into | 
 | 	 * free_extent_buffer with a ref count of 2, but if we are using this we | 
 | 	 * want the buffers to stay in memory until we're done with them, so | 
 | 	 * bump the ref count again. | 
 | 	 */ | 
 | 	atomic_inc(&eb->refs); | 
 | 	return eb; | 
 | free_eb: | 
 | 	btrfs_release_extent_buffer(eb); | 
 | 	return exists; | 
 | } | 
 | #endif | 
 |  | 
 | struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 					  u64 start) | 
 | { | 
 | 	unsigned long len = fs_info->nodesize; | 
 | 	int num_pages; | 
 | 	int i; | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	struct extent_buffer *eb; | 
 | 	struct extent_buffer *exists = NULL; | 
 | 	struct page *p; | 
 | 	struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
 | 	int uptodate = 1; | 
 | 	int ret; | 
 |  | 
 | 	if (!IS_ALIGNED(start, fs_info->sectorsize)) { | 
 | 		btrfs_err(fs_info, "bad tree block start %llu", start); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	eb = find_extent_buffer(fs_info, start); | 
 | 	if (eb) | 
 | 		return eb; | 
 |  | 
 | 	eb = __alloc_extent_buffer(fs_info, start, len); | 
 | 	if (!eb) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++, index++) { | 
 | 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); | 
 | 		if (!p) { | 
 | 			exists = ERR_PTR(-ENOMEM); | 
 | 			goto free_eb; | 
 | 		} | 
 |  | 
 | 		spin_lock(&mapping->private_lock); | 
 | 		if (PagePrivate(p)) { | 
 | 			/* | 
 | 			 * We could have already allocated an eb for this page | 
 | 			 * and attached one so lets see if we can get a ref on | 
 | 			 * the existing eb, and if we can we know it's good and | 
 | 			 * we can just return that one, else we know we can just | 
 | 			 * overwrite page->private. | 
 | 			 */ | 
 | 			exists = (struct extent_buffer *)p->private; | 
 | 			if (atomic_inc_not_zero(&exists->refs)) { | 
 | 				spin_unlock(&mapping->private_lock); | 
 | 				unlock_page(p); | 
 | 				put_page(p); | 
 | 				mark_extent_buffer_accessed(exists, p); | 
 | 				goto free_eb; | 
 | 			} | 
 | 			exists = NULL; | 
 |  | 
 | 			/* | 
 | 			 * Do this so attach doesn't complain and we need to | 
 | 			 * drop the ref the old guy had. | 
 | 			 */ | 
 | 			ClearPagePrivate(p); | 
 | 			WARN_ON(PageDirty(p)); | 
 | 			put_page(p); | 
 | 		} | 
 | 		attach_extent_buffer_page(eb, p); | 
 | 		spin_unlock(&mapping->private_lock); | 
 | 		WARN_ON(PageDirty(p)); | 
 | 		eb->pages[i] = p; | 
 | 		if (!PageUptodate(p)) | 
 | 			uptodate = 0; | 
 |  | 
 | 		/* | 
 | 		 * We can't unlock the pages just yet since the extent buffer | 
 | 		 * hasn't been properly inserted in the radix tree, this | 
 | 		 * opens a race with btree_releasepage which can free a page | 
 | 		 * while we are still filling in all pages for the buffer and | 
 | 		 * we could crash. | 
 | 		 */ | 
 | 	} | 
 | 	if (uptodate) | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | again: | 
 | 	ret = radix_tree_preload(GFP_NOFS); | 
 | 	if (ret) { | 
 | 		exists = ERR_PTR(ret); | 
 | 		goto free_eb; | 
 | 	} | 
 |  | 
 | 	spin_lock(&fs_info->buffer_lock); | 
 | 	ret = radix_tree_insert(&fs_info->buffer_radix, | 
 | 				start >> PAGE_SHIFT, eb); | 
 | 	spin_unlock(&fs_info->buffer_lock); | 
 | 	radix_tree_preload_end(); | 
 | 	if (ret == -EEXIST) { | 
 | 		exists = find_extent_buffer(fs_info, start); | 
 | 		if (exists) | 
 | 			goto free_eb; | 
 | 		else | 
 | 			goto again; | 
 | 	} | 
 | 	/* add one reference for the tree */ | 
 | 	check_buffer_tree_ref(eb); | 
 | 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
 |  | 
 | 	/* | 
 | 	 * Now it's safe to unlock the pages because any calls to | 
 | 	 * btree_releasepage will correctly detect that a page belongs to a | 
 | 	 * live buffer and won't free them prematurely. | 
 | 	 */ | 
 | 	for (i = 0; i < num_pages; i++) | 
 | 		unlock_page(eb->pages[i]); | 
 | 	return eb; | 
 |  | 
 | free_eb: | 
 | 	WARN_ON(!atomic_dec_and_test(&eb->refs)); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		if (eb->pages[i]) | 
 | 			unlock_page(eb->pages[i]); | 
 | 	} | 
 |  | 
 | 	btrfs_release_extent_buffer(eb); | 
 | 	return exists; | 
 | } | 
 |  | 
 | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct extent_buffer *eb = | 
 | 			container_of(head, struct extent_buffer, rcu_head); | 
 |  | 
 | 	__free_extent_buffer(eb); | 
 | } | 
 |  | 
 | static int release_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	lockdep_assert_held(&eb->refs_lock); | 
 |  | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | 	if (atomic_dec_and_test(&eb->refs)) { | 
 | 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { | 
 | 			struct btrfs_fs_info *fs_info = eb->fs_info; | 
 |  | 
 | 			spin_unlock(&eb->refs_lock); | 
 |  | 
 | 			spin_lock(&fs_info->buffer_lock); | 
 | 			radix_tree_delete(&fs_info->buffer_radix, | 
 | 					  eb->start >> PAGE_SHIFT); | 
 | 			spin_unlock(&fs_info->buffer_lock); | 
 | 		} else { | 
 | 			spin_unlock(&eb->refs_lock); | 
 | 		} | 
 |  | 
 | 		/* Should be safe to release our pages at this point */ | 
 | 		btrfs_release_extent_buffer_pages(eb); | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { | 
 | 			__free_extent_buffer(eb); | 
 | 			return 1; | 
 | 		} | 
 | #endif | 
 | 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); | 
 | 		return 1; | 
 | 	} | 
 | 	spin_unlock(&eb->refs_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void free_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	int refs; | 
 | 	int old; | 
 | 	if (!eb) | 
 | 		return; | 
 |  | 
 | 	while (1) { | 
 | 		refs = atomic_read(&eb->refs); | 
 | 		if (refs <= 3) | 
 | 			break; | 
 | 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1); | 
 | 		if (old == refs) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (atomic_read(&eb->refs) == 2 && | 
 | 	    test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) | 
 | 		atomic_dec(&eb->refs); | 
 |  | 
 | 	if (atomic_read(&eb->refs) == 2 && | 
 | 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && | 
 | 	    !extent_buffer_under_io(eb) && | 
 | 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		atomic_dec(&eb->refs); | 
 |  | 
 | 	/* | 
 | 	 * I know this is terrible, but it's temporary until we stop tracking | 
 | 	 * the uptodate bits and such for the extent buffers. | 
 | 	 */ | 
 | 	release_extent_buffer(eb); | 
 | } | 
 |  | 
 | void free_extent_buffer_stale(struct extent_buffer *eb) | 
 | { | 
 | 	if (!eb) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags); | 
 |  | 
 | 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && | 
 | 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		atomic_dec(&eb->refs); | 
 | 	release_extent_buffer(eb); | 
 | } | 
 |  | 
 | void clear_extent_buffer_dirty(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 | 	struct page *page; | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (!PageDirty(page)) | 
 | 			continue; | 
 |  | 
 | 		lock_page(page); | 
 | 		WARN_ON(!PagePrivate(page)); | 
 |  | 
 | 		clear_page_dirty_for_io(page); | 
 | 		xa_lock_irq(&page->mapping->i_pages); | 
 | 		if (!PageDirty(page)) { | 
 | 			radix_tree_tag_clear(&page->mapping->i_pages, | 
 | 						page_index(page), | 
 | 						PAGECACHE_TAG_DIRTY); | 
 | 		} | 
 | 		xa_unlock_irq(&page->mapping->i_pages); | 
 | 		ClearPageError(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | } | 
 |  | 
 | int set_extent_buffer_dirty(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 | 	int was_dirty = 0; | 
 |  | 
 | 	check_buffer_tree_ref(eb); | 
 |  | 
 | 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) | 
 | 		set_page_dirty(eb->pages[i]); | 
 | 	return was_dirty; | 
 | } | 
 |  | 
 | void clear_extent_buffer_uptodate(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 | 	int num_pages; | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (page) | 
 | 			ClearPageUptodate(page); | 
 | 	} | 
 | } | 
 |  | 
 | void set_extent_buffer_uptodate(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 | 	int num_pages; | 
 |  | 
 | 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		SetPageUptodate(page); | 
 | 	} | 
 | } | 
 |  | 
 | int read_extent_buffer_pages(struct extent_io_tree *tree, | 
 | 			     struct extent_buffer *eb, int wait, int mirror_num) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 | 	int err; | 
 | 	int ret = 0; | 
 | 	int locked_pages = 0; | 
 | 	int all_uptodate = 1; | 
 | 	int num_pages; | 
 | 	unsigned long num_reads = 0; | 
 | 	struct bio *bio = NULL; | 
 | 	unsigned long bio_flags = 0; | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
 | 		return 0; | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (wait == WAIT_NONE) { | 
 | 			if (!trylock_page(page)) | 
 | 				goto unlock_exit; | 
 | 		} else { | 
 | 			lock_page(page); | 
 | 		} | 
 | 		locked_pages++; | 
 | 	} | 
 | 	/* | 
 | 	 * We need to firstly lock all pages to make sure that | 
 | 	 * the uptodate bit of our pages won't be affected by | 
 | 	 * clear_extent_buffer_uptodate(). | 
 | 	 */ | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (!PageUptodate(page)) { | 
 | 			num_reads++; | 
 | 			all_uptodate = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (all_uptodate) { | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 		goto unlock_exit; | 
 | 	} | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
 | 	eb->read_mirror = 0; | 
 | 	atomic_set(&eb->io_pages, num_reads); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		if (!PageUptodate(page)) { | 
 | 			if (ret) { | 
 | 				atomic_dec(&eb->io_pages); | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ClearPageError(page); | 
 | 			err = __extent_read_full_page(tree, page, | 
 | 						      btree_get_extent, &bio, | 
 | 						      mirror_num, &bio_flags, | 
 | 						      REQ_META); | 
 | 			if (err) { | 
 | 				ret = err; | 
 | 				/* | 
 | 				 * We use &bio in above __extent_read_full_page, | 
 | 				 * so we ensure that if it returns error, the | 
 | 				 * current page fails to add itself to bio and | 
 | 				 * it's been unlocked. | 
 | 				 * | 
 | 				 * We must dec io_pages by ourselves. | 
 | 				 */ | 
 | 				atomic_dec(&eb->io_pages); | 
 | 			} | 
 | 		} else { | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bio) { | 
 | 		err = submit_one_bio(bio, mirror_num, bio_flags); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (ret || wait != WAIT_COMPLETE) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		wait_on_page_locked(page); | 
 | 		if (!PageUptodate(page)) | 
 | 			ret = -EIO; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | unlock_exit: | 
 | 	while (locked_pages > 0) { | 
 | 		locked_pages--; | 
 | 		page = eb->pages[locked_pages]; | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void read_extent_buffer(const struct extent_buffer *eb, void *dstv, | 
 | 			unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *dst = (char *)dstv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
 |  | 
 | 	if (start + len > eb->len) { | 
 | 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", | 
 | 		     eb->start, eb->len, start, len); | 
 | 		memset(dst, 0, len); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	offset = (start_offset + start) & (PAGE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		cur = min(len, (PAGE_SIZE - offset)); | 
 | 		kaddr = page_address(page); | 
 | 		memcpy(dst, kaddr + offset, cur); | 
 |  | 
 | 		dst += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | int read_extent_buffer_to_user(const struct extent_buffer *eb, | 
 | 			       void __user *dstv, | 
 | 			       unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char __user *dst = (char __user *)dstv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & (PAGE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		cur = min(len, (PAGE_SIZE - offset)); | 
 | 		kaddr = page_address(page); | 
 | 		if (copy_to_user(dst, kaddr + offset, cur)) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		dst += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * return 0 if the item is found within a page. | 
 |  * return 1 if the item spans two pages. | 
 |  * return -EINVAL otherwise. | 
 |  */ | 
 | int map_private_extent_buffer(const struct extent_buffer *eb, | 
 | 			      unsigned long start, unsigned long min_len, | 
 | 			      char **map, unsigned long *map_start, | 
 | 			      unsigned long *map_len) | 
 | { | 
 | 	size_t offset = start & (PAGE_SIZE - 1); | 
 | 	char *kaddr; | 
 | 	struct page *p; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
 | 	unsigned long end_i = (start_offset + start + min_len - 1) >> | 
 | 		PAGE_SHIFT; | 
 |  | 
 | 	if (start + min_len > eb->len) { | 
 | 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", | 
 | 		       eb->start, eb->len, start, min_len); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (i != end_i) | 
 | 		return 1; | 
 |  | 
 | 	if (i == 0) { | 
 | 		offset = start_offset; | 
 | 		*map_start = 0; | 
 | 	} else { | 
 | 		offset = 0; | 
 | 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset; | 
 | 	} | 
 |  | 
 | 	p = eb->pages[i]; | 
 | 	kaddr = page_address(p); | 
 | 	*map = kaddr + offset; | 
 | 	*map_len = PAGE_SIZE - offset; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, | 
 | 			 unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *ptr = (char *)ptrv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & (PAGE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		cur = min(len, (PAGE_SIZE - offset)); | 
 |  | 
 | 		kaddr = page_address(page); | 
 | 		ret = memcmp(ptr, kaddr + offset, cur); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		ptr += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, | 
 | 		const void *srcv) | 
 | { | 
 | 	char *kaddr; | 
 |  | 
 | 	WARN_ON(!PageUptodate(eb->pages[0])); | 
 | 	kaddr = page_address(eb->pages[0]); | 
 | 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, | 
 | 			BTRFS_FSID_SIZE); | 
 | } | 
 |  | 
 | void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) | 
 | { | 
 | 	char *kaddr; | 
 |  | 
 | 	WARN_ON(!PageUptodate(eb->pages[0])); | 
 | 	kaddr = page_address(eb->pages[0]); | 
 | 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, | 
 | 			BTRFS_FSID_SIZE); | 
 | } | 
 |  | 
 | void write_extent_buffer(struct extent_buffer *eb, const void *srcv, | 
 | 			 unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *src = (char *)srcv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & (PAGE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 | 		WARN_ON(!PageUptodate(page)); | 
 |  | 
 | 		cur = min(len, PAGE_SIZE - offset); | 
 | 		kaddr = page_address(page); | 
 | 		memcpy(kaddr + offset, src, cur); | 
 |  | 
 | 		src += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, | 
 | 		unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_SHIFT; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & (PAGE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 | 		WARN_ON(!PageUptodate(page)); | 
 |  | 
 | 		cur = min(len, PAGE_SIZE - offset); | 
 | 		kaddr = page_address(page); | 
 | 		memset(kaddr + offset, 0, cur); | 
 |  | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | void copy_extent_buffer_full(struct extent_buffer *dst, | 
 | 			     struct extent_buffer *src) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 |  | 
 | 	ASSERT(dst->len == src->len); | 
 |  | 
 | 	num_pages = num_extent_pages(dst); | 
 | 	for (i = 0; i < num_pages; i++) | 
 | 		copy_page(page_address(dst->pages[i]), | 
 | 				page_address(src->pages[i])); | 
 | } | 
 |  | 
 | void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, | 
 | 			unsigned long dst_offset, unsigned long src_offset, | 
 | 			unsigned long len) | 
 | { | 
 | 	u64 dst_len = dst->len; | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; | 
 |  | 
 | 	WARN_ON(src->len != dst_len); | 
 |  | 
 | 	offset = (start_offset + dst_offset) & | 
 | 		(PAGE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = dst->pages[i]; | 
 | 		WARN_ON(!PageUptodate(page)); | 
 |  | 
 | 		cur = min(len, (unsigned long)(PAGE_SIZE - offset)); | 
 |  | 
 | 		kaddr = page_address(page); | 
 | 		read_extent_buffer(src, kaddr + offset, src_offset, cur); | 
 |  | 
 | 		src_offset += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * eb_bitmap_offset() - calculate the page and offset of the byte containing the | 
 |  * given bit number | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @nr: bit number | 
 |  * @page_index: return index of the page in the extent buffer that contains the | 
 |  * given bit number | 
 |  * @page_offset: return offset into the page given by page_index | 
 |  * | 
 |  * This helper hides the ugliness of finding the byte in an extent buffer which | 
 |  * contains a given bit. | 
 |  */ | 
 | static inline void eb_bitmap_offset(struct extent_buffer *eb, | 
 | 				    unsigned long start, unsigned long nr, | 
 | 				    unsigned long *page_index, | 
 | 				    size_t *page_offset) | 
 | { | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); | 
 | 	size_t byte_offset = BIT_BYTE(nr); | 
 | 	size_t offset; | 
 |  | 
 | 	/* | 
 | 	 * The byte we want is the offset of the extent buffer + the offset of | 
 | 	 * the bitmap item in the extent buffer + the offset of the byte in the | 
 | 	 * bitmap item. | 
 | 	 */ | 
 | 	offset = start_offset + start + byte_offset; | 
 |  | 
 | 	*page_index = offset >> PAGE_SHIFT; | 
 | 	*page_offset = offset & (PAGE_SIZE - 1); | 
 | } | 
 |  | 
 | /** | 
 |  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @nr: bit number to test | 
 |  */ | 
 | int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, | 
 | 			   unsigned long nr) | 
 | { | 
 | 	u8 *kaddr; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	size_t offset; | 
 |  | 
 | 	eb_bitmap_offset(eb, start, nr, &i, &offset); | 
 | 	page = eb->pages[i]; | 
 | 	WARN_ON(!PageUptodate(page)); | 
 | 	kaddr = page_address(page); | 
 | 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); | 
 | } | 
 |  | 
 | /** | 
 |  * extent_buffer_bitmap_set - set an area of a bitmap | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @pos: bit number of the first bit | 
 |  * @len: number of bits to set | 
 |  */ | 
 | void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, | 
 | 			      unsigned long pos, unsigned long len) | 
 | { | 
 | 	u8 *kaddr; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	size_t offset; | 
 | 	const unsigned int size = pos + len; | 
 | 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
 | 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); | 
 |  | 
 | 	eb_bitmap_offset(eb, start, pos, &i, &offset); | 
 | 	page = eb->pages[i]; | 
 | 	WARN_ON(!PageUptodate(page)); | 
 | 	kaddr = page_address(page); | 
 |  | 
 | 	while (len >= bits_to_set) { | 
 | 		kaddr[offset] |= mask_to_set; | 
 | 		len -= bits_to_set; | 
 | 		bits_to_set = BITS_PER_BYTE; | 
 | 		mask_to_set = ~0; | 
 | 		if (++offset >= PAGE_SIZE && len > 0) { | 
 | 			offset = 0; | 
 | 			page = eb->pages[++i]; | 
 | 			WARN_ON(!PageUptodate(page)); | 
 | 			kaddr = page_address(page); | 
 | 		} | 
 | 	} | 
 | 	if (len) { | 
 | 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size); | 
 | 		kaddr[offset] |= mask_to_set; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * extent_buffer_bitmap_clear - clear an area of a bitmap | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @pos: bit number of the first bit | 
 |  * @len: number of bits to clear | 
 |  */ | 
 | void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, | 
 | 				unsigned long pos, unsigned long len) | 
 | { | 
 | 	u8 *kaddr; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	size_t offset; | 
 | 	const unsigned int size = pos + len; | 
 | 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
 | 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); | 
 |  | 
 | 	eb_bitmap_offset(eb, start, pos, &i, &offset); | 
 | 	page = eb->pages[i]; | 
 | 	WARN_ON(!PageUptodate(page)); | 
 | 	kaddr = page_address(page); | 
 |  | 
 | 	while (len >= bits_to_clear) { | 
 | 		kaddr[offset] &= ~mask_to_clear; | 
 | 		len -= bits_to_clear; | 
 | 		bits_to_clear = BITS_PER_BYTE; | 
 | 		mask_to_clear = ~0; | 
 | 		if (++offset >= PAGE_SIZE && len > 0) { | 
 | 			offset = 0; | 
 | 			page = eb->pages[++i]; | 
 | 			WARN_ON(!PageUptodate(page)); | 
 | 			kaddr = page_address(page); | 
 | 		} | 
 | 	} | 
 | 	if (len) { | 
 | 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); | 
 | 		kaddr[offset] &= ~mask_to_clear; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) | 
 | { | 
 | 	unsigned long distance = (src > dst) ? src - dst : dst - src; | 
 | 	return distance < len; | 
 | } | 
 |  | 
 | static void copy_pages(struct page *dst_page, struct page *src_page, | 
 | 		       unsigned long dst_off, unsigned long src_off, | 
 | 		       unsigned long len) | 
 | { | 
 | 	char *dst_kaddr = page_address(dst_page); | 
 | 	char *src_kaddr; | 
 | 	int must_memmove = 0; | 
 |  | 
 | 	if (dst_page != src_page) { | 
 | 		src_kaddr = page_address(src_page); | 
 | 	} else { | 
 | 		src_kaddr = dst_kaddr; | 
 | 		if (areas_overlap(src_off, dst_off, len)) | 
 | 			must_memmove = 1; | 
 | 	} | 
 |  | 
 | 	if (must_memmove) | 
 | 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
 | 	else | 
 | 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
 | } | 
 |  | 
 | void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | 
 | 			   unsigned long src_offset, unsigned long len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = dst->fs_info; | 
 | 	size_t cur; | 
 | 	size_t dst_off_in_page; | 
 | 	size_t src_off_in_page; | 
 | 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long dst_i; | 
 | 	unsigned long src_i; | 
 |  | 
 | 	if (src_offset + len > dst->len) { | 
 | 		btrfs_err(fs_info, | 
 | 			"memmove bogus src_offset %lu move len %lu dst len %lu", | 
 | 			 src_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (dst_offset + len > dst->len) { | 
 | 		btrfs_err(fs_info, | 
 | 			"memmove bogus dst_offset %lu move len %lu dst len %lu", | 
 | 			 dst_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	while (len > 0) { | 
 | 		dst_off_in_page = (start_offset + dst_offset) & | 
 | 			(PAGE_SIZE - 1); | 
 | 		src_off_in_page = (start_offset + src_offset) & | 
 | 			(PAGE_SIZE - 1); | 
 |  | 
 | 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; | 
 | 		src_i = (start_offset + src_offset) >> PAGE_SHIFT; | 
 |  | 
 | 		cur = min(len, (unsigned long)(PAGE_SIZE - | 
 | 					       src_off_in_page)); | 
 | 		cur = min_t(unsigned long, cur, | 
 | 			(unsigned long)(PAGE_SIZE - dst_off_in_page)); | 
 |  | 
 | 		copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
 | 			   dst_off_in_page, src_off_in_page, cur); | 
 |  | 
 | 		src_offset += cur; | 
 | 		dst_offset += cur; | 
 | 		len -= cur; | 
 | 	} | 
 | } | 
 |  | 
 | void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | 
 | 			   unsigned long src_offset, unsigned long len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = dst->fs_info; | 
 | 	size_t cur; | 
 | 	size_t dst_off_in_page; | 
 | 	size_t src_off_in_page; | 
 | 	unsigned long dst_end = dst_offset + len - 1; | 
 | 	unsigned long src_end = src_offset + len - 1; | 
 | 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); | 
 | 	unsigned long dst_i; | 
 | 	unsigned long src_i; | 
 |  | 
 | 	if (src_offset + len > dst->len) { | 
 | 		btrfs_err(fs_info, | 
 | 			  "memmove bogus src_offset %lu move len %lu len %lu", | 
 | 			  src_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (dst_offset + len > dst->len) { | 
 | 		btrfs_err(fs_info, | 
 | 			  "memmove bogus dst_offset %lu move len %lu len %lu", | 
 | 			  dst_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (dst_offset < src_offset) { | 
 | 		memcpy_extent_buffer(dst, dst_offset, src_offset, len); | 
 | 		return; | 
 | 	} | 
 | 	while (len > 0) { | 
 | 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT; | 
 | 		src_i = (start_offset + src_end) >> PAGE_SHIFT; | 
 |  | 
 | 		dst_off_in_page = (start_offset + dst_end) & | 
 | 			(PAGE_SIZE - 1); | 
 | 		src_off_in_page = (start_offset + src_end) & | 
 | 			(PAGE_SIZE - 1); | 
 |  | 
 | 		cur = min_t(unsigned long, len, src_off_in_page + 1); | 
 | 		cur = min(cur, dst_off_in_page + 1); | 
 | 		copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
 | 			   dst_off_in_page - cur + 1, | 
 | 			   src_off_in_page - cur + 1, cur); | 
 |  | 
 | 		dst_end -= cur; | 
 | 		src_end -= cur; | 
 | 		len -= cur; | 
 | 	} | 
 | } | 
 |  | 
 | int try_release_extent_buffer(struct page *page) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	/* | 
 | 	 * We need to make sure nobody is attaching this page to an eb right | 
 | 	 * now. | 
 | 	 */ | 
 | 	spin_lock(&page->mapping->private_lock); | 
 | 	if (!PagePrivate(page)) { | 
 | 		spin_unlock(&page->mapping->private_lock); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	eb = (struct extent_buffer *)page->private; | 
 | 	BUG_ON(!eb); | 
 |  | 
 | 	/* | 
 | 	 * This is a little awful but should be ok, we need to make sure that | 
 | 	 * the eb doesn't disappear out from under us while we're looking at | 
 | 	 * this page. | 
 | 	 */ | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 		spin_unlock(&page->mapping->private_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&page->mapping->private_lock); | 
 |  | 
 | 	/* | 
 | 	 * If tree ref isn't set then we know the ref on this eb is a real ref, | 
 | 	 * so just return, this page will likely be freed soon anyway. | 
 | 	 */ | 
 | 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return release_extent_buffer(eb); | 
 | } |