| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Main bcache entry point - handle a read or a write request and decide what to | 
 |  * do with it; the make_request functions are called by the block layer. | 
 |  * | 
 |  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> | 
 |  * Copyright 2012 Google, Inc. | 
 |  */ | 
 |  | 
 | #include "bcache.h" | 
 | #include "btree.h" | 
 | #include "debug.h" | 
 | #include "request.h" | 
 | #include "writeback.h" | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/random.h> | 
 | #include <linux/backing-dev.h> | 
 |  | 
 | #include <trace/events/bcache.h> | 
 |  | 
 | #define CUTOFF_CACHE_ADD	95 | 
 | #define CUTOFF_CACHE_READA	90 | 
 |  | 
 | struct kmem_cache *bch_search_cache; | 
 |  | 
 | static void bch_data_insert_start(struct closure *cl); | 
 |  | 
 | static unsigned int cache_mode(struct cached_dev *dc) | 
 | { | 
 | 	return BDEV_CACHE_MODE(&dc->sb); | 
 | } | 
 |  | 
 | static bool verify(struct cached_dev *dc) | 
 | { | 
 | 	return dc->verify; | 
 | } | 
 |  | 
 | static void bio_csum(struct bio *bio, struct bkey *k) | 
 | { | 
 | 	struct bio_vec bv; | 
 | 	struct bvec_iter iter; | 
 | 	uint64_t csum = 0; | 
 |  | 
 | 	bio_for_each_segment(bv, bio, iter) { | 
 | 		void *d = kmap(bv.bv_page) + bv.bv_offset; | 
 |  | 
 | 		csum = bch_crc64_update(csum, d, bv.bv_len); | 
 | 		kunmap(bv.bv_page); | 
 | 	} | 
 |  | 
 | 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); | 
 | } | 
 |  | 
 | /* Insert data into cache */ | 
 |  | 
 | static void bch_data_insert_keys(struct closure *cl) | 
 | { | 
 | 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); | 
 | 	atomic_t *journal_ref = NULL; | 
 | 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If we're looping, might already be waiting on | 
 | 	 * another journal write - can't wait on more than one journal write at | 
 | 	 * a time | 
 | 	 * | 
 | 	 * XXX: this looks wrong | 
 | 	 */ | 
 | #if 0 | 
 | 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) | 
 | 		closure_sync(&s->cl); | 
 | #endif | 
 |  | 
 | 	if (!op->replace) | 
 | 		journal_ref = bch_journal(op->c, &op->insert_keys, | 
 | 					  op->flush_journal ? cl : NULL); | 
 |  | 
 | 	ret = bch_btree_insert(op->c, &op->insert_keys, | 
 | 			       journal_ref, replace_key); | 
 | 	if (ret == -ESRCH) { | 
 | 		op->replace_collision = true; | 
 | 	} else if (ret) { | 
 | 		op->status		= BLK_STS_RESOURCE; | 
 | 		op->insert_data_done	= true; | 
 | 	} | 
 |  | 
 | 	if (journal_ref) | 
 | 		atomic_dec_bug(journal_ref); | 
 |  | 
 | 	if (!op->insert_data_done) { | 
 | 		continue_at(cl, bch_data_insert_start, op->wq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bch_keylist_free(&op->insert_keys); | 
 | 	closure_return(cl); | 
 | } | 
 |  | 
 | static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, | 
 | 			       struct cache_set *c) | 
 | { | 
 | 	size_t oldsize = bch_keylist_nkeys(l); | 
 | 	size_t newsize = oldsize + u64s; | 
 |  | 
 | 	/* | 
 | 	 * The journalling code doesn't handle the case where the keys to insert | 
 | 	 * is bigger than an empty write: If we just return -ENOMEM here, | 
 | 	 * bch_data_insert_keys() will insert the keys created so far | 
 | 	 * and finish the rest when the keylist is empty. | 
 | 	 */ | 
 | 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return __bch_keylist_realloc(l, u64s); | 
 | } | 
 |  | 
 | static void bch_data_invalidate(struct closure *cl) | 
 | { | 
 | 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); | 
 | 	struct bio *bio = op->bio; | 
 |  | 
 | 	pr_debug("invalidating %i sectors from %llu", | 
 | 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); | 
 |  | 
 | 	while (bio_sectors(bio)) { | 
 | 		unsigned int sectors = min(bio_sectors(bio), | 
 | 				       1U << (KEY_SIZE_BITS - 1)); | 
 |  | 
 | 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) | 
 | 			goto out; | 
 |  | 
 | 		bio->bi_iter.bi_sector	+= sectors; | 
 | 		bio->bi_iter.bi_size	-= sectors << 9; | 
 |  | 
 | 		bch_keylist_add(&op->insert_keys, | 
 | 				&KEY(op->inode, | 
 | 				     bio->bi_iter.bi_sector, | 
 | 				     sectors)); | 
 | 	} | 
 |  | 
 | 	op->insert_data_done = true; | 
 | 	/* get in bch_data_insert() */ | 
 | 	bio_put(bio); | 
 | out: | 
 | 	continue_at(cl, bch_data_insert_keys, op->wq); | 
 | } | 
 |  | 
 | static void bch_data_insert_error(struct closure *cl) | 
 | { | 
 | 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); | 
 |  | 
 | 	/* | 
 | 	 * Our data write just errored, which means we've got a bunch of keys to | 
 | 	 * insert that point to data that wasn't successfully written. | 
 | 	 * | 
 | 	 * We don't have to insert those keys but we still have to invalidate | 
 | 	 * that region of the cache - so, if we just strip off all the pointers | 
 | 	 * from the keys we'll accomplish just that. | 
 | 	 */ | 
 |  | 
 | 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; | 
 |  | 
 | 	while (src != op->insert_keys.top) { | 
 | 		struct bkey *n = bkey_next(src); | 
 |  | 
 | 		SET_KEY_PTRS(src, 0); | 
 | 		memmove(dst, src, bkey_bytes(src)); | 
 |  | 
 | 		dst = bkey_next(dst); | 
 | 		src = n; | 
 | 	} | 
 |  | 
 | 	op->insert_keys.top = dst; | 
 |  | 
 | 	bch_data_insert_keys(cl); | 
 | } | 
 |  | 
 | static void bch_data_insert_endio(struct bio *bio) | 
 | { | 
 | 	struct closure *cl = bio->bi_private; | 
 | 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		/* TODO: We could try to recover from this. */ | 
 | 		if (op->writeback) | 
 | 			op->status = bio->bi_status; | 
 | 		else if (!op->replace) | 
 | 			set_closure_fn(cl, bch_data_insert_error, op->wq); | 
 | 		else | 
 | 			set_closure_fn(cl, NULL, NULL); | 
 | 	} | 
 |  | 
 | 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); | 
 | } | 
 |  | 
 | static void bch_data_insert_start(struct closure *cl) | 
 | { | 
 | 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); | 
 | 	struct bio *bio = op->bio, *n; | 
 |  | 
 | 	if (op->bypass) | 
 | 		return bch_data_invalidate(cl); | 
 |  | 
 | 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) | 
 | 		wake_up_gc(op->c); | 
 |  | 
 | 	/* | 
 | 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a | 
 | 	 * flush, it'll wait on the journal write. | 
 | 	 */ | 
 | 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); | 
 |  | 
 | 	do { | 
 | 		unsigned int i; | 
 | 		struct bkey *k; | 
 | 		struct bio_set *split = &op->c->bio_split; | 
 |  | 
 | 		/* 1 for the device pointer and 1 for the chksum */ | 
 | 		if (bch_keylist_realloc(&op->insert_keys, | 
 | 					3 + (op->csum ? 1 : 0), | 
 | 					op->c)) { | 
 | 			continue_at(cl, bch_data_insert_keys, op->wq); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		k = op->insert_keys.top; | 
 | 		bkey_init(k); | 
 | 		SET_KEY_INODE(k, op->inode); | 
 | 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); | 
 |  | 
 | 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), | 
 | 				       op->write_point, op->write_prio, | 
 | 				       op->writeback)) | 
 | 			goto err; | 
 |  | 
 | 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); | 
 |  | 
 | 		n->bi_end_io	= bch_data_insert_endio; | 
 | 		n->bi_private	= cl; | 
 |  | 
 | 		if (op->writeback) { | 
 | 			SET_KEY_DIRTY(k, true); | 
 |  | 
 | 			for (i = 0; i < KEY_PTRS(k); i++) | 
 | 				SET_GC_MARK(PTR_BUCKET(op->c, k, i), | 
 | 					    GC_MARK_DIRTY); | 
 | 		} | 
 |  | 
 | 		SET_KEY_CSUM(k, op->csum); | 
 | 		if (KEY_CSUM(k)) | 
 | 			bio_csum(n, k); | 
 |  | 
 | 		trace_bcache_cache_insert(k); | 
 | 		bch_keylist_push(&op->insert_keys); | 
 |  | 
 | 		bio_set_op_attrs(n, REQ_OP_WRITE, 0); | 
 | 		bch_submit_bbio(n, op->c, k, 0); | 
 | 	} while (n != bio); | 
 |  | 
 | 	op->insert_data_done = true; | 
 | 	continue_at(cl, bch_data_insert_keys, op->wq); | 
 | 	return; | 
 | err: | 
 | 	/* bch_alloc_sectors() blocks if s->writeback = true */ | 
 | 	BUG_ON(op->writeback); | 
 |  | 
 | 	/* | 
 | 	 * But if it's not a writeback write we'd rather just bail out if | 
 | 	 * there aren't any buckets ready to write to - it might take awhile and | 
 | 	 * we might be starving btree writes for gc or something. | 
 | 	 */ | 
 |  | 
 | 	if (!op->replace) { | 
 | 		/* | 
 | 		 * Writethrough write: We can't complete the write until we've | 
 | 		 * updated the index. But we don't want to delay the write while | 
 | 		 * we wait for buckets to be freed up, so just invalidate the | 
 | 		 * rest of the write. | 
 | 		 */ | 
 | 		op->bypass = true; | 
 | 		return bch_data_invalidate(cl); | 
 | 	} else { | 
 | 		/* | 
 | 		 * From a cache miss, we can just insert the keys for the data | 
 | 		 * we have written or bail out if we didn't do anything. | 
 | 		 */ | 
 | 		op->insert_data_done = true; | 
 | 		bio_put(bio); | 
 |  | 
 | 		if (!bch_keylist_empty(&op->insert_keys)) | 
 | 			continue_at(cl, bch_data_insert_keys, op->wq); | 
 | 		else | 
 | 			closure_return(cl); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bch_data_insert - stick some data in the cache | 
 |  * @cl: closure pointer. | 
 |  * | 
 |  * This is the starting point for any data to end up in a cache device; it could | 
 |  * be from a normal write, or a writeback write, or a write to a flash only | 
 |  * volume - it's also used by the moving garbage collector to compact data in | 
 |  * mostly empty buckets. | 
 |  * | 
 |  * It first writes the data to the cache, creating a list of keys to be inserted | 
 |  * (if the data had to be fragmented there will be multiple keys); after the | 
 |  * data is written it calls bch_journal, and after the keys have been added to | 
 |  * the next journal write they're inserted into the btree. | 
 |  * | 
 |  * It inserts the data in s->cache_bio; bi_sector is used for the key offset, | 
 |  * and op->inode is used for the key inode. | 
 |  * | 
 |  * If s->bypass is true, instead of inserting the data it invalidates the | 
 |  * region of the cache represented by s->cache_bio and op->inode. | 
 |  */ | 
 | void bch_data_insert(struct closure *cl) | 
 | { | 
 | 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); | 
 |  | 
 | 	trace_bcache_write(op->c, op->inode, op->bio, | 
 | 			   op->writeback, op->bypass); | 
 |  | 
 | 	bch_keylist_init(&op->insert_keys); | 
 | 	bio_get(op->bio); | 
 | 	bch_data_insert_start(cl); | 
 | } | 
 |  | 
 | /* Congested? */ | 
 |  | 
 | unsigned int bch_get_congested(struct cache_set *c) | 
 | { | 
 | 	int i; | 
 | 	long rand; | 
 |  | 
 | 	if (!c->congested_read_threshold_us && | 
 | 	    !c->congested_write_threshold_us) | 
 | 		return 0; | 
 |  | 
 | 	i = (local_clock_us() - c->congested_last_us) / 1024; | 
 | 	if (i < 0) | 
 | 		return 0; | 
 |  | 
 | 	i += atomic_read(&c->congested); | 
 | 	if (i >= 0) | 
 | 		return 0; | 
 |  | 
 | 	i += CONGESTED_MAX; | 
 |  | 
 | 	if (i > 0) | 
 | 		i = fract_exp_two(i, 6); | 
 |  | 
 | 	rand = get_random_int(); | 
 | 	i -= bitmap_weight(&rand, BITS_PER_LONG); | 
 |  | 
 | 	return i > 0 ? i : 1; | 
 | } | 
 |  | 
 | static void add_sequential(struct task_struct *t) | 
 | { | 
 | 	ewma_add(t->sequential_io_avg, | 
 | 		 t->sequential_io, 8, 0); | 
 |  | 
 | 	t->sequential_io = 0; | 
 | } | 
 |  | 
 | static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) | 
 | { | 
 | 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; | 
 | } | 
 |  | 
 | static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) | 
 | { | 
 | 	struct cache_set *c = dc->disk.c; | 
 | 	unsigned int mode = cache_mode(dc); | 
 | 	unsigned int sectors, congested = bch_get_congested(c); | 
 | 	struct task_struct *task = current; | 
 | 	struct io *i; | 
 |  | 
 | 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || | 
 | 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD || | 
 | 	    (bio_op(bio) == REQ_OP_DISCARD)) | 
 | 		goto skip; | 
 |  | 
 | 	if (mode == CACHE_MODE_NONE || | 
 | 	    (mode == CACHE_MODE_WRITEAROUND && | 
 | 	     op_is_write(bio_op(bio)))) | 
 | 		goto skip; | 
 |  | 
 | 	/* | 
 | 	 * Flag for bypass if the IO is for read-ahead or background, | 
 | 	 * unless the read-ahead request is for metadata | 
 | 	 * (eg, for gfs2 or xfs). | 
 | 	 */ | 
 | 	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) && | 
 | 	    !(bio->bi_opf & (REQ_META|REQ_PRIO))) | 
 | 		goto skip; | 
 |  | 
 | 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || | 
 | 	    bio_sectors(bio) & (c->sb.block_size - 1)) { | 
 | 		pr_debug("skipping unaligned io"); | 
 | 		goto skip; | 
 | 	} | 
 |  | 
 | 	if (bypass_torture_test(dc)) { | 
 | 		if ((get_random_int() & 3) == 3) | 
 | 			goto skip; | 
 | 		else | 
 | 			goto rescale; | 
 | 	} | 
 |  | 
 | 	if (!congested && !dc->sequential_cutoff) | 
 | 		goto rescale; | 
 |  | 
 | 	spin_lock(&dc->io_lock); | 
 |  | 
 | 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) | 
 | 		if (i->last == bio->bi_iter.bi_sector && | 
 | 		    time_before(jiffies, i->jiffies)) | 
 | 			goto found; | 
 |  | 
 | 	i = list_first_entry(&dc->io_lru, struct io, lru); | 
 |  | 
 | 	add_sequential(task); | 
 | 	i->sequential = 0; | 
 | found: | 
 | 	if (i->sequential + bio->bi_iter.bi_size > i->sequential) | 
 | 		i->sequential	+= bio->bi_iter.bi_size; | 
 |  | 
 | 	i->last			 = bio_end_sector(bio); | 
 | 	i->jiffies		 = jiffies + msecs_to_jiffies(5000); | 
 | 	task->sequential_io	 = i->sequential; | 
 |  | 
 | 	hlist_del(&i->hash); | 
 | 	hlist_add_head(&i->hash, iohash(dc, i->last)); | 
 | 	list_move_tail(&i->lru, &dc->io_lru); | 
 |  | 
 | 	spin_unlock(&dc->io_lock); | 
 |  | 
 | 	sectors = max(task->sequential_io, | 
 | 		      task->sequential_io_avg) >> 9; | 
 |  | 
 | 	if (dc->sequential_cutoff && | 
 | 	    sectors >= dc->sequential_cutoff >> 9) { | 
 | 		trace_bcache_bypass_sequential(bio); | 
 | 		goto skip; | 
 | 	} | 
 |  | 
 | 	if (congested && sectors >= congested) { | 
 | 		trace_bcache_bypass_congested(bio); | 
 | 		goto skip; | 
 | 	} | 
 |  | 
 | rescale: | 
 | 	bch_rescale_priorities(c, bio_sectors(bio)); | 
 | 	return false; | 
 | skip: | 
 | 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Cache lookup */ | 
 |  | 
 | struct search { | 
 | 	/* Stack frame for bio_complete */ | 
 | 	struct closure		cl; | 
 |  | 
 | 	struct bbio		bio; | 
 | 	struct bio		*orig_bio; | 
 | 	struct bio		*cache_miss; | 
 | 	struct bcache_device	*d; | 
 |  | 
 | 	unsigned int		insert_bio_sectors; | 
 | 	unsigned int		recoverable:1; | 
 | 	unsigned int		write:1; | 
 | 	unsigned int		read_dirty_data:1; | 
 | 	unsigned int		cache_missed:1; | 
 |  | 
 | 	unsigned long		start_time; | 
 |  | 
 | 	struct btree_op		op; | 
 | 	struct data_insert_op	iop; | 
 | }; | 
 |  | 
 | static void bch_cache_read_endio(struct bio *bio) | 
 | { | 
 | 	struct bbio *b = container_of(bio, struct bbio, bio); | 
 | 	struct closure *cl = bio->bi_private; | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 |  | 
 | 	/* | 
 | 	 * If the bucket was reused while our bio was in flight, we might have | 
 | 	 * read the wrong data. Set s->error but not error so it doesn't get | 
 | 	 * counted against the cache device, but we'll still reread the data | 
 | 	 * from the backing device. | 
 | 	 */ | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		s->iop.status = bio->bi_status; | 
 | 	else if (!KEY_DIRTY(&b->key) && | 
 | 		 ptr_stale(s->iop.c, &b->key, 0)) { | 
 | 		atomic_long_inc(&s->iop.c->cache_read_races); | 
 | 		s->iop.status = BLK_STS_IOERR; | 
 | 	} | 
 |  | 
 | 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); | 
 | } | 
 |  | 
 | /* | 
 |  * Read from a single key, handling the initial cache miss if the key starts in | 
 |  * the middle of the bio | 
 |  */ | 
 | static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) | 
 | { | 
 | 	struct search *s = container_of(op, struct search, op); | 
 | 	struct bio *n, *bio = &s->bio.bio; | 
 | 	struct bkey *bio_key; | 
 | 	unsigned int ptr; | 
 |  | 
 | 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) | 
 | 		return MAP_CONTINUE; | 
 |  | 
 | 	if (KEY_INODE(k) != s->iop.inode || | 
 | 	    KEY_START(k) > bio->bi_iter.bi_sector) { | 
 | 		unsigned int bio_sectors = bio_sectors(bio); | 
 | 		unsigned int sectors = KEY_INODE(k) == s->iop.inode | 
 | 			? min_t(uint64_t, INT_MAX, | 
 | 				KEY_START(k) - bio->bi_iter.bi_sector) | 
 | 			: INT_MAX; | 
 | 		int ret = s->d->cache_miss(b, s, bio, sectors); | 
 |  | 
 | 		if (ret != MAP_CONTINUE) | 
 | 			return ret; | 
 |  | 
 | 		/* if this was a complete miss we shouldn't get here */ | 
 | 		BUG_ON(bio_sectors <= sectors); | 
 | 	} | 
 |  | 
 | 	if (!KEY_SIZE(k)) | 
 | 		return MAP_CONTINUE; | 
 |  | 
 | 	/* XXX: figure out best pointer - for multiple cache devices */ | 
 | 	ptr = 0; | 
 |  | 
 | 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; | 
 |  | 
 | 	if (KEY_DIRTY(k)) | 
 | 		s->read_dirty_data = true; | 
 |  | 
 | 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX, | 
 | 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector), | 
 | 			   GFP_NOIO, &s->d->bio_split); | 
 |  | 
 | 	bio_key = &container_of(n, struct bbio, bio)->key; | 
 | 	bch_bkey_copy_single_ptr(bio_key, k, ptr); | 
 |  | 
 | 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); | 
 | 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); | 
 |  | 
 | 	n->bi_end_io	= bch_cache_read_endio; | 
 | 	n->bi_private	= &s->cl; | 
 |  | 
 | 	/* | 
 | 	 * The bucket we're reading from might be reused while our bio | 
 | 	 * is in flight, and we could then end up reading the wrong | 
 | 	 * data. | 
 | 	 * | 
 | 	 * We guard against this by checking (in cache_read_endio()) if | 
 | 	 * the pointer is stale again; if so, we treat it as an error | 
 | 	 * and reread from the backing device (but we don't pass that | 
 | 	 * error up anywhere). | 
 | 	 */ | 
 |  | 
 | 	__bch_submit_bbio(n, b->c); | 
 | 	return n == bio ? MAP_DONE : MAP_CONTINUE; | 
 | } | 
 |  | 
 | static void cache_lookup(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, iop.cl); | 
 | 	struct bio *bio = &s->bio.bio; | 
 | 	struct cached_dev *dc; | 
 | 	int ret; | 
 |  | 
 | 	bch_btree_op_init(&s->op, -1); | 
 |  | 
 | 	ret = bch_btree_map_keys(&s->op, s->iop.c, | 
 | 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), | 
 | 				 cache_lookup_fn, MAP_END_KEY); | 
 | 	if (ret == -EAGAIN) { | 
 | 		continue_at(cl, cache_lookup, bcache_wq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We might meet err when searching the btree, If that happens, we will | 
 | 	 * get negative ret, in this scenario we should not recover data from | 
 | 	 * backing device (when cache device is dirty) because we don't know | 
 | 	 * whether bkeys the read request covered are all clean. | 
 | 	 * | 
 | 	 * And after that happened, s->iop.status is still its initial value | 
 | 	 * before we submit s->bio.bio | 
 | 	 */ | 
 | 	if (ret < 0) { | 
 | 		BUG_ON(ret == -EINTR); | 
 | 		if (s->d && s->d->c && | 
 | 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { | 
 | 			dc = container_of(s->d, struct cached_dev, disk); | 
 | 			if (dc && atomic_read(&dc->has_dirty)) | 
 | 				s->recoverable = false; | 
 | 		} | 
 | 		if (!s->iop.status) | 
 | 			s->iop.status = BLK_STS_IOERR; | 
 | 	} | 
 |  | 
 | 	closure_return(cl); | 
 | } | 
 |  | 
 | /* Common code for the make_request functions */ | 
 |  | 
 | static void request_endio(struct bio *bio) | 
 | { | 
 | 	struct closure *cl = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		struct search *s = container_of(cl, struct search, cl); | 
 |  | 
 | 		s->iop.status = bio->bi_status; | 
 | 		/* Only cache read errors are recoverable */ | 
 | 		s->recoverable = false; | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | 	closure_put(cl); | 
 | } | 
 |  | 
 | static void backing_request_endio(struct bio *bio) | 
 | { | 
 | 	struct closure *cl = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		struct search *s = container_of(cl, struct search, cl); | 
 | 		struct cached_dev *dc = container_of(s->d, | 
 | 						     struct cached_dev, disk); | 
 | 		/* | 
 | 		 * If a bio has REQ_PREFLUSH for writeback mode, it is | 
 | 		 * speically assembled in cached_dev_write() for a non-zero | 
 | 		 * write request which has REQ_PREFLUSH. we don't set | 
 | 		 * s->iop.status by this failure, the status will be decided | 
 | 		 * by result of bch_data_insert() operation. | 
 | 		 */ | 
 | 		if (unlikely(s->iop.writeback && | 
 | 			     bio->bi_opf & REQ_PREFLUSH)) { | 
 | 			pr_err("Can't flush %s: returned bi_status %i", | 
 | 				dc->backing_dev_name, bio->bi_status); | 
 | 		} else { | 
 | 			/* set to orig_bio->bi_status in bio_complete() */ | 
 | 			s->iop.status = bio->bi_status; | 
 | 		} | 
 | 		s->recoverable = false; | 
 | 		/* should count I/O error for backing device here */ | 
 | 		bch_count_backing_io_errors(dc, bio); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | 	closure_put(cl); | 
 | } | 
 |  | 
 | static void bio_complete(struct search *s) | 
 | { | 
 | 	if (s->orig_bio) { | 
 | 		generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio), | 
 | 				    &s->d->disk->part0, s->start_time); | 
 |  | 
 | 		trace_bcache_request_end(s->d, s->orig_bio); | 
 | 		s->orig_bio->bi_status = s->iop.status; | 
 | 		bio_endio(s->orig_bio); | 
 | 		s->orig_bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void do_bio_hook(struct search *s, | 
 | 			struct bio *orig_bio, | 
 | 			bio_end_io_t *end_io_fn) | 
 | { | 
 | 	struct bio *bio = &s->bio.bio; | 
 |  | 
 | 	bio_init(bio, NULL, 0); | 
 | 	__bio_clone_fast(bio, orig_bio); | 
 | 	/* | 
 | 	 * bi_end_io can be set separately somewhere else, e.g. the | 
 | 	 * variants in, | 
 | 	 * - cache_bio->bi_end_io from cached_dev_cache_miss() | 
 | 	 * - n->bi_end_io from cache_lookup_fn() | 
 | 	 */ | 
 | 	bio->bi_end_io		= end_io_fn; | 
 | 	bio->bi_private		= &s->cl; | 
 |  | 
 | 	bio_cnt_set(bio, 3); | 
 | } | 
 |  | 
 | static void search_free(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 |  | 
 | 	atomic_dec(&s->d->c->search_inflight); | 
 |  | 
 | 	if (s->iop.bio) | 
 | 		bio_put(s->iop.bio); | 
 |  | 
 | 	bio_complete(s); | 
 | 	closure_debug_destroy(cl); | 
 | 	mempool_free(s, &s->d->c->search); | 
 | } | 
 |  | 
 | static inline struct search *search_alloc(struct bio *bio, | 
 | 					  struct bcache_device *d) | 
 | { | 
 | 	struct search *s; | 
 |  | 
 | 	s = mempool_alloc(&d->c->search, GFP_NOIO); | 
 |  | 
 | 	closure_init(&s->cl, NULL); | 
 | 	do_bio_hook(s, bio, request_endio); | 
 | 	atomic_inc(&d->c->search_inflight); | 
 |  | 
 | 	s->orig_bio		= bio; | 
 | 	s->cache_miss		= NULL; | 
 | 	s->cache_missed		= 0; | 
 | 	s->d			= d; | 
 | 	s->recoverable		= 1; | 
 | 	s->write		= op_is_write(bio_op(bio)); | 
 | 	s->read_dirty_data	= 0; | 
 | 	s->start_time		= jiffies; | 
 |  | 
 | 	s->iop.c		= d->c; | 
 | 	s->iop.bio		= NULL; | 
 | 	s->iop.inode		= d->id; | 
 | 	s->iop.write_point	= hash_long((unsigned long) current, 16); | 
 | 	s->iop.write_prio	= 0; | 
 | 	s->iop.status		= 0; | 
 | 	s->iop.flags		= 0; | 
 | 	s->iop.flush_journal	= op_is_flush(bio->bi_opf); | 
 | 	s->iop.wq		= bcache_wq; | 
 |  | 
 | 	return s; | 
 | } | 
 |  | 
 | /* Cached devices */ | 
 |  | 
 | static void cached_dev_bio_complete(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 | 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); | 
 |  | 
 | 	search_free(cl); | 
 | 	cached_dev_put(dc); | 
 | } | 
 |  | 
 | /* Process reads */ | 
 |  | 
 | static void cached_dev_cache_miss_done(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 |  | 
 | 	if (s->iop.replace_collision) | 
 | 		bch_mark_cache_miss_collision(s->iop.c, s->d); | 
 |  | 
 | 	if (s->iop.bio) | 
 | 		bio_free_pages(s->iop.bio); | 
 |  | 
 | 	cached_dev_bio_complete(cl); | 
 | } | 
 |  | 
 | static void cached_dev_read_error(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 | 	struct bio *bio = &s->bio.bio; | 
 |  | 
 | 	/* | 
 | 	 * If read request hit dirty data (s->read_dirty_data is true), | 
 | 	 * then recovery a failed read request from cached device may | 
 | 	 * get a stale data back. So read failure recovery is only | 
 | 	 * permitted when read request hit clean data in cache device, | 
 | 	 * or when cache read race happened. | 
 | 	 */ | 
 | 	if (s->recoverable && !s->read_dirty_data) { | 
 | 		/* Retry from the backing device: */ | 
 | 		trace_bcache_read_retry(s->orig_bio); | 
 |  | 
 | 		s->iop.status = 0; | 
 | 		do_bio_hook(s, s->orig_bio, backing_request_endio); | 
 |  | 
 | 		/* XXX: invalidate cache */ | 
 |  | 
 | 		/* I/O request sent to backing device */ | 
 | 		closure_bio_submit(s->iop.c, bio, cl); | 
 | 	} | 
 |  | 
 | 	continue_at(cl, cached_dev_cache_miss_done, NULL); | 
 | } | 
 |  | 
 | static void cached_dev_read_done(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 | 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); | 
 |  | 
 | 	/* | 
 | 	 * We had a cache miss; cache_bio now contains data ready to be inserted | 
 | 	 * into the cache. | 
 | 	 * | 
 | 	 * First, we copy the data we just read from cache_bio's bounce buffers | 
 | 	 * to the buffers the original bio pointed to: | 
 | 	 */ | 
 |  | 
 | 	if (s->iop.bio) { | 
 | 		bio_reset(s->iop.bio); | 
 | 		s->iop.bio->bi_iter.bi_sector = | 
 | 			s->cache_miss->bi_iter.bi_sector; | 
 | 		bio_copy_dev(s->iop.bio, s->cache_miss); | 
 | 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; | 
 | 		bch_bio_map(s->iop.bio, NULL); | 
 |  | 
 | 		bio_copy_data(s->cache_miss, s->iop.bio); | 
 |  | 
 | 		bio_put(s->cache_miss); | 
 | 		s->cache_miss = NULL; | 
 | 	} | 
 |  | 
 | 	if (verify(dc) && s->recoverable && !s->read_dirty_data) | 
 | 		bch_data_verify(dc, s->orig_bio); | 
 |  | 
 | 	bio_complete(s); | 
 |  | 
 | 	if (s->iop.bio && | 
 | 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { | 
 | 		BUG_ON(!s->iop.replace); | 
 | 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl); | 
 | 	} | 
 |  | 
 | 	continue_at(cl, cached_dev_cache_miss_done, NULL); | 
 | } | 
 |  | 
 | static void cached_dev_read_done_bh(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 | 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); | 
 |  | 
 | 	bch_mark_cache_accounting(s->iop.c, s->d, | 
 | 				  !s->cache_missed, s->iop.bypass); | 
 | 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); | 
 |  | 
 | 	if (s->iop.status) | 
 | 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); | 
 | 	else if (s->iop.bio || verify(dc)) | 
 | 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); | 
 | 	else | 
 | 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); | 
 | } | 
 |  | 
 | static int cached_dev_cache_miss(struct btree *b, struct search *s, | 
 | 				 struct bio *bio, unsigned int sectors) | 
 | { | 
 | 	int ret = MAP_CONTINUE; | 
 | 	unsigned int reada = 0; | 
 | 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); | 
 | 	struct bio *miss, *cache_bio; | 
 |  | 
 | 	s->cache_missed = 1; | 
 |  | 
 | 	if (s->cache_miss || s->iop.bypass) { | 
 | 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); | 
 | 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE; | 
 | 		goto out_submit; | 
 | 	} | 
 |  | 
 | 	if (!(bio->bi_opf & REQ_RAHEAD) && | 
 | 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)) && | 
 | 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) | 
 | 		reada = min_t(sector_t, dc->readahead >> 9, | 
 | 			      get_capacity(bio->bi_disk) - bio_end_sector(bio)); | 
 |  | 
 | 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); | 
 |  | 
 | 	s->iop.replace_key = KEY(s->iop.inode, | 
 | 				 bio->bi_iter.bi_sector + s->insert_bio_sectors, | 
 | 				 s->insert_bio_sectors); | 
 |  | 
 | 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	s->iop.replace = true; | 
 |  | 
 | 	miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); | 
 |  | 
 | 	/* btree_search_recurse()'s btree iterator is no good anymore */ | 
 | 	ret = miss == bio ? MAP_DONE : -EINTR; | 
 |  | 
 | 	cache_bio = bio_alloc_bioset(GFP_NOWAIT, | 
 | 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), | 
 | 			&dc->disk.bio_split); | 
 | 	if (!cache_bio) | 
 | 		goto out_submit; | 
 |  | 
 | 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector; | 
 | 	bio_copy_dev(cache_bio, miss); | 
 | 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9; | 
 |  | 
 | 	cache_bio->bi_end_io	= backing_request_endio; | 
 | 	cache_bio->bi_private	= &s->cl; | 
 |  | 
 | 	bch_bio_map(cache_bio, NULL); | 
 | 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) | 
 | 		goto out_put; | 
 |  | 
 | 	if (reada) | 
 | 		bch_mark_cache_readahead(s->iop.c, s->d); | 
 |  | 
 | 	s->cache_miss	= miss; | 
 | 	s->iop.bio	= cache_bio; | 
 | 	bio_get(cache_bio); | 
 | 	/* I/O request sent to backing device */ | 
 | 	closure_bio_submit(s->iop.c, cache_bio, &s->cl); | 
 |  | 
 | 	return ret; | 
 | out_put: | 
 | 	bio_put(cache_bio); | 
 | out_submit: | 
 | 	miss->bi_end_io		= backing_request_endio; | 
 | 	miss->bi_private	= &s->cl; | 
 | 	/* I/O request sent to backing device */ | 
 | 	closure_bio_submit(s->iop.c, miss, &s->cl); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void cached_dev_read(struct cached_dev *dc, struct search *s) | 
 | { | 
 | 	struct closure *cl = &s->cl; | 
 |  | 
 | 	closure_call(&s->iop.cl, cache_lookup, NULL, cl); | 
 | 	continue_at(cl, cached_dev_read_done_bh, NULL); | 
 | } | 
 |  | 
 | /* Process writes */ | 
 |  | 
 | static void cached_dev_write_complete(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 | 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); | 
 |  | 
 | 	up_read_non_owner(&dc->writeback_lock); | 
 | 	cached_dev_bio_complete(cl); | 
 | } | 
 |  | 
 | static void cached_dev_write(struct cached_dev *dc, struct search *s) | 
 | { | 
 | 	struct closure *cl = &s->cl; | 
 | 	struct bio *bio = &s->bio.bio; | 
 | 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); | 
 | 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); | 
 |  | 
 | 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); | 
 |  | 
 | 	down_read_non_owner(&dc->writeback_lock); | 
 | 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { | 
 | 		/* | 
 | 		 * We overlap with some dirty data undergoing background | 
 | 		 * writeback, force this write to writeback | 
 | 		 */ | 
 | 		s->iop.bypass = false; | 
 | 		s->iop.writeback = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Discards aren't _required_ to do anything, so skipping if | 
 | 	 * check_overlapping returned true is ok | 
 | 	 * | 
 | 	 * But check_overlapping drops dirty keys for which io hasn't started, | 
 | 	 * so we still want to call it. | 
 | 	 */ | 
 | 	if (bio_op(bio) == REQ_OP_DISCARD) | 
 | 		s->iop.bypass = true; | 
 |  | 
 | 	if (should_writeback(dc, s->orig_bio, | 
 | 			     cache_mode(dc), | 
 | 			     s->iop.bypass)) { | 
 | 		s->iop.bypass = false; | 
 | 		s->iop.writeback = true; | 
 | 	} | 
 |  | 
 | 	if (s->iop.bypass) { | 
 | 		s->iop.bio = s->orig_bio; | 
 | 		bio_get(s->iop.bio); | 
 |  | 
 | 		if (bio_op(bio) == REQ_OP_DISCARD && | 
 | 		    !blk_queue_discard(bdev_get_queue(dc->bdev))) | 
 | 			goto insert_data; | 
 |  | 
 | 		/* I/O request sent to backing device */ | 
 | 		bio->bi_end_io = backing_request_endio; | 
 | 		closure_bio_submit(s->iop.c, bio, cl); | 
 |  | 
 | 	} else if (s->iop.writeback) { | 
 | 		bch_writeback_add(dc); | 
 | 		s->iop.bio = bio; | 
 |  | 
 | 		if (bio->bi_opf & REQ_PREFLUSH) { | 
 | 			/* | 
 | 			 * Also need to send a flush to the backing | 
 | 			 * device. | 
 | 			 */ | 
 | 			struct bio *flush; | 
 |  | 
 | 			flush = bio_alloc_bioset(GFP_NOIO, 0, | 
 | 						 &dc->disk.bio_split); | 
 | 			if (!flush) { | 
 | 				s->iop.status = BLK_STS_RESOURCE; | 
 | 				goto insert_data; | 
 | 			} | 
 | 			bio_copy_dev(flush, bio); | 
 | 			flush->bi_end_io = backing_request_endio; | 
 | 			flush->bi_private = cl; | 
 | 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; | 
 | 			/* I/O request sent to backing device */ | 
 | 			closure_bio_submit(s->iop.c, flush, cl); | 
 | 		} | 
 | 	} else { | 
 | 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); | 
 | 		/* I/O request sent to backing device */ | 
 | 		bio->bi_end_io = backing_request_endio; | 
 | 		closure_bio_submit(s->iop.c, bio, cl); | 
 | 	} | 
 |  | 
 | insert_data: | 
 | 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl); | 
 | 	continue_at(cl, cached_dev_write_complete, NULL); | 
 | } | 
 |  | 
 | static void cached_dev_nodata(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 | 	struct bio *bio = &s->bio.bio; | 
 |  | 
 | 	if (s->iop.flush_journal) | 
 | 		bch_journal_meta(s->iop.c, cl); | 
 |  | 
 | 	/* If it's a flush, we send the flush to the backing device too */ | 
 | 	bio->bi_end_io = backing_request_endio; | 
 | 	closure_bio_submit(s->iop.c, bio, cl); | 
 |  | 
 | 	continue_at(cl, cached_dev_bio_complete, NULL); | 
 | } | 
 |  | 
 | struct detached_dev_io_private { | 
 | 	struct bcache_device	*d; | 
 | 	unsigned long		start_time; | 
 | 	bio_end_io_t		*bi_end_io; | 
 | 	void			*bi_private; | 
 | }; | 
 |  | 
 | static void detached_dev_end_io(struct bio *bio) | 
 | { | 
 | 	struct detached_dev_io_private *ddip; | 
 |  | 
 | 	ddip = bio->bi_private; | 
 | 	bio->bi_end_io = ddip->bi_end_io; | 
 | 	bio->bi_private = ddip->bi_private; | 
 |  | 
 | 	generic_end_io_acct(ddip->d->disk->queue, bio_op(bio), | 
 | 			    &ddip->d->disk->part0, ddip->start_time); | 
 |  | 
 | 	if (bio->bi_status) { | 
 | 		struct cached_dev *dc = container_of(ddip->d, | 
 | 						     struct cached_dev, disk); | 
 | 		/* should count I/O error for backing device here */ | 
 | 		bch_count_backing_io_errors(dc, bio); | 
 | 	} | 
 |  | 
 | 	kfree(ddip); | 
 | 	bio->bi_end_io(bio); | 
 | } | 
 |  | 
 | static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) | 
 | { | 
 | 	struct detached_dev_io_private *ddip; | 
 | 	struct cached_dev *dc = container_of(d, struct cached_dev, disk); | 
 |  | 
 | 	/* | 
 | 	 * no need to call closure_get(&dc->disk.cl), | 
 | 	 * because upper layer had already opened bcache device, | 
 | 	 * which would call closure_get(&dc->disk.cl) | 
 | 	 */ | 
 | 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); | 
 | 	ddip->d = d; | 
 | 	ddip->start_time = jiffies; | 
 | 	ddip->bi_end_io = bio->bi_end_io; | 
 | 	ddip->bi_private = bio->bi_private; | 
 | 	bio->bi_end_io = detached_dev_end_io; | 
 | 	bio->bi_private = ddip; | 
 |  | 
 | 	if ((bio_op(bio) == REQ_OP_DISCARD) && | 
 | 	    !blk_queue_discard(bdev_get_queue(dc->bdev))) | 
 | 		bio->bi_end_io(bio); | 
 | 	else | 
 | 		generic_make_request(bio); | 
 | } | 
 |  | 
 | static void quit_max_writeback_rate(struct cache_set *c, | 
 | 				    struct cached_dev *this_dc) | 
 | { | 
 | 	int i; | 
 | 	struct bcache_device *d; | 
 | 	struct cached_dev *dc; | 
 |  | 
 | 	/* | 
 | 	 * mutex bch_register_lock may compete with other parallel requesters, | 
 | 	 * or attach/detach operations on other backing device. Waiting to | 
 | 	 * the mutex lock may increase I/O request latency for seconds or more. | 
 | 	 * To avoid such situation, if mutext_trylock() failed, only writeback | 
 | 	 * rate of current cached device is set to 1, and __update_write_back() | 
 | 	 * will decide writeback rate of other cached devices (remember now | 
 | 	 * c->idle_counter is 0 already). | 
 | 	 */ | 
 | 	if (mutex_trylock(&bch_register_lock)) { | 
 | 		for (i = 0; i < c->devices_max_used; i++) { | 
 | 			if (!c->devices[i]) | 
 | 				continue; | 
 |  | 
 | 			if (UUID_FLASH_ONLY(&c->uuids[i])) | 
 | 				continue; | 
 |  | 
 | 			d = c->devices[i]; | 
 | 			dc = container_of(d, struct cached_dev, disk); | 
 | 			/* | 
 | 			 * set writeback rate to default minimum value, | 
 | 			 * then let update_writeback_rate() to decide the | 
 | 			 * upcoming rate. | 
 | 			 */ | 
 | 			atomic_long_set(&dc->writeback_rate.rate, 1); | 
 | 		} | 
 | 		mutex_unlock(&bch_register_lock); | 
 | 	} else | 
 | 		atomic_long_set(&this_dc->writeback_rate.rate, 1); | 
 | } | 
 |  | 
 | /* Cached devices - read & write stuff */ | 
 |  | 
 | static blk_qc_t cached_dev_make_request(struct request_queue *q, | 
 | 					struct bio *bio) | 
 | { | 
 | 	struct search *s; | 
 | 	struct bcache_device *d = bio->bi_disk->private_data; | 
 | 	struct cached_dev *dc = container_of(d, struct cached_dev, disk); | 
 | 	int rw = bio_data_dir(bio); | 
 |  | 
 | 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || | 
 | 		     dc->io_disable)) { | 
 | 		bio->bi_status = BLK_STS_IOERR; | 
 | 		bio_endio(bio); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	if (likely(d->c)) { | 
 | 		if (atomic_read(&d->c->idle_counter)) | 
 | 			atomic_set(&d->c->idle_counter, 0); | 
 | 		/* | 
 | 		 * If at_max_writeback_rate of cache set is true and new I/O | 
 | 		 * comes, quit max writeback rate of all cached devices | 
 | 		 * attached to this cache set, and set at_max_writeback_rate | 
 | 		 * to false. | 
 | 		 */ | 
 | 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { | 
 | 			atomic_set(&d->c->at_max_writeback_rate, 0); | 
 | 			quit_max_writeback_rate(d->c, dc); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	generic_start_io_acct(q, | 
 | 			      bio_op(bio), | 
 | 			      bio_sectors(bio), | 
 | 			      &d->disk->part0); | 
 |  | 
 | 	bio_set_dev(bio, dc->bdev); | 
 | 	bio->bi_iter.bi_sector += dc->sb.data_offset; | 
 |  | 
 | 	if (cached_dev_get(dc)) { | 
 | 		s = search_alloc(bio, d); | 
 | 		trace_bcache_request_start(s->d, bio); | 
 |  | 
 | 		if (!bio->bi_iter.bi_size) { | 
 | 			/* | 
 | 			 * can't call bch_journal_meta from under | 
 | 			 * generic_make_request | 
 | 			 */ | 
 | 			continue_at_nobarrier(&s->cl, | 
 | 					      cached_dev_nodata, | 
 | 					      bcache_wq); | 
 | 		} else { | 
 | 			s->iop.bypass = check_should_bypass(dc, bio); | 
 |  | 
 | 			if (rw) | 
 | 				cached_dev_write(dc, s); | 
 | 			else | 
 | 				cached_dev_read(dc, s); | 
 | 		} | 
 | 	} else | 
 | 		/* I/O request sent to backing device */ | 
 | 		detached_dev_do_request(d, bio); | 
 |  | 
 | 	return BLK_QC_T_NONE; | 
 | } | 
 |  | 
 | static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, | 
 | 			    unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct cached_dev *dc = container_of(d, struct cached_dev, disk); | 
 |  | 
 | 	if (dc->io_disable) | 
 | 		return -EIO; | 
 |  | 
 | 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); | 
 | } | 
 |  | 
 | static int cached_dev_congested(void *data, int bits) | 
 | { | 
 | 	struct bcache_device *d = data; | 
 | 	struct cached_dev *dc = container_of(d, struct cached_dev, disk); | 
 | 	struct request_queue *q = bdev_get_queue(dc->bdev); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (bdi_congested(q->backing_dev_info, bits)) | 
 | 		return 1; | 
 |  | 
 | 	if (cached_dev_get(dc)) { | 
 | 		unsigned int i; | 
 | 		struct cache *ca; | 
 |  | 
 | 		for_each_cache(ca, d->c, i) { | 
 | 			q = bdev_get_queue(ca->bdev); | 
 | 			ret |= bdi_congested(q->backing_dev_info, bits); | 
 | 		} | 
 |  | 
 | 		cached_dev_put(dc); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void bch_cached_dev_request_init(struct cached_dev *dc) | 
 | { | 
 | 	struct gendisk *g = dc->disk.disk; | 
 |  | 
 | 	g->queue->make_request_fn		= cached_dev_make_request; | 
 | 	g->queue->backing_dev_info->congested_fn = cached_dev_congested; | 
 | 	dc->disk.cache_miss			= cached_dev_cache_miss; | 
 | 	dc->disk.ioctl				= cached_dev_ioctl; | 
 | } | 
 |  | 
 | /* Flash backed devices */ | 
 |  | 
 | static int flash_dev_cache_miss(struct btree *b, struct search *s, | 
 | 				struct bio *bio, unsigned int sectors) | 
 | { | 
 | 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; | 
 |  | 
 | 	swap(bio->bi_iter.bi_size, bytes); | 
 | 	zero_fill_bio(bio); | 
 | 	swap(bio->bi_iter.bi_size, bytes); | 
 |  | 
 | 	bio_advance(bio, bytes); | 
 |  | 
 | 	if (!bio->bi_iter.bi_size) | 
 | 		return MAP_DONE; | 
 |  | 
 | 	return MAP_CONTINUE; | 
 | } | 
 |  | 
 | static void flash_dev_nodata(struct closure *cl) | 
 | { | 
 | 	struct search *s = container_of(cl, struct search, cl); | 
 |  | 
 | 	if (s->iop.flush_journal) | 
 | 		bch_journal_meta(s->iop.c, cl); | 
 |  | 
 | 	continue_at(cl, search_free, NULL); | 
 | } | 
 |  | 
 | static blk_qc_t flash_dev_make_request(struct request_queue *q, | 
 | 					     struct bio *bio) | 
 | { | 
 | 	struct search *s; | 
 | 	struct closure *cl; | 
 | 	struct bcache_device *d = bio->bi_disk->private_data; | 
 |  | 
 | 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { | 
 | 		bio->bi_status = BLK_STS_IOERR; | 
 | 		bio_endio(bio); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0); | 
 |  | 
 | 	s = search_alloc(bio, d); | 
 | 	cl = &s->cl; | 
 | 	bio = &s->bio.bio; | 
 |  | 
 | 	trace_bcache_request_start(s->d, bio); | 
 |  | 
 | 	if (!bio->bi_iter.bi_size) { | 
 | 		/* | 
 | 		 * can't call bch_journal_meta from under | 
 | 		 * generic_make_request | 
 | 		 */ | 
 | 		continue_at_nobarrier(&s->cl, | 
 | 				      flash_dev_nodata, | 
 | 				      bcache_wq); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} else if (bio_data_dir(bio)) { | 
 | 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, | 
 | 					&KEY(d->id, bio->bi_iter.bi_sector, 0), | 
 | 					&KEY(d->id, bio_end_sector(bio), 0)); | 
 |  | 
 | 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0; | 
 | 		s->iop.writeback	= true; | 
 | 		s->iop.bio		= bio; | 
 |  | 
 | 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl); | 
 | 	} else { | 
 | 		closure_call(&s->iop.cl, cache_lookup, NULL, cl); | 
 | 	} | 
 |  | 
 | 	continue_at(cl, search_free, NULL); | 
 | 	return BLK_QC_T_NONE; | 
 | } | 
 |  | 
 | static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, | 
 | 			   unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	return -ENOTTY; | 
 | } | 
 |  | 
 | static int flash_dev_congested(void *data, int bits) | 
 | { | 
 | 	struct bcache_device *d = data; | 
 | 	struct request_queue *q; | 
 | 	struct cache *ca; | 
 | 	unsigned int i; | 
 | 	int ret = 0; | 
 |  | 
 | 	for_each_cache(ca, d->c, i) { | 
 | 		q = bdev_get_queue(ca->bdev); | 
 | 		ret |= bdi_congested(q->backing_dev_info, bits); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void bch_flash_dev_request_init(struct bcache_device *d) | 
 | { | 
 | 	struct gendisk *g = d->disk; | 
 |  | 
 | 	g->queue->make_request_fn		= flash_dev_make_request; | 
 | 	g->queue->backing_dev_info->congested_fn = flash_dev_congested; | 
 | 	d->cache_miss				= flash_dev_cache_miss; | 
 | 	d->ioctl				= flash_dev_ioctl; | 
 | } | 
 |  | 
 | void bch_request_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(bch_search_cache); | 
 | } | 
 |  | 
 | int __init bch_request_init(void) | 
 | { | 
 | 	bch_search_cache = KMEM_CACHE(search, 0); | 
 | 	if (!bch_search_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } |