| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | /* | 
 |  * Hardware-accelerated CRC-32 variants for Linux on z Systems | 
 |  * | 
 |  * Use the z/Architecture Vector Extension Facility to accelerate the | 
 |  * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet | 
 |  * and Castagnoli. | 
 |  * | 
 |  * This CRC-32 implementation algorithm is bitreflected and processes | 
 |  * the least-significant bit first (Little-Endian). | 
 |  * | 
 |  * Copyright IBM Corp. 2015 | 
 |  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> | 
 |  */ | 
 |  | 
 | #include <linux/linkage.h> | 
 | #include <asm/nospec-insn.h> | 
 | #include <asm/vx-insn.h> | 
 |  | 
 | /* Vector register range containing CRC-32 constants */ | 
 | #define CONST_PERM_LE2BE	%v9 | 
 | #define CONST_R2R1		%v10 | 
 | #define CONST_R4R3		%v11 | 
 | #define CONST_R5		%v12 | 
 | #define CONST_RU_POLY		%v13 | 
 | #define CONST_CRC_POLY		%v14 | 
 |  | 
 | .data | 
 | .align 8 | 
 |  | 
 | /* | 
 |  * The CRC-32 constant block contains reduction constants to fold and | 
 |  * process particular chunks of the input data stream in parallel. | 
 |  * | 
 |  * For the CRC-32 variants, the constants are precomputed according to | 
 |  * these definitions: | 
 |  * | 
 |  *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 | 
 |  *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 | 
 |  *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1 | 
 |  *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1 | 
 |  *	R5 = [(x64 mod P'(x) << 32)]'	    << 1 | 
 |  *	R6 = [(x32 mod P'(x) << 32)]'	    << 1 | 
 |  * | 
 |  *	The bitreflected Barret reduction constant, u', is defined as | 
 |  *	the bit reversal of floor(x**64 / P(x)). | 
 |  * | 
 |  *	where P(x) is the polynomial in the normal domain and the P'(x) is the | 
 |  *	polynomial in the reversed (bitreflected) domain. | 
 |  * | 
 |  * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: | 
 |  * | 
 |  *	P(x)  = 0x04C11DB7 | 
 |  *	P'(x) = 0xEDB88320 | 
 |  * | 
 |  * CRC-32C (Castagnoli) polynomials: | 
 |  * | 
 |  *	P(x)  = 0x1EDC6F41 | 
 |  *	P'(x) = 0x82F63B78 | 
 |  */ | 
 |  | 
 | .Lconstants_CRC_32_LE: | 
 | 	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask | 
 | 	.quad		0x1c6e41596, 0x154442bd4		# R2, R1 | 
 | 	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3 | 
 | 	.octa		0x163cd6124				# R5 | 
 | 	.octa		0x1F7011641				# u' | 
 | 	.octa		0x1DB710641				# P'(x) << 1 | 
 |  | 
 | .Lconstants_CRC_32C_LE: | 
 | 	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask | 
 | 	.quad		0x09e4addf8, 0x740eef02			# R2, R1 | 
 | 	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3 | 
 | 	.octa		0x0dd45aab8				# R5 | 
 | 	.octa		0x0dea713f1				# u' | 
 | 	.octa		0x105ec76f0				# P'(x) << 1 | 
 |  | 
 | .previous | 
 |  | 
 | 	GEN_BR_THUNK %r14 | 
 |  | 
 | .text | 
 |  | 
 | /* | 
 |  * The CRC-32 functions use these calling conventions: | 
 |  * | 
 |  * Parameters: | 
 |  * | 
 |  *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value. | 
 |  *	%r3:	Input buffer pointer, performance might be improved if the | 
 |  *		buffer is on a doubleword boundary. | 
 |  *	%r4:	Length of the buffer, must be 64 bytes or greater. | 
 |  * | 
 |  * Register usage: | 
 |  * | 
 |  *	%r5:	CRC-32 constant pool base pointer. | 
 |  *	V0:	Initial CRC value and intermediate constants and results. | 
 |  *	V1..V4:	Data for CRC computation. | 
 |  *	V5..V8:	Next data chunks that are fetched from the input buffer. | 
 |  *	V9:	Constant for BE->LE conversion and shift operations | 
 |  * | 
 |  *	V10..V14: CRC-32 constants. | 
 |  */ | 
 |  | 
 | ENTRY(crc32_le_vgfm_16) | 
 | 	larl	%r5,.Lconstants_CRC_32_LE | 
 | 	j	crc32_le_vgfm_generic | 
 |  | 
 | ENTRY(crc32c_le_vgfm_16) | 
 | 	larl	%r5,.Lconstants_CRC_32C_LE | 
 | 	j	crc32_le_vgfm_generic | 
 |  | 
 |  | 
 | crc32_le_vgfm_generic: | 
 | 	/* Load CRC-32 constants */ | 
 | 	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5 | 
 |  | 
 | 	/* | 
 | 	 * Load the initial CRC value. | 
 | 	 * | 
 | 	 * The CRC value is loaded into the rightmost word of the | 
 | 	 * vector register and is later XORed with the LSB portion | 
 | 	 * of the loaded input data. | 
 | 	 */ | 
 | 	VZERO	%v0			/* Clear V0 */ | 
 | 	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */ | 
 |  | 
 | 	/* Load a 64-byte data chunk and XOR with CRC */ | 
 | 	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */ | 
 | 	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE | 
 | 	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE | 
 | 	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE | 
 | 	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE | 
 |  | 
 | 	VX	%v1,%v0,%v1		/* V1 ^= CRC */ | 
 | 	aghi	%r3,64			/* BUF = BUF + 64 */ | 
 | 	aghi	%r4,-64			/* LEN = LEN - 64 */ | 
 |  | 
 | 	cghi	%r4,64 | 
 | 	jl	.Lless_than_64bytes | 
 |  | 
 | .Lfold_64bytes_loop: | 
 | 	/* Load the next 64-byte data chunk into V5 to V8 */ | 
 | 	VLM	%v5,%v8,0,%r3 | 
 | 	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE | 
 | 	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE | 
 | 	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE | 
 | 	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE | 
 |  | 
 | 	/* | 
 | 	 * Perform a GF(2) multiplication of the doublewords in V1 with | 
 | 	 * the R1 and R2 reduction constants in V0.  The intermediate result | 
 | 	 * is then folded (accumulated) with the next data chunk in V5 and | 
 | 	 * stored in V1. Repeat this step for the register contents | 
 | 	 * in V2, V3, and V4 respectively. | 
 | 	 */ | 
 | 	VGFMAG	%v1,CONST_R2R1,%v1,%v5 | 
 | 	VGFMAG	%v2,CONST_R2R1,%v2,%v6 | 
 | 	VGFMAG	%v3,CONST_R2R1,%v3,%v7 | 
 | 	VGFMAG	%v4,CONST_R2R1,%v4,%v8 | 
 |  | 
 | 	aghi	%r3,64			/* BUF = BUF + 64 */ | 
 | 	aghi	%r4,-64			/* LEN = LEN - 64 */ | 
 |  | 
 | 	cghi	%r4,64 | 
 | 	jnl	.Lfold_64bytes_loop | 
 |  | 
 | .Lless_than_64bytes: | 
 | 	/* | 
 | 	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3 | 
 | 	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit | 
 | 	 * value remains. | 
 | 	 */ | 
 | 	VGFMAG	%v1,CONST_R4R3,%v1,%v2 | 
 | 	VGFMAG	%v1,CONST_R4R3,%v1,%v3 | 
 | 	VGFMAG	%v1,CONST_R4R3,%v1,%v4 | 
 |  | 
 | 	cghi	%r4,16 | 
 | 	jl	.Lfinal_fold | 
 |  | 
 | .Lfold_16bytes_loop: | 
 |  | 
 | 	VL	%v2,0,,%r3		/* Load next data chunk */ | 
 | 	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE | 
 | 	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */ | 
 |  | 
 | 	aghi	%r3,16 | 
 | 	aghi	%r4,-16 | 
 |  | 
 | 	cghi	%r4,16 | 
 | 	jnl	.Lfold_16bytes_loop | 
 |  | 
 | .Lfinal_fold: | 
 | 	/* | 
 | 	 * Set up a vector register for byte shifts.  The shift value must | 
 | 	 * be loaded in bits 1-4 in byte element 7 of a vector register. | 
 | 	 * Shift by 8 bytes: 0x40 | 
 | 	 * Shift by 4 bytes: 0x20 | 
 | 	 */ | 
 | 	VLEIB	%v9,0x40,7 | 
 |  | 
 | 	/* | 
 | 	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes | 
 | 	 * to move R4 into the rightmost doubleword and set the leftmost | 
 | 	 * doubleword to 0x1. | 
 | 	 */ | 
 | 	VSRLB	%v0,CONST_R4R3,%v9 | 
 | 	VLEIG	%v0,1,0 | 
 |  | 
 | 	/* | 
 | 	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword | 
 | 	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is | 
 | 	 * multiplied by 0x1 and is then XORed with rightmost product. | 
 | 	 * Implicitly, the intermediate leftmost product becomes padded | 
 | 	 */ | 
 | 	VGFMG	%v1,%v0,%v1 | 
 |  | 
 | 	/* | 
 | 	 * Now do the final 32-bit fold by multiplying the rightmost word | 
 | 	 * in V1 with R5 and XOR the result with the remaining bits in V1. | 
 | 	 * | 
 | 	 * To achieve this by a single VGFMAG, right shift V1 by a word | 
 | 	 * and store the result in V2 which is then accumulated.  Use the | 
 | 	 * vector unpack instruction to load the rightmost half of the | 
 | 	 * doubleword into the rightmost doubleword element of V1; the other | 
 | 	 * half is loaded in the leftmost doubleword. | 
 | 	 * The vector register with CONST_R5 contains the R5 constant in the | 
 | 	 * rightmost doubleword and the leftmost doubleword is zero to ignore | 
 | 	 * the leftmost product of V1. | 
 | 	 */ | 
 | 	VLEIB	%v9,0x20,7		  /* Shift by words */ | 
 | 	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */ | 
 | 	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */ | 
 | 	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */ | 
 |  | 
 | 	/* | 
 | 	 * Apply a Barret reduction to compute the final 32-bit CRC value. | 
 | 	 * | 
 | 	 * The input values to the Barret reduction are the degree-63 polynomial | 
 | 	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction | 
 | 	 * constant u.	The Barret reduction result is the CRC value of R(x) mod | 
 | 	 * P(x). | 
 | 	 * | 
 | 	 * The Barret reduction algorithm is defined as: | 
 | 	 * | 
 | 	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u | 
 | 	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) | 
 | 	 *    3. C(x)  = R(x) XOR T2(x) mod x^32 | 
 | 	 * | 
 | 	 *  Note: The leftmost doubleword of vector register containing | 
 | 	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product | 
 | 	 *  is zero and does not contribute to the final result. | 
 | 	 */ | 
 |  | 
 | 	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ | 
 | 	VUPLLF	%v2,%v1 | 
 | 	VGFMG	%v2,CONST_RU_POLY,%v2 | 
 |  | 
 | 	/* | 
 | 	 * Compute the GF(2) product of the CRC polynomial with T1(x) in | 
 | 	 * V2 and XOR the intermediate result, T2(x), with the value in V1. | 
 | 	 * The final result is stored in word element 2 of V2. | 
 | 	 */ | 
 | 	VUPLLF	%v2,%v2 | 
 | 	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1 | 
 |  | 
 | .Ldone: | 
 | 	VLGVF	%r2,%v2,2 | 
 | 	BR_EX	%r14 | 
 |  | 
 | .previous |