| /** | 
 |  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver | 
 |  * | 
 |  * Copyright (C) 2011-2012 International Business Machines Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; version 2 only. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * Author: Kent Yoder <yoder1@us.ibm.com> | 
 |  */ | 
 |  | 
 | #include <crypto/internal/hash.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/algapi.h> | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/crypto.h> | 
 | #include <asm/vio.h> | 
 |  | 
 | #include "nx_csbcpb.h" | 
 | #include "nx.h" | 
 |  | 
 |  | 
 | struct xcbc_state { | 
 | 	u8 state[AES_BLOCK_SIZE]; | 
 | 	unsigned int count; | 
 | 	u8 buffer[AES_BLOCK_SIZE]; | 
 | }; | 
 |  | 
 | static int nx_xcbc_set_key(struct crypto_shash *desc, | 
 | 			   const u8            *in_key, | 
 | 			   unsigned int         key_len) | 
 | { | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc); | 
 | 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
 |  | 
 | 	switch (key_len) { | 
 | 	case AES_KEYSIZE_128: | 
 | 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128]; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Based on RFC 3566, for a zero-length message: | 
 |  * | 
 |  * n = 1 | 
 |  * K1 = E(K, 0x01010101010101010101010101010101) | 
 |  * K3 = E(K, 0x03030303030303030303030303030303) | 
 |  * E[0] = 0x00000000000000000000000000000000 | 
 |  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding) | 
 |  * E[1] = (K1, M[1] ^ E[0] ^ K3) | 
 |  * Tag = M[1] | 
 |  */ | 
 | static int nx_xcbc_empty(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
 | 	struct nx_sg *in_sg, *out_sg; | 
 | 	u8 keys[2][AES_BLOCK_SIZE]; | 
 | 	u8 key[32]; | 
 | 	int rc = 0; | 
 | 	int len; | 
 |  | 
 | 	/* Change to ECB mode */ | 
 | 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB; | 
 | 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE); | 
 | 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE); | 
 | 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; | 
 |  | 
 | 	/* K1 and K3 base patterns */ | 
 | 	memset(keys[0], 0x01, sizeof(keys[0])); | 
 | 	memset(keys[1], 0x03, sizeof(keys[1])); | 
 |  | 
 | 	len = sizeof(keys); | 
 | 	/* Generate K1 and K3 encrypting the patterns */ | 
 | 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len, | 
 | 				 nx_ctx->ap->sglen); | 
 |  | 
 | 	if (len != sizeof(keys)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len, | 
 | 				  nx_ctx->ap->sglen); | 
 |  | 
 | 	if (len != sizeof(keys)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
 | 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
 |  | 
 | 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
 | 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	atomic_inc(&(nx_ctx->stats->aes_ops)); | 
 |  | 
 | 	/* XOr K3 with the padding for a 0 length message */ | 
 | 	keys[1][0] ^= 0x80; | 
 |  | 
 | 	len = sizeof(keys[1]); | 
 |  | 
 | 	/* Encrypt the final result */ | 
 | 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE); | 
 | 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len, | 
 | 				 nx_ctx->ap->sglen); | 
 |  | 
 | 	if (len != sizeof(keys[1])) | 
 | 		return -EINVAL; | 
 |  | 
 | 	len = AES_BLOCK_SIZE; | 
 | 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, | 
 | 				  nx_ctx->ap->sglen); | 
 |  | 
 | 	if (len != AES_BLOCK_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
 | 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
 |  | 
 | 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
 | 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	atomic_inc(&(nx_ctx->stats->aes_ops)); | 
 |  | 
 | out: | 
 | 	/* Restore XCBC mode */ | 
 | 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; | 
 | 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE); | 
 | 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); | 
 | 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
 | 	int err; | 
 |  | 
 | 	err = nx_crypto_ctx_aes_xcbc_init(tfm); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	nx_ctx_init(nx_ctx, HCOP_FC_AES); | 
 |  | 
 | 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128); | 
 | 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nx_xcbc_init(struct shash_desc *desc) | 
 | { | 
 | 	struct xcbc_state *sctx = shash_desc_ctx(desc); | 
 |  | 
 | 	memset(sctx, 0, sizeof *sctx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nx_xcbc_update(struct shash_desc *desc, | 
 | 			  const u8          *data, | 
 | 			  unsigned int       len) | 
 | { | 
 | 	struct xcbc_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
 | 	struct nx_sg *in_sg; | 
 | 	struct nx_sg *out_sg; | 
 | 	u32 to_process = 0, leftover, total; | 
 | 	unsigned int max_sg_len; | 
 | 	unsigned long irq_flags; | 
 | 	int rc = 0; | 
 | 	int data_len; | 
 |  | 
 | 	spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
 |  | 
 |  | 
 | 	total = sctx->count + len; | 
 |  | 
 | 	/* 2 cases for total data len: | 
 | 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0 | 
 | 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover | 
 | 	 */ | 
 | 	if (total <= AES_BLOCK_SIZE) { | 
 | 		memcpy(sctx->buffer + sctx->count, data, len); | 
 | 		sctx->count += len; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	in_sg = nx_ctx->in_sg; | 
 | 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg), | 
 | 				nx_ctx->ap->sglen); | 
 | 	max_sg_len = min_t(u64, max_sg_len, | 
 | 				nx_ctx->ap->databytelen/NX_PAGE_SIZE); | 
 |  | 
 | 	data_len = AES_BLOCK_SIZE; | 
 | 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, | 
 | 				  &len, nx_ctx->ap->sglen); | 
 |  | 
 | 	if (data_len != AES_BLOCK_SIZE) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
 |  | 
 | 	do { | 
 | 		to_process = total - to_process; | 
 | 		to_process = to_process & ~(AES_BLOCK_SIZE - 1); | 
 |  | 
 | 		leftover = total - to_process; | 
 |  | 
 | 		/* the hardware will not accept a 0 byte operation for this | 
 | 		 * algorithm and the operation MUST be finalized to be correct. | 
 | 		 * So if we happen to get an update that falls on a block sized | 
 | 		 * boundary, we must save off the last block to finalize with | 
 | 		 * later. */ | 
 | 		if (!leftover) { | 
 | 			to_process -= AES_BLOCK_SIZE; | 
 | 			leftover = AES_BLOCK_SIZE; | 
 | 		} | 
 |  | 
 | 		if (sctx->count) { | 
 | 			data_len = sctx->count; | 
 | 			in_sg = nx_build_sg_list(nx_ctx->in_sg, | 
 | 						(u8 *) sctx->buffer, | 
 | 						&data_len, | 
 | 						max_sg_len); | 
 | 			if (data_len != sctx->count) { | 
 | 				rc = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		data_len = to_process - sctx->count; | 
 | 		in_sg = nx_build_sg_list(in_sg, | 
 | 					(u8 *) data, | 
 | 					&data_len, | 
 | 					max_sg_len); | 
 |  | 
 | 		if (data_len != to_process - sctx->count) { | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | 
 | 					sizeof(struct nx_sg); | 
 |  | 
 | 		/* we've hit the nx chip previously and we're updating again, | 
 | 		 * so copy over the partial digest */ | 
 | 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
 | 			memcpy(csbcpb->cpb.aes_xcbc.cv, | 
 | 				csbcpb->cpb.aes_xcbc.out_cv_mac, | 
 | 				AES_BLOCK_SIZE); | 
 | 		} | 
 |  | 
 | 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
 | 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
 | 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 		if (rc) | 
 | 			goto out; | 
 |  | 
 | 		atomic_inc(&(nx_ctx->stats->aes_ops)); | 
 |  | 
 | 		/* everything after the first update is continuation */ | 
 | 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
 |  | 
 | 		total -= to_process; | 
 | 		data += to_process - sctx->count; | 
 | 		sctx->count = 0; | 
 | 		in_sg = nx_ctx->in_sg; | 
 | 	} while (leftover > AES_BLOCK_SIZE); | 
 |  | 
 | 	/* copy the leftover back into the state struct */ | 
 | 	memcpy(sctx->buffer, data, leftover); | 
 | 	sctx->count = leftover; | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int nx_xcbc_final(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	struct xcbc_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
 | 	struct nx_sg *in_sg, *out_sg; | 
 | 	unsigned long irq_flags; | 
 | 	int rc = 0; | 
 | 	int len; | 
 |  | 
 | 	spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
 |  | 
 | 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
 | 		/* we've hit the nx chip previously, now we're finalizing, | 
 | 		 * so copy over the partial digest */ | 
 | 		memcpy(csbcpb->cpb.aes_xcbc.cv, | 
 | 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); | 
 | 	} else if (sctx->count == 0) { | 
 | 		/* | 
 | 		 * we've never seen an update, so this is a 0 byte op. The | 
 | 		 * hardware cannot handle a 0 byte op, so just ECB to | 
 | 		 * generate the hash. | 
 | 		 */ | 
 | 		rc = nx_xcbc_empty(desc, out); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* final is represented by continuing the operation and indicating that | 
 | 	 * this is not an intermediate operation */ | 
 | 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | 
 |  | 
 | 	len = sctx->count; | 
 | 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer, | 
 | 				 &len, nx_ctx->ap->sglen); | 
 |  | 
 | 	if (len != sctx->count) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	len = AES_BLOCK_SIZE; | 
 | 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, | 
 | 				  nx_ctx->ap->sglen); | 
 |  | 
 | 	if (len != AES_BLOCK_SIZE) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
 | 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
 |  | 
 | 	if (!nx_ctx->op.outlen) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
 | 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (rc) | 
 | 		goto out; | 
 |  | 
 | 	atomic_inc(&(nx_ctx->stats->aes_ops)); | 
 |  | 
 | 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); | 
 | out: | 
 | 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | struct shash_alg nx_shash_aes_xcbc_alg = { | 
 | 	.digestsize = AES_BLOCK_SIZE, | 
 | 	.init       = nx_xcbc_init, | 
 | 	.update     = nx_xcbc_update, | 
 | 	.final      = nx_xcbc_final, | 
 | 	.setkey     = nx_xcbc_set_key, | 
 | 	.descsize   = sizeof(struct xcbc_state), | 
 | 	.statesize  = sizeof(struct xcbc_state), | 
 | 	.base       = { | 
 | 		.cra_name        = "xcbc(aes)", | 
 | 		.cra_driver_name = "xcbc-aes-nx", | 
 | 		.cra_priority    = 300, | 
 | 		.cra_blocksize   = AES_BLOCK_SIZE, | 
 | 		.cra_module      = THIS_MODULE, | 
 | 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx), | 
 | 		.cra_init        = nx_crypto_ctx_aes_xcbc_init2, | 
 | 		.cra_exit        = nx_crypto_ctx_exit, | 
 | 	} | 
 | }; |