| /* | 
 |  * kexec: kexec_file_load system call | 
 |  * | 
 |  * Copyright (C) 2014 Red Hat Inc. | 
 |  * Authors: | 
 |  *      Vivek Goyal <vgoyal@redhat.com> | 
 |  * | 
 |  * This source code is licensed under the GNU General Public License, | 
 |  * Version 2.  See the file COPYING for more details. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/capability.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/list.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/ima.h> | 
 | #include <crypto/hash.h> | 
 | #include <crypto/sha.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/vmalloc.h> | 
 | #include "kexec_internal.h" | 
 |  | 
 | static int kexec_calculate_store_digests(struct kimage *image); | 
 |  | 
 | /* | 
 |  * Currently this is the only default function that is exported as some | 
 |  * architectures need it to do additional handlings. | 
 |  * In the future, other default functions may be exported too if required. | 
 |  */ | 
 | int kexec_image_probe_default(struct kimage *image, void *buf, | 
 | 			      unsigned long buf_len) | 
 | { | 
 | 	const struct kexec_file_ops * const *fops; | 
 | 	int ret = -ENOEXEC; | 
 |  | 
 | 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { | 
 | 		ret = (*fops)->probe(buf, buf_len); | 
 | 		if (!ret) { | 
 | 			image->fops = *fops; | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Architectures can provide this probe function */ | 
 | int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, | 
 | 					 unsigned long buf_len) | 
 | { | 
 | 	return kexec_image_probe_default(image, buf, buf_len); | 
 | } | 
 |  | 
 | static void *kexec_image_load_default(struct kimage *image) | 
 | { | 
 | 	if (!image->fops || !image->fops->load) | 
 | 		return ERR_PTR(-ENOEXEC); | 
 |  | 
 | 	return image->fops->load(image, image->kernel_buf, | 
 | 				 image->kernel_buf_len, image->initrd_buf, | 
 | 				 image->initrd_buf_len, image->cmdline_buf, | 
 | 				 image->cmdline_buf_len); | 
 | } | 
 |  | 
 | void * __weak arch_kexec_kernel_image_load(struct kimage *image) | 
 | { | 
 | 	return kexec_image_load_default(image); | 
 | } | 
 |  | 
 | static int kexec_image_post_load_cleanup_default(struct kimage *image) | 
 | { | 
 | 	if (!image->fops || !image->fops->cleanup) | 
 | 		return 0; | 
 |  | 
 | 	return image->fops->cleanup(image->image_loader_data); | 
 | } | 
 |  | 
 | int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) | 
 | { | 
 | 	return kexec_image_post_load_cleanup_default(image); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
 | static int kexec_image_verify_sig_default(struct kimage *image, void *buf, | 
 | 					  unsigned long buf_len) | 
 | { | 
 | 	if (!image->fops || !image->fops->verify_sig) { | 
 | 		pr_debug("kernel loader does not support signature verification.\n"); | 
 | 		return -EKEYREJECTED; | 
 | 	} | 
 |  | 
 | 	return image->fops->verify_sig(buf, buf_len); | 
 | } | 
 |  | 
 | int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, | 
 | 					unsigned long buf_len) | 
 | { | 
 | 	return kexec_image_verify_sig_default(image, buf, buf_len); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * arch_kexec_apply_relocations_add - apply relocations of type RELA | 
 |  * @pi:		Purgatory to be relocated. | 
 |  * @section:	Section relocations applying to. | 
 |  * @relsec:	Section containing RELAs. | 
 |  * @symtab:	Corresponding symtab. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | int __weak | 
 | arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, | 
 | 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab) | 
 | { | 
 | 	pr_err("RELA relocation unsupported.\n"); | 
 | 	return -ENOEXEC; | 
 | } | 
 |  | 
 | /* | 
 |  * arch_kexec_apply_relocations - apply relocations of type REL | 
 |  * @pi:		Purgatory to be relocated. | 
 |  * @section:	Section relocations applying to. | 
 |  * @relsec:	Section containing RELs. | 
 |  * @symtab:	Corresponding symtab. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | int __weak | 
 | arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, | 
 | 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab) | 
 | { | 
 | 	pr_err("REL relocation unsupported.\n"); | 
 | 	return -ENOEXEC; | 
 | } | 
 |  | 
 | /* | 
 |  * Free up memory used by kernel, initrd, and command line. This is temporary | 
 |  * memory allocation which is not needed any more after these buffers have | 
 |  * been loaded into separate segments and have been copied elsewhere. | 
 |  */ | 
 | void kimage_file_post_load_cleanup(struct kimage *image) | 
 | { | 
 | 	struct purgatory_info *pi = &image->purgatory_info; | 
 |  | 
 | 	vfree(image->kernel_buf); | 
 | 	image->kernel_buf = NULL; | 
 |  | 
 | 	vfree(image->initrd_buf); | 
 | 	image->initrd_buf = NULL; | 
 |  | 
 | 	kfree(image->cmdline_buf); | 
 | 	image->cmdline_buf = NULL; | 
 |  | 
 | 	vfree(pi->purgatory_buf); | 
 | 	pi->purgatory_buf = NULL; | 
 |  | 
 | 	vfree(pi->sechdrs); | 
 | 	pi->sechdrs = NULL; | 
 |  | 
 | 	/* See if architecture has anything to cleanup post load */ | 
 | 	arch_kimage_file_post_load_cleanup(image); | 
 |  | 
 | 	/* | 
 | 	 * Above call should have called into bootloader to free up | 
 | 	 * any data stored in kimage->image_loader_data. It should | 
 | 	 * be ok now to free it up. | 
 | 	 */ | 
 | 	kfree(image->image_loader_data); | 
 | 	image->image_loader_data = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * In file mode list of segments is prepared by kernel. Copy relevant | 
 |  * data from user space, do error checking, prepare segment list | 
 |  */ | 
 | static int | 
 | kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, | 
 | 			     const char __user *cmdline_ptr, | 
 | 			     unsigned long cmdline_len, unsigned flags) | 
 | { | 
 | 	int ret = 0; | 
 | 	void *ldata; | 
 | 	loff_t size; | 
 |  | 
 | 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, | 
 | 				       &size, INT_MAX, READING_KEXEC_IMAGE); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	image->kernel_buf_len = size; | 
 |  | 
 | 	/* IMA needs to pass the measurement list to the next kernel. */ | 
 | 	ima_add_kexec_buffer(image); | 
 |  | 
 | 	/* Call arch image probe handlers */ | 
 | 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, | 
 | 					    image->kernel_buf_len); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
 | 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, | 
 | 					   image->kernel_buf_len); | 
 | 	if (ret) { | 
 | 		pr_debug("kernel signature verification failed.\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	pr_debug("kernel signature verification successful.\n"); | 
 | #endif | 
 | 	/* It is possible that there no initramfs is being loaded */ | 
 | 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { | 
 | 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, | 
 | 					       &size, INT_MAX, | 
 | 					       READING_KEXEC_INITRAMFS); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		image->initrd_buf_len = size; | 
 | 	} | 
 |  | 
 | 	if (cmdline_len) { | 
 | 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); | 
 | 		if (IS_ERR(image->cmdline_buf)) { | 
 | 			ret = PTR_ERR(image->cmdline_buf); | 
 | 			image->cmdline_buf = NULL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		image->cmdline_buf_len = cmdline_len; | 
 |  | 
 | 		/* command line should be a string with last byte null */ | 
 | 		if (image->cmdline_buf[cmdline_len - 1] != '\0') { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Call arch image load handlers */ | 
 | 	ldata = arch_kexec_kernel_image_load(image); | 
 |  | 
 | 	if (IS_ERR(ldata)) { | 
 | 		ret = PTR_ERR(ldata); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	image->image_loader_data = ldata; | 
 | out: | 
 | 	/* In case of error, free up all allocated memory in this function */ | 
 | 	if (ret) | 
 | 		kimage_file_post_load_cleanup(image); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, | 
 | 		       int initrd_fd, const char __user *cmdline_ptr, | 
 | 		       unsigned long cmdline_len, unsigned long flags) | 
 | { | 
 | 	int ret; | 
 | 	struct kimage *image; | 
 | 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; | 
 |  | 
 | 	image = do_kimage_alloc_init(); | 
 | 	if (!image) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	image->file_mode = 1; | 
 |  | 
 | 	if (kexec_on_panic) { | 
 | 		/* Enable special crash kernel control page alloc policy. */ | 
 | 		image->control_page = crashk_res.start; | 
 | 		image->type = KEXEC_TYPE_CRASH; | 
 | 	} | 
 |  | 
 | 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, | 
 | 					   cmdline_ptr, cmdline_len, flags); | 
 | 	if (ret) | 
 | 		goto out_free_image; | 
 |  | 
 | 	ret = sanity_check_segment_list(image); | 
 | 	if (ret) | 
 | 		goto out_free_post_load_bufs; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	image->control_code_page = kimage_alloc_control_pages(image, | 
 | 					   get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
 | 	if (!image->control_code_page) { | 
 | 		pr_err("Could not allocate control_code_buffer\n"); | 
 | 		goto out_free_post_load_bufs; | 
 | 	} | 
 |  | 
 | 	if (!kexec_on_panic) { | 
 | 		image->swap_page = kimage_alloc_control_pages(image, 0); | 
 | 		if (!image->swap_page) { | 
 | 			pr_err("Could not allocate swap buffer\n"); | 
 | 			goto out_free_control_pages; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*rimage = image; | 
 | 	return 0; | 
 | out_free_control_pages: | 
 | 	kimage_free_page_list(&image->control_pages); | 
 | out_free_post_load_bufs: | 
 | 	kimage_file_post_load_cleanup(image); | 
 | out_free_image: | 
 | 	kfree(image); | 
 | 	return ret; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, | 
 | 		unsigned long, cmdline_len, const char __user *, cmdline_ptr, | 
 | 		unsigned long, flags) | 
 | { | 
 | 	int ret = 0, i; | 
 | 	struct kimage **dest_image, *image; | 
 |  | 
 | 	/* We only trust the superuser with rebooting the system. */ | 
 | 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* Make sure we have a legal set of flags */ | 
 | 	if (flags != (flags & KEXEC_FILE_FLAGS)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	image = NULL; | 
 |  | 
 | 	if (!mutex_trylock(&kexec_mutex)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	dest_image = &kexec_image; | 
 | 	if (flags & KEXEC_FILE_ON_CRASH) { | 
 | 		dest_image = &kexec_crash_image; | 
 | 		if (kexec_crash_image) | 
 | 			arch_kexec_unprotect_crashkres(); | 
 | 	} | 
 |  | 
 | 	if (flags & KEXEC_FILE_UNLOAD) | 
 | 		goto exchange; | 
 |  | 
 | 	/* | 
 | 	 * In case of crash, new kernel gets loaded in reserved region. It is | 
 | 	 * same memory where old crash kernel might be loaded. Free any | 
 | 	 * current crash dump kernel before we corrupt it. | 
 | 	 */ | 
 | 	if (flags & KEXEC_FILE_ON_CRASH) | 
 | 		kimage_free(xchg(&kexec_crash_image, NULL)); | 
 |  | 
 | 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, | 
 | 				     cmdline_len, flags); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = machine_kexec_prepare(image); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Some architecture(like S390) may touch the crash memory before | 
 | 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. | 
 | 	 */ | 
 | 	ret = kimage_crash_copy_vmcoreinfo(image); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = kexec_calculate_store_digests(image); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < image->nr_segments; i++) { | 
 | 		struct kexec_segment *ksegment; | 
 |  | 
 | 		ksegment = &image->segment[i]; | 
 | 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", | 
 | 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem, | 
 | 			 ksegment->memsz); | 
 |  | 
 | 		ret = kimage_load_segment(image, &image->segment[i]); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	kimage_terminate(image); | 
 |  | 
 | 	/* | 
 | 	 * Free up any temporary buffers allocated which are not needed | 
 | 	 * after image has been loaded | 
 | 	 */ | 
 | 	kimage_file_post_load_cleanup(image); | 
 | exchange: | 
 | 	image = xchg(dest_image, image); | 
 | out: | 
 | 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) | 
 | 		arch_kexec_protect_crashkres(); | 
 |  | 
 | 	mutex_unlock(&kexec_mutex); | 
 | 	kimage_free(image); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int locate_mem_hole_top_down(unsigned long start, unsigned long end, | 
 | 				    struct kexec_buf *kbuf) | 
 | { | 
 | 	struct kimage *image = kbuf->image; | 
 | 	unsigned long temp_start, temp_end; | 
 |  | 
 | 	temp_end = min(end, kbuf->buf_max); | 
 | 	temp_start = temp_end - kbuf->memsz; | 
 |  | 
 | 	do { | 
 | 		/* align down start */ | 
 | 		temp_start = temp_start & (~(kbuf->buf_align - 1)); | 
 |  | 
 | 		if (temp_start < start || temp_start < kbuf->buf_min) | 
 | 			return 0; | 
 |  | 
 | 		temp_end = temp_start + kbuf->memsz - 1; | 
 |  | 
 | 		/* | 
 | 		 * Make sure this does not conflict with any of existing | 
 | 		 * segments | 
 | 		 */ | 
 | 		if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
 | 			temp_start = temp_start - PAGE_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* We found a suitable memory range */ | 
 | 		break; | 
 | 	} while (1); | 
 |  | 
 | 	/* If we are here, we found a suitable memory range */ | 
 | 	kbuf->mem = temp_start; | 
 |  | 
 | 	/* Success, stop navigating through remaining System RAM ranges */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, | 
 | 				     struct kexec_buf *kbuf) | 
 | { | 
 | 	struct kimage *image = kbuf->image; | 
 | 	unsigned long temp_start, temp_end; | 
 |  | 
 | 	temp_start = max(start, kbuf->buf_min); | 
 |  | 
 | 	do { | 
 | 		temp_start = ALIGN(temp_start, kbuf->buf_align); | 
 | 		temp_end = temp_start + kbuf->memsz - 1; | 
 |  | 
 | 		if (temp_end > end || temp_end > kbuf->buf_max) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * Make sure this does not conflict with any of existing | 
 | 		 * segments | 
 | 		 */ | 
 | 		if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
 | 			temp_start = temp_start + PAGE_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* We found a suitable memory range */ | 
 | 		break; | 
 | 	} while (1); | 
 |  | 
 | 	/* If we are here, we found a suitable memory range */ | 
 | 	kbuf->mem = temp_start; | 
 |  | 
 | 	/* Success, stop navigating through remaining System RAM ranges */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int locate_mem_hole_callback(struct resource *res, void *arg) | 
 | { | 
 | 	struct kexec_buf *kbuf = (struct kexec_buf *)arg; | 
 | 	u64 start = res->start, end = res->end; | 
 | 	unsigned long sz = end - start + 1; | 
 |  | 
 | 	/* Returning 0 will take to next memory range */ | 
 | 	if (sz < kbuf->memsz) | 
 | 		return 0; | 
 |  | 
 | 	if (end < kbuf->buf_min || start > kbuf->buf_max) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Allocate memory top down with-in ram range. Otherwise bottom up | 
 | 	 * allocation. | 
 | 	 */ | 
 | 	if (kbuf->top_down) | 
 | 		return locate_mem_hole_top_down(start, end, kbuf); | 
 | 	return locate_mem_hole_bottom_up(start, end, kbuf); | 
 | } | 
 |  | 
 | /** | 
 |  * arch_kexec_walk_mem - call func(data) on free memory regions | 
 |  * @kbuf:	Context info for the search. Also passed to @func. | 
 |  * @func:	Function to call for each memory region. | 
 |  * | 
 |  * Return: The memory walk will stop when func returns a non-zero value | 
 |  * and that value will be returned. If all free regions are visited without | 
 |  * func returning non-zero, then zero will be returned. | 
 |  */ | 
 | int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf, | 
 | 			       int (*func)(struct resource *, void *)) | 
 | { | 
 | 	if (kbuf->image->type == KEXEC_TYPE_CRASH) | 
 | 		return walk_iomem_res_desc(crashk_res.desc, | 
 | 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, | 
 | 					   crashk_res.start, crashk_res.end, | 
 | 					   kbuf, func); | 
 | 	else | 
 | 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func); | 
 | } | 
 |  | 
 | /** | 
 |  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel | 
 |  * @kbuf:	Parameters for the memory search. | 
 |  * | 
 |  * On success, kbuf->mem will have the start address of the memory region found. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | int kexec_locate_mem_hole(struct kexec_buf *kbuf) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback); | 
 |  | 
 | 	return ret == 1 ? 0 : -EADDRNOTAVAIL; | 
 | } | 
 |  | 
 | /** | 
 |  * kexec_add_buffer - place a buffer in a kexec segment | 
 |  * @kbuf:	Buffer contents and memory parameters. | 
 |  * | 
 |  * This function assumes that kexec_mutex is held. | 
 |  * On successful return, @kbuf->mem will have the physical address of | 
 |  * the buffer in memory. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | int kexec_add_buffer(struct kexec_buf *kbuf) | 
 | { | 
 |  | 
 | 	struct kexec_segment *ksegment; | 
 | 	int ret; | 
 |  | 
 | 	/* Currently adding segment this way is allowed only in file mode */ | 
 | 	if (!kbuf->image->file_mode) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we are not trying to add buffer after allocating | 
 | 	 * control pages. All segments need to be placed first before | 
 | 	 * any control pages are allocated. As control page allocation | 
 | 	 * logic goes through list of segments to make sure there are | 
 | 	 * no destination overlaps. | 
 | 	 */ | 
 | 	if (!list_empty(&kbuf->image->control_pages)) { | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Ensure minimum alignment needed for segments. */ | 
 | 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); | 
 | 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); | 
 |  | 
 | 	/* Walk the RAM ranges and allocate a suitable range for the buffer */ | 
 | 	ret = kexec_locate_mem_hole(kbuf); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Found a suitable memory range */ | 
 | 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; | 
 | 	ksegment->kbuf = kbuf->buffer; | 
 | 	ksegment->bufsz = kbuf->bufsz; | 
 | 	ksegment->mem = kbuf->mem; | 
 | 	ksegment->memsz = kbuf->memsz; | 
 | 	kbuf->image->nr_segments++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Calculate and store the digest of segments */ | 
 | static int kexec_calculate_store_digests(struct kimage *image) | 
 | { | 
 | 	struct crypto_shash *tfm; | 
 | 	struct shash_desc *desc; | 
 | 	int ret = 0, i, j, zero_buf_sz, sha_region_sz; | 
 | 	size_t desc_size, nullsz; | 
 | 	char *digest; | 
 | 	void *zero_buf; | 
 | 	struct kexec_sha_region *sha_regions; | 
 | 	struct purgatory_info *pi = &image->purgatory_info; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) | 
 | 		return 0; | 
 |  | 
 | 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); | 
 | 	zero_buf_sz = PAGE_SIZE; | 
 |  | 
 | 	tfm = crypto_alloc_shash("sha256", 0, 0); | 
 | 	if (IS_ERR(tfm)) { | 
 | 		ret = PTR_ERR(tfm); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); | 
 | 	desc = kzalloc(desc_size, GFP_KERNEL); | 
 | 	if (!desc) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_free_tfm; | 
 | 	} | 
 |  | 
 | 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); | 
 | 	sha_regions = vzalloc(sha_region_sz); | 
 | 	if (!sha_regions) | 
 | 		goto out_free_desc; | 
 |  | 
 | 	desc->tfm   = tfm; | 
 | 	desc->flags = 0; | 
 |  | 
 | 	ret = crypto_shash_init(desc); | 
 | 	if (ret < 0) | 
 | 		goto out_free_sha_regions; | 
 |  | 
 | 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); | 
 | 	if (!digest) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_free_sha_regions; | 
 | 	} | 
 |  | 
 | 	for (j = i = 0; i < image->nr_segments; i++) { | 
 | 		struct kexec_segment *ksegment; | 
 |  | 
 | 		ksegment = &image->segment[i]; | 
 | 		/* | 
 | 		 * Skip purgatory as it will be modified once we put digest | 
 | 		 * info in purgatory. | 
 | 		 */ | 
 | 		if (ksegment->kbuf == pi->purgatory_buf) | 
 | 			continue; | 
 |  | 
 | 		ret = crypto_shash_update(desc, ksegment->kbuf, | 
 | 					  ksegment->bufsz); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Assume rest of the buffer is filled with zero and | 
 | 		 * update digest accordingly. | 
 | 		 */ | 
 | 		nullsz = ksegment->memsz - ksegment->bufsz; | 
 | 		while (nullsz) { | 
 | 			unsigned long bytes = nullsz; | 
 |  | 
 | 			if (bytes > zero_buf_sz) | 
 | 				bytes = zero_buf_sz; | 
 | 			ret = crypto_shash_update(desc, zero_buf, bytes); | 
 | 			if (ret) | 
 | 				break; | 
 | 			nullsz -= bytes; | 
 | 		} | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		sha_regions[j].start = ksegment->mem; | 
 | 		sha_regions[j].len = ksegment->memsz; | 
 | 		j++; | 
 | 	} | 
 |  | 
 | 	if (!ret) { | 
 | 		ret = crypto_shash_final(desc, digest); | 
 | 		if (ret) | 
 | 			goto out_free_digest; | 
 | 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", | 
 | 						     sha_regions, sha_region_sz, 0); | 
 | 		if (ret) | 
 | 			goto out_free_digest; | 
 |  | 
 | 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", | 
 | 						     digest, SHA256_DIGEST_SIZE, 0); | 
 | 		if (ret) | 
 | 			goto out_free_digest; | 
 | 	} | 
 |  | 
 | out_free_digest: | 
 | 	kfree(digest); | 
 | out_free_sha_regions: | 
 | 	vfree(sha_regions); | 
 | out_free_desc: | 
 | 	kfree(desc); | 
 | out_free_tfm: | 
 | 	kfree(tfm); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY | 
 | /* | 
 |  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. | 
 |  * @pi:		Purgatory to be loaded. | 
 |  * @kbuf:	Buffer to setup. | 
 |  * | 
 |  * Allocates the memory needed for the buffer. Caller is responsible to free | 
 |  * the memory after use. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, | 
 | 				      struct kexec_buf *kbuf) | 
 | { | 
 | 	const Elf_Shdr *sechdrs; | 
 | 	unsigned long bss_align; | 
 | 	unsigned long bss_sz; | 
 | 	unsigned long align; | 
 | 	int i, ret; | 
 |  | 
 | 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
 | 	kbuf->buf_align = bss_align = 1; | 
 | 	kbuf->bufsz = bss_sz = 0; | 
 |  | 
 | 	for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
 | 		if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
 | 			continue; | 
 |  | 
 | 		align = sechdrs[i].sh_addralign; | 
 | 		if (sechdrs[i].sh_type != SHT_NOBITS) { | 
 | 			if (kbuf->buf_align < align) | 
 | 				kbuf->buf_align = align; | 
 | 			kbuf->bufsz = ALIGN(kbuf->bufsz, align); | 
 | 			kbuf->bufsz += sechdrs[i].sh_size; | 
 | 		} else { | 
 | 			if (bss_align < align) | 
 | 				bss_align = align; | 
 | 			bss_sz = ALIGN(bss_sz, align); | 
 | 			bss_sz += sechdrs[i].sh_size; | 
 | 		} | 
 | 	} | 
 | 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); | 
 | 	kbuf->memsz = kbuf->bufsz + bss_sz; | 
 | 	if (kbuf->buf_align < bss_align) | 
 | 		kbuf->buf_align = bss_align; | 
 |  | 
 | 	kbuf->buffer = vzalloc(kbuf->bufsz); | 
 | 	if (!kbuf->buffer) | 
 | 		return -ENOMEM; | 
 | 	pi->purgatory_buf = kbuf->buffer; | 
 |  | 
 | 	ret = kexec_add_buffer(kbuf); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	return 0; | 
 | out: | 
 | 	vfree(pi->purgatory_buf); | 
 | 	pi->purgatory_buf = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. | 
 |  * @pi:		Purgatory to be loaded. | 
 |  * @kbuf:	Buffer prepared to store purgatory. | 
 |  * | 
 |  * Allocates the memory needed for the buffer. Caller is responsible to free | 
 |  * the memory after use. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, | 
 | 					 struct kexec_buf *kbuf) | 
 | { | 
 | 	unsigned long bss_addr; | 
 | 	unsigned long offset; | 
 | 	Elf_Shdr *sechdrs; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * The section headers in kexec_purgatory are read-only. In order to | 
 | 	 * have them modifiable make a temporary copy. | 
 | 	 */ | 
 | 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum)); | 
 | 	if (!sechdrs) | 
 | 		return -ENOMEM; | 
 | 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, | 
 | 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr)); | 
 | 	pi->sechdrs = sechdrs; | 
 |  | 
 | 	offset = 0; | 
 | 	bss_addr = kbuf->mem + kbuf->bufsz; | 
 | 	kbuf->image->start = pi->ehdr->e_entry; | 
 |  | 
 | 	for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
 | 		unsigned long align; | 
 | 		void *src, *dst; | 
 |  | 
 | 		if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
 | 			continue; | 
 |  | 
 | 		align = sechdrs[i].sh_addralign; | 
 | 		if (sechdrs[i].sh_type == SHT_NOBITS) { | 
 | 			bss_addr = ALIGN(bss_addr, align); | 
 | 			sechdrs[i].sh_addr = bss_addr; | 
 | 			bss_addr += sechdrs[i].sh_size; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		offset = ALIGN(offset, align); | 
 | 		if (sechdrs[i].sh_flags & SHF_EXECINSTR && | 
 | 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr && | 
 | 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr | 
 | 					 + sechdrs[i].sh_size)) { | 
 | 			kbuf->image->start -= sechdrs[i].sh_addr; | 
 | 			kbuf->image->start += kbuf->mem + offset; | 
 | 		} | 
 |  | 
 | 		src = (void *)pi->ehdr + sechdrs[i].sh_offset; | 
 | 		dst = pi->purgatory_buf + offset; | 
 | 		memcpy(dst, src, sechdrs[i].sh_size); | 
 |  | 
 | 		sechdrs[i].sh_addr = kbuf->mem + offset; | 
 | 		sechdrs[i].sh_offset = offset; | 
 | 		offset += sechdrs[i].sh_size; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kexec_apply_relocations(struct kimage *image) | 
 | { | 
 | 	int i, ret; | 
 | 	struct purgatory_info *pi = &image->purgatory_info; | 
 | 	const Elf_Shdr *sechdrs; | 
 |  | 
 | 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
 |  | 
 | 	for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
 | 		const Elf_Shdr *relsec; | 
 | 		const Elf_Shdr *symtab; | 
 | 		Elf_Shdr *section; | 
 |  | 
 | 		relsec = sechdrs + i; | 
 |  | 
 | 		if (relsec->sh_type != SHT_RELA && | 
 | 		    relsec->sh_type != SHT_REL) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For section of type SHT_RELA/SHT_REL, | 
 | 		 * ->sh_link contains section header index of associated | 
 | 		 * symbol table. And ->sh_info contains section header | 
 | 		 * index of section to which relocations apply. | 
 | 		 */ | 
 | 		if (relsec->sh_info >= pi->ehdr->e_shnum || | 
 | 		    relsec->sh_link >= pi->ehdr->e_shnum) | 
 | 			return -ENOEXEC; | 
 |  | 
 | 		section = pi->sechdrs + relsec->sh_info; | 
 | 		symtab = sechdrs + relsec->sh_link; | 
 |  | 
 | 		if (!(section->sh_flags & SHF_ALLOC)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * symtab->sh_link contain section header index of associated | 
 | 		 * string table. | 
 | 		 */ | 
 | 		if (symtab->sh_link >= pi->ehdr->e_shnum) | 
 | 			/* Invalid section number? */ | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Respective architecture needs to provide support for applying | 
 | 		 * relocations of type SHT_RELA/SHT_REL. | 
 | 		 */ | 
 | 		if (relsec->sh_type == SHT_RELA) | 
 | 			ret = arch_kexec_apply_relocations_add(pi, section, | 
 | 							       relsec, symtab); | 
 | 		else if (relsec->sh_type == SHT_REL) | 
 | 			ret = arch_kexec_apply_relocations(pi, section, | 
 | 							   relsec, symtab); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * kexec_load_purgatory - Load and relocate the purgatory object. | 
 |  * @image:	Image to add the purgatory to. | 
 |  * @kbuf:	Memory parameters to use. | 
 |  * | 
 |  * Allocates the memory needed for image->purgatory_info.sechdrs and | 
 |  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible | 
 |  * to free the memory after use. | 
 |  * | 
 |  * Return: 0 on success, negative errno on error. | 
 |  */ | 
 | int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) | 
 | { | 
 | 	struct purgatory_info *pi = &image->purgatory_info; | 
 | 	int ret; | 
 |  | 
 | 	if (kexec_purgatory_size <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; | 
 |  | 
 | 	ret = kexec_purgatory_setup_kbuf(pi, kbuf); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf); | 
 | 	if (ret) | 
 | 		goto out_free_kbuf; | 
 |  | 
 | 	ret = kexec_apply_relocations(image); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	return 0; | 
 | out: | 
 | 	vfree(pi->sechdrs); | 
 | 	pi->sechdrs = NULL; | 
 | out_free_kbuf: | 
 | 	vfree(pi->purgatory_buf); | 
 | 	pi->purgatory_buf = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * kexec_purgatory_find_symbol - find a symbol in the purgatory | 
 |  * @pi:		Purgatory to search in. | 
 |  * @name:	Name of the symbol. | 
 |  * | 
 |  * Return: pointer to symbol in read-only symtab on success, NULL on error. | 
 |  */ | 
 | static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, | 
 | 						  const char *name) | 
 | { | 
 | 	const Elf_Shdr *sechdrs; | 
 | 	const Elf_Ehdr *ehdr; | 
 | 	const Elf_Sym *syms; | 
 | 	const char *strtab; | 
 | 	int i, k; | 
 |  | 
 | 	if (!pi->ehdr) | 
 | 		return NULL; | 
 |  | 
 | 	ehdr = pi->ehdr; | 
 | 	sechdrs = (void *)ehdr + ehdr->e_shoff; | 
 |  | 
 | 	for (i = 0; i < ehdr->e_shnum; i++) { | 
 | 		if (sechdrs[i].sh_type != SHT_SYMTAB) | 
 | 			continue; | 
 |  | 
 | 		if (sechdrs[i].sh_link >= ehdr->e_shnum) | 
 | 			/* Invalid strtab section number */ | 
 | 			continue; | 
 | 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; | 
 | 		syms = (void *)ehdr + sechdrs[i].sh_offset; | 
 |  | 
 | 		/* Go through symbols for a match */ | 
 | 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { | 
 | 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) | 
 | 				continue; | 
 |  | 
 | 			if (strcmp(strtab + syms[k].st_name, name) != 0) | 
 | 				continue; | 
 |  | 
 | 			if (syms[k].st_shndx == SHN_UNDEF || | 
 | 			    syms[k].st_shndx >= ehdr->e_shnum) { | 
 | 				pr_debug("Symbol: %s has bad section index %d.\n", | 
 | 						name, syms[k].st_shndx); | 
 | 				return NULL; | 
 | 			} | 
 |  | 
 | 			/* Found the symbol we are looking for */ | 
 | 			return &syms[k]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) | 
 | { | 
 | 	struct purgatory_info *pi = &image->purgatory_info; | 
 | 	const Elf_Sym *sym; | 
 | 	Elf_Shdr *sechdr; | 
 |  | 
 | 	sym = kexec_purgatory_find_symbol(pi, name); | 
 | 	if (!sym) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	sechdr = &pi->sechdrs[sym->st_shndx]; | 
 |  | 
 | 	/* | 
 | 	 * Returns the address where symbol will finally be loaded after | 
 | 	 * kexec_load_segment() | 
 | 	 */ | 
 | 	return (void *)(sechdr->sh_addr + sym->st_value); | 
 | } | 
 |  | 
 | /* | 
 |  * Get or set value of a symbol. If "get_value" is true, symbol value is | 
 |  * returned in buf otherwise symbol value is set based on value in buf. | 
 |  */ | 
 | int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, | 
 | 				   void *buf, unsigned int size, bool get_value) | 
 | { | 
 | 	struct purgatory_info *pi = &image->purgatory_info; | 
 | 	const Elf_Sym *sym; | 
 | 	Elf_Shdr *sec; | 
 | 	char *sym_buf; | 
 |  | 
 | 	sym = kexec_purgatory_find_symbol(pi, name); | 
 | 	if (!sym) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (sym->st_size != size) { | 
 | 		pr_err("symbol %s size mismatch: expected %lu actual %u\n", | 
 | 		       name, (unsigned long)sym->st_size, size); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sec = pi->sechdrs + sym->st_shndx; | 
 |  | 
 | 	if (sec->sh_type == SHT_NOBITS) { | 
 | 		pr_err("symbol %s is in a bss section. Cannot %s\n", name, | 
 | 		       get_value ? "get" : "set"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; | 
 |  | 
 | 	if (get_value) | 
 | 		memcpy((void *)buf, sym_buf, size); | 
 | 	else | 
 | 		memcpy((void *)sym_buf, buf, size); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ | 
 |  | 
 | int crash_exclude_mem_range(struct crash_mem *mem, | 
 | 			    unsigned long long mstart, unsigned long long mend) | 
 | { | 
 | 	int i, j; | 
 | 	unsigned long long start, end; | 
 | 	struct crash_mem_range temp_range = {0, 0}; | 
 |  | 
 | 	for (i = 0; i < mem->nr_ranges; i++) { | 
 | 		start = mem->ranges[i].start; | 
 | 		end = mem->ranges[i].end; | 
 |  | 
 | 		if (mstart > end || mend < start) | 
 | 			continue; | 
 |  | 
 | 		/* Truncate any area outside of range */ | 
 | 		if (mstart < start) | 
 | 			mstart = start; | 
 | 		if (mend > end) | 
 | 			mend = end; | 
 |  | 
 | 		/* Found completely overlapping range */ | 
 | 		if (mstart == start && mend == end) { | 
 | 			mem->ranges[i].start = 0; | 
 | 			mem->ranges[i].end = 0; | 
 | 			if (i < mem->nr_ranges - 1) { | 
 | 				/* Shift rest of the ranges to left */ | 
 | 				for (j = i; j < mem->nr_ranges - 1; j++) { | 
 | 					mem->ranges[j].start = | 
 | 						mem->ranges[j+1].start; | 
 | 					mem->ranges[j].end = | 
 | 							mem->ranges[j+1].end; | 
 | 				} | 
 | 			} | 
 | 			mem->nr_ranges--; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (mstart > start && mend < end) { | 
 | 			/* Split original range */ | 
 | 			mem->ranges[i].end = mstart - 1; | 
 | 			temp_range.start = mend + 1; | 
 | 			temp_range.end = end; | 
 | 		} else if (mstart != start) | 
 | 			mem->ranges[i].end = mstart - 1; | 
 | 		else | 
 | 			mem->ranges[i].start = mend + 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* If a split happened, add the split to array */ | 
 | 	if (!temp_range.end) | 
 | 		return 0; | 
 |  | 
 | 	/* Split happened */ | 
 | 	if (i == mem->max_nr_ranges - 1) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Location where new range should go */ | 
 | 	j = i + 1; | 
 | 	if (j < mem->nr_ranges) { | 
 | 		/* Move over all ranges one slot towards the end */ | 
 | 		for (i = mem->nr_ranges - 1; i >= j; i--) | 
 | 			mem->ranges[i + 1] = mem->ranges[i]; | 
 | 	} | 
 |  | 
 | 	mem->ranges[j].start = temp_range.start; | 
 | 	mem->ranges[j].end = temp_range.end; | 
 | 	mem->nr_ranges++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, | 
 | 			  void **addr, unsigned long *sz) | 
 | { | 
 | 	Elf64_Ehdr *ehdr; | 
 | 	Elf64_Phdr *phdr; | 
 | 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; | 
 | 	unsigned char *buf; | 
 | 	unsigned int cpu, i; | 
 | 	unsigned long long notes_addr; | 
 | 	unsigned long mstart, mend; | 
 |  | 
 | 	/* extra phdr for vmcoreinfo elf note */ | 
 | 	nr_phdr = nr_cpus + 1; | 
 | 	nr_phdr += mem->nr_ranges; | 
 |  | 
 | 	/* | 
 | 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping | 
 | 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). | 
 | 	 * I think this is required by tools like gdb. So same physical | 
 | 	 * memory will be mapped in two elf headers. One will contain kernel | 
 | 	 * text virtual addresses and other will have __va(physical) addresses. | 
 | 	 */ | 
 |  | 
 | 	nr_phdr++; | 
 | 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); | 
 | 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); | 
 |  | 
 | 	buf = vzalloc(elf_sz); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ehdr = (Elf64_Ehdr *)buf; | 
 | 	phdr = (Elf64_Phdr *)(ehdr + 1); | 
 | 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG); | 
 | 	ehdr->e_ident[EI_CLASS] = ELFCLASS64; | 
 | 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB; | 
 | 	ehdr->e_ident[EI_VERSION] = EV_CURRENT; | 
 | 	ehdr->e_ident[EI_OSABI] = ELF_OSABI; | 
 | 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); | 
 | 	ehdr->e_type = ET_CORE; | 
 | 	ehdr->e_machine = ELF_ARCH; | 
 | 	ehdr->e_version = EV_CURRENT; | 
 | 	ehdr->e_phoff = sizeof(Elf64_Ehdr); | 
 | 	ehdr->e_ehsize = sizeof(Elf64_Ehdr); | 
 | 	ehdr->e_phentsize = sizeof(Elf64_Phdr); | 
 |  | 
 | 	/* Prepare one phdr of type PT_NOTE for each present cpu */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		phdr->p_type = PT_NOTE; | 
 | 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); | 
 | 		phdr->p_offset = phdr->p_paddr = notes_addr; | 
 | 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); | 
 | 		(ehdr->e_phnum)++; | 
 | 		phdr++; | 
 | 	} | 
 |  | 
 | 	/* Prepare one PT_NOTE header for vmcoreinfo */ | 
 | 	phdr->p_type = PT_NOTE; | 
 | 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); | 
 | 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; | 
 | 	(ehdr->e_phnum)++; | 
 | 	phdr++; | 
 |  | 
 | 	/* Prepare PT_LOAD type program header for kernel text region */ | 
 | 	if (kernel_map) { | 
 | 		phdr->p_type = PT_LOAD; | 
 | 		phdr->p_flags = PF_R|PF_W|PF_X; | 
 | 		phdr->p_vaddr = (Elf64_Addr)_text; | 
 | 		phdr->p_filesz = phdr->p_memsz = _end - _text; | 
 | 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); | 
 | 		ehdr->e_phnum++; | 
 | 		phdr++; | 
 | 	} | 
 |  | 
 | 	/* Go through all the ranges in mem->ranges[] and prepare phdr */ | 
 | 	for (i = 0; i < mem->nr_ranges; i++) { | 
 | 		mstart = mem->ranges[i].start; | 
 | 		mend = mem->ranges[i].end; | 
 |  | 
 | 		phdr->p_type = PT_LOAD; | 
 | 		phdr->p_flags = PF_R|PF_W|PF_X; | 
 | 		phdr->p_offset  = mstart; | 
 |  | 
 | 		phdr->p_paddr = mstart; | 
 | 		phdr->p_vaddr = (unsigned long long) __va(mstart); | 
 | 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; | 
 | 		phdr->p_align = 0; | 
 | 		ehdr->e_phnum++; | 
 | 		phdr++; | 
 | 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", | 
 | 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, | 
 | 			ehdr->e_phnum, phdr->p_offset); | 
 | 	} | 
 |  | 
 | 	*addr = buf; | 
 | 	*sz = elf_sz; | 
 | 	return 0; | 
 | } |