| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/uuid.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "locking.h" | 
 | #include "tree-log.h" | 
 | #include "inode-map.h" | 
 | #include "volumes.h" | 
 | #include "dev-replace.h" | 
 | #include "qgroup.h" | 
 |  | 
 | #define BTRFS_ROOT_TRANS_TAG 0 | 
 |  | 
 | static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { | 
 | 	[TRANS_STATE_RUNNING]		= 0U, | 
 | 	[TRANS_STATE_BLOCKED]		=  __TRANS_START, | 
 | 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH), | 
 | 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START | | 
 | 					   __TRANS_ATTACH | | 
 | 					   __TRANS_JOIN | | 
 | 					   __TRANS_JOIN_NOSTART), | 
 | 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START | | 
 | 					   __TRANS_ATTACH | | 
 | 					   __TRANS_JOIN | | 
 | 					   __TRANS_JOIN_NOLOCK | | 
 | 					   __TRANS_JOIN_NOSTART), | 
 | 	[TRANS_STATE_COMPLETED]		= (__TRANS_START | | 
 | 					   __TRANS_ATTACH | | 
 | 					   __TRANS_JOIN | | 
 | 					   __TRANS_JOIN_NOLOCK | | 
 | 					   __TRANS_JOIN_NOSTART), | 
 | }; | 
 |  | 
 | void btrfs_put_transaction(struct btrfs_transaction *transaction) | 
 | { | 
 | 	WARN_ON(refcount_read(&transaction->use_count) == 0); | 
 | 	if (refcount_dec_and_test(&transaction->use_count)) { | 
 | 		BUG_ON(!list_empty(&transaction->list)); | 
 | 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); | 
 | 		if (transaction->delayed_refs.pending_csums) | 
 | 			btrfs_err(transaction->fs_info, | 
 | 				  "pending csums is %llu", | 
 | 				  transaction->delayed_refs.pending_csums); | 
 | 		while (!list_empty(&transaction->pending_chunks)) { | 
 | 			struct extent_map *em; | 
 |  | 
 | 			em = list_first_entry(&transaction->pending_chunks, | 
 | 					      struct extent_map, list); | 
 | 			list_del_init(&em->list); | 
 | 			free_extent_map(em); | 
 | 		} | 
 | 		/* | 
 | 		 * If any block groups are found in ->deleted_bgs then it's | 
 | 		 * because the transaction was aborted and a commit did not | 
 | 		 * happen (things failed before writing the new superblock | 
 | 		 * and calling btrfs_finish_extent_commit()), so we can not | 
 | 		 * discard the physical locations of the block groups. | 
 | 		 */ | 
 | 		while (!list_empty(&transaction->deleted_bgs)) { | 
 | 			struct btrfs_block_group_cache *cache; | 
 |  | 
 | 			cache = list_first_entry(&transaction->deleted_bgs, | 
 | 						 struct btrfs_block_group_cache, | 
 | 						 bg_list); | 
 | 			list_del_init(&cache->bg_list); | 
 | 			btrfs_put_block_group_trimming(cache); | 
 | 			btrfs_put_block_group(cache); | 
 | 		} | 
 | 		kfree(transaction); | 
 | 	} | 
 | } | 
 |  | 
 | static void clear_btree_io_tree(struct extent_io_tree *tree) | 
 | { | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * Do a single barrier for the waitqueue_active check here, the state | 
 | 	 * of the waitqueue should not change once clear_btree_io_tree is | 
 | 	 * called. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	while (!RB_EMPTY_ROOT(&tree->state)) { | 
 | 		struct rb_node *node; | 
 | 		struct extent_state *state; | 
 |  | 
 | 		node = rb_first(&tree->state); | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		rb_erase(&state->rb_node, &tree->state); | 
 | 		RB_CLEAR_NODE(&state->rb_node); | 
 | 		/* | 
 | 		 * btree io trees aren't supposed to have tasks waiting for | 
 | 		 * changes in the flags of extent states ever. | 
 | 		 */ | 
 | 		ASSERT(!waitqueue_active(&state->wq)); | 
 | 		free_extent_state(state); | 
 |  | 
 | 		cond_resched_lock(&tree->lock); | 
 | 	} | 
 | 	spin_unlock(&tree->lock); | 
 | } | 
 |  | 
 | static noinline void switch_commit_roots(struct btrfs_transaction *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_root *root, *tmp; | 
 |  | 
 | 	down_write(&fs_info->commit_root_sem); | 
 | 	list_for_each_entry_safe(root, tmp, &trans->switch_commits, | 
 | 				 dirty_list) { | 
 | 		list_del_init(&root->dirty_list); | 
 | 		free_extent_buffer(root->commit_root); | 
 | 		root->commit_root = btrfs_root_node(root); | 
 | 		if (is_fstree(root->objectid)) | 
 | 			btrfs_unpin_free_ino(root); | 
 | 		clear_btree_io_tree(&root->dirty_log_pages); | 
 | 	} | 
 |  | 
 | 	/* We can free old roots now. */ | 
 | 	spin_lock(&trans->dropped_roots_lock); | 
 | 	while (!list_empty(&trans->dropped_roots)) { | 
 | 		root = list_first_entry(&trans->dropped_roots, | 
 | 					struct btrfs_root, root_list); | 
 | 		list_del_init(&root->root_list); | 
 | 		spin_unlock(&trans->dropped_roots_lock); | 
 | 		btrfs_drop_and_free_fs_root(fs_info, root); | 
 | 		spin_lock(&trans->dropped_roots_lock); | 
 | 	} | 
 | 	spin_unlock(&trans->dropped_roots_lock); | 
 | 	up_write(&fs_info->commit_root_sem); | 
 | } | 
 |  | 
 | static inline void extwriter_counter_inc(struct btrfs_transaction *trans, | 
 | 					 unsigned int type) | 
 | { | 
 | 	if (type & TRANS_EXTWRITERS) | 
 | 		atomic_inc(&trans->num_extwriters); | 
 | } | 
 |  | 
 | static inline void extwriter_counter_dec(struct btrfs_transaction *trans, | 
 | 					 unsigned int type) | 
 | { | 
 | 	if (type & TRANS_EXTWRITERS) | 
 | 		atomic_dec(&trans->num_extwriters); | 
 | } | 
 |  | 
 | static inline void extwriter_counter_init(struct btrfs_transaction *trans, | 
 | 					  unsigned int type) | 
 | { | 
 | 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); | 
 | } | 
 |  | 
 | static inline int extwriter_counter_read(struct btrfs_transaction *trans) | 
 | { | 
 | 	return atomic_read(&trans->num_extwriters); | 
 | } | 
 |  | 
 | /* | 
 |  * either allocate a new transaction or hop into the existing one | 
 |  */ | 
 | static noinline int join_transaction(struct btrfs_fs_info *fs_info, | 
 | 				     unsigned int type) | 
 | { | 
 | 	struct btrfs_transaction *cur_trans; | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | loop: | 
 | 	/* The file system has been taken offline. No new transactions. */ | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		return -EROFS; | 
 | 	} | 
 |  | 
 | 	cur_trans = fs_info->running_transaction; | 
 | 	if (cur_trans) { | 
 | 		if (cur_trans->aborted) { | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			return cur_trans->aborted; | 
 | 		} | 
 | 		if (btrfs_blocked_trans_types[cur_trans->state] & type) { | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		refcount_inc(&cur_trans->use_count); | 
 | 		atomic_inc(&cur_trans->num_writers); | 
 | 		extwriter_counter_inc(cur_trans, type); | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 	/* | 
 | 	 * If we are ATTACH, we just want to catch the current transaction, | 
 | 	 * and commit it. If there is no transaction, just return ENOENT. | 
 | 	 */ | 
 | 	if (type == TRANS_ATTACH) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * JOIN_NOLOCK only happens during the transaction commit, so | 
 | 	 * it is impossible that ->running_transaction is NULL | 
 | 	 */ | 
 | 	BUG_ON(type == TRANS_JOIN_NOLOCK); | 
 |  | 
 | 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); | 
 | 	if (!cur_trans) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	if (fs_info->running_transaction) { | 
 | 		/* | 
 | 		 * someone started a transaction after we unlocked.  Make sure | 
 | 		 * to redo the checks above | 
 | 		 */ | 
 | 		kfree(cur_trans); | 
 | 		goto loop; | 
 | 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		kfree(cur_trans); | 
 | 		return -EROFS; | 
 | 	} | 
 |  | 
 | 	cur_trans->fs_info = fs_info; | 
 | 	atomic_set(&cur_trans->num_writers, 1); | 
 | 	extwriter_counter_init(cur_trans, type); | 
 | 	init_waitqueue_head(&cur_trans->writer_wait); | 
 | 	init_waitqueue_head(&cur_trans->commit_wait); | 
 | 	init_waitqueue_head(&cur_trans->pending_wait); | 
 | 	cur_trans->state = TRANS_STATE_RUNNING; | 
 | 	/* | 
 | 	 * One for this trans handle, one so it will live on until we | 
 | 	 * commit the transaction. | 
 | 	 */ | 
 | 	refcount_set(&cur_trans->use_count, 2); | 
 | 	atomic_set(&cur_trans->pending_ordered, 0); | 
 | 	cur_trans->flags = 0; | 
 | 	cur_trans->start_time = ktime_get_seconds(); | 
 |  | 
 | 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); | 
 |  | 
 | 	cur_trans->delayed_refs.href_root = RB_ROOT; | 
 | 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; | 
 | 	atomic_set(&cur_trans->delayed_refs.num_entries, 0); | 
 |  | 
 | 	/* | 
 | 	 * although the tree mod log is per file system and not per transaction, | 
 | 	 * the log must never go across transaction boundaries. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (!list_empty(&fs_info->tree_mod_seq_list)) | 
 | 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); | 
 | 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) | 
 | 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); | 
 | 	atomic64_set(&fs_info->tree_mod_seq, 0); | 
 |  | 
 | 	spin_lock_init(&cur_trans->delayed_refs.lock); | 
 |  | 
 | 	INIT_LIST_HEAD(&cur_trans->pending_snapshots); | 
 | 	INIT_LIST_HEAD(&cur_trans->pending_chunks); | 
 | 	INIT_LIST_HEAD(&cur_trans->switch_commits); | 
 | 	INIT_LIST_HEAD(&cur_trans->dirty_bgs); | 
 | 	INIT_LIST_HEAD(&cur_trans->io_bgs); | 
 | 	INIT_LIST_HEAD(&cur_trans->dropped_roots); | 
 | 	mutex_init(&cur_trans->cache_write_mutex); | 
 | 	cur_trans->num_dirty_bgs = 0; | 
 | 	spin_lock_init(&cur_trans->dirty_bgs_lock); | 
 | 	INIT_LIST_HEAD(&cur_trans->deleted_bgs); | 
 | 	spin_lock_init(&cur_trans->dropped_roots_lock); | 
 | 	list_add_tail(&cur_trans->list, &fs_info->trans_list); | 
 | 	extent_io_tree_init(&cur_trans->dirty_pages, | 
 | 			     fs_info->btree_inode); | 
 | 	fs_info->generation++; | 
 | 	cur_trans->transid = fs_info->generation; | 
 | 	fs_info->running_transaction = cur_trans; | 
 | 	cur_trans->aborted = 0; | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this does all the record keeping required to make sure that a reference | 
 |  * counted root is properly recorded in a given transaction.  This is required | 
 |  * to make sure the old root from before we joined the transaction is deleted | 
 |  * when the transaction commits | 
 |  */ | 
 | static int record_root_in_trans(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       int force) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
 | 	    root->last_trans < trans->transid) || force) { | 
 | 		WARN_ON(root == fs_info->extent_root); | 
 | 		WARN_ON(!force && root->commit_root != root->node); | 
 |  | 
 | 		/* | 
 | 		 * see below for IN_TRANS_SETUP usage rules | 
 | 		 * we have the reloc mutex held now, so there | 
 | 		 * is only one writer in this function | 
 | 		 */ | 
 | 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); | 
 |  | 
 | 		/* make sure readers find IN_TRANS_SETUP before | 
 | 		 * they find our root->last_trans update | 
 | 		 */ | 
 | 		smp_wmb(); | 
 |  | 
 | 		spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 		if (root->last_trans == trans->transid && !force) { | 
 | 			spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 			return 0; | 
 | 		} | 
 | 		radix_tree_tag_set(&fs_info->fs_roots_radix, | 
 | 				   (unsigned long)root->root_key.objectid, | 
 | 				   BTRFS_ROOT_TRANS_TAG); | 
 | 		spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 		root->last_trans = trans->transid; | 
 |  | 
 | 		/* this is pretty tricky.  We don't want to | 
 | 		 * take the relocation lock in btrfs_record_root_in_trans | 
 | 		 * unless we're really doing the first setup for this root in | 
 | 		 * this transaction. | 
 | 		 * | 
 | 		 * Normally we'd use root->last_trans as a flag to decide | 
 | 		 * if we want to take the expensive mutex. | 
 | 		 * | 
 | 		 * But, we have to set root->last_trans before we | 
 | 		 * init the relocation root, otherwise, we trip over warnings | 
 | 		 * in ctree.c.  The solution used here is to flag ourselves | 
 | 		 * with root IN_TRANS_SETUP.  When this is 1, we're still | 
 | 		 * fixing up the reloc trees and everyone must wait. | 
 | 		 * | 
 | 		 * When this is zero, they can trust root->last_trans and fly | 
 | 		 * through btrfs_record_root_in_trans without having to take the | 
 | 		 * lock.  smp_wmb() makes sure that all the writes above are | 
 | 		 * done before we pop in the zero below | 
 | 		 */ | 
 | 		btrfs_init_reloc_root(trans, root); | 
 | 		smp_mb__before_atomic(); | 
 | 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 |  | 
 | 	/* Add ourselves to the transaction dropped list */ | 
 | 	spin_lock(&cur_trans->dropped_roots_lock); | 
 | 	list_add_tail(&root->root_list, &cur_trans->dropped_roots); | 
 | 	spin_unlock(&cur_trans->dropped_roots_lock); | 
 |  | 
 | 	/* Make sure we don't try to update the root at commit time */ | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	radix_tree_tag_clear(&fs_info->fs_roots_radix, | 
 | 			     (unsigned long)root->root_key.objectid, | 
 | 			     BTRFS_ROOT_TRANS_TAG); | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | } | 
 |  | 
 | int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage | 
 | 	 * and barriers | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (root->last_trans == trans->transid && | 
 | 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&fs_info->reloc_mutex); | 
 | 	record_root_in_trans(trans, root, 0); | 
 | 	mutex_unlock(&fs_info->reloc_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int is_transaction_blocked(struct btrfs_transaction *trans) | 
 | { | 
 | 	return (trans->state >= TRANS_STATE_BLOCKED && | 
 | 		trans->state < TRANS_STATE_UNBLOCKED && | 
 | 		!trans->aborted); | 
 | } | 
 |  | 
 | /* wait for commit against the current transaction to become unblocked | 
 |  * when this is done, it is safe to start a new transaction, but the current | 
 |  * transaction might not be fully on disk. | 
 |  */ | 
 | static void wait_current_trans(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_transaction *cur_trans; | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	cur_trans = fs_info->running_transaction; | 
 | 	if (cur_trans && is_transaction_blocked(cur_trans)) { | 
 | 		refcount_inc(&cur_trans->use_count); | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 		wait_event(fs_info->transaction_wait, | 
 | 			   cur_trans->state >= TRANS_STATE_UNBLOCKED || | 
 | 			   cur_trans->aborted); | 
 | 		btrfs_put_transaction(cur_trans); | 
 | 	} else { | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) | 
 | { | 
 | 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
 | 		return 0; | 
 |  | 
 | 	if (type == TRANS_START) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline bool need_reserve_reloc_root(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	if (!fs_info->reloc_ctl || | 
 | 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || | 
 | 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || | 
 | 	    root->reloc_root) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct btrfs_trans_handle * | 
 | start_transaction(struct btrfs_root *root, unsigned int num_items, | 
 | 		  unsigned int type, enum btrfs_reserve_flush_enum flush, | 
 | 		  bool enforce_qgroups) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	struct btrfs_trans_handle *h; | 
 | 	struct btrfs_transaction *cur_trans; | 
 | 	u64 num_bytes = 0; | 
 | 	u64 qgroup_reserved = 0; | 
 | 	bool reloc_reserved = false; | 
 | 	int ret; | 
 |  | 
 | 	/* Send isn't supposed to start transactions. */ | 
 | 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
 | 		return ERR_PTR(-EROFS); | 
 |  | 
 | 	if (current->journal_info) { | 
 | 		WARN_ON(type & TRANS_EXTWRITERS); | 
 | 		h = current->journal_info; | 
 | 		refcount_inc(&h->use_count); | 
 | 		WARN_ON(refcount_read(&h->use_count) > 2); | 
 | 		h->orig_rsv = h->block_rsv; | 
 | 		h->block_rsv = NULL; | 
 | 		goto got_it; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do the reservation before we join the transaction so we can do all | 
 | 	 * the appropriate flushing if need be. | 
 | 	 */ | 
 | 	if (num_items && root != fs_info->chunk_root) { | 
 | 		qgroup_reserved = num_items * fs_info->nodesize; | 
 | 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, | 
 | 				enforce_qgroups); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 |  | 
 | 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); | 
 | 		/* | 
 | 		 * Do the reservation for the relocation root creation | 
 | 		 */ | 
 | 		if (need_reserve_reloc_root(root)) { | 
 | 			num_bytes += fs_info->nodesize; | 
 | 			reloc_reserved = true; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, | 
 | 					  num_bytes, flush); | 
 | 		if (ret) | 
 | 			goto reserve_fail; | 
 | 	} | 
 | again: | 
 | 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); | 
 | 	if (!h) { | 
 | 		ret = -ENOMEM; | 
 | 		goto alloc_fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are JOIN_NOLOCK we're already committing a transaction and | 
 | 	 * waiting on this guy, so we don't need to do the sb_start_intwrite | 
 | 	 * because we're already holding a ref.  We need this because we could | 
 | 	 * have raced in and did an fsync() on a file which can kick a commit | 
 | 	 * and then we deadlock with somebody doing a freeze. | 
 | 	 * | 
 | 	 * If we are ATTACH, it means we just want to catch the current | 
 | 	 * transaction and commit it, so we needn't do sb_start_intwrite().  | 
 | 	 */ | 
 | 	if (type & __TRANS_FREEZABLE) | 
 | 		sb_start_intwrite(fs_info->sb); | 
 |  | 
 | 	if (may_wait_transaction(fs_info, type)) | 
 | 		wait_current_trans(fs_info); | 
 |  | 
 | 	do { | 
 | 		ret = join_transaction(fs_info, type); | 
 | 		if (ret == -EBUSY) { | 
 | 			wait_current_trans(fs_info); | 
 | 			if (unlikely(type == TRANS_ATTACH || | 
 | 				     type == TRANS_JOIN_NOSTART)) | 
 | 				ret = -ENOENT; | 
 | 		} | 
 | 	} while (ret == -EBUSY); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto join_fail; | 
 |  | 
 | 	cur_trans = fs_info->running_transaction; | 
 |  | 
 | 	h->transid = cur_trans->transid; | 
 | 	h->transaction = cur_trans; | 
 | 	h->root = root; | 
 | 	refcount_set(&h->use_count, 1); | 
 | 	h->fs_info = root->fs_info; | 
 |  | 
 | 	h->type = type; | 
 | 	h->can_flush_pending_bgs = true; | 
 | 	INIT_LIST_HEAD(&h->new_bgs); | 
 |  | 
 | 	smp_mb(); | 
 | 	if (cur_trans->state >= TRANS_STATE_BLOCKED && | 
 | 	    may_wait_transaction(fs_info, type)) { | 
 | 		current->journal_info = h; | 
 | 		btrfs_commit_transaction(h); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (num_bytes) { | 
 | 		trace_btrfs_space_reservation(fs_info, "transaction", | 
 | 					      h->transid, num_bytes, 1); | 
 | 		h->block_rsv = &fs_info->trans_block_rsv; | 
 | 		h->bytes_reserved = num_bytes; | 
 | 		h->reloc_reserved = reloc_reserved; | 
 | 	} | 
 |  | 
 | got_it: | 
 | 	btrfs_record_root_in_trans(h, root); | 
 |  | 
 | 	if (!current->journal_info) | 
 | 		current->journal_info = h; | 
 | 	return h; | 
 |  | 
 | join_fail: | 
 | 	if (type & __TRANS_FREEZABLE) | 
 | 		sb_end_intwrite(fs_info->sb); | 
 | 	kmem_cache_free(btrfs_trans_handle_cachep, h); | 
 | alloc_fail: | 
 | 	if (num_bytes) | 
 | 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, | 
 | 					num_bytes); | 
 | reserve_fail: | 
 | 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, | 
 | 						   unsigned int num_items) | 
 | { | 
 | 	return start_transaction(root, num_items, TRANS_START, | 
 | 				 BTRFS_RESERVE_FLUSH_ALL, true); | 
 | } | 
 |  | 
 | struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( | 
 | 					struct btrfs_root *root, | 
 | 					unsigned int num_items, | 
 | 					int min_factor) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 num_bytes; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We have two callers: unlink and block group removal.  The | 
 | 	 * former should succeed even if we will temporarily exceed | 
 | 	 * quota and the latter operates on the extent root so | 
 | 	 * qgroup enforcement is ignored anyway. | 
 | 	 */ | 
 | 	trans = start_transaction(root, num_items, TRANS_START, | 
 | 				  BTRFS_RESERVE_FLUSH_ALL, false); | 
 | 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) | 
 | 		return trans; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) | 
 | 		return trans; | 
 |  | 
 | 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); | 
 | 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, | 
 | 				       num_bytes, min_factor); | 
 | 	if (ret) { | 
 | 		btrfs_end_transaction(trans); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	trans->block_rsv = &fs_info->trans_block_rsv; | 
 | 	trans->bytes_reserved = num_bytes; | 
 | 	trace_btrfs_space_reservation(fs_info, "transaction", | 
 | 				      trans->transid, num_bytes, 1); | 
 |  | 
 | 	return trans; | 
 | } | 
 |  | 
 | struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) | 
 | { | 
 | 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, | 
 | 				 true); | 
 | } | 
 |  | 
 | struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) | 
 | { | 
 | 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, | 
 | 				 BTRFS_RESERVE_NO_FLUSH, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Similar to regular join but it never starts a transaction when none is | 
 |  * running or after waiting for the current one to finish. | 
 |  */ | 
 | struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) | 
 | { | 
 | 	return start_transaction(root, 0, TRANS_JOIN_NOSTART, | 
 | 				 BTRFS_RESERVE_NO_FLUSH, true); | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_attach_transaction() - catch the running transaction | 
 |  * | 
 |  * It is used when we want to commit the current the transaction, but | 
 |  * don't want to start a new one. | 
 |  * | 
 |  * Note: If this function return -ENOENT, it just means there is no | 
 |  * running transaction. But it is possible that the inactive transaction | 
 |  * is still in the memory, not fully on disk. If you hope there is no | 
 |  * inactive transaction in the fs when -ENOENT is returned, you should | 
 |  * invoke | 
 |  *     btrfs_attach_transaction_barrier() | 
 |  */ | 
 | struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) | 
 | { | 
 | 	return start_transaction(root, 0, TRANS_ATTACH, | 
 | 				 BTRFS_RESERVE_NO_FLUSH, true); | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_attach_transaction_barrier() - catch the running transaction | 
 |  * | 
 |  * It is similar to the above function, the differentia is this one | 
 |  * will wait for all the inactive transactions until they fully | 
 |  * complete. | 
 |  */ | 
 | struct btrfs_trans_handle * | 
 | btrfs_attach_transaction_barrier(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	trans = start_transaction(root, 0, TRANS_ATTACH, | 
 | 				  BTRFS_RESERVE_NO_FLUSH, true); | 
 | 	if (trans == ERR_PTR(-ENOENT)) | 
 | 		btrfs_wait_for_commit(root->fs_info, 0); | 
 |  | 
 | 	return trans; | 
 | } | 
 |  | 
 | /* wait for a transaction commit to be fully complete */ | 
 | static noinline void wait_for_commit(struct btrfs_transaction *commit) | 
 | { | 
 | 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); | 
 | } | 
 |  | 
 | int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) | 
 | { | 
 | 	struct btrfs_transaction *cur_trans = NULL, *t; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (transid) { | 
 | 		if (transid <= fs_info->last_trans_committed) | 
 | 			goto out; | 
 |  | 
 | 		/* find specified transaction */ | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 		list_for_each_entry(t, &fs_info->trans_list, list) { | 
 | 			if (t->transid == transid) { | 
 | 				cur_trans = t; | 
 | 				refcount_inc(&cur_trans->use_count); | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			if (t->transid > transid) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 		/* | 
 | 		 * The specified transaction doesn't exist, or we | 
 | 		 * raced with btrfs_commit_transaction | 
 | 		 */ | 
 | 		if (!cur_trans) { | 
 | 			if (transid > fs_info->last_trans_committed) | 
 | 				ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		/* find newest transaction that is committing | committed */ | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 		list_for_each_entry_reverse(t, &fs_info->trans_list, | 
 | 					    list) { | 
 | 			if (t->state >= TRANS_STATE_COMMIT_START) { | 
 | 				if (t->state == TRANS_STATE_COMPLETED) | 
 | 					break; | 
 | 				cur_trans = t; | 
 | 				refcount_inc(&cur_trans->use_count); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		if (!cur_trans) | 
 | 			goto out;  /* nothing committing|committed */ | 
 | 	} | 
 |  | 
 | 	wait_for_commit(cur_trans); | 
 | 	btrfs_put_transaction(cur_trans); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_throttle(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	wait_current_trans(fs_info); | 
 | } | 
 |  | 
 | static int should_end_transaction(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 |  | 
 | 	if (btrfs_check_space_for_delayed_refs(trans, fs_info)) | 
 | 		return 1; | 
 |  | 
 | 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); | 
 | } | 
 |  | 
 | int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	int updates; | 
 | 	int err; | 
 |  | 
 | 	smp_mb(); | 
 | 	if (cur_trans->state >= TRANS_STATE_BLOCKED || | 
 | 	    cur_trans->delayed_refs.flushing) | 
 | 		return 1; | 
 |  | 
 | 	updates = trans->delayed_ref_updates; | 
 | 	trans->delayed_ref_updates = 0; | 
 | 	if (updates) { | 
 | 		err = btrfs_run_delayed_refs(trans, updates * 2); | 
 | 		if (err) /* Error code will also eval true */ | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return should_end_transaction(trans); | 
 | } | 
 |  | 
 | static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) | 
 |  | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 |  | 
 | 	if (!trans->block_rsv) { | 
 | 		ASSERT(!trans->bytes_reserved); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!trans->bytes_reserved) | 
 | 		return; | 
 |  | 
 | 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); | 
 | 	trace_btrfs_space_reservation(fs_info, "transaction", | 
 | 				      trans->transid, trans->bytes_reserved, 0); | 
 | 	btrfs_block_rsv_release(fs_info, trans->block_rsv, | 
 | 				trans->bytes_reserved); | 
 | 	trans->bytes_reserved = 0; | 
 | } | 
 |  | 
 | static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, | 
 | 				   int throttle) | 
 | { | 
 | 	struct btrfs_fs_info *info = trans->fs_info; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	u64 transid = trans->transid; | 
 | 	unsigned long cur = trans->delayed_ref_updates; | 
 | 	int lock = (trans->type != TRANS_JOIN_NOLOCK); | 
 | 	int err = 0; | 
 | 	int must_run_delayed_refs = 0; | 
 |  | 
 | 	if (refcount_read(&trans->use_count) > 1) { | 
 | 		refcount_dec(&trans->use_count); | 
 | 		trans->block_rsv = trans->orig_rsv; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	btrfs_trans_release_metadata(trans); | 
 | 	trans->block_rsv = NULL; | 
 |  | 
 | 	if (!list_empty(&trans->new_bgs)) | 
 | 		btrfs_create_pending_block_groups(trans); | 
 |  | 
 | 	trans->delayed_ref_updates = 0; | 
 | 	if (!trans->sync) { | 
 | 		must_run_delayed_refs = | 
 | 			btrfs_should_throttle_delayed_refs(trans, info); | 
 | 		cur = max_t(unsigned long, cur, 32); | 
 |  | 
 | 		/* | 
 | 		 * don't make the caller wait if they are from a NOLOCK | 
 | 		 * or ATTACH transaction, it will deadlock with commit | 
 | 		 */ | 
 | 		if (must_run_delayed_refs == 1 && | 
 | 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) | 
 | 			must_run_delayed_refs = 2; | 
 | 	} | 
 |  | 
 | 	btrfs_trans_release_metadata(trans); | 
 | 	trans->block_rsv = NULL; | 
 |  | 
 | 	if (!list_empty(&trans->new_bgs)) | 
 | 		btrfs_create_pending_block_groups(trans); | 
 |  | 
 | 	btrfs_trans_release_chunk_metadata(trans); | 
 |  | 
 | 	if (lock && should_end_transaction(trans) && | 
 | 	    READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { | 
 | 		spin_lock(&info->trans_lock); | 
 | 		if (cur_trans->state == TRANS_STATE_RUNNING) | 
 | 			cur_trans->state = TRANS_STATE_BLOCKED; | 
 | 		spin_unlock(&info->trans_lock); | 
 | 	} | 
 |  | 
 | 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { | 
 | 		if (throttle) | 
 | 			return btrfs_commit_transaction(trans); | 
 | 		else | 
 | 			wake_up_process(info->transaction_kthread); | 
 | 	} | 
 |  | 
 | 	if (trans->type & __TRANS_FREEZABLE) | 
 | 		sb_end_intwrite(info->sb); | 
 |  | 
 | 	WARN_ON(cur_trans != info->running_transaction); | 
 | 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1); | 
 | 	atomic_dec(&cur_trans->num_writers); | 
 | 	extwriter_counter_dec(cur_trans, trans->type); | 
 |  | 
 | 	cond_wake_up(&cur_trans->writer_wait); | 
 | 	btrfs_put_transaction(cur_trans); | 
 |  | 
 | 	if (current->journal_info == trans) | 
 | 		current->journal_info = NULL; | 
 |  | 
 | 	if (throttle) | 
 | 		btrfs_run_delayed_iputs(info); | 
 |  | 
 | 	if (trans->aborted || | 
 | 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { | 
 | 		wake_up_process(info->transaction_kthread); | 
 | 		err = -EIO; | 
 | 	} | 
 |  | 
 | 	kmem_cache_free(btrfs_trans_handle_cachep, trans); | 
 | 	if (must_run_delayed_refs) { | 
 | 		btrfs_async_run_delayed_refs(info, cur, transid, | 
 | 					     must_run_delayed_refs == 1); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int btrfs_end_transaction(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	return __btrfs_end_transaction(trans, 0); | 
 | } | 
 |  | 
 | int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	return __btrfs_end_transaction(trans, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * when btree blocks are allocated, they have some corresponding bits set for | 
 |  * them in one of two extent_io trees.  This is used to make sure all of | 
 |  * those extents are sent to disk but does not wait on them | 
 |  */ | 
 | int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, | 
 | 			       struct extent_io_tree *dirty_pages, int mark) | 
 | { | 
 | 	int err = 0; | 
 | 	int werr = 0; | 
 | 	struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 start = 0; | 
 | 	u64 end; | 
 |  | 
 | 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); | 
 | 	while (!find_first_extent_bit(dirty_pages, start, &start, &end, | 
 | 				      mark, &cached_state)) { | 
 | 		bool wait_writeback = false; | 
 |  | 
 | 		err = convert_extent_bit(dirty_pages, start, end, | 
 | 					 EXTENT_NEED_WAIT, | 
 | 					 mark, &cached_state); | 
 | 		/* | 
 | 		 * convert_extent_bit can return -ENOMEM, which is most of the | 
 | 		 * time a temporary error. So when it happens, ignore the error | 
 | 		 * and wait for writeback of this range to finish - because we | 
 | 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call | 
 | 		 * to __btrfs_wait_marked_extents() would not know that | 
 | 		 * writeback for this range started and therefore wouldn't | 
 | 		 * wait for it to finish - we don't want to commit a | 
 | 		 * superblock that points to btree nodes/leafs for which | 
 | 		 * writeback hasn't finished yet (and without errors). | 
 | 		 * We cleanup any entries left in the io tree when committing | 
 | 		 * the transaction (through clear_btree_io_tree()). | 
 | 		 */ | 
 | 		if (err == -ENOMEM) { | 
 | 			err = 0; | 
 | 			wait_writeback = true; | 
 | 		} | 
 | 		if (!err) | 
 | 			err = filemap_fdatawrite_range(mapping, start, end); | 
 | 		if (err) | 
 | 			werr = err; | 
 | 		else if (wait_writeback) | 
 | 			werr = filemap_fdatawait_range(mapping, start, end); | 
 | 		free_extent_state(cached_state); | 
 | 		cached_state = NULL; | 
 | 		cond_resched(); | 
 | 		start = end + 1; | 
 | 	} | 
 | 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); | 
 | 	return werr; | 
 | } | 
 |  | 
 | /* | 
 |  * when btree blocks are allocated, they have some corresponding bits set for | 
 |  * them in one of two extent_io trees.  This is used to make sure all of | 
 |  * those extents are on disk for transaction or log commit.  We wait | 
 |  * on all the pages and clear them from the dirty pages state tree | 
 |  */ | 
 | static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, | 
 | 				       struct extent_io_tree *dirty_pages) | 
 | { | 
 | 	int err = 0; | 
 | 	int werr = 0; | 
 | 	struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 start = 0; | 
 | 	u64 end; | 
 |  | 
 | 	while (!find_first_extent_bit(dirty_pages, start, &start, &end, | 
 | 				      EXTENT_NEED_WAIT, &cached_state)) { | 
 | 		/* | 
 | 		 * Ignore -ENOMEM errors returned by clear_extent_bit(). | 
 | 		 * When committing the transaction, we'll remove any entries | 
 | 		 * left in the io tree. For a log commit, we don't remove them | 
 | 		 * after committing the log because the tree can be accessed | 
 | 		 * concurrently - we do it only at transaction commit time when | 
 | 		 * it's safe to do it (through clear_btree_io_tree()). | 
 | 		 */ | 
 | 		err = clear_extent_bit(dirty_pages, start, end, | 
 | 				       EXTENT_NEED_WAIT, 0, 0, &cached_state); | 
 | 		if (err == -ENOMEM) | 
 | 			err = 0; | 
 | 		if (!err) | 
 | 			err = filemap_fdatawait_range(mapping, start, end); | 
 | 		if (err) | 
 | 			werr = err; | 
 | 		free_extent_state(cached_state); | 
 | 		cached_state = NULL; | 
 | 		cond_resched(); | 
 | 		start = end + 1; | 
 | 	} | 
 | 	if (err) | 
 | 		werr = err; | 
 | 	return werr; | 
 | } | 
 |  | 
 | int btrfs_wait_extents(struct btrfs_fs_info *fs_info, | 
 | 		       struct extent_io_tree *dirty_pages) | 
 | { | 
 | 	bool errors = false; | 
 | 	int err; | 
 |  | 
 | 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages); | 
 | 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) | 
 | 		errors = true; | 
 |  | 
 | 	if (errors && !err) | 
 | 		err = -EIO; | 
 | 	return err; | 
 | } | 
 |  | 
 | int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = log_root->fs_info; | 
 | 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; | 
 | 	bool errors = false; | 
 | 	int err; | 
 |  | 
 | 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages); | 
 | 	if ((mark & EXTENT_DIRTY) && | 
 | 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) | 
 | 		errors = true; | 
 |  | 
 | 	if ((mark & EXTENT_NEW) && | 
 | 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) | 
 | 		errors = true; | 
 |  | 
 | 	if (errors && !err) | 
 | 		err = -EIO; | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * When btree blocks are allocated the corresponding extents are marked dirty. | 
 |  * This function ensures such extents are persisted on disk for transaction or | 
 |  * log commit. | 
 |  * | 
 |  * @trans: transaction whose dirty pages we'd like to write | 
 |  */ | 
 | static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	int ret; | 
 | 	int ret2; | 
 | 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); | 
 | 	blk_finish_plug(&plug); | 
 | 	ret2 = btrfs_wait_extents(fs_info, dirty_pages); | 
 |  | 
 | 	clear_btree_io_tree(&trans->transaction->dirty_pages); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	else if (ret2) | 
 | 		return ret2; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this is used to update the root pointer in the tree of tree roots. | 
 |  * | 
 |  * But, in the case of the extent allocation tree, updating the root | 
 |  * pointer may allocate blocks which may change the root of the extent | 
 |  * allocation tree. | 
 |  * | 
 |  * So, this loops and repeats and makes sure the cowonly root didn't | 
 |  * change while the root pointer was being updated in the metadata. | 
 |  */ | 
 | static int update_cowonly_root(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 | 	u64 old_root_bytenr; | 
 | 	u64 old_root_used; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 |  | 
 | 	old_root_used = btrfs_root_used(&root->root_item); | 
 |  | 
 | 	while (1) { | 
 | 		old_root_bytenr = btrfs_root_bytenr(&root->root_item); | 
 | 		if (old_root_bytenr == root->node->start && | 
 | 		    old_root_used == btrfs_root_used(&root->root_item)) | 
 | 			break; | 
 |  | 
 | 		btrfs_set_root_node(&root->root_item, root->node); | 
 | 		ret = btrfs_update_root(trans, tree_root, | 
 | 					&root->root_key, | 
 | 					&root->root_item); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		old_root_used = btrfs_root_used(&root->root_item); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * update all the cowonly tree roots on disk | 
 |  * | 
 |  * The error handling in this function may not be obvious. Any of the | 
 |  * failures will cause the file system to go offline. We still need | 
 |  * to clean up the delayed refs. | 
 |  */ | 
 | static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; | 
 | 	struct list_head *io_bgs = &trans->transaction->io_bgs; | 
 | 	struct list_head *next; | 
 | 	struct extent_buffer *eb; | 
 | 	int ret; | 
 |  | 
 | 	eb = btrfs_lock_root_node(fs_info->tree_root); | 
 | 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, | 
 | 			      0, &eb); | 
 | 	btrfs_tree_unlock(eb); | 
 | 	free_extent_buffer(eb); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_run_dev_stats(trans, fs_info); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = btrfs_run_dev_replace(trans, fs_info); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	ret = btrfs_run_qgroups(trans); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_setup_space_cache(trans, fs_info); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* run_qgroups might have added some more refs */ | 
 | 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 	if (ret) | 
 | 		return ret; | 
 | again: | 
 | 	while (!list_empty(&fs_info->dirty_cowonly_roots)) { | 
 | 		struct btrfs_root *root; | 
 | 		next = fs_info->dirty_cowonly_roots.next; | 
 | 		list_del_init(next); | 
 | 		root = list_entry(next, struct btrfs_root, dirty_list); | 
 | 		clear_bit(BTRFS_ROOT_DIRTY, &root->state); | 
 |  | 
 | 		if (root != fs_info->extent_root) | 
 | 			list_add_tail(&root->dirty_list, | 
 | 				      &trans->transaction->switch_commits); | 
 | 		ret = update_cowonly_root(trans, root); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { | 
 | 		ret = btrfs_write_dirty_block_groups(trans, fs_info); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&fs_info->dirty_cowonly_roots)) | 
 | 		goto again; | 
 |  | 
 | 	list_add_tail(&fs_info->extent_root->dirty_list, | 
 | 		      &trans->transaction->switch_commits); | 
 | 	btrfs_after_dev_replace_commit(fs_info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * dead roots are old snapshots that need to be deleted.  This allocates | 
 |  * a dirty root struct and adds it into the list of dead roots that need to | 
 |  * be deleted | 
 |  */ | 
 | void btrfs_add_dead_root(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	if (list_empty(&root->root_list)) | 
 | 		list_add_tail(&root->root_list, &fs_info->dead_roots); | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * update all the cowonly tree roots on disk | 
 |  */ | 
 | static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_root *gang[8]; | 
 | 	int i; | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 	while (1) { | 
 | 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, | 
 | 						 (void **)gang, 0, | 
 | 						 ARRAY_SIZE(gang), | 
 | 						 BTRFS_ROOT_TRANS_TAG); | 
 | 		if (ret == 0) | 
 | 			break; | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			struct btrfs_root *root = gang[i]; | 
 | 			radix_tree_tag_clear(&fs_info->fs_roots_radix, | 
 | 					(unsigned long)root->root_key.objectid, | 
 | 					BTRFS_ROOT_TRANS_TAG); | 
 | 			spin_unlock(&fs_info->fs_roots_radix_lock); | 
 |  | 
 | 			btrfs_free_log(trans, root); | 
 | 			btrfs_update_reloc_root(trans, root); | 
 |  | 
 | 			btrfs_save_ino_cache(root, trans); | 
 |  | 
 | 			/* see comments in should_cow_block() */ | 
 | 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); | 
 | 			smp_mb__after_atomic(); | 
 |  | 
 | 			if (root->commit_root != root->node) { | 
 | 				list_add_tail(&root->dirty_list, | 
 | 					&trans->transaction->switch_commits); | 
 | 				btrfs_set_root_node(&root->root_item, | 
 | 						    root->node); | 
 | 			} | 
 |  | 
 | 			err = btrfs_update_root(trans, fs_info->tree_root, | 
 | 						&root->root_key, | 
 | 						&root->root_item); | 
 | 			spin_lock(&fs_info->fs_roots_radix_lock); | 
 | 			if (err) | 
 | 				break; | 
 | 			btrfs_qgroup_free_meta_all_pertrans(root); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&fs_info->fs_roots_radix_lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * defrag a given btree. | 
 |  * Every leaf in the btree is read and defragged. | 
 |  */ | 
 | int btrfs_defrag_root(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *info = root->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	int ret; | 
 |  | 
 | 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) | 
 | 		return 0; | 
 |  | 
 | 	while (1) { | 
 | 		trans = btrfs_start_transaction(root, 0); | 
 | 		if (IS_ERR(trans)) | 
 | 			return PTR_ERR(trans); | 
 |  | 
 | 		ret = btrfs_defrag_leaves(trans, root); | 
 |  | 
 | 		btrfs_end_transaction(trans); | 
 | 		btrfs_btree_balance_dirty(info); | 
 | 		cond_resched(); | 
 |  | 
 | 		if (btrfs_fs_closing(info) || ret != -EAGAIN) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_defrag_cancelled(info)) { | 
 | 			btrfs_debug(info, "defrag_root cancelled"); | 
 | 			ret = -EAGAIN; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Do all special snapshot related qgroup dirty hack. | 
 |  * | 
 |  * Will do all needed qgroup inherit and dirty hack like switch commit | 
 |  * roots inside one transaction and write all btree into disk, to make | 
 |  * qgroup works. | 
 |  */ | 
 | static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *src, | 
 | 				   struct btrfs_root *parent, | 
 | 				   struct btrfs_qgroup_inherit *inherit, | 
 | 				   u64 dst_objectid) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = src->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Save some performance in the case that qgroups are not | 
 | 	 * enabled. If this check races with the ioctl, rescan will | 
 | 	 * kick in anyway. | 
 | 	 */ | 
 | 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Ensure dirty @src will be commited.  Or, after comming | 
 | 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not | 
 | 	 * recorded root will never be updated again, causing an outdated root | 
 | 	 * item. | 
 | 	 */ | 
 | 	record_root_in_trans(trans, src, 1); | 
 |  | 
 | 	/* | 
 | 	 * We are going to commit transaction, see btrfs_commit_transaction() | 
 | 	 * comment for reason locking tree_log_mutex | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->tree_log_mutex); | 
 |  | 
 | 	ret = commit_fs_roots(trans); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ret = btrfs_qgroup_account_extents(trans); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Now qgroup are all updated, we can inherit it to new qgroups */ | 
 | 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, | 
 | 				   inherit); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Now we do a simplified commit transaction, which will: | 
 | 	 * 1) commit all subvolume and extent tree | 
 | 	 *    To ensure all subvolume and extent tree have a valid | 
 | 	 *    commit_root to accounting later insert_dir_item() | 
 | 	 * 2) write all btree blocks onto disk | 
 | 	 *    This is to make sure later btree modification will be cowed | 
 | 	 *    Or commit_root can be populated and cause wrong qgroup numbers | 
 | 	 * In this simplified commit, we don't really care about other trees | 
 | 	 * like chunk and root tree, as they won't affect qgroup. | 
 | 	 * And we don't write super to avoid half committed status. | 
 | 	 */ | 
 | 	ret = commit_cowonly_roots(trans); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	switch_commit_roots(trans->transaction); | 
 | 	ret = btrfs_write_and_wait_transaction(trans); | 
 | 	if (ret) | 
 | 		btrfs_handle_fs_error(fs_info, ret, | 
 | 			"Error while writing out transaction for qgroup"); | 
 |  | 
 | out: | 
 | 	mutex_unlock(&fs_info->tree_log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Force parent root to be updated, as we recorded it before so its | 
 | 	 * last_trans == cur_transid. | 
 | 	 * Or it won't be committed again onto disk after later | 
 | 	 * insert_dir_item() | 
 | 	 */ | 
 | 	if (!ret) | 
 | 		record_root_in_trans(trans, parent, 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * new snapshots need to be created at a very specific time in the | 
 |  * transaction commit.  This does the actual creation. | 
 |  * | 
 |  * Note: | 
 |  * If the error which may affect the commitment of the current transaction | 
 |  * happens, we should return the error number. If the error which just affect | 
 |  * the creation of the pending snapshots, just return 0. | 
 |  */ | 
 | static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_pending_snapshot *pending) | 
 | { | 
 |  | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root_item *new_root_item; | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	struct btrfs_root *root = pending->root; | 
 | 	struct btrfs_root *parent_root; | 
 | 	struct btrfs_block_rsv *rsv; | 
 | 	struct inode *parent_inode; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_dir_item *dir_item; | 
 | 	struct dentry *dentry; | 
 | 	struct extent_buffer *tmp; | 
 | 	struct extent_buffer *old; | 
 | 	struct timespec64 cur_time; | 
 | 	int ret = 0; | 
 | 	u64 to_reserve = 0; | 
 | 	u64 index = 0; | 
 | 	u64 objectid; | 
 | 	u64 root_flags; | 
 | 	uuid_le new_uuid; | 
 |  | 
 | 	ASSERT(pending->path); | 
 | 	path = pending->path; | 
 |  | 
 | 	ASSERT(pending->root_item); | 
 | 	new_root_item = pending->root_item; | 
 |  | 
 | 	pending->error = btrfs_find_free_objectid(tree_root, &objectid); | 
 | 	if (pending->error) | 
 | 		goto no_free_objectid; | 
 |  | 
 | 	/* | 
 | 	 * Make qgroup to skip current new snapshot's qgroupid, as it is | 
 | 	 * accounted by later btrfs_qgroup_inherit(). | 
 | 	 */ | 
 | 	btrfs_set_skip_qgroup(trans, objectid); | 
 |  | 
 | 	btrfs_reloc_pre_snapshot(pending, &to_reserve); | 
 |  | 
 | 	if (to_reserve > 0) { | 
 | 		pending->error = btrfs_block_rsv_add(root, | 
 | 						     &pending->block_rsv, | 
 | 						     to_reserve, | 
 | 						     BTRFS_RESERVE_NO_FLUSH); | 
 | 		if (pending->error) | 
 | 			goto clear_skip_qgroup; | 
 | 	} | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 |  | 
 | 	rsv = trans->block_rsv; | 
 | 	trans->block_rsv = &pending->block_rsv; | 
 | 	trans->bytes_reserved = trans->block_rsv->reserved; | 
 | 	trace_btrfs_space_reservation(fs_info, "transaction", | 
 | 				      trans->transid, | 
 | 				      trans->bytes_reserved, 1); | 
 | 	dentry = pending->dentry; | 
 | 	parent_inode = pending->dir; | 
 | 	parent_root = BTRFS_I(parent_inode)->root; | 
 | 	record_root_in_trans(trans, parent_root, 0); | 
 |  | 
 | 	cur_time = current_time(parent_inode); | 
 |  | 
 | 	/* | 
 | 	 * insert the directory item | 
 | 	 */ | 
 | 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 	/* check if there is a file/dir which has the same name. */ | 
 | 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, | 
 | 					 btrfs_ino(BTRFS_I(parent_inode)), | 
 | 					 dentry->d_name.name, | 
 | 					 dentry->d_name.len, 0); | 
 | 	if (dir_item != NULL && !IS_ERR(dir_item)) { | 
 | 		pending->error = -EEXIST; | 
 | 		goto dir_item_existed; | 
 | 	} else if (IS_ERR(dir_item)) { | 
 | 		ret = PTR_ERR(dir_item); | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * pull in the delayed directory update | 
 | 	 * and the delayed inode item | 
 | 	 * otherwise we corrupt the FS during | 
 | 	 * snapshot | 
 | 	 */ | 
 | 	ret = btrfs_run_delayed_items(trans); | 
 | 	if (ret) {	/* Transaction aborted */ | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	record_root_in_trans(trans, root, 0); | 
 | 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid); | 
 | 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); | 
 | 	btrfs_check_and_init_root_item(new_root_item); | 
 |  | 
 | 	root_flags = btrfs_root_flags(new_root_item); | 
 | 	if (pending->readonly) | 
 | 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; | 
 | 	else | 
 | 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; | 
 | 	btrfs_set_root_flags(new_root_item, root_flags); | 
 |  | 
 | 	btrfs_set_root_generation_v2(new_root_item, | 
 | 			trans->transid); | 
 | 	uuid_le_gen(&new_uuid); | 
 | 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); | 
 | 	memcpy(new_root_item->parent_uuid, root->root_item.uuid, | 
 | 			BTRFS_UUID_SIZE); | 
 | 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { | 
 | 		memset(new_root_item->received_uuid, 0, | 
 | 		       sizeof(new_root_item->received_uuid)); | 
 | 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); | 
 | 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); | 
 | 		btrfs_set_root_stransid(new_root_item, 0); | 
 | 		btrfs_set_root_rtransid(new_root_item, 0); | 
 | 	} | 
 | 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); | 
 | 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); | 
 | 	btrfs_set_root_otransid(new_root_item, trans->transid); | 
 |  | 
 | 	old = btrfs_lock_root_node(root); | 
 | 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); | 
 | 	if (ret) { | 
 | 		btrfs_tree_unlock(old); | 
 | 		free_extent_buffer(old); | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	btrfs_set_lock_blocking(old); | 
 |  | 
 | 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid); | 
 | 	/* clean up in any case */ | 
 | 	btrfs_tree_unlock(old); | 
 | 	free_extent_buffer(old); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 | 	/* see comments in should_cow_block() */ | 
 | 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state); | 
 | 	smp_wmb(); | 
 |  | 
 | 	btrfs_set_root_node(new_root_item, tmp); | 
 | 	/* record when the snapshot was created in key.offset */ | 
 | 	key.offset = trans->transid; | 
 | 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); | 
 | 	btrfs_tree_unlock(tmp); | 
 | 	free_extent_buffer(tmp); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * insert root back/forward references | 
 | 	 */ | 
 | 	ret = btrfs_add_root_ref(trans, objectid, | 
 | 				 parent_root->root_key.objectid, | 
 | 				 btrfs_ino(BTRFS_I(parent_inode)), index, | 
 | 				 dentry->d_name.name, dentry->d_name.len); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	key.offset = (u64)-1; | 
 | 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 	if (IS_ERR(pending->snap)) { | 
 | 		ret = PTR_ERR(pending->snap); | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_reloc_post_snapshot(trans, pending); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do special qgroup accounting for snapshot, as we do some qgroup | 
 | 	 * snapshot hack to do fast snapshot. | 
 | 	 * To co-operate with that hack, we do hack again. | 
 | 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan | 
 | 	 */ | 
 | 	ret = qgroup_account_snapshot(trans, root, parent_root, | 
 | 				      pending->inherit, objectid); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 |  | 
 | 	ret = btrfs_insert_dir_item(trans, parent_root, | 
 | 				    dentry->d_name.name, dentry->d_name.len, | 
 | 				    BTRFS_I(parent_inode), &key, | 
 | 				    BTRFS_FT_DIR, index); | 
 | 	/* We have check then name at the beginning, so it is impossible. */ | 
 | 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + | 
 | 					 dentry->d_name.len * 2); | 
 | 	parent_inode->i_mtime = parent_inode->i_ctime = | 
 | 		current_time(parent_inode); | 
 | 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 | 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, | 
 | 				  objectid); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 | 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { | 
 | 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, | 
 | 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL, | 
 | 					  objectid); | 
 | 		if (ret && ret != -EEXIST) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | fail: | 
 | 	pending->error = ret; | 
 | dir_item_existed: | 
 | 	trans->block_rsv = rsv; | 
 | 	trans->bytes_reserved = 0; | 
 | clear_skip_qgroup: | 
 | 	btrfs_clear_skip_qgroup(trans); | 
 | no_free_objectid: | 
 | 	kfree(new_root_item); | 
 | 	pending->root_item = NULL; | 
 | 	btrfs_free_path(path); | 
 | 	pending->path = NULL; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * create all the snapshots we've scheduled for creation | 
 |  */ | 
 | static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_pending_snapshot *pending, *next; | 
 | 	struct list_head *head = &trans->transaction->pending_snapshots; | 
 | 	int ret = 0; | 
 |  | 
 | 	list_for_each_entry_safe(pending, next, head, list) { | 
 | 		list_del(&pending->list); | 
 | 		ret = create_pending_snapshot(trans, pending); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void update_super_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root_item *root_item; | 
 | 	struct btrfs_super_block *super; | 
 |  | 
 | 	super = fs_info->super_copy; | 
 |  | 
 | 	root_item = &fs_info->chunk_root->root_item; | 
 | 	super->chunk_root = root_item->bytenr; | 
 | 	super->chunk_root_generation = root_item->generation; | 
 | 	super->chunk_root_level = root_item->level; | 
 |  | 
 | 	root_item = &fs_info->tree_root->root_item; | 
 | 	super->root = root_item->bytenr; | 
 | 	super->generation = root_item->generation; | 
 | 	super->root_level = root_item->level; | 
 | 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) | 
 | 		super->cache_generation = root_item->generation; | 
 | 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) | 
 | 		super->uuid_tree_generation = root_item->generation; | 
 | } | 
 |  | 
 | int btrfs_transaction_in_commit(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_transaction *trans; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&info->trans_lock); | 
 | 	trans = info->running_transaction; | 
 | 	if (trans) | 
 | 		ret = (trans->state >= TRANS_STATE_COMMIT_START); | 
 | 	spin_unlock(&info->trans_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_transaction_blocked(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_transaction *trans; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&info->trans_lock); | 
 | 	trans = info->running_transaction; | 
 | 	if (trans) | 
 | 		ret = is_transaction_blocked(trans); | 
 | 	spin_unlock(&info->trans_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * wait for the current transaction commit to start and block subsequent | 
 |  * transaction joins | 
 |  */ | 
 | static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, | 
 | 					    struct btrfs_transaction *trans) | 
 | { | 
 | 	wait_event(fs_info->transaction_blocked_wait, | 
 | 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); | 
 | } | 
 |  | 
 | /* | 
 |  * wait for the current transaction to start and then become unblocked. | 
 |  * caller holds ref. | 
 |  */ | 
 | static void wait_current_trans_commit_start_and_unblock( | 
 | 					struct btrfs_fs_info *fs_info, | 
 | 					struct btrfs_transaction *trans) | 
 | { | 
 | 	wait_event(fs_info->transaction_wait, | 
 | 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); | 
 | } | 
 |  | 
 | /* | 
 |  * commit transactions asynchronously. once btrfs_commit_transaction_async | 
 |  * returns, any subsequent transaction will not be allowed to join. | 
 |  */ | 
 | struct btrfs_async_commit { | 
 | 	struct btrfs_trans_handle *newtrans; | 
 | 	struct work_struct work; | 
 | }; | 
 |  | 
 | static void do_async_commit(struct work_struct *work) | 
 | { | 
 | 	struct btrfs_async_commit *ac = | 
 | 		container_of(work, struct btrfs_async_commit, work); | 
 |  | 
 | 	/* | 
 | 	 * We've got freeze protection passed with the transaction. | 
 | 	 * Tell lockdep about it. | 
 | 	 */ | 
 | 	if (ac->newtrans->type & __TRANS_FREEZABLE) | 
 | 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); | 
 |  | 
 | 	current->journal_info = ac->newtrans; | 
 |  | 
 | 	btrfs_commit_transaction(ac->newtrans); | 
 | 	kfree(ac); | 
 | } | 
 |  | 
 | int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, | 
 | 				   int wait_for_unblock) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_async_commit *ac; | 
 | 	struct btrfs_transaction *cur_trans; | 
 |  | 
 | 	ac = kmalloc(sizeof(*ac), GFP_NOFS); | 
 | 	if (!ac) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_WORK(&ac->work, do_async_commit); | 
 | 	ac->newtrans = btrfs_join_transaction(trans->root); | 
 | 	if (IS_ERR(ac->newtrans)) { | 
 | 		int err = PTR_ERR(ac->newtrans); | 
 | 		kfree(ac); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* take transaction reference */ | 
 | 	cur_trans = trans->transaction; | 
 | 	refcount_inc(&cur_trans->use_count); | 
 |  | 
 | 	btrfs_end_transaction(trans); | 
 |  | 
 | 	/* | 
 | 	 * Tell lockdep we've released the freeze rwsem, since the | 
 | 	 * async commit thread will be the one to unlock it. | 
 | 	 */ | 
 | 	if (ac->newtrans->type & __TRANS_FREEZABLE) | 
 | 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS); | 
 |  | 
 | 	schedule_work(&ac->work); | 
 |  | 
 | 	/* wait for transaction to start and unblock */ | 
 | 	if (wait_for_unblock) | 
 | 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); | 
 | 	else | 
 | 		wait_current_trans_commit_start(fs_info, cur_trans); | 
 |  | 
 | 	if (current->journal_info == trans) | 
 | 		current->journal_info = NULL; | 
 |  | 
 | 	btrfs_put_transaction(cur_trans); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	WARN_ON(refcount_read(&trans->use_count) > 1); | 
 |  | 
 | 	btrfs_abort_transaction(trans, err); | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 |  | 
 | 	/* | 
 | 	 * If the transaction is removed from the list, it means this | 
 | 	 * transaction has been committed successfully, so it is impossible | 
 | 	 * to call the cleanup function. | 
 | 	 */ | 
 | 	BUG_ON(list_empty(&cur_trans->list)); | 
 |  | 
 | 	list_del_init(&cur_trans->list); | 
 | 	if (cur_trans == fs_info->running_transaction) { | 
 | 		cur_trans->state = TRANS_STATE_COMMIT_DOING; | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		wait_event(cur_trans->writer_wait, | 
 | 			   atomic_read(&cur_trans->num_writers) == 1); | 
 |  | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 	btrfs_cleanup_one_transaction(trans->transaction, fs_info); | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	if (cur_trans == fs_info->running_transaction) | 
 | 		fs_info->running_transaction = NULL; | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 	if (trans->type & __TRANS_FREEZABLE) | 
 | 		sb_end_intwrite(fs_info->sb); | 
 | 	btrfs_put_transaction(cur_trans); | 
 | 	btrfs_put_transaction(cur_trans); | 
 |  | 
 | 	trace_btrfs_transaction_commit(trans->root); | 
 |  | 
 | 	if (current->journal_info == trans) | 
 | 		current->journal_info = NULL; | 
 | 	btrfs_scrub_cancel(fs_info); | 
 |  | 
 | 	kmem_cache_free(btrfs_trans_handle_cachep, trans); | 
 | } | 
 |  | 
 | static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	/* | 
 | 	 * We use writeback_inodes_sb here because if we used | 
 | 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze. | 
 | 	 * Currently are holding the fs freeze lock, if we do an async flush | 
 | 	 * we'll do btrfs_join_transaction() and deadlock because we need to | 
 | 	 * wait for the fs freeze lock.  Using the direct flushing we benefit | 
 | 	 * from already being in a transaction and our join_transaction doesn't | 
 | 	 * have to re-take the fs freeze lock. | 
 | 	 */ | 
 | 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) | 
 | 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) | 
 | 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); | 
 | } | 
 |  | 
 | static inline void | 
 | btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) | 
 | { | 
 | 	wait_event(cur_trans->pending_wait, | 
 | 		   atomic_read(&cur_trans->pending_ordered) == 0); | 
 | } | 
 |  | 
 | int btrfs_commit_transaction(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	struct btrfs_transaction *prev_trans = NULL; | 
 | 	int ret; | 
 |  | 
 | 	/* Stop the commit early if ->aborted is set */ | 
 | 	if (unlikely(READ_ONCE(cur_trans->aborted))) { | 
 | 		ret = cur_trans->aborted; | 
 | 		btrfs_end_transaction(trans); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	btrfs_trans_release_metadata(trans); | 
 | 	trans->block_rsv = NULL; | 
 |  | 
 | 	/* make a pass through all the delayed refs we have so far | 
 | 	 * any runnings procs may add more while we are here | 
 | 	 */ | 
 | 	ret = btrfs_run_delayed_refs(trans, 0); | 
 | 	if (ret) { | 
 | 		btrfs_end_transaction(trans); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cur_trans = trans->transaction; | 
 |  | 
 | 	/* | 
 | 	 * set the flushing flag so procs in this transaction have to | 
 | 	 * start sending their work down. | 
 | 	 */ | 
 | 	cur_trans->delayed_refs.flushing = 1; | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (!list_empty(&trans->new_bgs)) | 
 | 		btrfs_create_pending_block_groups(trans); | 
 |  | 
 | 	ret = btrfs_run_delayed_refs(trans, 0); | 
 | 	if (ret) { | 
 | 		btrfs_end_transaction(trans); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { | 
 | 		int run_it = 0; | 
 |  | 
 | 		/* this mutex is also taken before trying to set | 
 | 		 * block groups readonly.  We need to make sure | 
 | 		 * that nobody has set a block group readonly | 
 | 		 * after a extents from that block group have been | 
 | 		 * allocated for cache files.  btrfs_set_block_group_ro | 
 | 		 * will wait for the transaction to commit if it | 
 | 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set. | 
 | 		 * | 
 | 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure | 
 | 		 * only one process starts all the block group IO.  It wouldn't | 
 | 		 * hurt to have more than one go through, but there's no | 
 | 		 * real advantage to it either. | 
 | 		 */ | 
 | 		mutex_lock(&fs_info->ro_block_group_mutex); | 
 | 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, | 
 | 				      &cur_trans->flags)) | 
 | 			run_it = 1; | 
 | 		mutex_unlock(&fs_info->ro_block_group_mutex); | 
 |  | 
 | 		if (run_it) { | 
 | 			ret = btrfs_start_dirty_block_groups(trans); | 
 | 			if (ret) { | 
 | 				btrfs_end_transaction(trans); | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) { | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		refcount_inc(&cur_trans->use_count); | 
 | 		ret = btrfs_end_transaction(trans); | 
 |  | 
 | 		wait_for_commit(cur_trans); | 
 |  | 
 | 		if (unlikely(cur_trans->aborted)) | 
 | 			ret = cur_trans->aborted; | 
 |  | 
 | 		btrfs_put_transaction(cur_trans); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cur_trans->state = TRANS_STATE_COMMIT_START; | 
 | 	wake_up(&fs_info->transaction_blocked_wait); | 
 |  | 
 | 	if (cur_trans->list.prev != &fs_info->trans_list) { | 
 | 		prev_trans = list_entry(cur_trans->list.prev, | 
 | 					struct btrfs_transaction, list); | 
 | 		if (prev_trans->state != TRANS_STATE_COMPLETED) { | 
 | 			refcount_inc(&prev_trans->use_count); | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 			wait_for_commit(prev_trans); | 
 | 			ret = prev_trans->aborted; | 
 |  | 
 | 			btrfs_put_transaction(prev_trans); | 
 | 			if (ret) | 
 | 				goto cleanup_transaction; | 
 | 		} else { | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 		} | 
 | 	} else { | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		/* | 
 | 		 * The previous transaction was aborted and was already removed | 
 | 		 * from the list of transactions at fs_info->trans_list. So we | 
 | 		 * abort to prevent writing a new superblock that reflects a | 
 | 		 * corrupt state (pointing to trees with unwritten nodes/leafs). | 
 | 		 */ | 
 | 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { | 
 | 			ret = -EROFS; | 
 | 			goto cleanup_transaction; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	extwriter_counter_dec(cur_trans, trans->type); | 
 |  | 
 | 	ret = btrfs_start_delalloc_flush(fs_info); | 
 | 	if (ret) | 
 | 		goto cleanup_transaction; | 
 |  | 
 | 	ret = btrfs_run_delayed_items(trans); | 
 | 	if (ret) | 
 | 		goto cleanup_transaction; | 
 |  | 
 | 	wait_event(cur_trans->writer_wait, | 
 | 		   extwriter_counter_read(cur_trans) == 0); | 
 |  | 
 | 	/* some pending stuffs might be added after the previous flush. */ | 
 | 	ret = btrfs_run_delayed_items(trans); | 
 | 	if (ret) | 
 | 		goto cleanup_transaction; | 
 |  | 
 | 	btrfs_wait_delalloc_flush(fs_info); | 
 |  | 
 | 	btrfs_wait_pending_ordered(cur_trans); | 
 |  | 
 | 	btrfs_scrub_pause(fs_info); | 
 | 	/* | 
 | 	 * Ok now we need to make sure to block out any other joins while we | 
 | 	 * commit the transaction.  We could have started a join before setting | 
 | 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. | 
 | 	 */ | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	cur_trans->state = TRANS_STATE_COMMIT_DOING; | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 | 	wait_event(cur_trans->writer_wait, | 
 | 		   atomic_read(&cur_trans->num_writers) == 1); | 
 |  | 
 | 	/* ->aborted might be set after the previous check, so check it */ | 
 | 	if (unlikely(READ_ONCE(cur_trans->aborted))) { | 
 | 		ret = cur_trans->aborted; | 
 | 		goto scrub_continue; | 
 | 	} | 
 | 	/* | 
 | 	 * the reloc mutex makes sure that we stop | 
 | 	 * the balancing code from coming in and moving | 
 | 	 * extents around in the middle of the commit | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->reloc_mutex); | 
 |  | 
 | 	/* | 
 | 	 * We needn't worry about the delayed items because we will | 
 | 	 * deal with them in create_pending_snapshot(), which is the | 
 | 	 * core function of the snapshot creation. | 
 | 	 */ | 
 | 	ret = create_pending_snapshots(trans); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We insert the dir indexes of the snapshots and update the inode | 
 | 	 * of the snapshots' parents after the snapshot creation, so there | 
 | 	 * are some delayed items which are not dealt with. Now deal with | 
 | 	 * them. | 
 | 	 * | 
 | 	 * We needn't worry that this operation will corrupt the snapshots, | 
 | 	 * because all the tree which are snapshoted will be forced to COW | 
 | 	 * the nodes and leaves. | 
 | 	 */ | 
 | 	ret = btrfs_run_delayed_items(trans); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make sure none of the code above managed to slip in a | 
 | 	 * delayed item | 
 | 	 */ | 
 | 	btrfs_assert_delayed_root_empty(fs_info); | 
 |  | 
 | 	WARN_ON(cur_trans != trans->transaction); | 
 |  | 
 | 	/* btrfs_commit_tree_roots is responsible for getting the | 
 | 	 * various roots consistent with each other.  Every pointer | 
 | 	 * in the tree of tree roots has to point to the most up to date | 
 | 	 * root for every subvolume and other tree.  So, we have to keep | 
 | 	 * the tree logging code from jumping in and changing any | 
 | 	 * of the trees. | 
 | 	 * | 
 | 	 * At this point in the commit, there can't be any tree-log | 
 | 	 * writers, but a little lower down we drop the trans mutex | 
 | 	 * and let new people in.  By holding the tree_log_mutex | 
 | 	 * from now until after the super is written, we avoid races | 
 | 	 * with the tree-log code. | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->tree_log_mutex); | 
 |  | 
 | 	ret = commit_fs_roots(trans); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since the transaction is done, we can apply the pending changes | 
 | 	 * before the next transaction. | 
 | 	 */ | 
 | 	btrfs_apply_pending_changes(fs_info); | 
 |  | 
 | 	/* commit_fs_roots gets rid of all the tree log roots, it is now | 
 | 	 * safe to free the root of tree log roots | 
 | 	 */ | 
 | 	btrfs_free_log_root_tree(trans, fs_info); | 
 |  | 
 | 	/* | 
 | 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates | 
 | 	 * new delayed refs. Must handle them or qgroup can be wrong. | 
 | 	 */ | 
 | 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since fs roots are all committed, we can get a quite accurate | 
 | 	 * new_roots. So let's do quota accounting. | 
 | 	 */ | 
 | 	ret = btrfs_qgroup_account_extents(trans); | 
 | 	if (ret < 0) { | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	ret = commit_cowonly_roots(trans); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The tasks which save the space cache and inode cache may also | 
 | 	 * update ->aborted, check it. | 
 | 	 */ | 
 | 	if (unlikely(READ_ONCE(cur_trans->aborted))) { | 
 | 		ret = cur_trans->aborted; | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		mutex_unlock(&fs_info->reloc_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	btrfs_prepare_extent_commit(fs_info); | 
 |  | 
 | 	cur_trans = fs_info->running_transaction; | 
 |  | 
 | 	btrfs_set_root_node(&fs_info->tree_root->root_item, | 
 | 			    fs_info->tree_root->node); | 
 | 	list_add_tail(&fs_info->tree_root->dirty_list, | 
 | 		      &cur_trans->switch_commits); | 
 |  | 
 | 	btrfs_set_root_node(&fs_info->chunk_root->root_item, | 
 | 			    fs_info->chunk_root->node); | 
 | 	list_add_tail(&fs_info->chunk_root->dirty_list, | 
 | 		      &cur_trans->switch_commits); | 
 |  | 
 | 	switch_commit_roots(cur_trans); | 
 |  | 
 | 	ASSERT(list_empty(&cur_trans->dirty_bgs)); | 
 | 	ASSERT(list_empty(&cur_trans->io_bgs)); | 
 | 	update_super_roots(fs_info); | 
 |  | 
 | 	btrfs_set_super_log_root(fs_info->super_copy, 0); | 
 | 	btrfs_set_super_log_root_level(fs_info->super_copy, 0); | 
 | 	memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
 | 	       sizeof(*fs_info->super_copy)); | 
 |  | 
 | 	btrfs_update_commit_device_size(fs_info); | 
 | 	btrfs_update_commit_device_bytes_used(cur_trans); | 
 |  | 
 | 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); | 
 | 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); | 
 |  | 
 | 	btrfs_trans_release_chunk_metadata(trans); | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	cur_trans->state = TRANS_STATE_UNBLOCKED; | 
 | 	fs_info->running_transaction = NULL; | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 | 	mutex_unlock(&fs_info->reloc_mutex); | 
 |  | 
 | 	wake_up(&fs_info->transaction_wait); | 
 |  | 
 | 	ret = btrfs_write_and_wait_transaction(trans); | 
 | 	if (ret) { | 
 | 		btrfs_handle_fs_error(fs_info, ret, | 
 | 				      "Error while writing out transaction"); | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		goto scrub_continue; | 
 | 	} | 
 |  | 
 | 	ret = write_all_supers(fs_info, 0); | 
 | 	/* | 
 | 	 * the super is written, we can safely allow the tree-loggers | 
 | 	 * to go about their business | 
 | 	 */ | 
 | 	mutex_unlock(&fs_info->tree_log_mutex); | 
 | 	if (ret) | 
 | 		goto scrub_continue; | 
 |  | 
 | 	btrfs_finish_extent_commit(trans); | 
 |  | 
 | 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) | 
 | 		btrfs_clear_space_info_full(fs_info); | 
 |  | 
 | 	fs_info->last_trans_committed = cur_trans->transid; | 
 | 	/* | 
 | 	 * We needn't acquire the lock here because there is no other task | 
 | 	 * which can change it. | 
 | 	 */ | 
 | 	cur_trans->state = TRANS_STATE_COMPLETED; | 
 | 	wake_up(&cur_trans->commit_wait); | 
 | 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	list_del_init(&cur_trans->list); | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 	btrfs_put_transaction(cur_trans); | 
 | 	btrfs_put_transaction(cur_trans); | 
 |  | 
 | 	if (trans->type & __TRANS_FREEZABLE) | 
 | 		sb_end_intwrite(fs_info->sb); | 
 |  | 
 | 	trace_btrfs_transaction_commit(trans->root); | 
 |  | 
 | 	btrfs_scrub_continue(fs_info); | 
 |  | 
 | 	if (current->journal_info == trans) | 
 | 		current->journal_info = NULL; | 
 |  | 
 | 	kmem_cache_free(btrfs_trans_handle_cachep, trans); | 
 |  | 
 | 	return ret; | 
 |  | 
 | scrub_continue: | 
 | 	btrfs_scrub_continue(fs_info); | 
 | cleanup_transaction: | 
 | 	btrfs_trans_release_metadata(trans); | 
 | 	btrfs_trans_release_chunk_metadata(trans); | 
 | 	trans->block_rsv = NULL; | 
 | 	btrfs_warn(fs_info, "Skipping commit of aborted transaction."); | 
 | 	if (current->journal_info == trans) | 
 | 		current->journal_info = NULL; | 
 | 	cleanup_transaction(trans, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * return < 0 if error | 
 |  * 0 if there are no more dead_roots at the time of call | 
 |  * 1 there are more to be processed, call me again | 
 |  * | 
 |  * The return value indicates there are certainly more snapshots to delete, but | 
 |  * if there comes a new one during processing, it may return 0. We don't mind, | 
 |  * because btrfs_commit_super will poke cleaner thread and it will process it a | 
 |  * few seconds later. | 
 |  */ | 
 | int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	spin_lock(&fs_info->trans_lock); | 
 | 	if (list_empty(&fs_info->dead_roots)) { | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	root = list_first_entry(&fs_info->dead_roots, | 
 | 			struct btrfs_root, root_list); | 
 | 	list_del_init(&root->root_list); | 
 | 	spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); | 
 |  | 
 | 	btrfs_kill_all_delayed_nodes(root); | 
 |  | 
 | 	if (btrfs_header_backref_rev(root->node) < | 
 | 			BTRFS_MIXED_BACKREF_REV) | 
 | 		ret = btrfs_drop_snapshot(root, NULL, 0, 0); | 
 | 	else | 
 | 		ret = btrfs_drop_snapshot(root, NULL, 1, 0); | 
 |  | 
 | 	return (ret < 0) ? 0 : 1; | 
 | } | 
 |  | 
 | void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	unsigned long prev; | 
 | 	unsigned long bit; | 
 |  | 
 | 	prev = xchg(&fs_info->pending_changes, 0); | 
 | 	if (!prev) | 
 | 		return; | 
 |  | 
 | 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; | 
 | 	if (prev & bit) | 
 | 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); | 
 | 	prev &= ~bit; | 
 |  | 
 | 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; | 
 | 	if (prev & bit) | 
 | 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); | 
 | 	prev &= ~bit; | 
 |  | 
 | 	bit = 1 << BTRFS_PENDING_COMMIT; | 
 | 	if (prev & bit) | 
 | 		btrfs_debug(fs_info, "pending commit done"); | 
 | 	prev &= ~bit; | 
 |  | 
 | 	if (prev) | 
 | 		btrfs_warn(fs_info, | 
 | 			"unknown pending changes left 0x%lx, ignoring", prev); | 
 | } |