|  | /* | 
|  | * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in the | 
|  | * file called COPYING. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This code implements the DMA subsystem. It provides a HW-neutral interface | 
|  | * for other kernel code to use asynchronous memory copy capabilities, | 
|  | * if present, and allows different HW DMA drivers to register as providing | 
|  | * this capability. | 
|  | * | 
|  | * Due to the fact we are accelerating what is already a relatively fast | 
|  | * operation, the code goes to great lengths to avoid additional overhead, | 
|  | * such as locking. | 
|  | * | 
|  | * LOCKING: | 
|  | * | 
|  | * The subsystem keeps a global list of dma_device structs it is protected by a | 
|  | * mutex, dma_list_mutex. | 
|  | * | 
|  | * A subsystem can get access to a channel by calling dmaengine_get() followed | 
|  | * by dma_find_channel(), or if it has need for an exclusive channel it can call | 
|  | * dma_request_channel().  Once a channel is allocated a reference is taken | 
|  | * against its corresponding driver to disable removal. | 
|  | * | 
|  | * Each device has a channels list, which runs unlocked but is never modified | 
|  | * once the device is registered, it's just setup by the driver. | 
|  | * | 
|  | * See Documentation/driver-api/dmaengine for more details | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/acpi_dma.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/mempool.h> | 
|  |  | 
|  | static DEFINE_MUTEX(dma_list_mutex); | 
|  | static DEFINE_IDA(dma_ida); | 
|  | static LIST_HEAD(dma_device_list); | 
|  | static long dmaengine_ref_count; | 
|  |  | 
|  | /* --- sysfs implementation --- */ | 
|  |  | 
|  | /** | 
|  | * dev_to_dma_chan - convert a device pointer to the its sysfs container object | 
|  | * @dev - device node | 
|  | * | 
|  | * Must be called under dma_list_mutex | 
|  | */ | 
|  | static struct dma_chan *dev_to_dma_chan(struct device *dev) | 
|  | { | 
|  | struct dma_chan_dev *chan_dev; | 
|  |  | 
|  | chan_dev = container_of(dev, typeof(*chan_dev), device); | 
|  | return chan_dev->chan; | 
|  | } | 
|  |  | 
|  | static ssize_t memcpy_count_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  | unsigned long count = 0; | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | chan = dev_to_dma_chan(dev); | 
|  | if (chan) { | 
|  | for_each_possible_cpu(i) | 
|  | count += per_cpu_ptr(chan->local, i)->memcpy_count; | 
|  | err = sprintf(buf, "%lu\n", count); | 
|  | } else | 
|  | err = -ENODEV; | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | static DEVICE_ATTR_RO(memcpy_count); | 
|  |  | 
|  | static ssize_t bytes_transferred_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  | unsigned long count = 0; | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | chan = dev_to_dma_chan(dev); | 
|  | if (chan) { | 
|  | for_each_possible_cpu(i) | 
|  | count += per_cpu_ptr(chan->local, i)->bytes_transferred; | 
|  | err = sprintf(buf, "%lu\n", count); | 
|  | } else | 
|  | err = -ENODEV; | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | static DEVICE_ATTR_RO(bytes_transferred); | 
|  |  | 
|  | static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | chan = dev_to_dma_chan(dev); | 
|  | if (chan) | 
|  | err = sprintf(buf, "%d\n", chan->client_count); | 
|  | else | 
|  | err = -ENODEV; | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | static DEVICE_ATTR_RO(in_use); | 
|  |  | 
|  | static struct attribute *dma_dev_attrs[] = { | 
|  | &dev_attr_memcpy_count.attr, | 
|  | &dev_attr_bytes_transferred.attr, | 
|  | &dev_attr_in_use.attr, | 
|  | NULL, | 
|  | }; | 
|  | ATTRIBUTE_GROUPS(dma_dev); | 
|  |  | 
|  | static void chan_dev_release(struct device *dev) | 
|  | { | 
|  | struct dma_chan_dev *chan_dev; | 
|  |  | 
|  | chan_dev = container_of(dev, typeof(*chan_dev), device); | 
|  | if (atomic_dec_and_test(chan_dev->idr_ref)) { | 
|  | ida_free(&dma_ida, chan_dev->dev_id); | 
|  | kfree(chan_dev->idr_ref); | 
|  | } | 
|  | kfree(chan_dev); | 
|  | } | 
|  |  | 
|  | static struct class dma_devclass = { | 
|  | .name		= "dma", | 
|  | .dev_groups	= dma_dev_groups, | 
|  | .dev_release	= chan_dev_release, | 
|  | }; | 
|  |  | 
|  | /* --- client and device registration --- */ | 
|  |  | 
|  | #define dma_device_satisfies_mask(device, mask) \ | 
|  | __dma_device_satisfies_mask((device), &(mask)) | 
|  | static int | 
|  | __dma_device_satisfies_mask(struct dma_device *device, | 
|  | const dma_cap_mask_t *want) | 
|  | { | 
|  | dma_cap_mask_t has; | 
|  |  | 
|  | bitmap_and(has.bits, want->bits, device->cap_mask.bits, | 
|  | DMA_TX_TYPE_END); | 
|  | return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); | 
|  | } | 
|  |  | 
|  | static struct module *dma_chan_to_owner(struct dma_chan *chan) | 
|  | { | 
|  | return chan->device->dev->driver->owner; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * balance_ref_count - catch up the channel reference count | 
|  | * @chan - channel to balance ->client_count versus dmaengine_ref_count | 
|  | * | 
|  | * balance_ref_count must be called under dma_list_mutex | 
|  | */ | 
|  | static void balance_ref_count(struct dma_chan *chan) | 
|  | { | 
|  | struct module *owner = dma_chan_to_owner(chan); | 
|  |  | 
|  | while (chan->client_count < dmaengine_ref_count) { | 
|  | __module_get(owner); | 
|  | chan->client_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_chan_get - try to grab a dma channel's parent driver module | 
|  | * @chan - channel to grab | 
|  | * | 
|  | * Must be called under dma_list_mutex | 
|  | */ | 
|  | static int dma_chan_get(struct dma_chan *chan) | 
|  | { | 
|  | struct module *owner = dma_chan_to_owner(chan); | 
|  | int ret; | 
|  |  | 
|  | /* The channel is already in use, update client count */ | 
|  | if (chan->client_count) { | 
|  | __module_get(owner); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!try_module_get(owner)) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* allocate upon first client reference */ | 
|  | if (chan->device->device_alloc_chan_resources) { | 
|  | ret = chan->device->device_alloc_chan_resources(chan); | 
|  | if (ret < 0) | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) | 
|  | balance_ref_count(chan); | 
|  |  | 
|  | out: | 
|  | chan->client_count++; | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | module_put(owner); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_chan_put - drop a reference to a dma channel's parent driver module | 
|  | * @chan - channel to release | 
|  | * | 
|  | * Must be called under dma_list_mutex | 
|  | */ | 
|  | static void dma_chan_put(struct dma_chan *chan) | 
|  | { | 
|  | /* This channel is not in use, bail out */ | 
|  | if (!chan->client_count) | 
|  | return; | 
|  |  | 
|  | chan->client_count--; | 
|  | module_put(dma_chan_to_owner(chan)); | 
|  |  | 
|  | /* This channel is not in use anymore, free it */ | 
|  | if (!chan->client_count && chan->device->device_free_chan_resources) { | 
|  | /* Make sure all operations have completed */ | 
|  | dmaengine_synchronize(chan); | 
|  | chan->device->device_free_chan_resources(chan); | 
|  | } | 
|  |  | 
|  | /* If the channel is used via a DMA request router, free the mapping */ | 
|  | if (chan->router && chan->router->route_free) { | 
|  | chan->router->route_free(chan->router->dev, chan->route_data); | 
|  | chan->router = NULL; | 
|  | chan->route_data = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) | 
|  | { | 
|  | enum dma_status status; | 
|  | unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); | 
|  |  | 
|  | dma_async_issue_pending(chan); | 
|  | do { | 
|  | status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); | 
|  | if (time_after_eq(jiffies, dma_sync_wait_timeout)) { | 
|  | dev_err(chan->device->dev, "%s: timeout!\n", __func__); | 
|  | return DMA_ERROR; | 
|  | } | 
|  | if (status != DMA_IN_PROGRESS) | 
|  | break; | 
|  | cpu_relax(); | 
|  | } while (1); | 
|  |  | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_wait); | 
|  |  | 
|  | /** | 
|  | * dma_cap_mask_all - enable iteration over all operation types | 
|  | */ | 
|  | static dma_cap_mask_t dma_cap_mask_all; | 
|  |  | 
|  | /** | 
|  | * dma_chan_tbl_ent - tracks channel allocations per core/operation | 
|  | * @chan - associated channel for this entry | 
|  | */ | 
|  | struct dma_chan_tbl_ent { | 
|  | struct dma_chan *chan; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * channel_table - percpu lookup table for memory-to-memory offload providers | 
|  | */ | 
|  | static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; | 
|  |  | 
|  | static int __init dma_channel_table_init(void) | 
|  | { | 
|  | enum dma_transaction_type cap; | 
|  | int err = 0; | 
|  |  | 
|  | bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); | 
|  |  | 
|  | /* 'interrupt', 'private', and 'slave' are channel capabilities, | 
|  | * but are not associated with an operation so they do not need | 
|  | * an entry in the channel_table | 
|  | */ | 
|  | clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); | 
|  | clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); | 
|  | clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); | 
|  |  | 
|  | for_each_dma_cap_mask(cap, dma_cap_mask_all) { | 
|  | channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); | 
|  | if (!channel_table[cap]) { | 
|  | err = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | pr_err("initialization failure\n"); | 
|  | for_each_dma_cap_mask(cap, dma_cap_mask_all) | 
|  | free_percpu(channel_table[cap]); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | arch_initcall(dma_channel_table_init); | 
|  |  | 
|  | /** | 
|  | * dma_find_channel - find a channel to carry out the operation | 
|  | * @tx_type: transaction type | 
|  | */ | 
|  | struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) | 
|  | { | 
|  | return this_cpu_read(channel_table[tx_type]->chan); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_find_channel); | 
|  |  | 
|  | /** | 
|  | * dma_issue_pending_all - flush all pending operations across all channels | 
|  | */ | 
|  | void dma_issue_pending_all(void) | 
|  | { | 
|  | struct dma_device *device; | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(device, &dma_device_list, global_node) { | 
|  | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | continue; | 
|  | list_for_each_entry(chan, &device->channels, device_node) | 
|  | if (chan->client_count) | 
|  | device->device_issue_pending(chan); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_issue_pending_all); | 
|  |  | 
|  | /** | 
|  | * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu | 
|  | */ | 
|  | static bool dma_chan_is_local(struct dma_chan *chan, int cpu) | 
|  | { | 
|  | int node = dev_to_node(chan->device->dev); | 
|  | return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * min_chan - returns the channel with min count and in the same numa-node as the cpu | 
|  | * @cap: capability to match | 
|  | * @cpu: cpu index which the channel should be close to | 
|  | * | 
|  | * If some channels are close to the given cpu, the one with the lowest | 
|  | * reference count is returned. Otherwise, cpu is ignored and only the | 
|  | * reference count is taken into account. | 
|  | * Must be called under dma_list_mutex. | 
|  | */ | 
|  | static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) | 
|  | { | 
|  | struct dma_device *device; | 
|  | struct dma_chan *chan; | 
|  | struct dma_chan *min = NULL; | 
|  | struct dma_chan *localmin = NULL; | 
|  |  | 
|  | list_for_each_entry(device, &dma_device_list, global_node) { | 
|  | if (!dma_has_cap(cap, device->cap_mask) || | 
|  | dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | continue; | 
|  | list_for_each_entry(chan, &device->channels, device_node) { | 
|  | if (!chan->client_count) | 
|  | continue; | 
|  | if (!min || chan->table_count < min->table_count) | 
|  | min = chan; | 
|  |  | 
|  | if (dma_chan_is_local(chan, cpu)) | 
|  | if (!localmin || | 
|  | chan->table_count < localmin->table_count) | 
|  | localmin = chan; | 
|  | } | 
|  | } | 
|  |  | 
|  | chan = localmin ? localmin : min; | 
|  |  | 
|  | if (chan) | 
|  | chan->table_count++; | 
|  |  | 
|  | return chan; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_channel_rebalance - redistribute the available channels | 
|  | * | 
|  | * Optimize for cpu isolation (each cpu gets a dedicated channel for an | 
|  | * operation type) in the SMP case,  and operation isolation (avoid | 
|  | * multi-tasking channels) in the non-SMP case.  Must be called under | 
|  | * dma_list_mutex. | 
|  | */ | 
|  | static void dma_channel_rebalance(void) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  | struct dma_device *device; | 
|  | int cpu; | 
|  | int cap; | 
|  |  | 
|  | /* undo the last distribution */ | 
|  | for_each_dma_cap_mask(cap, dma_cap_mask_all) | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; | 
|  |  | 
|  | list_for_each_entry(device, &dma_device_list, global_node) { | 
|  | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | continue; | 
|  | list_for_each_entry(chan, &device->channels, device_node) | 
|  | chan->table_count = 0; | 
|  | } | 
|  |  | 
|  | /* don't populate the channel_table if no clients are available */ | 
|  | if (!dmaengine_ref_count) | 
|  | return; | 
|  |  | 
|  | /* redistribute available channels */ | 
|  | for_each_dma_cap_mask(cap, dma_cap_mask_all) | 
|  | for_each_online_cpu(cpu) { | 
|  | chan = min_chan(cap, cpu); | 
|  | per_cpu_ptr(channel_table[cap], cpu)->chan = chan; | 
|  | } | 
|  | } | 
|  |  | 
|  | int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) | 
|  | { | 
|  | struct dma_device *device; | 
|  |  | 
|  | if (!chan || !caps) | 
|  | return -EINVAL; | 
|  |  | 
|  | device = chan->device; | 
|  |  | 
|  | /* check if the channel supports slave transactions */ | 
|  | if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || | 
|  | test_bit(DMA_CYCLIC, device->cap_mask.bits))) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* | 
|  | * Check whether it reports it uses the generic slave | 
|  | * capabilities, if not, that means it doesn't support any | 
|  | * kind of slave capabilities reporting. | 
|  | */ | 
|  | if (!device->directions) | 
|  | return -ENXIO; | 
|  |  | 
|  | caps->src_addr_widths = device->src_addr_widths; | 
|  | caps->dst_addr_widths = device->dst_addr_widths; | 
|  | caps->directions = device->directions; | 
|  | caps->max_burst = device->max_burst; | 
|  | caps->residue_granularity = device->residue_granularity; | 
|  | caps->descriptor_reuse = device->descriptor_reuse; | 
|  | caps->cmd_pause = !!device->device_pause; | 
|  | caps->cmd_resume = !!device->device_resume; | 
|  | caps->cmd_terminate = !!device->device_terminate_all; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_get_slave_caps); | 
|  |  | 
|  | static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, | 
|  | struct dma_device *dev, | 
|  | dma_filter_fn fn, void *fn_param) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | if (mask && !__dma_device_satisfies_mask(dev, mask)) { | 
|  | dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  | /* devices with multiple channels need special handling as we need to | 
|  | * ensure that all channels are either private or public. | 
|  | */ | 
|  | if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) | 
|  | list_for_each_entry(chan, &dev->channels, device_node) { | 
|  | /* some channels are already publicly allocated */ | 
|  | if (chan->client_count) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(chan, &dev->channels, device_node) { | 
|  | if (chan->client_count) { | 
|  | dev_dbg(dev->dev, "%s: %s busy\n", | 
|  | __func__, dma_chan_name(chan)); | 
|  | continue; | 
|  | } | 
|  | if (fn && !fn(chan, fn_param)) { | 
|  | dev_dbg(dev->dev, "%s: %s filter said false\n", | 
|  | __func__, dma_chan_name(chan)); | 
|  | continue; | 
|  | } | 
|  | return chan; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct dma_chan *find_candidate(struct dma_device *device, | 
|  | const dma_cap_mask_t *mask, | 
|  | dma_filter_fn fn, void *fn_param) | 
|  | { | 
|  | struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); | 
|  | int err; | 
|  |  | 
|  | if (chan) { | 
|  | /* Found a suitable channel, try to grab, prep, and return it. | 
|  | * We first set DMA_PRIVATE to disable balance_ref_count as this | 
|  | * channel will not be published in the general-purpose | 
|  | * allocator | 
|  | */ | 
|  | dma_cap_set(DMA_PRIVATE, device->cap_mask); | 
|  | device->privatecnt++; | 
|  | err = dma_chan_get(chan); | 
|  |  | 
|  | if (err) { | 
|  | if (err == -ENODEV) { | 
|  | dev_dbg(device->dev, "%s: %s module removed\n", | 
|  | __func__, dma_chan_name(chan)); | 
|  | list_del_rcu(&device->global_node); | 
|  | } else | 
|  | dev_dbg(device->dev, | 
|  | "%s: failed to get %s: (%d)\n", | 
|  | __func__, dma_chan_name(chan), err); | 
|  |  | 
|  | if (--device->privatecnt == 0) | 
|  | dma_cap_clear(DMA_PRIVATE, device->cap_mask); | 
|  |  | 
|  | chan = ERR_PTR(err); | 
|  | } | 
|  | } | 
|  |  | 
|  | return chan ? chan : ERR_PTR(-EPROBE_DEFER); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_get_slave_channel - try to get specific channel exclusively | 
|  | * @chan: target channel | 
|  | */ | 
|  | struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) | 
|  | { | 
|  | int err = -EBUSY; | 
|  |  | 
|  | /* lock against __dma_request_channel */ | 
|  | mutex_lock(&dma_list_mutex); | 
|  |  | 
|  | if (chan->client_count == 0) { | 
|  | struct dma_device *device = chan->device; | 
|  |  | 
|  | dma_cap_set(DMA_PRIVATE, device->cap_mask); | 
|  | device->privatecnt++; | 
|  | err = dma_chan_get(chan); | 
|  | if (err) { | 
|  | dev_dbg(chan->device->dev, | 
|  | "%s: failed to get %s: (%d)\n", | 
|  | __func__, dma_chan_name(chan), err); | 
|  | chan = NULL; | 
|  | if (--device->privatecnt == 0) | 
|  | dma_cap_clear(DMA_PRIVATE, device->cap_mask); | 
|  | } | 
|  | } else | 
|  | chan = NULL; | 
|  |  | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  |  | 
|  | return chan; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_get_slave_channel); | 
|  |  | 
|  | struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) | 
|  | { | 
|  | dma_cap_mask_t mask; | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | /* lock against __dma_request_channel */ | 
|  | mutex_lock(&dma_list_mutex); | 
|  |  | 
|  | chan = find_candidate(device, &mask, NULL, NULL); | 
|  |  | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | return IS_ERR(chan) ? NULL : chan; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); | 
|  |  | 
|  | /** | 
|  | * __dma_request_channel - try to allocate an exclusive channel | 
|  | * @mask: capabilities that the channel must satisfy | 
|  | * @fn: optional callback to disposition available channels | 
|  | * @fn_param: opaque parameter to pass to dma_filter_fn | 
|  | * | 
|  | * Returns pointer to appropriate DMA channel on success or NULL. | 
|  | */ | 
|  | struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, | 
|  | dma_filter_fn fn, void *fn_param) | 
|  | { | 
|  | struct dma_device *device, *_d; | 
|  | struct dma_chan *chan = NULL; | 
|  |  | 
|  | /* Find a channel */ | 
|  | mutex_lock(&dma_list_mutex); | 
|  | list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { | 
|  | chan = find_candidate(device, mask, fn, fn_param); | 
|  | if (!IS_ERR(chan)) | 
|  | break; | 
|  |  | 
|  | chan = NULL; | 
|  | } | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | pr_debug("%s: %s (%s)\n", | 
|  | __func__, | 
|  | chan ? "success" : "fail", | 
|  | chan ? dma_chan_name(chan) : NULL); | 
|  |  | 
|  | return chan; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__dma_request_channel); | 
|  |  | 
|  | static const struct dma_slave_map *dma_filter_match(struct dma_device *device, | 
|  | const char *name, | 
|  | struct device *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!device->filter.mapcnt) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < device->filter.mapcnt; i++) { | 
|  | const struct dma_slave_map *map = &device->filter.map[i]; | 
|  |  | 
|  | if (!strcmp(map->devname, dev_name(dev)) && | 
|  | !strcmp(map->slave, name)) | 
|  | return map; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_request_chan - try to allocate an exclusive slave channel | 
|  | * @dev:	pointer to client device structure | 
|  | * @name:	slave channel name | 
|  | * | 
|  | * Returns pointer to appropriate DMA channel on success or an error pointer. | 
|  | */ | 
|  | struct dma_chan *dma_request_chan(struct device *dev, const char *name) | 
|  | { | 
|  | struct dma_device *d, *_d; | 
|  | struct dma_chan *chan = NULL; | 
|  |  | 
|  | /* If device-tree is present get slave info from here */ | 
|  | if (dev->of_node) | 
|  | chan = of_dma_request_slave_channel(dev->of_node, name); | 
|  |  | 
|  | /* If device was enumerated by ACPI get slave info from here */ | 
|  | if (has_acpi_companion(dev) && !chan) | 
|  | chan = acpi_dma_request_slave_chan_by_name(dev, name); | 
|  |  | 
|  | if (chan) { | 
|  | /* Valid channel found or requester need to be deferred */ | 
|  | if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER) | 
|  | return chan; | 
|  | } | 
|  |  | 
|  | /* Try to find the channel via the DMA filter map(s) */ | 
|  | mutex_lock(&dma_list_mutex); | 
|  | list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { | 
|  | dma_cap_mask_t mask; | 
|  | const struct dma_slave_map *map = dma_filter_match(d, name, dev); | 
|  |  | 
|  | if (!map) | 
|  | continue; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | chan = find_candidate(d, &mask, d->filter.fn, map->param); | 
|  | if (!IS_ERR(chan)) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | return chan ? chan : ERR_PTR(-EPROBE_DEFER); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_request_chan); | 
|  |  | 
|  | /** | 
|  | * dma_request_slave_channel - try to allocate an exclusive slave channel | 
|  | * @dev:	pointer to client device structure | 
|  | * @name:	slave channel name | 
|  | * | 
|  | * Returns pointer to appropriate DMA channel on success or NULL. | 
|  | */ | 
|  | struct dma_chan *dma_request_slave_channel(struct device *dev, | 
|  | const char *name) | 
|  | { | 
|  | struct dma_chan *ch = dma_request_chan(dev, name); | 
|  | if (IS_ERR(ch)) | 
|  | return NULL; | 
|  |  | 
|  | return ch; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_request_slave_channel); | 
|  |  | 
|  | /** | 
|  | * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities | 
|  | * @mask: capabilities that the channel must satisfy | 
|  | * | 
|  | * Returns pointer to appropriate DMA channel on success or an error pointer. | 
|  | */ | 
|  | struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | if (!mask) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | chan = __dma_request_channel(mask, NULL, NULL); | 
|  | if (!chan) { | 
|  | mutex_lock(&dma_list_mutex); | 
|  | if (list_empty(&dma_device_list)) | 
|  | chan = ERR_PTR(-EPROBE_DEFER); | 
|  | else | 
|  | chan = ERR_PTR(-ENODEV); | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | } | 
|  |  | 
|  | return chan; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); | 
|  |  | 
|  | void dma_release_channel(struct dma_chan *chan) | 
|  | { | 
|  | mutex_lock(&dma_list_mutex); | 
|  | WARN_ONCE(chan->client_count != 1, | 
|  | "chan reference count %d != 1\n", chan->client_count); | 
|  | dma_chan_put(chan); | 
|  | /* drop PRIVATE cap enabled by __dma_request_channel() */ | 
|  | if (--chan->device->privatecnt == 0) | 
|  | dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_release_channel); | 
|  |  | 
|  | /** | 
|  | * dmaengine_get - register interest in dma_channels | 
|  | */ | 
|  | void dmaengine_get(void) | 
|  | { | 
|  | struct dma_device *device, *_d; | 
|  | struct dma_chan *chan; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | dmaengine_ref_count++; | 
|  |  | 
|  | /* try to grab channels */ | 
|  | list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { | 
|  | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | continue; | 
|  | list_for_each_entry(chan, &device->channels, device_node) { | 
|  | err = dma_chan_get(chan); | 
|  | if (err == -ENODEV) { | 
|  | /* module removed before we could use it */ | 
|  | list_del_rcu(&device->global_node); | 
|  | break; | 
|  | } else if (err) | 
|  | dev_dbg(chan->device->dev, | 
|  | "%s: failed to get %s: (%d)\n", | 
|  | __func__, dma_chan_name(chan), err); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if this is the first reference and there were channels | 
|  | * waiting we need to rebalance to get those channels | 
|  | * incorporated into the channel table | 
|  | */ | 
|  | if (dmaengine_ref_count == 1) | 
|  | dma_channel_rebalance(); | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL(dmaengine_get); | 
|  |  | 
|  | /** | 
|  | * dmaengine_put - let dma drivers be removed when ref_count == 0 | 
|  | */ | 
|  | void dmaengine_put(void) | 
|  | { | 
|  | struct dma_device *device; | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | dmaengine_ref_count--; | 
|  | BUG_ON(dmaengine_ref_count < 0); | 
|  | /* drop channel references */ | 
|  | list_for_each_entry(device, &dma_device_list, global_node) { | 
|  | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | continue; | 
|  | list_for_each_entry(chan, &device->channels, device_node) | 
|  | dma_chan_put(chan); | 
|  | } | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL(dmaengine_put); | 
|  |  | 
|  | static bool device_has_all_tx_types(struct dma_device *device) | 
|  | { | 
|  | /* A device that satisfies this test has channels that will never cause | 
|  | * an async_tx channel switch event as all possible operation types can | 
|  | * be handled. | 
|  | */ | 
|  | #ifdef CONFIG_ASYNC_TX_DMA | 
|  | if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) | 
|  | return false; | 
|  | #endif | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) | 
|  | if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) | 
|  | return false; | 
|  | #endif | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ASYNC_XOR) | 
|  | if (!dma_has_cap(DMA_XOR, device->cap_mask)) | 
|  | return false; | 
|  |  | 
|  | #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA | 
|  | if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) | 
|  | return false; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ASYNC_PQ) | 
|  | if (!dma_has_cap(DMA_PQ, device->cap_mask)) | 
|  | return false; | 
|  |  | 
|  | #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA | 
|  | if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) | 
|  | return false; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int get_dma_id(struct dma_device *device) | 
|  | { | 
|  | int rc = ida_alloc(&dma_ida, GFP_KERNEL); | 
|  |  | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | device->dev_id = rc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_async_device_register - registers DMA devices found | 
|  | * @device: &dma_device | 
|  | */ | 
|  | int dma_async_device_register(struct dma_device *device) | 
|  | { | 
|  | int chancnt = 0, rc; | 
|  | struct dma_chan* chan; | 
|  | atomic_t *idr_ref; | 
|  |  | 
|  | if (!device) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* validate device routines */ | 
|  | if (!device->dev) { | 
|  | pr_err("DMAdevice must have dev\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_MEMCPY"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_XOR"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_XOR_VAL"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_PQ"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_PQ_VAL"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_MEMSET"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_INTERRUPT"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_CYCLIC"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { | 
|  | dev_err(device->dev, | 
|  | "Device claims capability %s, but op is not defined\n", | 
|  | "DMA_INTERLEAVE"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!device->device_tx_status) { | 
|  | dev_err(device->dev, "Device tx_status is not defined\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!device->device_issue_pending) { | 
|  | dev_err(device->dev, "Device issue_pending is not defined\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* note: this only matters in the | 
|  | * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case | 
|  | */ | 
|  | if (device_has_all_tx_types(device)) | 
|  | dma_cap_set(DMA_ASYNC_TX, device->cap_mask); | 
|  |  | 
|  | idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); | 
|  | if (!idr_ref) | 
|  | return -ENOMEM; | 
|  | rc = get_dma_id(device); | 
|  | if (rc != 0) { | 
|  | kfree(idr_ref); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | atomic_set(idr_ref, 0); | 
|  |  | 
|  | /* represent channels in sysfs. Probably want devs too */ | 
|  | list_for_each_entry(chan, &device->channels, device_node) { | 
|  | rc = -ENOMEM; | 
|  | chan->local = alloc_percpu(typeof(*chan->local)); | 
|  | if (chan->local == NULL) | 
|  | goto err_out; | 
|  | chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); | 
|  | if (chan->dev == NULL) { | 
|  | free_percpu(chan->local); | 
|  | chan->local = NULL; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | chan->chan_id = chancnt++; | 
|  | chan->dev->device.class = &dma_devclass; | 
|  | chan->dev->device.parent = device->dev; | 
|  | chan->dev->chan = chan; | 
|  | chan->dev->idr_ref = idr_ref; | 
|  | chan->dev->dev_id = device->dev_id; | 
|  | atomic_inc(idr_ref); | 
|  | dev_set_name(&chan->dev->device, "dma%dchan%d", | 
|  | device->dev_id, chan->chan_id); | 
|  |  | 
|  | rc = device_register(&chan->dev->device); | 
|  | if (rc) { | 
|  | free_percpu(chan->local); | 
|  | chan->local = NULL; | 
|  | kfree(chan->dev); | 
|  | atomic_dec(idr_ref); | 
|  | goto err_out; | 
|  | } | 
|  | chan->client_count = 0; | 
|  | } | 
|  |  | 
|  | if (!chancnt) { | 
|  | dev_err(device->dev, "%s: device has no channels!\n", __func__); | 
|  | rc = -ENODEV; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | device->chancnt = chancnt; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | /* take references on public channels */ | 
|  | if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | list_for_each_entry(chan, &device->channels, device_node) { | 
|  | /* if clients are already waiting for channels we need | 
|  | * to take references on their behalf | 
|  | */ | 
|  | if (dma_chan_get(chan) == -ENODEV) { | 
|  | /* note we can only get here for the first | 
|  | * channel as the remaining channels are | 
|  | * guaranteed to get a reference | 
|  | */ | 
|  | rc = -ENODEV; | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | goto err_out; | 
|  | } | 
|  | } | 
|  | list_add_tail_rcu(&device->global_node, &dma_device_list); | 
|  | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) | 
|  | device->privatecnt++;	/* Always private */ | 
|  | dma_channel_rebalance(); | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | /* if we never registered a channel just release the idr */ | 
|  | if (atomic_read(idr_ref) == 0) { | 
|  | ida_free(&dma_ida, device->dev_id); | 
|  | kfree(idr_ref); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(chan, &device->channels, device_node) { | 
|  | if (chan->local == NULL) | 
|  | continue; | 
|  | mutex_lock(&dma_list_mutex); | 
|  | chan->dev->chan = NULL; | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | device_unregister(&chan->dev->device); | 
|  | free_percpu(chan->local); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_async_device_register); | 
|  |  | 
|  | /** | 
|  | * dma_async_device_unregister - unregister a DMA device | 
|  | * @device: &dma_device | 
|  | * | 
|  | * This routine is called by dma driver exit routines, dmaengine holds module | 
|  | * references to prevent it being called while channels are in use. | 
|  | */ | 
|  | void dma_async_device_unregister(struct dma_device *device) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | mutex_lock(&dma_list_mutex); | 
|  | list_del_rcu(&device->global_node); | 
|  | dma_channel_rebalance(); | 
|  | mutex_unlock(&dma_list_mutex); | 
|  |  | 
|  | list_for_each_entry(chan, &device->channels, device_node) { | 
|  | WARN_ONCE(chan->client_count, | 
|  | "%s called while %d clients hold a reference\n", | 
|  | __func__, chan->client_count); | 
|  | mutex_lock(&dma_list_mutex); | 
|  | chan->dev->chan = NULL; | 
|  | mutex_unlock(&dma_list_mutex); | 
|  | device_unregister(&chan->dev->device); | 
|  | free_percpu(chan->local); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dma_async_device_unregister); | 
|  |  | 
|  | static void dmam_device_release(struct device *dev, void *res) | 
|  | { | 
|  | struct dma_device *device; | 
|  |  | 
|  | device = *(struct dma_device **)res; | 
|  | dma_async_device_unregister(device); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dmaenginem_async_device_register - registers DMA devices found | 
|  | * @device: &dma_device | 
|  | * | 
|  | * The operation is managed and will be undone on driver detach. | 
|  | */ | 
|  | int dmaenginem_async_device_register(struct dma_device *device) | 
|  | { | 
|  | void *p; | 
|  | int ret; | 
|  |  | 
|  | p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = dma_async_device_register(device); | 
|  | if (!ret) { | 
|  | *(struct dma_device **)p = device; | 
|  | devres_add(device->dev, p); | 
|  | } else { | 
|  | devres_free(p); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(dmaenginem_async_device_register); | 
|  |  | 
|  | struct dmaengine_unmap_pool { | 
|  | struct kmem_cache *cache; | 
|  | const char *name; | 
|  | mempool_t *pool; | 
|  | size_t size; | 
|  | }; | 
|  |  | 
|  | #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } | 
|  | static struct dmaengine_unmap_pool unmap_pool[] = { | 
|  | __UNMAP_POOL(2), | 
|  | #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) | 
|  | __UNMAP_POOL(16), | 
|  | __UNMAP_POOL(128), | 
|  | __UNMAP_POOL(256), | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) | 
|  | { | 
|  | int order = get_count_order(nr); | 
|  |  | 
|  | switch (order) { | 
|  | case 0 ... 1: | 
|  | return &unmap_pool[0]; | 
|  | #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) | 
|  | case 2 ... 4: | 
|  | return &unmap_pool[1]; | 
|  | case 5 ... 7: | 
|  | return &unmap_pool[2]; | 
|  | case 8: | 
|  | return &unmap_pool[3]; | 
|  | #endif | 
|  | default: | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dmaengine_unmap(struct kref *kref) | 
|  | { | 
|  | struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); | 
|  | struct device *dev = unmap->dev; | 
|  | int cnt, i; | 
|  |  | 
|  | cnt = unmap->to_cnt; | 
|  | for (i = 0; i < cnt; i++) | 
|  | dma_unmap_page(dev, unmap->addr[i], unmap->len, | 
|  | DMA_TO_DEVICE); | 
|  | cnt += unmap->from_cnt; | 
|  | for (; i < cnt; i++) | 
|  | dma_unmap_page(dev, unmap->addr[i], unmap->len, | 
|  | DMA_FROM_DEVICE); | 
|  | cnt += unmap->bidi_cnt; | 
|  | for (; i < cnt; i++) { | 
|  | if (unmap->addr[i] == 0) | 
|  | continue; | 
|  | dma_unmap_page(dev, unmap->addr[i], unmap->len, | 
|  | DMA_BIDIRECTIONAL); | 
|  | } | 
|  | cnt = unmap->map_cnt; | 
|  | mempool_free(unmap, __get_unmap_pool(cnt)->pool); | 
|  | } | 
|  |  | 
|  | void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) | 
|  | { | 
|  | if (unmap) | 
|  | kref_put(&unmap->kref, dmaengine_unmap); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dmaengine_unmap_put); | 
|  |  | 
|  | static void dmaengine_destroy_unmap_pool(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { | 
|  | struct dmaengine_unmap_pool *p = &unmap_pool[i]; | 
|  |  | 
|  | mempool_destroy(p->pool); | 
|  | p->pool = NULL; | 
|  | kmem_cache_destroy(p->cache); | 
|  | p->cache = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init dmaengine_init_unmap_pool(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { | 
|  | struct dmaengine_unmap_pool *p = &unmap_pool[i]; | 
|  | size_t size; | 
|  |  | 
|  | size = sizeof(struct dmaengine_unmap_data) + | 
|  | sizeof(dma_addr_t) * p->size; | 
|  |  | 
|  | p->cache = kmem_cache_create(p->name, size, 0, | 
|  | SLAB_HWCACHE_ALIGN, NULL); | 
|  | if (!p->cache) | 
|  | break; | 
|  | p->pool = mempool_create_slab_pool(1, p->cache); | 
|  | if (!p->pool) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == ARRAY_SIZE(unmap_pool)) | 
|  | return 0; | 
|  |  | 
|  | dmaengine_destroy_unmap_pool(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | struct dmaengine_unmap_data * | 
|  | dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) | 
|  | { | 
|  | struct dmaengine_unmap_data *unmap; | 
|  |  | 
|  | unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); | 
|  | if (!unmap) | 
|  | return NULL; | 
|  |  | 
|  | memset(unmap, 0, sizeof(*unmap)); | 
|  | kref_init(&unmap->kref); | 
|  | unmap->dev = dev; | 
|  | unmap->map_cnt = nr; | 
|  |  | 
|  | return unmap; | 
|  | } | 
|  | EXPORT_SYMBOL(dmaengine_get_unmap_data); | 
|  |  | 
|  | void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, | 
|  | struct dma_chan *chan) | 
|  | { | 
|  | tx->chan = chan; | 
|  | #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH | 
|  | spin_lock_init(&tx->lock); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(dma_async_tx_descriptor_init); | 
|  |  | 
|  | /* dma_wait_for_async_tx - spin wait for a transaction to complete | 
|  | * @tx: in-flight transaction to wait on | 
|  | */ | 
|  | enum dma_status | 
|  | dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); | 
|  |  | 
|  | if (!tx) | 
|  | return DMA_COMPLETE; | 
|  |  | 
|  | while (tx->cookie == -EBUSY) { | 
|  | if (time_after_eq(jiffies, dma_sync_wait_timeout)) { | 
|  | dev_err(tx->chan->device->dev, | 
|  | "%s timeout waiting for descriptor submission\n", | 
|  | __func__); | 
|  | return DMA_ERROR; | 
|  | } | 
|  | cpu_relax(); | 
|  | } | 
|  | return dma_sync_wait(tx->chan, tx->cookie); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); | 
|  |  | 
|  | /* dma_run_dependencies - helper routine for dma drivers to process | 
|  | *	(start) dependent operations on their target channel | 
|  | * @tx: transaction with dependencies | 
|  | */ | 
|  | void dma_run_dependencies(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct dma_async_tx_descriptor *dep = txd_next(tx); | 
|  | struct dma_async_tx_descriptor *dep_next; | 
|  | struct dma_chan *chan; | 
|  |  | 
|  | if (!dep) | 
|  | return; | 
|  |  | 
|  | /* we'll submit tx->next now, so clear the link */ | 
|  | txd_clear_next(tx); | 
|  | chan = dep->chan; | 
|  |  | 
|  | /* keep submitting up until a channel switch is detected | 
|  | * in that case we will be called again as a result of | 
|  | * processing the interrupt from async_tx_channel_switch | 
|  | */ | 
|  | for (; dep; dep = dep_next) { | 
|  | txd_lock(dep); | 
|  | txd_clear_parent(dep); | 
|  | dep_next = txd_next(dep); | 
|  | if (dep_next && dep_next->chan == chan) | 
|  | txd_clear_next(dep); /* ->next will be submitted */ | 
|  | else | 
|  | dep_next = NULL; /* submit current dep and terminate */ | 
|  | txd_unlock(dep); | 
|  |  | 
|  | dep->tx_submit(dep); | 
|  | } | 
|  |  | 
|  | chan->device->device_issue_pending(chan); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dma_run_dependencies); | 
|  |  | 
|  | static int __init dma_bus_init(void) | 
|  | { | 
|  | int err = dmaengine_init_unmap_pool(); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | return class_register(&dma_devclass); | 
|  | } | 
|  | arch_initcall(dma_bus_init); | 
|  |  | 
|  |  |