|  | /* | 
|  | * Copyright 2002-2005, Instant802 Networks, Inc. | 
|  | * Copyright 2005-2006, Devicescape Software, Inc. | 
|  | * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz> | 
|  | * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net> | 
|  | * Copyright 2013-2014  Intel Mobile Communications GmbH | 
|  | * Copyright(c) 2015 - 2017 Intel Deutschland GmbH | 
|  | * Copyright (C) 2018 Intel Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <net/mac80211.h> | 
|  | #include <net/ieee80211_radiotap.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | #include "ieee80211_i.h" | 
|  | #include "driver-ops.h" | 
|  | #include "led.h" | 
|  | #include "mesh.h" | 
|  | #include "wep.h" | 
|  | #include "wpa.h" | 
|  | #include "tkip.h" | 
|  | #include "wme.h" | 
|  | #include "rate.h" | 
|  |  | 
|  | static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) | 
|  | { | 
|  | struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); | 
|  |  | 
|  | u64_stats_update_begin(&tstats->syncp); | 
|  | tstats->rx_packets++; | 
|  | tstats->rx_bytes += len; | 
|  | u64_stats_update_end(&tstats->syncp); | 
|  | } | 
|  |  | 
|  | static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, | 
|  | enum nl80211_iftype type) | 
|  | { | 
|  | __le16 fc = hdr->frame_control; | 
|  |  | 
|  | if (ieee80211_is_data(fc)) { | 
|  | if (len < 24) /* drop incorrect hdr len (data) */ | 
|  | return NULL; | 
|  |  | 
|  | if (ieee80211_has_a4(fc)) | 
|  | return NULL; | 
|  | if (ieee80211_has_tods(fc)) | 
|  | return hdr->addr1; | 
|  | if (ieee80211_has_fromds(fc)) | 
|  | return hdr->addr2; | 
|  |  | 
|  | return hdr->addr3; | 
|  | } | 
|  |  | 
|  | if (ieee80211_is_mgmt(fc)) { | 
|  | if (len < 24) /* drop incorrect hdr len (mgmt) */ | 
|  | return NULL; | 
|  | return hdr->addr3; | 
|  | } | 
|  |  | 
|  | if (ieee80211_is_ctl(fc)) { | 
|  | if (ieee80211_is_pspoll(fc)) | 
|  | return hdr->addr1; | 
|  |  | 
|  | if (ieee80211_is_back_req(fc)) { | 
|  | switch (type) { | 
|  | case NL80211_IFTYPE_STATION: | 
|  | return hdr->addr2; | 
|  | case NL80211_IFTYPE_AP: | 
|  | case NL80211_IFTYPE_AP_VLAN: | 
|  | return hdr->addr1; | 
|  | default: | 
|  | break; /* fall through to the return */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * monitor mode reception | 
|  | * | 
|  | * This function cleans up the SKB, i.e. it removes all the stuff | 
|  | * only useful for monitoring. | 
|  | */ | 
|  | static void remove_monitor_info(struct sk_buff *skb, | 
|  | unsigned int present_fcs_len, | 
|  | unsigned int rtap_space) | 
|  | { | 
|  | if (present_fcs_len) | 
|  | __pskb_trim(skb, skb->len - present_fcs_len); | 
|  | __pskb_pull(skb, rtap_space); | 
|  | } | 
|  |  | 
|  | static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, | 
|  | unsigned int rtap_space) | 
|  | { | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | struct ieee80211_hdr *hdr; | 
|  |  | 
|  | hdr = (void *)(skb->data + rtap_space); | 
|  |  | 
|  | if (status->flag & (RX_FLAG_FAILED_FCS_CRC | | 
|  | RX_FLAG_FAILED_PLCP_CRC | | 
|  | RX_FLAG_ONLY_MONITOR)) | 
|  | return true; | 
|  |  | 
|  | if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) | 
|  | return true; | 
|  |  | 
|  | if (ieee80211_is_ctl(hdr->frame_control) && | 
|  | !ieee80211_is_pspoll(hdr->frame_control) && | 
|  | !ieee80211_is_back_req(hdr->frame_control)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, | 
|  | struct ieee80211_rx_status *status, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | int len; | 
|  |  | 
|  | /* always present fields */ | 
|  | len = sizeof(struct ieee80211_radiotap_header) + 8; | 
|  |  | 
|  | /* allocate extra bitmaps */ | 
|  | if (status->chains) | 
|  | len += 4 * hweight8(status->chains); | 
|  | /* vendor presence bitmap */ | 
|  | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) | 
|  | len += 4; | 
|  |  | 
|  | if (ieee80211_have_rx_timestamp(status)) { | 
|  | len = ALIGN(len, 8); | 
|  | len += 8; | 
|  | } | 
|  | if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) | 
|  | len += 1; | 
|  |  | 
|  | /* antenna field, if we don't have per-chain info */ | 
|  | if (!status->chains) | 
|  | len += 1; | 
|  |  | 
|  | /* padding for RX_FLAGS if necessary */ | 
|  | len = ALIGN(len, 2); | 
|  |  | 
|  | if (status->encoding == RX_ENC_HT) /* HT info */ | 
|  | len += 3; | 
|  |  | 
|  | if (status->flag & RX_FLAG_AMPDU_DETAILS) { | 
|  | len = ALIGN(len, 4); | 
|  | len += 8; | 
|  | } | 
|  |  | 
|  | if (status->encoding == RX_ENC_VHT) { | 
|  | len = ALIGN(len, 2); | 
|  | len += 12; | 
|  | } | 
|  |  | 
|  | if (local->hw.radiotap_timestamp.units_pos >= 0) { | 
|  | len = ALIGN(len, 8); | 
|  | len += 12; | 
|  | } | 
|  |  | 
|  | if (status->encoding == RX_ENC_HE && | 
|  | status->flag & RX_FLAG_RADIOTAP_HE) { | 
|  | len = ALIGN(len, 2); | 
|  | len += 12; | 
|  | BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); | 
|  | } | 
|  |  | 
|  | if (status->encoding == RX_ENC_HE && | 
|  | status->flag & RX_FLAG_RADIOTAP_HE_MU) { | 
|  | len = ALIGN(len, 2); | 
|  | len += 12; | 
|  | BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); | 
|  | } | 
|  |  | 
|  | if (status->chains) { | 
|  | /* antenna and antenna signal fields */ | 
|  | len += 2 * hweight8(status->chains); | 
|  | } | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { | 
|  | struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; | 
|  |  | 
|  | /* alignment for fixed 6-byte vendor data header */ | 
|  | len = ALIGN(len, 2); | 
|  | /* vendor data header */ | 
|  | len += 6; | 
|  | if (WARN_ON(rtap->align == 0)) | 
|  | rtap->align = 1; | 
|  | len = ALIGN(len, rtap->align); | 
|  | len += rtap->len + rtap->pad; | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, | 
|  | struct sk_buff *skb, | 
|  | int rtap_space) | 
|  | { | 
|  | struct { | 
|  | struct ieee80211_hdr_3addr hdr; | 
|  | u8 category; | 
|  | u8 action_code; | 
|  | } __packed __aligned(2) action; | 
|  |  | 
|  | if (!sdata) | 
|  | return; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); | 
|  |  | 
|  | if (skb->len < rtap_space + sizeof(action) + | 
|  | VHT_MUMIMO_GROUPS_DATA_LEN) | 
|  | return; | 
|  |  | 
|  | if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) | 
|  | return; | 
|  |  | 
|  | skb_copy_bits(skb, rtap_space, &action, sizeof(action)); | 
|  |  | 
|  | if (!ieee80211_is_action(action.hdr.frame_control)) | 
|  | return; | 
|  |  | 
|  | if (action.category != WLAN_CATEGORY_VHT) | 
|  | return; | 
|  |  | 
|  | if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) | 
|  | return; | 
|  |  | 
|  | if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) | 
|  | return; | 
|  |  | 
|  | skb = skb_copy(skb, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | skb_queue_tail(&sdata->skb_queue, skb); | 
|  | ieee80211_queue_work(&sdata->local->hw, &sdata->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ieee80211_add_rx_radiotap_header - add radiotap header | 
|  | * | 
|  | * add a radiotap header containing all the fields which the hardware provided. | 
|  | */ | 
|  | static void | 
|  | ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, | 
|  | struct sk_buff *skb, | 
|  | struct ieee80211_rate *rate, | 
|  | int rtap_len, bool has_fcs) | 
|  | { | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | struct ieee80211_radiotap_header *rthdr; | 
|  | unsigned char *pos; | 
|  | __le32 *it_present; | 
|  | u32 it_present_val; | 
|  | u16 rx_flags = 0; | 
|  | u16 channel_flags = 0; | 
|  | int mpdulen, chain; | 
|  | unsigned long chains = status->chains; | 
|  | struct ieee80211_vendor_radiotap rtap = {}; | 
|  | struct ieee80211_radiotap_he he = {}; | 
|  | struct ieee80211_radiotap_he_mu he_mu = {}; | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_HE) { | 
|  | he = *(struct ieee80211_radiotap_he *)skb->data; | 
|  | skb_pull(skb, sizeof(he)); | 
|  | WARN_ON_ONCE(status->encoding != RX_ENC_HE); | 
|  | } | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { | 
|  | he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; | 
|  | skb_pull(skb, sizeof(he_mu)); | 
|  | } | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { | 
|  | rtap = *(struct ieee80211_vendor_radiotap *)skb->data; | 
|  | /* rtap.len and rtap.pad are undone immediately */ | 
|  | skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); | 
|  | } | 
|  |  | 
|  | mpdulen = skb->len; | 
|  | if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) | 
|  | mpdulen += FCS_LEN; | 
|  |  | 
|  | rthdr = skb_push(skb, rtap_len); | 
|  | memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); | 
|  | it_present = &rthdr->it_present; | 
|  |  | 
|  | /* radiotap header, set always present flags */ | 
|  | rthdr->it_len = cpu_to_le16(rtap_len); | 
|  | it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | | 
|  | BIT(IEEE80211_RADIOTAP_CHANNEL) | | 
|  | BIT(IEEE80211_RADIOTAP_RX_FLAGS); | 
|  |  | 
|  | if (!status->chains) | 
|  | it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); | 
|  |  | 
|  | for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { | 
|  | it_present_val |= | 
|  | BIT(IEEE80211_RADIOTAP_EXT) | | 
|  | BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); | 
|  | put_unaligned_le32(it_present_val, it_present); | 
|  | it_present++; | 
|  | it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | | 
|  | BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); | 
|  | } | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { | 
|  | it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | | 
|  | BIT(IEEE80211_RADIOTAP_EXT); | 
|  | put_unaligned_le32(it_present_val, it_present); | 
|  | it_present++; | 
|  | it_present_val = rtap.present; | 
|  | } | 
|  |  | 
|  | put_unaligned_le32(it_present_val, it_present); | 
|  |  | 
|  | pos = (void *)(it_present + 1); | 
|  |  | 
|  | /* the order of the following fields is important */ | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_TSFT */ | 
|  | if (ieee80211_have_rx_timestamp(status)) { | 
|  | /* padding */ | 
|  | while ((pos - (u8 *)rthdr) & 7) | 
|  | *pos++ = 0; | 
|  | put_unaligned_le64( | 
|  | ieee80211_calculate_rx_timestamp(local, status, | 
|  | mpdulen, 0), | 
|  | pos); | 
|  | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); | 
|  | pos += 8; | 
|  | } | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_FLAGS */ | 
|  | if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) | 
|  | *pos |= IEEE80211_RADIOTAP_F_FCS; | 
|  | if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) | 
|  | *pos |= IEEE80211_RADIOTAP_F_BADFCS; | 
|  | if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) | 
|  | *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; | 
|  | pos++; | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_RATE */ | 
|  | if (!rate || status->encoding != RX_ENC_LEGACY) { | 
|  | /* | 
|  | * Without rate information don't add it. If we have, | 
|  | * MCS information is a separate field in radiotap, | 
|  | * added below. The byte here is needed as padding | 
|  | * for the channel though, so initialise it to 0. | 
|  | */ | 
|  | *pos = 0; | 
|  | } else { | 
|  | int shift = 0; | 
|  | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); | 
|  | if (status->bw == RATE_INFO_BW_10) | 
|  | shift = 1; | 
|  | else if (status->bw == RATE_INFO_BW_5) | 
|  | shift = 2; | 
|  | *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); | 
|  | } | 
|  | pos++; | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_CHANNEL */ | 
|  | put_unaligned_le16(status->freq, pos); | 
|  | pos += 2; | 
|  | if (status->bw == RATE_INFO_BW_10) | 
|  | channel_flags |= IEEE80211_CHAN_HALF; | 
|  | else if (status->bw == RATE_INFO_BW_5) | 
|  | channel_flags |= IEEE80211_CHAN_QUARTER; | 
|  |  | 
|  | if (status->band == NL80211_BAND_5GHZ) | 
|  | channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; | 
|  | else if (status->encoding != RX_ENC_LEGACY) | 
|  | channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; | 
|  | else if (rate && rate->flags & IEEE80211_RATE_ERP_G) | 
|  | channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; | 
|  | else if (rate) | 
|  | channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; | 
|  | else | 
|  | channel_flags |= IEEE80211_CHAN_2GHZ; | 
|  | put_unaligned_le16(channel_flags, pos); | 
|  | pos += 2; | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ | 
|  | if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && | 
|  | !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { | 
|  | *pos = status->signal; | 
|  | rthdr->it_present |= | 
|  | cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); | 
|  | pos++; | 
|  | } | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ | 
|  |  | 
|  | if (!status->chains) { | 
|  | /* IEEE80211_RADIOTAP_ANTENNA */ | 
|  | *pos = status->antenna; | 
|  | pos++; | 
|  | } | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ | 
|  |  | 
|  | /* IEEE80211_RADIOTAP_RX_FLAGS */ | 
|  | /* ensure 2 byte alignment for the 2 byte field as required */ | 
|  | if ((pos - (u8 *)rthdr) & 1) | 
|  | *pos++ = 0; | 
|  | if (status->flag & RX_FLAG_FAILED_PLCP_CRC) | 
|  | rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; | 
|  | put_unaligned_le16(rx_flags, pos); | 
|  | pos += 2; | 
|  |  | 
|  | if (status->encoding == RX_ENC_HT) { | 
|  | unsigned int stbc; | 
|  |  | 
|  | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); | 
|  | *pos++ = local->hw.radiotap_mcs_details; | 
|  | *pos = 0; | 
|  | if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) | 
|  | *pos |= IEEE80211_RADIOTAP_MCS_SGI; | 
|  | if (status->bw == RATE_INFO_BW_40) | 
|  | *pos |= IEEE80211_RADIOTAP_MCS_BW_40; | 
|  | if (status->enc_flags & RX_ENC_FLAG_HT_GF) | 
|  | *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; | 
|  | if (status->enc_flags & RX_ENC_FLAG_LDPC) | 
|  | *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; | 
|  | stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; | 
|  | *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; | 
|  | pos++; | 
|  | *pos++ = status->rate_idx; | 
|  | } | 
|  |  | 
|  | if (status->flag & RX_FLAG_AMPDU_DETAILS) { | 
|  | u16 flags = 0; | 
|  |  | 
|  | /* ensure 4 byte alignment */ | 
|  | while ((pos - (u8 *)rthdr) & 3) | 
|  | pos++; | 
|  | rthdr->it_present |= | 
|  | cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); | 
|  | put_unaligned_le32(status->ampdu_reference, pos); | 
|  | pos += 4; | 
|  | if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) | 
|  | flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; | 
|  | if (status->flag & RX_FLAG_AMPDU_IS_LAST) | 
|  | flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; | 
|  | if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) | 
|  | flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; | 
|  | if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) | 
|  | flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; | 
|  | if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) | 
|  | flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; | 
|  | if (status->flag & RX_FLAG_AMPDU_EOF_BIT) | 
|  | flags |= IEEE80211_RADIOTAP_AMPDU_EOF; | 
|  | put_unaligned_le16(flags, pos); | 
|  | pos += 2; | 
|  | if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) | 
|  | *pos++ = status->ampdu_delimiter_crc; | 
|  | else | 
|  | *pos++ = 0; | 
|  | *pos++ = 0; | 
|  | } | 
|  |  | 
|  | if (status->encoding == RX_ENC_VHT) { | 
|  | u16 known = local->hw.radiotap_vht_details; | 
|  |  | 
|  | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); | 
|  | put_unaligned_le16(known, pos); | 
|  | pos += 2; | 
|  | /* flags */ | 
|  | if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) | 
|  | *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; | 
|  | /* in VHT, STBC is binary */ | 
|  | if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) | 
|  | *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; | 
|  | if (status->enc_flags & RX_ENC_FLAG_BF) | 
|  | *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; | 
|  | pos++; | 
|  | /* bandwidth */ | 
|  | switch (status->bw) { | 
|  | case RATE_INFO_BW_80: | 
|  | *pos++ = 4; | 
|  | break; | 
|  | case RATE_INFO_BW_160: | 
|  | *pos++ = 11; | 
|  | break; | 
|  | case RATE_INFO_BW_40: | 
|  | *pos++ = 1; | 
|  | break; | 
|  | default: | 
|  | *pos++ = 0; | 
|  | } | 
|  | /* MCS/NSS */ | 
|  | *pos = (status->rate_idx << 4) | status->nss; | 
|  | pos += 4; | 
|  | /* coding field */ | 
|  | if (status->enc_flags & RX_ENC_FLAG_LDPC) | 
|  | *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; | 
|  | pos++; | 
|  | /* group ID */ | 
|  | pos++; | 
|  | /* partial_aid */ | 
|  | pos += 2; | 
|  | } | 
|  |  | 
|  | if (local->hw.radiotap_timestamp.units_pos >= 0) { | 
|  | u16 accuracy = 0; | 
|  | u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; | 
|  |  | 
|  | rthdr->it_present |= | 
|  | cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); | 
|  |  | 
|  | /* ensure 8 byte alignment */ | 
|  | while ((pos - (u8 *)rthdr) & 7) | 
|  | pos++; | 
|  |  | 
|  | put_unaligned_le64(status->device_timestamp, pos); | 
|  | pos += sizeof(u64); | 
|  |  | 
|  | if (local->hw.radiotap_timestamp.accuracy >= 0) { | 
|  | accuracy = local->hw.radiotap_timestamp.accuracy; | 
|  | flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; | 
|  | } | 
|  | put_unaligned_le16(accuracy, pos); | 
|  | pos += sizeof(u16); | 
|  |  | 
|  | *pos++ = local->hw.radiotap_timestamp.units_pos; | 
|  | *pos++ = flags; | 
|  | } | 
|  |  | 
|  | if (status->encoding == RX_ENC_HE && | 
|  | status->flag & RX_FLAG_RADIOTAP_HE) { | 
|  | #define HE_PREP(f, val)	cpu_to_le16(FIELD_PREP(IEEE80211_RADIOTAP_HE_##f, val)) | 
|  |  | 
|  | if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { | 
|  | he.data6 |= HE_PREP(DATA6_NSTS, | 
|  | FIELD_GET(RX_ENC_FLAG_STBC_MASK, | 
|  | status->enc_flags)); | 
|  | he.data3 |= HE_PREP(DATA3_STBC, 1); | 
|  | } else { | 
|  | he.data6 |= HE_PREP(DATA6_NSTS, status->nss); | 
|  | } | 
|  |  | 
|  | #define CHECK_GI(s) \ | 
|  | BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ | 
|  | (int)NL80211_RATE_INFO_HE_GI_##s) | 
|  |  | 
|  | CHECK_GI(0_8); | 
|  | CHECK_GI(1_6); | 
|  | CHECK_GI(3_2); | 
|  |  | 
|  | he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); | 
|  | he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); | 
|  | he.data3 |= HE_PREP(DATA3_CODING, | 
|  | !!(status->enc_flags & RX_ENC_FLAG_LDPC)); | 
|  |  | 
|  | he.data5 |= HE_PREP(DATA5_GI, status->he_gi); | 
|  |  | 
|  | switch (status->bw) { | 
|  | case RATE_INFO_BW_20: | 
|  | he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, | 
|  | IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); | 
|  | break; | 
|  | case RATE_INFO_BW_40: | 
|  | he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, | 
|  | IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); | 
|  | break; | 
|  | case RATE_INFO_BW_80: | 
|  | he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, | 
|  | IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); | 
|  | break; | 
|  | case RATE_INFO_BW_160: | 
|  | he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, | 
|  | IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); | 
|  | break; | 
|  | case RATE_INFO_BW_HE_RU: | 
|  | #define CHECK_RU_ALLOC(s) \ | 
|  | BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ | 
|  | NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) | 
|  |  | 
|  | CHECK_RU_ALLOC(26); | 
|  | CHECK_RU_ALLOC(52); | 
|  | CHECK_RU_ALLOC(106); | 
|  | CHECK_RU_ALLOC(242); | 
|  | CHECK_RU_ALLOC(484); | 
|  | CHECK_RU_ALLOC(996); | 
|  | CHECK_RU_ALLOC(2x996); | 
|  |  | 
|  | he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, | 
|  | status->he_ru + 4); | 
|  | break; | 
|  | default: | 
|  | WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); | 
|  | } | 
|  |  | 
|  | /* ensure 2 byte alignment */ | 
|  | while ((pos - (u8 *)rthdr) & 1) | 
|  | pos++; | 
|  | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); | 
|  | memcpy(pos, &he, sizeof(he)); | 
|  | pos += sizeof(he); | 
|  | } | 
|  |  | 
|  | if (status->encoding == RX_ENC_HE && | 
|  | status->flag & RX_FLAG_RADIOTAP_HE_MU) { | 
|  | /* ensure 2 byte alignment */ | 
|  | while ((pos - (u8 *)rthdr) & 1) | 
|  | pos++; | 
|  | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); | 
|  | memcpy(pos, &he_mu, sizeof(he_mu)); | 
|  | pos += sizeof(he_mu); | 
|  | } | 
|  |  | 
|  | for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { | 
|  | *pos++ = status->chain_signal[chain]; | 
|  | *pos++ = chain; | 
|  | } | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { | 
|  | /* ensure 2 byte alignment for the vendor field as required */ | 
|  | if ((pos - (u8 *)rthdr) & 1) | 
|  | *pos++ = 0; | 
|  | *pos++ = rtap.oui[0]; | 
|  | *pos++ = rtap.oui[1]; | 
|  | *pos++ = rtap.oui[2]; | 
|  | *pos++ = rtap.subns; | 
|  | put_unaligned_le16(rtap.len, pos); | 
|  | pos += 2; | 
|  | /* align the actual payload as requested */ | 
|  | while ((pos - (u8 *)rthdr) & (rtap.align - 1)) | 
|  | *pos++ = 0; | 
|  | /* data (and possible padding) already follows */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct sk_buff * | 
|  | ieee80211_make_monitor_skb(struct ieee80211_local *local, | 
|  | struct sk_buff **origskb, | 
|  | struct ieee80211_rate *rate, | 
|  | int rtap_space, bool use_origskb) | 
|  | { | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); | 
|  | int rt_hdrlen, needed_headroom; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* room for the radiotap header based on driver features */ | 
|  | rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); | 
|  | needed_headroom = rt_hdrlen - rtap_space; | 
|  |  | 
|  | if (use_origskb) { | 
|  | /* only need to expand headroom if necessary */ | 
|  | skb = *origskb; | 
|  | *origskb = NULL; | 
|  |  | 
|  | /* | 
|  | * This shouldn't trigger often because most devices have an | 
|  | * RX header they pull before we get here, and that should | 
|  | * be big enough for our radiotap information. We should | 
|  | * probably export the length to drivers so that we can have | 
|  | * them allocate enough headroom to start with. | 
|  | */ | 
|  | if (skb_headroom(skb) < needed_headroom && | 
|  | pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { | 
|  | dev_kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Need to make a copy and possibly remove radiotap header | 
|  | * and FCS from the original. | 
|  | */ | 
|  | skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); | 
|  |  | 
|  | if (!skb) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* prepend radiotap information */ | 
|  | ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); | 
|  |  | 
|  | skb_reset_mac_header(skb); | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | skb->pkt_type = PACKET_OTHERHOST; | 
|  | skb->protocol = htons(ETH_P_802_2); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function copies a received frame to all monitor interfaces and | 
|  | * returns a cleaned-up SKB that no longer includes the FCS nor the | 
|  | * radiotap header the driver might have added. | 
|  | */ | 
|  | static struct sk_buff * | 
|  | ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, | 
|  | struct ieee80211_rate *rate) | 
|  | { | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); | 
|  | struct ieee80211_sub_if_data *sdata; | 
|  | struct sk_buff *monskb = NULL; | 
|  | int present_fcs_len = 0; | 
|  | unsigned int rtap_space = 0; | 
|  | struct ieee80211_sub_if_data *monitor_sdata = | 
|  | rcu_dereference(local->monitor_sdata); | 
|  | bool only_monitor = false; | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_HE) | 
|  | rtap_space += sizeof(struct ieee80211_radiotap_he); | 
|  |  | 
|  | if (status->flag & RX_FLAG_RADIOTAP_HE_MU) | 
|  | rtap_space += sizeof(struct ieee80211_radiotap_he_mu); | 
|  |  | 
|  | if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { | 
|  | struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; | 
|  |  | 
|  | rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First, we may need to make a copy of the skb because | 
|  | *  (1) we need to modify it for radiotap (if not present), and | 
|  | *  (2) the other RX handlers will modify the skb we got. | 
|  | * | 
|  | * We don't need to, of course, if we aren't going to return | 
|  | * the SKB because it has a bad FCS/PLCP checksum. | 
|  | */ | 
|  |  | 
|  | if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { | 
|  | if (unlikely(origskb->len <= FCS_LEN)) { | 
|  | /* driver bug */ | 
|  | WARN_ON(1); | 
|  | dev_kfree_skb(origskb); | 
|  | return NULL; | 
|  | } | 
|  | present_fcs_len = FCS_LEN; | 
|  | } | 
|  |  | 
|  | /* ensure hdr->frame_control and vendor radiotap data are in skb head */ | 
|  | if (!pskb_may_pull(origskb, 2 + rtap_space)) { | 
|  | dev_kfree_skb(origskb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); | 
|  |  | 
|  | if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { | 
|  | if (only_monitor) { | 
|  | dev_kfree_skb(origskb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | remove_monitor_info(origskb, present_fcs_len, rtap_space); | 
|  | return origskb; | 
|  | } | 
|  |  | 
|  | ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); | 
|  |  | 
|  | list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { | 
|  | bool last_monitor = list_is_last(&sdata->u.mntr.list, | 
|  | &local->mon_list); | 
|  |  | 
|  | if (!monskb) | 
|  | monskb = ieee80211_make_monitor_skb(local, &origskb, | 
|  | rate, rtap_space, | 
|  | only_monitor && | 
|  | last_monitor); | 
|  |  | 
|  | if (monskb) { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (last_monitor) { | 
|  | skb = monskb; | 
|  | monskb = NULL; | 
|  | } else { | 
|  | skb = skb_clone(monskb, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | if (skb) { | 
|  | skb->dev = sdata->dev; | 
|  | ieee80211_rx_stats(skb->dev, skb->len); | 
|  | netif_receive_skb(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (last_monitor) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* this happens if last_monitor was erroneously false */ | 
|  | dev_kfree_skb(monskb); | 
|  |  | 
|  | /* ditto */ | 
|  | if (!origskb) | 
|  | return NULL; | 
|  |  | 
|  | remove_monitor_info(origskb, present_fcs_len, rtap_space); | 
|  | return origskb; | 
|  | } | 
|  |  | 
|  | static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  | int tid, seqno_idx, security_idx; | 
|  |  | 
|  | /* does the frame have a qos control field? */ | 
|  | if (ieee80211_is_data_qos(hdr->frame_control)) { | 
|  | u8 *qc = ieee80211_get_qos_ctl(hdr); | 
|  | /* frame has qos control */ | 
|  | tid = *qc & IEEE80211_QOS_CTL_TID_MASK; | 
|  | if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) | 
|  | status->rx_flags |= IEEE80211_RX_AMSDU; | 
|  |  | 
|  | seqno_idx = tid; | 
|  | security_idx = tid; | 
|  | } else { | 
|  | /* | 
|  | * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): | 
|  | * | 
|  | *	Sequence numbers for management frames, QoS data | 
|  | *	frames with a broadcast/multicast address in the | 
|  | *	Address 1 field, and all non-QoS data frames sent | 
|  | *	by QoS STAs are assigned using an additional single | 
|  | *	modulo-4096 counter, [...] | 
|  | * | 
|  | * We also use that counter for non-QoS STAs. | 
|  | */ | 
|  | seqno_idx = IEEE80211_NUM_TIDS; | 
|  | security_idx = 0; | 
|  | if (ieee80211_is_mgmt(hdr->frame_control)) | 
|  | security_idx = IEEE80211_NUM_TIDS; | 
|  | tid = 0; | 
|  | } | 
|  |  | 
|  | rx->seqno_idx = seqno_idx; | 
|  | rx->security_idx = security_idx; | 
|  | /* Set skb->priority to 1d tag if highest order bit of TID is not set. | 
|  | * For now, set skb->priority to 0 for other cases. */ | 
|  | rx->skb->priority = (tid > 7) ? 0 : tid; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * DOC: Packet alignment | 
|  | * | 
|  | * Drivers always need to pass packets that are aligned to two-byte boundaries | 
|  | * to the stack. | 
|  | * | 
|  | * Additionally, should, if possible, align the payload data in a way that | 
|  | * guarantees that the contained IP header is aligned to a four-byte | 
|  | * boundary. In the case of regular frames, this simply means aligning the | 
|  | * payload to a four-byte boundary (because either the IP header is directly | 
|  | * contained, or IV/RFC1042 headers that have a length divisible by four are | 
|  | * in front of it).  If the payload data is not properly aligned and the | 
|  | * architecture doesn't support efficient unaligned operations, mac80211 | 
|  | * will align the data. | 
|  | * | 
|  | * With A-MSDU frames, however, the payload data address must yield two modulo | 
|  | * four because there are 14-byte 802.3 headers within the A-MSDU frames that | 
|  | * push the IP header further back to a multiple of four again. Thankfully, the | 
|  | * specs were sane enough this time around to require padding each A-MSDU | 
|  | * subframe to a length that is a multiple of four. | 
|  | * | 
|  | * Padding like Atheros hardware adds which is between the 802.11 header and | 
|  | * the payload is not supported, the driver is required to move the 802.11 | 
|  | * header to be directly in front of the payload in that case. | 
|  | */ | 
|  | static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG | 
|  | WARN_ON_ONCE((unsigned long)rx->skb->data & 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* rx handlers */ | 
|  |  | 
|  | static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) | 
|  | return 0; | 
|  |  | 
|  | return ieee80211_is_robust_mgmt_frame(skb); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
|  |  | 
|  | if (!is_multicast_ether_addr(hdr->addr1)) | 
|  | return 0; | 
|  |  | 
|  | return ieee80211_is_robust_mgmt_frame(skb); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ | 
|  | static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; | 
|  | struct ieee80211_mmie *mmie; | 
|  | struct ieee80211_mmie_16 *mmie16; | 
|  |  | 
|  | if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) | 
|  | return -1; | 
|  |  | 
|  | if (!ieee80211_is_robust_mgmt_frame(skb)) | 
|  | return -1; /* not a robust management frame */ | 
|  |  | 
|  | mmie = (struct ieee80211_mmie *) | 
|  | (skb->data + skb->len - sizeof(*mmie)); | 
|  | if (mmie->element_id == WLAN_EID_MMIE && | 
|  | mmie->length == sizeof(*mmie) - 2) | 
|  | return le16_to_cpu(mmie->key_id); | 
|  |  | 
|  | mmie16 = (struct ieee80211_mmie_16 *) | 
|  | (skb->data + skb->len - sizeof(*mmie16)); | 
|  | if (skb->len >= 24 + sizeof(*mmie16) && | 
|  | mmie16->element_id == WLAN_EID_MMIE && | 
|  | mmie16->length == sizeof(*mmie16) - 2) | 
|  | return le16_to_cpu(mmie16->key_id); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | __le16 fc; | 
|  | int hdrlen; | 
|  | u8 keyid; | 
|  |  | 
|  | fc = hdr->frame_control; | 
|  | hdrlen = ieee80211_hdrlen(fc); | 
|  |  | 
|  | if (skb->len < hdrlen + cs->hdr_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); | 
|  | keyid &= cs->key_idx_mask; | 
|  | keyid >>= cs->key_idx_shift; | 
|  |  | 
|  | return keyid; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | char *dev_addr = rx->sdata->vif.addr; | 
|  |  | 
|  | if (ieee80211_is_data(hdr->frame_control)) { | 
|  | if (is_multicast_ether_addr(hdr->addr1)) { | 
|  | if (ieee80211_has_tods(hdr->frame_control) || | 
|  | !ieee80211_has_fromds(hdr->frame_control)) | 
|  | return RX_DROP_MONITOR; | 
|  | if (ether_addr_equal(hdr->addr3, dev_addr)) | 
|  | return RX_DROP_MONITOR; | 
|  | } else { | 
|  | if (!ieee80211_has_a4(hdr->frame_control)) | 
|  | return RX_DROP_MONITOR; | 
|  | if (ether_addr_equal(hdr->addr4, dev_addr)) | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is not an established peer link and this is not a peer link | 
|  | * establisment frame, beacon or probe, drop the frame. | 
|  | */ | 
|  |  | 
|  | if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { | 
|  | struct ieee80211_mgmt *mgmt; | 
|  |  | 
|  | if (!ieee80211_is_mgmt(hdr->frame_control)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (ieee80211_is_action(hdr->frame_control)) { | 
|  | u8 category; | 
|  |  | 
|  | /* make sure category field is present */ | 
|  | if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | mgmt = (struct ieee80211_mgmt *)hdr; | 
|  | category = mgmt->u.action.category; | 
|  | if (category != WLAN_CATEGORY_MESH_ACTION && | 
|  | category != WLAN_CATEGORY_SELF_PROTECTED) | 
|  | return RX_DROP_MONITOR; | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | if (ieee80211_is_probe_req(hdr->frame_control) || | 
|  | ieee80211_is_probe_resp(hdr->frame_control) || | 
|  | ieee80211_is_beacon(hdr->frame_control) || | 
|  | ieee80211_is_auth(hdr->frame_control)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, | 
|  | int index) | 
|  | { | 
|  | struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; | 
|  | struct sk_buff *tail = skb_peek_tail(frames); | 
|  | struct ieee80211_rx_status *status; | 
|  |  | 
|  | if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) | 
|  | return true; | 
|  |  | 
|  | if (!tail) | 
|  | return false; | 
|  |  | 
|  | status = IEEE80211_SKB_RXCB(tail); | 
|  | if (status->flag & RX_FLAG_AMSDU_MORE) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, | 
|  | struct tid_ampdu_rx *tid_agg_rx, | 
|  | int index, | 
|  | struct sk_buff_head *frames) | 
|  | { | 
|  | struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_rx_status *status; | 
|  |  | 
|  | lockdep_assert_held(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | if (skb_queue_empty(skb_list)) | 
|  | goto no_frame; | 
|  |  | 
|  | if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { | 
|  | __skb_queue_purge(skb_list); | 
|  | goto no_frame; | 
|  | } | 
|  |  | 
|  | /* release frames from the reorder ring buffer */ | 
|  | tid_agg_rx->stored_mpdu_num--; | 
|  | while ((skb = __skb_dequeue(skb_list))) { | 
|  | status = IEEE80211_SKB_RXCB(skb); | 
|  | status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; | 
|  | __skb_queue_tail(frames, skb); | 
|  | } | 
|  |  | 
|  | no_frame: | 
|  | tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); | 
|  | tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); | 
|  | } | 
|  |  | 
|  | static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, | 
|  | struct tid_ampdu_rx *tid_agg_rx, | 
|  | u16 head_seq_num, | 
|  | struct sk_buff_head *frames) | 
|  | { | 
|  | int index; | 
|  |  | 
|  | lockdep_assert_held(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { | 
|  | index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; | 
|  | ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, | 
|  | frames); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If | 
|  | * the skb was added to the buffer longer than this time ago, the earlier | 
|  | * frames that have not yet been received are assumed to be lost and the skb | 
|  | * can be released for processing. This may also release other skb's from the | 
|  | * reorder buffer if there are no additional gaps between the frames. | 
|  | * | 
|  | * Callers must hold tid_agg_rx->reorder_lock. | 
|  | */ | 
|  | #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) | 
|  |  | 
|  | static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, | 
|  | struct tid_ampdu_rx *tid_agg_rx, | 
|  | struct sk_buff_head *frames) | 
|  | { | 
|  | int index, i, j; | 
|  |  | 
|  | lockdep_assert_held(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | /* release the buffer until next missing frame */ | 
|  | index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; | 
|  | if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && | 
|  | tid_agg_rx->stored_mpdu_num) { | 
|  | /* | 
|  | * No buffers ready to be released, but check whether any | 
|  | * frames in the reorder buffer have timed out. | 
|  | */ | 
|  | int skipped = 1; | 
|  | for (j = (index + 1) % tid_agg_rx->buf_size; j != index; | 
|  | j = (j + 1) % tid_agg_rx->buf_size) { | 
|  | if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { | 
|  | skipped++; | 
|  | continue; | 
|  | } | 
|  | if (skipped && | 
|  | !time_after(jiffies, tid_agg_rx->reorder_time[j] + | 
|  | HT_RX_REORDER_BUF_TIMEOUT)) | 
|  | goto set_release_timer; | 
|  |  | 
|  | /* don't leave incomplete A-MSDUs around */ | 
|  | for (i = (index + 1) % tid_agg_rx->buf_size; i != j; | 
|  | i = (i + 1) % tid_agg_rx->buf_size) | 
|  | __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); | 
|  |  | 
|  | ht_dbg_ratelimited(sdata, | 
|  | "release an RX reorder frame due to timeout on earlier frames\n"); | 
|  | ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, | 
|  | frames); | 
|  |  | 
|  | /* | 
|  | * Increment the head seq# also for the skipped slots. | 
|  | */ | 
|  | tid_agg_rx->head_seq_num = | 
|  | (tid_agg_rx->head_seq_num + | 
|  | skipped) & IEEE80211_SN_MASK; | 
|  | skipped = 0; | 
|  | } | 
|  | } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { | 
|  | ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, | 
|  | frames); | 
|  | index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; | 
|  | } | 
|  |  | 
|  | if (tid_agg_rx->stored_mpdu_num) { | 
|  | j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; | 
|  |  | 
|  | for (; j != (index - 1) % tid_agg_rx->buf_size; | 
|  | j = (j + 1) % tid_agg_rx->buf_size) { | 
|  | if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_release_timer: | 
|  |  | 
|  | if (!tid_agg_rx->removed) | 
|  | mod_timer(&tid_agg_rx->reorder_timer, | 
|  | tid_agg_rx->reorder_time[j] + 1 + | 
|  | HT_RX_REORDER_BUF_TIMEOUT); | 
|  | } else { | 
|  | del_timer(&tid_agg_rx->reorder_timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As this function belongs to the RX path it must be under | 
|  | * rcu_read_lock protection. It returns false if the frame | 
|  | * can be processed immediately, true if it was consumed. | 
|  | */ | 
|  | static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, | 
|  | struct tid_ampdu_rx *tid_agg_rx, | 
|  | struct sk_buff *skb, | 
|  | struct sk_buff_head *frames) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | u16 sc = le16_to_cpu(hdr->seq_ctrl); | 
|  | u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; | 
|  | u16 head_seq_num, buf_size; | 
|  | int index; | 
|  | bool ret = true; | 
|  |  | 
|  | spin_lock(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | /* | 
|  | * Offloaded BA sessions have no known starting sequence number so pick | 
|  | * one from first Rxed frame for this tid after BA was started. | 
|  | */ | 
|  | if (unlikely(tid_agg_rx->auto_seq)) { | 
|  | tid_agg_rx->auto_seq = false; | 
|  | tid_agg_rx->ssn = mpdu_seq_num; | 
|  | tid_agg_rx->head_seq_num = mpdu_seq_num; | 
|  | } | 
|  |  | 
|  | buf_size = tid_agg_rx->buf_size; | 
|  | head_seq_num = tid_agg_rx->head_seq_num; | 
|  |  | 
|  | /* | 
|  | * If the current MPDU's SN is smaller than the SSN, it shouldn't | 
|  | * be reordered. | 
|  | */ | 
|  | if (unlikely(!tid_agg_rx->started)) { | 
|  | if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  | tid_agg_rx->started = true; | 
|  | } | 
|  |  | 
|  | /* frame with out of date sequence number */ | 
|  | if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { | 
|  | dev_kfree_skb(skb); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If frame the sequence number exceeds our buffering window | 
|  | * size release some previous frames to make room for this one. | 
|  | */ | 
|  | if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { | 
|  | head_seq_num = ieee80211_sn_inc( | 
|  | ieee80211_sn_sub(mpdu_seq_num, buf_size)); | 
|  | /* release stored frames up to new head to stack */ | 
|  | ieee80211_release_reorder_frames(sdata, tid_agg_rx, | 
|  | head_seq_num, frames); | 
|  | } | 
|  |  | 
|  | /* Now the new frame is always in the range of the reordering buffer */ | 
|  |  | 
|  | index = mpdu_seq_num % tid_agg_rx->buf_size; | 
|  |  | 
|  | /* check if we already stored this frame */ | 
|  | if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { | 
|  | dev_kfree_skb(skb); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current MPDU is in the right order and nothing else | 
|  | * is stored we can process it directly, no need to buffer it. | 
|  | * If it is first but there's something stored, we may be able | 
|  | * to release frames after this one. | 
|  | */ | 
|  | if (mpdu_seq_num == tid_agg_rx->head_seq_num && | 
|  | tid_agg_rx->stored_mpdu_num == 0) { | 
|  | if (!(status->flag & RX_FLAG_AMSDU_MORE)) | 
|  | tid_agg_rx->head_seq_num = | 
|  | ieee80211_sn_inc(tid_agg_rx->head_seq_num); | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* put the frame in the reordering buffer */ | 
|  | __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); | 
|  | if (!(status->flag & RX_FLAG_AMSDU_MORE)) { | 
|  | tid_agg_rx->reorder_time[index] = jiffies; | 
|  | tid_agg_rx->stored_mpdu_num++; | 
|  | ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&tid_agg_rx->reorder_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns | 
|  | * true if the MPDU was buffered, false if it should be processed. | 
|  | */ | 
|  | static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, | 
|  | struct sk_buff_head *frames) | 
|  | { | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
|  | struct sta_info *sta = rx->sta; | 
|  | struct tid_ampdu_rx *tid_agg_rx; | 
|  | u16 sc; | 
|  | u8 tid, ack_policy; | 
|  |  | 
|  | if (!ieee80211_is_data_qos(hdr->frame_control) || | 
|  | is_multicast_ether_addr(hdr->addr1)) | 
|  | goto dont_reorder; | 
|  |  | 
|  | /* | 
|  | * filter the QoS data rx stream according to | 
|  | * STA/TID and check if this STA/TID is on aggregation | 
|  | */ | 
|  |  | 
|  | if (!sta) | 
|  | goto dont_reorder; | 
|  |  | 
|  | ack_policy = *ieee80211_get_qos_ctl(hdr) & | 
|  | IEEE80211_QOS_CTL_ACK_POLICY_MASK; | 
|  | tid = ieee80211_get_tid(hdr); | 
|  |  | 
|  | tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); | 
|  | if (!tid_agg_rx) { | 
|  | if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && | 
|  | !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && | 
|  | !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) | 
|  | ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, | 
|  | WLAN_BACK_RECIPIENT, | 
|  | WLAN_REASON_QSTA_REQUIRE_SETUP); | 
|  | goto dont_reorder; | 
|  | } | 
|  |  | 
|  | /* qos null data frames are excluded */ | 
|  | if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) | 
|  | goto dont_reorder; | 
|  |  | 
|  | /* not part of a BA session */ | 
|  | if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && | 
|  | ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) | 
|  | goto dont_reorder; | 
|  |  | 
|  | /* new, potentially un-ordered, ampdu frame - process it */ | 
|  |  | 
|  | /* reset session timer */ | 
|  | if (tid_agg_rx->timeout) | 
|  | tid_agg_rx->last_rx = jiffies; | 
|  |  | 
|  | /* if this mpdu is fragmented - terminate rx aggregation session */ | 
|  | sc = le16_to_cpu(hdr->seq_ctrl); | 
|  | if (sc & IEEE80211_SCTL_FRAG) { | 
|  | skb_queue_tail(&rx->sdata->skb_queue, skb); | 
|  | ieee80211_queue_work(&local->hw, &rx->sdata->work); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No locking needed -- we will only ever process one | 
|  | * RX packet at a time, and thus own tid_agg_rx. All | 
|  | * other code manipulating it needs to (and does) make | 
|  | * sure that we cannot get to it any more before doing | 
|  | * anything with it. | 
|  | */ | 
|  | if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, | 
|  | frames)) | 
|  | return; | 
|  |  | 
|  | dont_reorder: | 
|  | __skb_queue_tail(frames, skb); | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  |  | 
|  | if (status->flag & RX_FLAG_DUP_VALIDATED) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* | 
|  | * Drop duplicate 802.11 retransmissions | 
|  | * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") | 
|  | */ | 
|  |  | 
|  | if (rx->skb->len < 24) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (ieee80211_is_ctl(hdr->frame_control) || | 
|  | ieee80211_is_nullfunc(hdr->frame_control) || | 
|  | ieee80211_is_qos_nullfunc(hdr->frame_control) || | 
|  | is_multicast_ether_addr(hdr->addr1)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (!rx->sta) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (unlikely(ieee80211_has_retry(hdr->frame_control) && | 
|  | rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { | 
|  | I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); | 
|  | rx->sta->rx_stats.num_duplicates++; | 
|  | return RX_DROP_UNUSABLE; | 
|  | } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { | 
|  | rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_check(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  |  | 
|  | /* Drop disallowed frame classes based on STA auth/assoc state; | 
|  | * IEEE 802.11, Chap 5.5. | 
|  | * | 
|  | * mac80211 filters only based on association state, i.e. it drops | 
|  | * Class 3 frames from not associated stations. hostapd sends | 
|  | * deauth/disassoc frames when needed. In addition, hostapd is | 
|  | * responsible for filtering on both auth and assoc states. | 
|  | */ | 
|  |  | 
|  | if (ieee80211_vif_is_mesh(&rx->sdata->vif)) | 
|  | return ieee80211_rx_mesh_check(rx); | 
|  |  | 
|  | if (unlikely((ieee80211_is_data(hdr->frame_control) || | 
|  | ieee80211_is_pspoll(hdr->frame_control)) && | 
|  | rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && | 
|  | rx->sdata->vif.type != NL80211_IFTYPE_WDS && | 
|  | rx->sdata->vif.type != NL80211_IFTYPE_OCB && | 
|  | (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { | 
|  | /* | 
|  | * accept port control frames from the AP even when it's not | 
|  | * yet marked ASSOC to prevent a race where we don't set the | 
|  | * assoc bit quickly enough before it sends the first frame | 
|  | */ | 
|  | if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && | 
|  | ieee80211_is_data_present(hdr->frame_control)) { | 
|  | unsigned int hdrlen; | 
|  | __be16 ethertype; | 
|  |  | 
|  | hdrlen = ieee80211_hdrlen(hdr->frame_control); | 
|  |  | 
|  | if (rx->skb->len < hdrlen + 8) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); | 
|  | if (ethertype == rx->sdata->control_port_protocol) | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | if (rx->sdata->vif.type == NL80211_IFTYPE_AP && | 
|  | cfg80211_rx_spurious_frame(rx->sdata->dev, | 
|  | hdr->addr2, | 
|  | GFP_ATOMIC)) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_local *local; | 
|  | struct ieee80211_hdr *hdr; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | local = rx->local; | 
|  | skb = rx->skb; | 
|  | hdr = (struct ieee80211_hdr *) skb->data; | 
|  |  | 
|  | if (!local->pspolling) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (!ieee80211_has_fromds(hdr->frame_control)) | 
|  | /* this is not from AP */ | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (!ieee80211_is_data(hdr->frame_control)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (!ieee80211_has_moredata(hdr->frame_control)) { | 
|  | /* AP has no more frames buffered for us */ | 
|  | local->pspolling = false; | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | /* more data bit is set, let's request a new frame from the AP */ | 
|  | ieee80211_send_pspoll(local, rx->sdata); | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static void sta_ps_start(struct sta_info *sta) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = sta->sdata; | 
|  | struct ieee80211_local *local = sdata->local; | 
|  | struct ps_data *ps; | 
|  | int tid; | 
|  |  | 
|  | if (sta->sdata->vif.type == NL80211_IFTYPE_AP || | 
|  | sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) | 
|  | ps = &sdata->bss->ps; | 
|  | else | 
|  | return; | 
|  |  | 
|  | atomic_inc(&ps->num_sta_ps); | 
|  | set_sta_flag(sta, WLAN_STA_PS_STA); | 
|  | if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) | 
|  | drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); | 
|  | ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", | 
|  | sta->sta.addr, sta->sta.aid); | 
|  |  | 
|  | ieee80211_clear_fast_xmit(sta); | 
|  |  | 
|  | if (!sta->sta.txq[0]) | 
|  | return; | 
|  |  | 
|  | for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { | 
|  | if (txq_has_queue(sta->sta.txq[tid])) | 
|  | set_bit(tid, &sta->txq_buffered_tids); | 
|  | else | 
|  | clear_bit(tid, &sta->txq_buffered_tids); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sta_ps_end(struct sta_info *sta) | 
|  | { | 
|  | ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", | 
|  | sta->sta.addr, sta->sta.aid); | 
|  |  | 
|  | if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { | 
|  | /* | 
|  | * Clear the flag only if the other one is still set | 
|  | * so that the TX path won't start TX'ing new frames | 
|  | * directly ... In the case that the driver flag isn't | 
|  | * set ieee80211_sta_ps_deliver_wakeup() will clear it. | 
|  | */ | 
|  | clear_sta_flag(sta, WLAN_STA_PS_STA); | 
|  | ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", | 
|  | sta->sta.addr, sta->sta.aid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | set_sta_flag(sta, WLAN_STA_PS_DELIVER); | 
|  | clear_sta_flag(sta, WLAN_STA_PS_STA); | 
|  | ieee80211_sta_ps_deliver_wakeup(sta); | 
|  | } | 
|  |  | 
|  | int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) | 
|  | { | 
|  | struct sta_info *sta = container_of(pubsta, struct sta_info, sta); | 
|  | bool in_ps; | 
|  |  | 
|  | WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); | 
|  |  | 
|  | /* Don't let the same PS state be set twice */ | 
|  | in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); | 
|  | if ((start && in_ps) || (!start && !in_ps)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (start) | 
|  | sta_ps_start(sta); | 
|  | else | 
|  | sta_ps_end(sta); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(ieee80211_sta_ps_transition); | 
|  |  | 
|  | void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) | 
|  | { | 
|  | struct sta_info *sta = container_of(pubsta, struct sta_info, sta); | 
|  |  | 
|  | if (test_sta_flag(sta, WLAN_STA_SP)) | 
|  | return; | 
|  |  | 
|  | if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) | 
|  | ieee80211_sta_ps_deliver_poll_response(sta); | 
|  | else | 
|  | set_sta_flag(sta, WLAN_STA_PSPOLL); | 
|  | } | 
|  | EXPORT_SYMBOL(ieee80211_sta_pspoll); | 
|  |  | 
|  | void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) | 
|  | { | 
|  | struct sta_info *sta = container_of(pubsta, struct sta_info, sta); | 
|  | int ac = ieee80211_ac_from_tid(tid); | 
|  |  | 
|  | /* | 
|  | * If this AC is not trigger-enabled do nothing unless the | 
|  | * driver is calling us after it already checked. | 
|  | * | 
|  | * NB: This could/should check a separate bitmap of trigger- | 
|  | * enabled queues, but for now we only implement uAPSD w/o | 
|  | * TSPEC changes to the ACs, so they're always the same. | 
|  | */ | 
|  | if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && | 
|  | tid != IEEE80211_NUM_TIDS) | 
|  | return; | 
|  |  | 
|  | /* if we are in a service period, do nothing */ | 
|  | if (test_sta_flag(sta, WLAN_STA_SP)) | 
|  | return; | 
|  |  | 
|  | if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) | 
|  | ieee80211_sta_ps_deliver_uapsd(sta); | 
|  | else | 
|  | set_sta_flag(sta, WLAN_STA_UAPSD); | 
|  | } | 
|  | EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_hdr *hdr = (void *)rx->skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  |  | 
|  | if (!rx->sta) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (sdata->vif.type != NL80211_IFTYPE_AP && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP_VLAN) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* | 
|  | * The device handles station powersave, so don't do anything about | 
|  | * uAPSD and PS-Poll frames (the latter shouldn't even come up from | 
|  | * it to mac80211 since they're handled.) | 
|  | */ | 
|  | if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* | 
|  | * Don't do anything if the station isn't already asleep. In | 
|  | * the uAPSD case, the station will probably be marked asleep, | 
|  | * in the PS-Poll case the station must be confused ... | 
|  | */ | 
|  | if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { | 
|  | ieee80211_sta_pspoll(&rx->sta->sta); | 
|  |  | 
|  | /* Free PS Poll skb here instead of returning RX_DROP that would | 
|  | * count as an dropped frame. */ | 
|  | dev_kfree_skb(rx->skb); | 
|  |  | 
|  | return RX_QUEUED; | 
|  | } else if (!ieee80211_has_morefrags(hdr->frame_control) && | 
|  | !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && | 
|  | ieee80211_has_pm(hdr->frame_control) && | 
|  | (ieee80211_is_data_qos(hdr->frame_control) || | 
|  | ieee80211_is_qos_nullfunc(hdr->frame_control))) { | 
|  | u8 tid = ieee80211_get_tid(hdr); | 
|  |  | 
|  | ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct sta_info *sta = rx->sta; | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | int i; | 
|  |  | 
|  | if (!sta) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* | 
|  | * Update last_rx only for IBSS packets which are for the current | 
|  | * BSSID and for station already AUTHORIZED to avoid keeping the | 
|  | * current IBSS network alive in cases where other STAs start | 
|  | * using different BSSID. This will also give the station another | 
|  | * chance to restart the authentication/authorization in case | 
|  | * something went wrong the first time. | 
|  | */ | 
|  | if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { | 
|  | u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, | 
|  | NL80211_IFTYPE_ADHOC); | 
|  | if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && | 
|  | test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { | 
|  | sta->rx_stats.last_rx = jiffies; | 
|  | if (ieee80211_is_data(hdr->frame_control) && | 
|  | !is_multicast_ether_addr(hdr->addr1)) | 
|  | sta->rx_stats.last_rate = | 
|  | sta_stats_encode_rate(status); | 
|  | } | 
|  | } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { | 
|  | sta->rx_stats.last_rx = jiffies; | 
|  | } else if (!is_multicast_ether_addr(hdr->addr1)) { | 
|  | /* | 
|  | * Mesh beacons will update last_rx when if they are found to | 
|  | * match the current local configuration when processed. | 
|  | */ | 
|  | sta->rx_stats.last_rx = jiffies; | 
|  | if (ieee80211_is_data(hdr->frame_control)) | 
|  | sta->rx_stats.last_rate = sta_stats_encode_rate(status); | 
|  | } | 
|  |  | 
|  | if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) | 
|  | ieee80211_sta_rx_notify(rx->sdata, hdr); | 
|  |  | 
|  | sta->rx_stats.fragments++; | 
|  |  | 
|  | u64_stats_update_begin(&rx->sta->rx_stats.syncp); | 
|  | sta->rx_stats.bytes += rx->skb->len; | 
|  | u64_stats_update_end(&rx->sta->rx_stats.syncp); | 
|  |  | 
|  | if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { | 
|  | sta->rx_stats.last_signal = status->signal; | 
|  | ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); | 
|  | } | 
|  |  | 
|  | if (status->chains) { | 
|  | sta->rx_stats.chains = status->chains; | 
|  | for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { | 
|  | int signal = status->chain_signal[i]; | 
|  |  | 
|  | if (!(status->chains & BIT(i))) | 
|  | continue; | 
|  |  | 
|  | sta->rx_stats.chain_signal_last[i] = signal; | 
|  | ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], | 
|  | -signal); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change STA power saving mode only at the end of a frame | 
|  | * exchange sequence, and only for a data or management | 
|  | * frame as specified in IEEE 802.11-2016 11.2.3.2 | 
|  | */ | 
|  | if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && | 
|  | !ieee80211_has_morefrags(hdr->frame_control) && | 
|  | !is_multicast_ether_addr(hdr->addr1) && | 
|  | (ieee80211_is_mgmt(hdr->frame_control) || | 
|  | ieee80211_is_data(hdr->frame_control)) && | 
|  | !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && | 
|  | (rx->sdata->vif.type == NL80211_IFTYPE_AP || | 
|  | rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { | 
|  | if (test_sta_flag(sta, WLAN_STA_PS_STA)) { | 
|  | if (!ieee80211_has_pm(hdr->frame_control)) | 
|  | sta_ps_end(sta); | 
|  | } else { | 
|  | if (ieee80211_has_pm(hdr->frame_control)) | 
|  | sta_ps_start(sta); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* mesh power save support */ | 
|  | if (ieee80211_vif_is_mesh(&rx->sdata->vif)) | 
|  | ieee80211_mps_rx_h_sta_process(sta, hdr); | 
|  |  | 
|  | /* | 
|  | * Drop (qos-)data::nullfunc frames silently, since they | 
|  | * are used only to control station power saving mode. | 
|  | */ | 
|  | if (ieee80211_is_nullfunc(hdr->frame_control) || | 
|  | ieee80211_is_qos_nullfunc(hdr->frame_control)) { | 
|  | I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); | 
|  |  | 
|  | /* | 
|  | * If we receive a 4-addr nullfunc frame from a STA | 
|  | * that was not moved to a 4-addr STA vlan yet send | 
|  | * the event to userspace and for older hostapd drop | 
|  | * the frame to the monitor interface. | 
|  | */ | 
|  | if (ieee80211_has_a4(hdr->frame_control) && | 
|  | (rx->sdata->vif.type == NL80211_IFTYPE_AP || | 
|  | (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && | 
|  | !rx->sdata->u.vlan.sta))) { | 
|  | if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) | 
|  | cfg80211_rx_unexpected_4addr_frame( | 
|  | rx->sdata->dev, sta->sta.addr, | 
|  | GFP_ATOMIC); | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  | /* | 
|  | * Update counter and free packet here to avoid | 
|  | * counting this as a dropped packed. | 
|  | */ | 
|  | sta->rx_stats.packets++; | 
|  | dev_kfree_skb(rx->skb); | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } /* ieee80211_rx_h_sta_process */ | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | int keyidx; | 
|  | int hdrlen; | 
|  | ieee80211_rx_result result = RX_DROP_UNUSABLE; | 
|  | struct ieee80211_key *sta_ptk = NULL; | 
|  | int mmie_keyidx = -1; | 
|  | __le16 fc; | 
|  | const struct ieee80211_cipher_scheme *cs = NULL; | 
|  |  | 
|  | /* | 
|  | * Key selection 101 | 
|  | * | 
|  | * There are four types of keys: | 
|  | *  - GTK (group keys) | 
|  | *  - IGTK (group keys for management frames) | 
|  | *  - PTK (pairwise keys) | 
|  | *  - STK (station-to-station pairwise keys) | 
|  | * | 
|  | * When selecting a key, we have to distinguish between multicast | 
|  | * (including broadcast) and unicast frames, the latter can only | 
|  | * use PTKs and STKs while the former always use GTKs and IGTKs. | 
|  | * Unless, of course, actual WEP keys ("pre-RSNA") are used, then | 
|  | * unicast frames can also use key indices like GTKs. Hence, if we | 
|  | * don't have a PTK/STK we check the key index for a WEP key. | 
|  | * | 
|  | * Note that in a regular BSS, multicast frames are sent by the | 
|  | * AP only, associated stations unicast the frame to the AP first | 
|  | * which then multicasts it on their behalf. | 
|  | * | 
|  | * There is also a slight problem in IBSS mode: GTKs are negotiated | 
|  | * with each station, that is something we don't currently handle. | 
|  | * The spec seems to expect that one negotiates the same key with | 
|  | * every station but there's no such requirement; VLANs could be | 
|  | * possible. | 
|  | */ | 
|  |  | 
|  | /* start without a key */ | 
|  | rx->key = NULL; | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | if (rx->sta) { | 
|  | int keyid = rx->sta->ptk_idx; | 
|  |  | 
|  | if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { | 
|  | cs = rx->sta->cipher_scheme; | 
|  | keyid = ieee80211_get_cs_keyid(cs, rx->skb); | 
|  | if (unlikely(keyid < 0)) | 
|  | return RX_DROP_UNUSABLE; | 
|  | } | 
|  | sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); | 
|  | } | 
|  |  | 
|  | if (!ieee80211_has_protected(fc)) | 
|  | mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); | 
|  |  | 
|  | if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { | 
|  | rx->key = sta_ptk; | 
|  | if ((status->flag & RX_FLAG_DECRYPTED) && | 
|  | (status->flag & RX_FLAG_IV_STRIPPED)) | 
|  | return RX_CONTINUE; | 
|  | /* Skip decryption if the frame is not protected. */ | 
|  | if (!ieee80211_has_protected(fc)) | 
|  | return RX_CONTINUE; | 
|  | } else if (mmie_keyidx >= 0) { | 
|  | /* Broadcast/multicast robust management frame / BIP */ | 
|  | if ((status->flag & RX_FLAG_DECRYPTED) && | 
|  | (status->flag & RX_FLAG_IV_STRIPPED)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (mmie_keyidx < NUM_DEFAULT_KEYS || | 
|  | mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) | 
|  | return RX_DROP_MONITOR; /* unexpected BIP keyidx */ | 
|  | if (rx->sta) { | 
|  | if (ieee80211_is_group_privacy_action(skb) && | 
|  | test_sta_flag(rx->sta, WLAN_STA_MFP)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); | 
|  | } | 
|  | if (!rx->key) | 
|  | rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); | 
|  | } else if (!ieee80211_has_protected(fc)) { | 
|  | /* | 
|  | * The frame was not protected, so skip decryption. However, we | 
|  | * need to set rx->key if there is a key that could have been | 
|  | * used so that the frame may be dropped if encryption would | 
|  | * have been expected. | 
|  | */ | 
|  | struct ieee80211_key *key = NULL; | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | int i; | 
|  |  | 
|  | if (ieee80211_is_mgmt(fc) && | 
|  | is_multicast_ether_addr(hdr->addr1) && | 
|  | (key = rcu_dereference(rx->sdata->default_mgmt_key))) | 
|  | rx->key = key; | 
|  | else { | 
|  | if (rx->sta) { | 
|  | for (i = 0; i < NUM_DEFAULT_KEYS; i++) { | 
|  | key = rcu_dereference(rx->sta->gtk[i]); | 
|  | if (key) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!key) { | 
|  | for (i = 0; i < NUM_DEFAULT_KEYS; i++) { | 
|  | key = rcu_dereference(sdata->keys[i]); | 
|  | if (key) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (key) | 
|  | rx->key = key; | 
|  | } | 
|  | return RX_CONTINUE; | 
|  | } else { | 
|  | u8 keyid; | 
|  |  | 
|  | /* | 
|  | * The device doesn't give us the IV so we won't be | 
|  | * able to look up the key. That's ok though, we | 
|  | * don't need to decrypt the frame, we just won't | 
|  | * be able to keep statistics accurate. | 
|  | * Except for key threshold notifications, should | 
|  | * we somehow allow the driver to tell us which key | 
|  | * the hardware used if this flag is set? | 
|  | */ | 
|  | if ((status->flag & RX_FLAG_DECRYPTED) && | 
|  | (status->flag & RX_FLAG_IV_STRIPPED)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | hdrlen = ieee80211_hdrlen(fc); | 
|  |  | 
|  | if (cs) { | 
|  | keyidx = ieee80211_get_cs_keyid(cs, rx->skb); | 
|  |  | 
|  | if (unlikely(keyidx < 0)) | 
|  | return RX_DROP_UNUSABLE; | 
|  | } else { | 
|  | if (rx->skb->len < 8 + hdrlen) | 
|  | return RX_DROP_UNUSABLE; /* TODO: count this? */ | 
|  | /* | 
|  | * no need to call ieee80211_wep_get_keyidx, | 
|  | * it verifies a bunch of things we've done already | 
|  | */ | 
|  | skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); | 
|  | keyidx = keyid >> 6; | 
|  | } | 
|  |  | 
|  | /* check per-station GTK first, if multicast packet */ | 
|  | if (is_multicast_ether_addr(hdr->addr1) && rx->sta) | 
|  | rx->key = rcu_dereference(rx->sta->gtk[keyidx]); | 
|  |  | 
|  | /* if not found, try default key */ | 
|  | if (!rx->key) { | 
|  | rx->key = rcu_dereference(rx->sdata->keys[keyidx]); | 
|  |  | 
|  | /* | 
|  | * RSNA-protected unicast frames should always be | 
|  | * sent with pairwise or station-to-station keys, | 
|  | * but for WEP we allow using a key index as well. | 
|  | */ | 
|  | if (rx->key && | 
|  | rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && | 
|  | rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && | 
|  | !is_multicast_ether_addr(hdr->addr1)) | 
|  | rx->key = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rx->key) { | 
|  | if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* TODO: add threshold stuff again */ | 
|  | } else { | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | switch (rx->key->conf.cipher) { | 
|  | case WLAN_CIPHER_SUITE_WEP40: | 
|  | case WLAN_CIPHER_SUITE_WEP104: | 
|  | result = ieee80211_crypto_wep_decrypt(rx); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_TKIP: | 
|  | result = ieee80211_crypto_tkip_decrypt(rx); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_CCMP: | 
|  | result = ieee80211_crypto_ccmp_decrypt( | 
|  | rx, IEEE80211_CCMP_MIC_LEN); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_CCMP_256: | 
|  | result = ieee80211_crypto_ccmp_decrypt( | 
|  | rx, IEEE80211_CCMP_256_MIC_LEN); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_AES_CMAC: | 
|  | result = ieee80211_crypto_aes_cmac_decrypt(rx); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_BIP_CMAC_256: | 
|  | result = ieee80211_crypto_aes_cmac_256_decrypt(rx); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_BIP_GMAC_128: | 
|  | case WLAN_CIPHER_SUITE_BIP_GMAC_256: | 
|  | result = ieee80211_crypto_aes_gmac_decrypt(rx); | 
|  | break; | 
|  | case WLAN_CIPHER_SUITE_GCMP: | 
|  | case WLAN_CIPHER_SUITE_GCMP_256: | 
|  | result = ieee80211_crypto_gcmp_decrypt(rx); | 
|  | break; | 
|  | default: | 
|  | result = ieee80211_crypto_hw_decrypt(rx); | 
|  | } | 
|  |  | 
|  | /* the hdr variable is invalid after the decrypt handlers */ | 
|  |  | 
|  | /* either the frame has been decrypted or will be dropped */ | 
|  | status->flag |= RX_FLAG_DECRYPTED; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static inline struct ieee80211_fragment_entry * | 
|  | ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, | 
|  | unsigned int frag, unsigned int seq, int rx_queue, | 
|  | struct sk_buff **skb) | 
|  | { | 
|  | struct ieee80211_fragment_entry *entry; | 
|  |  | 
|  | entry = &sdata->fragments[sdata->fragment_next++]; | 
|  | if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) | 
|  | sdata->fragment_next = 0; | 
|  |  | 
|  | if (!skb_queue_empty(&entry->skb_list)) | 
|  | __skb_queue_purge(&entry->skb_list); | 
|  |  | 
|  | __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ | 
|  | *skb = NULL; | 
|  | entry->first_frag_time = jiffies; | 
|  | entry->seq = seq; | 
|  | entry->rx_queue = rx_queue; | 
|  | entry->last_frag = frag; | 
|  | entry->check_sequential_pn = false; | 
|  | entry->extra_len = 0; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static inline struct ieee80211_fragment_entry * | 
|  | ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, | 
|  | unsigned int frag, unsigned int seq, | 
|  | int rx_queue, struct ieee80211_hdr *hdr) | 
|  | { | 
|  | struct ieee80211_fragment_entry *entry; | 
|  | int i, idx; | 
|  |  | 
|  | idx = sdata->fragment_next; | 
|  | for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { | 
|  | struct ieee80211_hdr *f_hdr; | 
|  |  | 
|  | idx--; | 
|  | if (idx < 0) | 
|  | idx = IEEE80211_FRAGMENT_MAX - 1; | 
|  |  | 
|  | entry = &sdata->fragments[idx]; | 
|  | if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || | 
|  | entry->rx_queue != rx_queue || | 
|  | entry->last_frag + 1 != frag) | 
|  | continue; | 
|  |  | 
|  | f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; | 
|  |  | 
|  | /* | 
|  | * Check ftype and addresses are equal, else check next fragment | 
|  | */ | 
|  | if (((hdr->frame_control ^ f_hdr->frame_control) & | 
|  | cpu_to_le16(IEEE80211_FCTL_FTYPE)) || | 
|  | !ether_addr_equal(hdr->addr1, f_hdr->addr1) || | 
|  | !ether_addr_equal(hdr->addr2, f_hdr->addr2)) | 
|  | continue; | 
|  |  | 
|  | if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { | 
|  | __skb_queue_purge(&entry->skb_list); | 
|  | continue; | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *hdr; | 
|  | u16 sc; | 
|  | __le16 fc; | 
|  | unsigned int frag, seq; | 
|  | struct ieee80211_fragment_entry *entry; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | if (ieee80211_is_ctl(fc)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | sc = le16_to_cpu(hdr->seq_ctrl); | 
|  | frag = sc & IEEE80211_SCTL_FRAG; | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) { | 
|  | I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); | 
|  | goto out_no_led; | 
|  | } | 
|  |  | 
|  | if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) | 
|  | goto out; | 
|  |  | 
|  | I802_DEBUG_INC(rx->local->rx_handlers_fragments); | 
|  |  | 
|  | if (skb_linearize(rx->skb)) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | /* | 
|  | *  skb_linearize() might change the skb->data and | 
|  | *  previously cached variables (in this case, hdr) need to | 
|  | *  be refreshed with the new data. | 
|  | */ | 
|  | hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | seq = (sc & IEEE80211_SCTL_SEQ) >> 4; | 
|  |  | 
|  | if (frag == 0) { | 
|  | /* This is the first fragment of a new frame. */ | 
|  | entry = ieee80211_reassemble_add(rx->sdata, frag, seq, | 
|  | rx->seqno_idx, &(rx->skb)); | 
|  | if (rx->key && | 
|  | (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || | 
|  | rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || | 
|  | rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || | 
|  | rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && | 
|  | ieee80211_has_protected(fc)) { | 
|  | int queue = rx->security_idx; | 
|  |  | 
|  | /* Store CCMP/GCMP PN so that we can verify that the | 
|  | * next fragment has a sequential PN value. | 
|  | */ | 
|  | entry->check_sequential_pn = true; | 
|  | memcpy(entry->last_pn, | 
|  | rx->key->u.ccmp.rx_pn[queue], | 
|  | IEEE80211_CCMP_PN_LEN); | 
|  | BUILD_BUG_ON(offsetof(struct ieee80211_key, | 
|  | u.ccmp.rx_pn) != | 
|  | offsetof(struct ieee80211_key, | 
|  | u.gcmp.rx_pn)); | 
|  | BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != | 
|  | sizeof(rx->key->u.gcmp.rx_pn[queue])); | 
|  | BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != | 
|  | IEEE80211_GCMP_PN_LEN); | 
|  | } | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | /* This is a fragment for a frame that should already be pending in | 
|  | * fragment cache. Add this fragment to the end of the pending entry. | 
|  | */ | 
|  | entry = ieee80211_reassemble_find(rx->sdata, frag, seq, | 
|  | rx->seqno_idx, hdr); | 
|  | if (!entry) { | 
|  | I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | /* "The receiver shall discard MSDUs and MMPDUs whose constituent | 
|  | *  MPDU PN values are not incrementing in steps of 1." | 
|  | * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) | 
|  | * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) | 
|  | */ | 
|  | if (entry->check_sequential_pn) { | 
|  | int i; | 
|  | u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; | 
|  | int queue; | 
|  |  | 
|  | if (!rx->key || | 
|  | (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && | 
|  | rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && | 
|  | rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && | 
|  | rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) | 
|  | return RX_DROP_UNUSABLE; | 
|  | memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); | 
|  | for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { | 
|  | pn[i]++; | 
|  | if (pn[i]) | 
|  | break; | 
|  | } | 
|  | queue = rx->security_idx; | 
|  | rpn = rx->key->u.ccmp.rx_pn[queue]; | 
|  | if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) | 
|  | return RX_DROP_UNUSABLE; | 
|  | memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); | 
|  | } | 
|  |  | 
|  | skb_pull(rx->skb, ieee80211_hdrlen(fc)); | 
|  | __skb_queue_tail(&entry->skb_list, rx->skb); | 
|  | entry->last_frag = frag; | 
|  | entry->extra_len += rx->skb->len; | 
|  | if (ieee80211_has_morefrags(fc)) { | 
|  | rx->skb = NULL; | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | rx->skb = __skb_dequeue(&entry->skb_list); | 
|  | if (skb_tailroom(rx->skb) < entry->extra_len) { | 
|  | I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); | 
|  | if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, | 
|  | GFP_ATOMIC))) { | 
|  | I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); | 
|  | __skb_queue_purge(&entry->skb_list); | 
|  | return RX_DROP_UNUSABLE; | 
|  | } | 
|  | } | 
|  | while ((skb = __skb_dequeue(&entry->skb_list))) { | 
|  | skb_put_data(rx->skb, skb->data, skb->len); | 
|  | dev_kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | out: | 
|  | ieee80211_led_rx(rx->local); | 
|  | out_no_led: | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.packets++; | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) | 
|  | return -EACCES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) | 
|  | { | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  |  | 
|  | /* | 
|  | * Pass through unencrypted frames if the hardware has | 
|  | * decrypted them already. | 
|  | */ | 
|  | if (status->flag & RX_FLAG_DECRYPTED) | 
|  | return 0; | 
|  |  | 
|  | /* Drop unencrypted frames if key is set. */ | 
|  | if (unlikely(!ieee80211_has_protected(fc) && | 
|  | !ieee80211_is_nullfunc(fc) && | 
|  | ieee80211_is_data(fc) && rx->key)) | 
|  | return -EACCES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  | __le16 fc = hdr->frame_control; | 
|  |  | 
|  | /* | 
|  | * Pass through unencrypted frames if the hardware has | 
|  | * decrypted them already. | 
|  | */ | 
|  | if (status->flag & RX_FLAG_DECRYPTED) | 
|  | return 0; | 
|  |  | 
|  | if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { | 
|  | if (unlikely(!ieee80211_has_protected(fc) && | 
|  | ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && | 
|  | rx->key)) { | 
|  | if (ieee80211_is_deauth(fc) || | 
|  | ieee80211_is_disassoc(fc)) | 
|  | cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, | 
|  | rx->skb->data, | 
|  | rx->skb->len); | 
|  | return -EACCES; | 
|  | } | 
|  | /* BIP does not use Protected field, so need to check MMIE */ | 
|  | if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && | 
|  | ieee80211_get_mmie_keyidx(rx->skb) < 0)) { | 
|  | if (ieee80211_is_deauth(fc) || | 
|  | ieee80211_is_disassoc(fc)) | 
|  | cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, | 
|  | rx->skb->data, | 
|  | rx->skb->len); | 
|  | return -EACCES; | 
|  | } | 
|  | /* | 
|  | * When using MFP, Action frames are not allowed prior to | 
|  | * having configured keys. | 
|  | */ | 
|  | if (unlikely(ieee80211_is_action(fc) && !rx->key && | 
|  | ieee80211_is_robust_mgmt_frame(rx->skb))) | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | bool check_port_control = false; | 
|  | struct ethhdr *ehdr; | 
|  | int ret; | 
|  |  | 
|  | *port_control = false; | 
|  | if (ieee80211_has_a4(hdr->frame_control) && | 
|  | sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) | 
|  | return -1; | 
|  |  | 
|  | if (sdata->vif.type == NL80211_IFTYPE_STATION && | 
|  | !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { | 
|  |  | 
|  | if (!sdata->u.mgd.use_4addr) | 
|  | return -1; | 
|  | else | 
|  | check_port_control = true; | 
|  | } | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1) && | 
|  | sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) | 
|  | return -1; | 
|  |  | 
|  | ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ehdr = (struct ethhdr *) rx->skb->data; | 
|  | if (ehdr->h_proto == rx->sdata->control_port_protocol) | 
|  | *port_control = true; | 
|  | else if (check_port_control) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * requires that rx->skb is a frame with ethernet header | 
|  | */ | 
|  | static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) | 
|  | { | 
|  | static const u8 pae_group_addr[ETH_ALEN] __aligned(2) | 
|  | = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; | 
|  | struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; | 
|  |  | 
|  | /* | 
|  | * Allow EAPOL frames to us/the PAE group address regardless | 
|  | * of whether the frame was encrypted or not. | 
|  | */ | 
|  | if (ehdr->h_proto == rx->sdata->control_port_protocol && | 
|  | (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || | 
|  | ether_addr_equal(ehdr->h_dest, pae_group_addr))) | 
|  | return true; | 
|  |  | 
|  | if (ieee80211_802_1x_port_control(rx) || | 
|  | ieee80211_drop_unencrypted(rx, fc)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, | 
|  | struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct net_device *dev = sdata->dev; | 
|  |  | 
|  | if (unlikely((skb->protocol == sdata->control_port_protocol || | 
|  | skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && | 
|  | sdata->control_port_over_nl80211)) { | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); | 
|  |  | 
|  | cfg80211_rx_control_port(dev, skb, noencrypt); | 
|  | dev_kfree_skb(skb); | 
|  | } else { | 
|  | memset(skb->cb, 0, sizeof(skb->cb)); | 
|  |  | 
|  | /* deliver to local stack */ | 
|  | if (rx->napi) | 
|  | napi_gro_receive(rx->napi, skb); | 
|  | else | 
|  | netif_receive_skb(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * requires that rx->skb is a frame with ethernet header | 
|  | */ | 
|  | static void | 
|  | ieee80211_deliver_skb(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct net_device *dev = sdata->dev; | 
|  | struct sk_buff *skb, *xmit_skb; | 
|  | struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; | 
|  | struct sta_info *dsta; | 
|  |  | 
|  | skb = rx->skb; | 
|  | xmit_skb = NULL; | 
|  |  | 
|  | ieee80211_rx_stats(dev, skb->len); | 
|  |  | 
|  | if (rx->sta) { | 
|  | /* The seqno index has the same property as needed | 
|  | * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS | 
|  | * for non-QoS-data frames. Here we know it's a data | 
|  | * frame, so count MSDUs. | 
|  | */ | 
|  | u64_stats_update_begin(&rx->sta->rx_stats.syncp); | 
|  | rx->sta->rx_stats.msdu[rx->seqno_idx]++; | 
|  | u64_stats_update_end(&rx->sta->rx_stats.syncp); | 
|  | } | 
|  |  | 
|  | if ((sdata->vif.type == NL80211_IFTYPE_AP || | 
|  | sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && | 
|  | !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && | 
|  | (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { | 
|  | if (is_multicast_ether_addr(ehdr->h_dest) && | 
|  | ieee80211_vif_get_num_mcast_if(sdata) != 0) { | 
|  | /* | 
|  | * send multicast frames both to higher layers in | 
|  | * local net stack and back to the wireless medium | 
|  | */ | 
|  | xmit_skb = skb_copy(skb, GFP_ATOMIC); | 
|  | if (!xmit_skb) | 
|  | net_info_ratelimited("%s: failed to clone multicast frame\n", | 
|  | dev->name); | 
|  | } else if (!is_multicast_ether_addr(ehdr->h_dest)) { | 
|  | dsta = sta_info_get(sdata, skb->data); | 
|  | if (dsta) { | 
|  | /* | 
|  | * The destination station is associated to | 
|  | * this AP (in this VLAN), so send the frame | 
|  | * directly to it and do not pass it to local | 
|  | * net stack. | 
|  | */ | 
|  | xmit_skb = skb; | 
|  | skb = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS | 
|  | if (skb) { | 
|  | /* 'align' will only take the values 0 or 2 here since all | 
|  | * frames are required to be aligned to 2-byte boundaries | 
|  | * when being passed to mac80211; the code here works just | 
|  | * as well if that isn't true, but mac80211 assumes it can | 
|  | * access fields as 2-byte aligned (e.g. for ether_addr_equal) | 
|  | */ | 
|  | int align; | 
|  |  | 
|  | align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; | 
|  | if (align) { | 
|  | if (WARN_ON(skb_headroom(skb) < 3)) { | 
|  | dev_kfree_skb(skb); | 
|  | skb = NULL; | 
|  | } else { | 
|  | u8 *data = skb->data; | 
|  | size_t len = skb_headlen(skb); | 
|  | skb->data -= align; | 
|  | memmove(skb->data, data, len); | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (skb) { | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  | ieee80211_deliver_skb_to_local_stack(skb, rx); | 
|  | } | 
|  |  | 
|  | if (xmit_skb) { | 
|  | /* | 
|  | * Send to wireless media and increase priority by 256 to | 
|  | * keep the received priority instead of reclassifying | 
|  | * the frame (see cfg80211_classify8021d). | 
|  | */ | 
|  | xmit_skb->priority += 256; | 
|  | xmit_skb->protocol = htons(ETH_P_802_3); | 
|  | skb_reset_network_header(xmit_skb); | 
|  | skb_reset_mac_header(xmit_skb); | 
|  | dev_queue_xmit(xmit_skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) | 
|  | { | 
|  | struct net_device *dev = rx->sdata->dev; | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | __le16 fc = hdr->frame_control; | 
|  | struct sk_buff_head frame_list; | 
|  | struct ethhdr ethhdr; | 
|  | const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; | 
|  |  | 
|  | if (unlikely(ieee80211_has_a4(hdr->frame_control))) { | 
|  | check_da = NULL; | 
|  | check_sa = NULL; | 
|  | } else switch (rx->sdata->vif.type) { | 
|  | case NL80211_IFTYPE_AP: | 
|  | case NL80211_IFTYPE_AP_VLAN: | 
|  | check_da = NULL; | 
|  | break; | 
|  | case NL80211_IFTYPE_STATION: | 
|  | if (!rx->sta || | 
|  | !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) | 
|  | check_sa = NULL; | 
|  | break; | 
|  | case NL80211_IFTYPE_MESH_POINT: | 
|  | check_sa = NULL; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | skb->dev = dev; | 
|  | __skb_queue_head_init(&frame_list); | 
|  |  | 
|  | if (ieee80211_data_to_8023_exthdr(skb, ðhdr, | 
|  | rx->sdata->vif.addr, | 
|  | rx->sdata->vif.type, | 
|  | data_offset)) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, | 
|  | rx->sdata->vif.type, | 
|  | rx->local->hw.extra_tx_headroom, | 
|  | check_da, check_sa); | 
|  |  | 
|  | while (!skb_queue_empty(&frame_list)) { | 
|  | rx->skb = __skb_dequeue(&frame_list); | 
|  |  | 
|  | if (!ieee80211_frame_allowed(rx, fc)) { | 
|  | dev_kfree_skb(rx->skb); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ieee80211_deliver_skb(rx); | 
|  | } | 
|  |  | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | __le16 fc = hdr->frame_control; | 
|  |  | 
|  | if (!(status->rx_flags & IEEE80211_RX_AMSDU)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (unlikely(!ieee80211_is_data(fc))) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (unlikely(!ieee80211_is_data_present(fc))) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (unlikely(ieee80211_has_a4(hdr->frame_control))) { | 
|  | switch (rx->sdata->vif.type) { | 
|  | case NL80211_IFTYPE_AP_VLAN: | 
|  | if (!rx->sdata->u.vlan.sta) | 
|  | return RX_DROP_UNUSABLE; | 
|  | break; | 
|  | case NL80211_IFTYPE_STATION: | 
|  | if (!rx->sdata->u.mgd.use_4addr) | 
|  | return RX_DROP_UNUSABLE; | 
|  | break; | 
|  | default: | 
|  | return RX_DROP_UNUSABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | return __ieee80211_rx_h_amsdu(rx, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MAC80211_MESH | 
|  | static ieee80211_rx_result | 
|  | ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_hdr *fwd_hdr, *hdr; | 
|  | struct ieee80211_tx_info *info; | 
|  | struct ieee80211s_hdr *mesh_hdr; | 
|  | struct sk_buff *skb = rx->skb, *fwd_skb; | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; | 
|  | u16 ac, q, hdrlen; | 
|  | int tailroom = 0; | 
|  |  | 
|  | hdr = (struct ieee80211_hdr *) skb->data; | 
|  | hdrlen = ieee80211_hdrlen(hdr->frame_control); | 
|  |  | 
|  | /* make sure fixed part of mesh header is there, also checks skb len */ | 
|  | if (!pskb_may_pull(rx->skb, hdrlen + 6)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); | 
|  |  | 
|  | /* make sure full mesh header is there, also checks skb len */ | 
|  | if (!pskb_may_pull(rx->skb, | 
|  | hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* reload pointers */ | 
|  | hdr = (struct ieee80211_hdr *) skb->data; | 
|  | mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); | 
|  |  | 
|  | if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* frame is in RMC, don't forward */ | 
|  | if (ieee80211_is_data(hdr->frame_control) && | 
|  | is_multicast_ether_addr(hdr->addr1) && | 
|  | mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (!ieee80211_is_data(hdr->frame_control)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (!mesh_hdr->ttl) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (mesh_hdr->flags & MESH_FLAGS_AE) { | 
|  | struct mesh_path *mppath; | 
|  | char *proxied_addr; | 
|  | char *mpp_addr; | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) { | 
|  | mpp_addr = hdr->addr3; | 
|  | proxied_addr = mesh_hdr->eaddr1; | 
|  | } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == | 
|  | MESH_FLAGS_AE_A5_A6) { | 
|  | /* has_a4 already checked in ieee80211_rx_mesh_check */ | 
|  | mpp_addr = hdr->addr4; | 
|  | proxied_addr = mesh_hdr->eaddr2; | 
|  | } else { | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | mppath = mpp_path_lookup(sdata, proxied_addr); | 
|  | if (!mppath) { | 
|  | mpp_path_add(sdata, proxied_addr, mpp_addr); | 
|  | } else { | 
|  | spin_lock_bh(&mppath->state_lock); | 
|  | if (!ether_addr_equal(mppath->mpp, mpp_addr)) | 
|  | memcpy(mppath->mpp, mpp_addr, ETH_ALEN); | 
|  | mppath->exp_time = jiffies; | 
|  | spin_unlock_bh(&mppath->state_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* Frame has reached destination.  Don't forward */ | 
|  | if (!is_multicast_ether_addr(hdr->addr1) && | 
|  | ether_addr_equal(sdata->vif.addr, hdr->addr3)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | ac = ieee80211_select_queue_80211(sdata, skb, hdr); | 
|  | q = sdata->vif.hw_queue[ac]; | 
|  | if (ieee80211_queue_stopped(&local->hw, q)) { | 
|  | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  | skb_set_queue_mapping(skb, q); | 
|  |  | 
|  | if (!--mesh_hdr->ttl) { | 
|  | if (!is_multicast_ether_addr(hdr->addr1)) | 
|  | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, | 
|  | dropped_frames_ttl); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!ifmsh->mshcfg.dot11MeshForwarding) | 
|  | goto out; | 
|  |  | 
|  | if (sdata->crypto_tx_tailroom_needed_cnt) | 
|  | tailroom = IEEE80211_ENCRYPT_TAILROOM; | 
|  |  | 
|  | fwd_skb = skb_copy_expand(skb, local->tx_headroom + | 
|  | sdata->encrypt_headroom, | 
|  | tailroom, GFP_ATOMIC); | 
|  | if (!fwd_skb) | 
|  | goto out; | 
|  |  | 
|  | fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data; | 
|  | fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); | 
|  | info = IEEE80211_SKB_CB(fwd_skb); | 
|  | memset(info, 0, sizeof(*info)); | 
|  | info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; | 
|  | info->control.vif = &rx->sdata->vif; | 
|  | info->control.jiffies = jiffies; | 
|  | if (is_multicast_ether_addr(fwd_hdr->addr1)) { | 
|  | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); | 
|  | memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); | 
|  | /* update power mode indication when forwarding */ | 
|  | ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); | 
|  | } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { | 
|  | /* mesh power mode flags updated in mesh_nexthop_lookup */ | 
|  | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); | 
|  | } else { | 
|  | /* unable to resolve next hop */ | 
|  | mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, | 
|  | fwd_hdr->addr3, 0, | 
|  | WLAN_REASON_MESH_PATH_NOFORWARD, | 
|  | fwd_hdr->addr2); | 
|  | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); | 
|  | kfree_skb(fwd_skb); | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); | 
|  | ieee80211_add_pending_skb(local, fwd_skb); | 
|  | out: | 
|  | if (is_multicast_ether_addr(hdr->addr1)) | 
|  | return RX_CONTINUE; | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_data(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct net_device *dev = sdata->dev; | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; | 
|  | __le16 fc = hdr->frame_control; | 
|  | bool port_control; | 
|  | int err; | 
|  |  | 
|  | if (unlikely(!ieee80211_is_data(hdr->frame_control))) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* | 
|  | * Send unexpected-4addr-frame event to hostapd. For older versions, | 
|  | * also drop the frame to cooked monitor interfaces. | 
|  | */ | 
|  | if (ieee80211_has_a4(hdr->frame_control) && | 
|  | sdata->vif.type == NL80211_IFTYPE_AP) { | 
|  | if (rx->sta && | 
|  | !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) | 
|  | cfg80211_rx_unexpected_4addr_frame( | 
|  | rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | err = __ieee80211_data_to_8023(rx, &port_control); | 
|  | if (unlikely(err)) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | if (!ieee80211_frame_allowed(rx, fc)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* directly handle TDLS channel switch requests/responses */ | 
|  | if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == | 
|  | cpu_to_be16(ETH_P_TDLS))) { | 
|  | struct ieee80211_tdls_data *tf = (void *)rx->skb->data; | 
|  |  | 
|  | if (pskb_may_pull(rx->skb, | 
|  | offsetof(struct ieee80211_tdls_data, u)) && | 
|  | tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && | 
|  | tf->category == WLAN_CATEGORY_TDLS && | 
|  | (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || | 
|  | tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { | 
|  | skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); | 
|  | schedule_work(&local->tdls_chsw_work); | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.packets++; | 
|  |  | 
|  | return RX_QUEUED; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && | 
|  | unlikely(port_control) && sdata->bss) { | 
|  | sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, | 
|  | u.ap); | 
|  | dev = sdata->dev; | 
|  | rx->sdata = sdata; | 
|  | } | 
|  |  | 
|  | rx->skb->dev = dev; | 
|  |  | 
|  | if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && | 
|  | local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && | 
|  | !is_multicast_ether_addr( | 
|  | ((struct ethhdr *)rx->skb->data)->h_dest) && | 
|  | (!local->scanning && | 
|  | !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) | 
|  | mod_timer(&local->dynamic_ps_timer, jiffies + | 
|  | msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); | 
|  |  | 
|  | ieee80211_deliver_skb(rx); | 
|  |  | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) | 
|  | { | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; | 
|  | struct tid_ampdu_rx *tid_agg_rx; | 
|  | u16 start_seq_num; | 
|  | u16 tid; | 
|  |  | 
|  | if (likely(!ieee80211_is_ctl(bar->frame_control))) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | if (ieee80211_is_back_req(bar->frame_control)) { | 
|  | struct { | 
|  | __le16 control, start_seq_num; | 
|  | } __packed bar_data; | 
|  | struct ieee80211_event event = { | 
|  | .type = BAR_RX_EVENT, | 
|  | }; | 
|  |  | 
|  | if (!rx->sta) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), | 
|  | &bar_data, sizeof(bar_data))) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | tid = le16_to_cpu(bar_data.control) >> 12; | 
|  |  | 
|  | if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && | 
|  | !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) | 
|  | ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, | 
|  | WLAN_BACK_RECIPIENT, | 
|  | WLAN_REASON_QSTA_REQUIRE_SETUP); | 
|  |  | 
|  | tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); | 
|  | if (!tid_agg_rx) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; | 
|  | event.u.ba.tid = tid; | 
|  | event.u.ba.ssn = start_seq_num; | 
|  | event.u.ba.sta = &rx->sta->sta; | 
|  |  | 
|  | /* reset session timer */ | 
|  | if (tid_agg_rx->timeout) | 
|  | mod_timer(&tid_agg_rx->session_timer, | 
|  | TU_TO_EXP_TIME(tid_agg_rx->timeout)); | 
|  |  | 
|  | spin_lock(&tid_agg_rx->reorder_lock); | 
|  | /* release stored frames up to start of BAR */ | 
|  | ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, | 
|  | start_seq_num, frames); | 
|  | spin_unlock(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | drv_event_callback(rx->local, rx->sdata, &event); | 
|  |  | 
|  | kfree_skb(skb); | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After this point, we only want management frames, | 
|  | * so we can drop all remaining control frames to | 
|  | * cooked monitor interfaces. | 
|  | */ | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, | 
|  | struct ieee80211_mgmt *mgmt, | 
|  | size_t len) | 
|  | { | 
|  | struct ieee80211_local *local = sdata->local; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_mgmt *resp; | 
|  |  | 
|  | if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { | 
|  | /* Not to own unicast address */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || | 
|  | !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { | 
|  | /* Not from the current AP or not associated yet. */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { | 
|  | /* Too short SA Query request frame */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); | 
|  | if (skb == NULL) | 
|  | return; | 
|  |  | 
|  | skb_reserve(skb, local->hw.extra_tx_headroom); | 
|  | resp = skb_put_zero(skb, 24); | 
|  | memcpy(resp->da, mgmt->sa, ETH_ALEN); | 
|  | memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); | 
|  | memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); | 
|  | resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | | 
|  | IEEE80211_STYPE_ACTION); | 
|  | skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); | 
|  | resp->u.action.category = WLAN_CATEGORY_SA_QUERY; | 
|  | resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; | 
|  | memcpy(resp->u.action.u.sa_query.trans_id, | 
|  | mgmt->u.action.u.sa_query.trans_id, | 
|  | WLAN_SA_QUERY_TR_ID_LEN); | 
|  |  | 
|  | ieee80211_tx_skb(sdata, skb); | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  |  | 
|  | /* | 
|  | * From here on, look only at management frames. | 
|  | * Data and control frames are already handled, | 
|  | * and unknown (reserved) frames are useless. | 
|  | */ | 
|  | if (rx->skb->len < 24) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (!ieee80211_is_mgmt(mgmt->frame_control)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (rx->sdata->vif.type == NL80211_IFTYPE_AP && | 
|  | ieee80211_is_beacon(mgmt->frame_control) && | 
|  | !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { | 
|  | int sig = 0; | 
|  |  | 
|  | if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && | 
|  | !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) | 
|  | sig = status->signal; | 
|  |  | 
|  | cfg80211_report_obss_beacon(rx->local->hw.wiphy, | 
|  | rx->skb->data, rx->skb->len, | 
|  | status->freq, sig); | 
|  | rx->flags |= IEEE80211_RX_BEACON_REPORTED; | 
|  | } | 
|  |  | 
|  | if (ieee80211_drop_unencrypted_mgmt(rx)) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_action(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  | int len = rx->skb->len; | 
|  |  | 
|  | if (!ieee80211_is_action(mgmt->frame_control)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* drop too small frames */ | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && | 
|  | mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && | 
|  | mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | switch (mgmt->u.action.category) { | 
|  | case WLAN_CATEGORY_HT: | 
|  | /* reject HT action frames from stations not supporting HT */ | 
|  | if (!rx->sta->sta.ht_cap.ht_supported) | 
|  | goto invalid; | 
|  |  | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION && | 
|  | sdata->vif.type != NL80211_IFTYPE_MESH_POINT && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP_VLAN && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP && | 
|  | sdata->vif.type != NL80211_IFTYPE_ADHOC) | 
|  | break; | 
|  |  | 
|  | /* verify action & smps_control/chanwidth are present */ | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 2) | 
|  | goto invalid; | 
|  |  | 
|  | switch (mgmt->u.action.u.ht_smps.action) { | 
|  | case WLAN_HT_ACTION_SMPS: { | 
|  | struct ieee80211_supported_band *sband; | 
|  | enum ieee80211_smps_mode smps_mode; | 
|  | struct sta_opmode_info sta_opmode = {}; | 
|  |  | 
|  | /* convert to HT capability */ | 
|  | switch (mgmt->u.action.u.ht_smps.smps_control) { | 
|  | case WLAN_HT_SMPS_CONTROL_DISABLED: | 
|  | smps_mode = IEEE80211_SMPS_OFF; | 
|  | break; | 
|  | case WLAN_HT_SMPS_CONTROL_STATIC: | 
|  | smps_mode = IEEE80211_SMPS_STATIC; | 
|  | break; | 
|  | case WLAN_HT_SMPS_CONTROL_DYNAMIC: | 
|  | smps_mode = IEEE80211_SMPS_DYNAMIC; | 
|  | break; | 
|  | default: | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | /* if no change do nothing */ | 
|  | if (rx->sta->sta.smps_mode == smps_mode) | 
|  | goto handled; | 
|  | rx->sta->sta.smps_mode = smps_mode; | 
|  | sta_opmode.smps_mode = | 
|  | ieee80211_smps_mode_to_smps_mode(smps_mode); | 
|  | sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; | 
|  |  | 
|  | sband = rx->local->hw.wiphy->bands[status->band]; | 
|  |  | 
|  | rate_control_rate_update(local, sband, rx->sta, | 
|  | IEEE80211_RC_SMPS_CHANGED); | 
|  | cfg80211_sta_opmode_change_notify(sdata->dev, | 
|  | rx->sta->addr, | 
|  | &sta_opmode, | 
|  | GFP_ATOMIC); | 
|  | goto handled; | 
|  | } | 
|  | case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { | 
|  | struct ieee80211_supported_band *sband; | 
|  | u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; | 
|  | enum ieee80211_sta_rx_bandwidth max_bw, new_bw; | 
|  | struct sta_opmode_info sta_opmode = {}; | 
|  |  | 
|  | /* If it doesn't support 40 MHz it can't change ... */ | 
|  | if (!(rx->sta->sta.ht_cap.cap & | 
|  | IEEE80211_HT_CAP_SUP_WIDTH_20_40)) | 
|  | goto handled; | 
|  |  | 
|  | if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) | 
|  | max_bw = IEEE80211_STA_RX_BW_20; | 
|  | else | 
|  | max_bw = ieee80211_sta_cap_rx_bw(rx->sta); | 
|  |  | 
|  | /* set cur_max_bandwidth and recalc sta bw */ | 
|  | rx->sta->cur_max_bandwidth = max_bw; | 
|  | new_bw = ieee80211_sta_cur_vht_bw(rx->sta); | 
|  |  | 
|  | if (rx->sta->sta.bandwidth == new_bw) | 
|  | goto handled; | 
|  |  | 
|  | rx->sta->sta.bandwidth = new_bw; | 
|  | sband = rx->local->hw.wiphy->bands[status->band]; | 
|  | sta_opmode.bw = | 
|  | ieee80211_sta_rx_bw_to_chan_width(rx->sta); | 
|  | sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; | 
|  |  | 
|  | rate_control_rate_update(local, sband, rx->sta, | 
|  | IEEE80211_RC_BW_CHANGED); | 
|  | cfg80211_sta_opmode_change_notify(sdata->dev, | 
|  | rx->sta->addr, | 
|  | &sta_opmode, | 
|  | GFP_ATOMIC); | 
|  | goto handled; | 
|  | } | 
|  | default: | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case WLAN_CATEGORY_PUBLIC: | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 1) | 
|  | goto invalid; | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION) | 
|  | break; | 
|  | if (!rx->sta) | 
|  | break; | 
|  | if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) | 
|  | break; | 
|  | if (mgmt->u.action.u.ext_chan_switch.action_code != | 
|  | WLAN_PUB_ACTION_EXT_CHANSW_ANN) | 
|  | break; | 
|  | if (len < offsetof(struct ieee80211_mgmt, | 
|  | u.action.u.ext_chan_switch.variable)) | 
|  | goto invalid; | 
|  | goto queue; | 
|  | case WLAN_CATEGORY_VHT: | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION && | 
|  | sdata->vif.type != NL80211_IFTYPE_MESH_POINT && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP_VLAN && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP && | 
|  | sdata->vif.type != NL80211_IFTYPE_ADHOC) | 
|  | break; | 
|  |  | 
|  | /* verify action code is present */ | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 1) | 
|  | goto invalid; | 
|  |  | 
|  | switch (mgmt->u.action.u.vht_opmode_notif.action_code) { | 
|  | case WLAN_VHT_ACTION_OPMODE_NOTIF: { | 
|  | /* verify opmode is present */ | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 2) | 
|  | goto invalid; | 
|  | goto queue; | 
|  | } | 
|  | case WLAN_VHT_ACTION_GROUPID_MGMT: { | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 25) | 
|  | goto invalid; | 
|  | goto queue; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case WLAN_CATEGORY_BACK: | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION && | 
|  | sdata->vif.type != NL80211_IFTYPE_MESH_POINT && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP_VLAN && | 
|  | sdata->vif.type != NL80211_IFTYPE_AP && | 
|  | sdata->vif.type != NL80211_IFTYPE_ADHOC) | 
|  | break; | 
|  |  | 
|  | /* verify action_code is present */ | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 1) | 
|  | break; | 
|  |  | 
|  | switch (mgmt->u.action.u.addba_req.action_code) { | 
|  | case WLAN_ACTION_ADDBA_REQ: | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.addba_req))) | 
|  | goto invalid; | 
|  | break; | 
|  | case WLAN_ACTION_ADDBA_RESP: | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.addba_resp))) | 
|  | goto invalid; | 
|  | break; | 
|  | case WLAN_ACTION_DELBA: | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.delba))) | 
|  | goto invalid; | 
|  | break; | 
|  | default: | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | goto queue; | 
|  | case WLAN_CATEGORY_SPECTRUM_MGMT: | 
|  | /* verify action_code is present */ | 
|  | if (len < IEEE80211_MIN_ACTION_SIZE + 1) | 
|  | break; | 
|  |  | 
|  | switch (mgmt->u.action.u.measurement.action_code) { | 
|  | case WLAN_ACTION_SPCT_MSR_REQ: | 
|  | if (status->band != NL80211_BAND_5GHZ) | 
|  | break; | 
|  |  | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.measurement))) | 
|  | break; | 
|  |  | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION) | 
|  | break; | 
|  |  | 
|  | ieee80211_process_measurement_req(sdata, mgmt, len); | 
|  | goto handled; | 
|  | case WLAN_ACTION_SPCT_CHL_SWITCH: { | 
|  | u8 *bssid; | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.chan_switch))) | 
|  | break; | 
|  |  | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION && | 
|  | sdata->vif.type != NL80211_IFTYPE_ADHOC && | 
|  | sdata->vif.type != NL80211_IFTYPE_MESH_POINT) | 
|  | break; | 
|  |  | 
|  | if (sdata->vif.type == NL80211_IFTYPE_STATION) | 
|  | bssid = sdata->u.mgd.bssid; | 
|  | else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) | 
|  | bssid = sdata->u.ibss.bssid; | 
|  | else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) | 
|  | bssid = mgmt->sa; | 
|  | else | 
|  | break; | 
|  |  | 
|  | if (!ether_addr_equal(mgmt->bssid, bssid)) | 
|  | break; | 
|  |  | 
|  | goto queue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case WLAN_CATEGORY_SA_QUERY: | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.sa_query))) | 
|  | break; | 
|  |  | 
|  | switch (mgmt->u.action.u.sa_query.action) { | 
|  | case WLAN_ACTION_SA_QUERY_REQUEST: | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION) | 
|  | break; | 
|  | ieee80211_process_sa_query_req(sdata, mgmt, len); | 
|  | goto handled; | 
|  | } | 
|  | break; | 
|  | case WLAN_CATEGORY_SELF_PROTECTED: | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.self_prot.action_code))) | 
|  | break; | 
|  |  | 
|  | switch (mgmt->u.action.u.self_prot.action_code) { | 
|  | case WLAN_SP_MESH_PEERING_OPEN: | 
|  | case WLAN_SP_MESH_PEERING_CLOSE: | 
|  | case WLAN_SP_MESH_PEERING_CONFIRM: | 
|  | if (!ieee80211_vif_is_mesh(&sdata->vif)) | 
|  | goto invalid; | 
|  | if (sdata->u.mesh.user_mpm) | 
|  | /* userspace handles this frame */ | 
|  | break; | 
|  | goto queue; | 
|  | case WLAN_SP_MGK_INFORM: | 
|  | case WLAN_SP_MGK_ACK: | 
|  | if (!ieee80211_vif_is_mesh(&sdata->vif)) | 
|  | goto invalid; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case WLAN_CATEGORY_MESH_ACTION: | 
|  | if (len < (IEEE80211_MIN_ACTION_SIZE + | 
|  | sizeof(mgmt->u.action.u.mesh_action.action_code))) | 
|  | break; | 
|  |  | 
|  | if (!ieee80211_vif_is_mesh(&sdata->vif)) | 
|  | break; | 
|  | if (mesh_action_is_path_sel(mgmt) && | 
|  | !mesh_path_sel_is_hwmp(sdata)) | 
|  | break; | 
|  | goto queue; | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | invalid: | 
|  | status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; | 
|  | /* will return in the next handlers */ | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | handled: | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.packets++; | 
|  | dev_kfree_skb(rx->skb); | 
|  | return RX_QUEUED; | 
|  |  | 
|  | queue: | 
|  | skb_queue_tail(&sdata->skb_queue, rx->skb); | 
|  | ieee80211_queue_work(&local->hw, &sdata->work); | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.packets++; | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  | int sig = 0; | 
|  |  | 
|  | /* skip known-bad action frames and return them in the next handler */ | 
|  | if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* | 
|  | * Getting here means the kernel doesn't know how to handle | 
|  | * it, but maybe userspace does ... include returned frames | 
|  | * so userspace can register for those to know whether ones | 
|  | * it transmitted were processed or returned. | 
|  | */ | 
|  |  | 
|  | if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && | 
|  | !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) | 
|  | sig = status->signal; | 
|  |  | 
|  | if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, | 
|  | rx->skb->data, rx->skb->len, 0)) { | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.packets++; | 
|  | dev_kfree_skb(rx->skb); | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | return RX_CONTINUE; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; | 
|  | struct sk_buff *nskb; | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); | 
|  |  | 
|  | if (!ieee80211_is_action(mgmt->frame_control)) | 
|  | return RX_CONTINUE; | 
|  |  | 
|  | /* | 
|  | * For AP mode, hostapd is responsible for handling any action | 
|  | * frames that we didn't handle, including returning unknown | 
|  | * ones. For all other modes we will return them to the sender, | 
|  | * setting the 0x80 bit in the action category, as required by | 
|  | * 802.11-2012 9.24.4. | 
|  | * Newer versions of hostapd shall also use the management frame | 
|  | * registration mechanisms, but older ones still use cooked | 
|  | * monitor interfaces so push all frames there. | 
|  | */ | 
|  | if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && | 
|  | (sdata->vif.type == NL80211_IFTYPE_AP || | 
|  | sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | if (is_multicast_ether_addr(mgmt->da)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* do not return rejected action frames */ | 
|  | if (mgmt->u.action.category & 0x80) | 
|  | return RX_DROP_UNUSABLE; | 
|  |  | 
|  | nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, | 
|  | GFP_ATOMIC); | 
|  | if (nskb) { | 
|  | struct ieee80211_mgmt *nmgmt = (void *)nskb->data; | 
|  |  | 
|  | nmgmt->u.action.category |= 0x80; | 
|  | memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); | 
|  | memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); | 
|  |  | 
|  | memset(nskb->cb, 0, sizeof(nskb->cb)); | 
|  |  | 
|  | if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { | 
|  | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); | 
|  |  | 
|  | info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | | 
|  | IEEE80211_TX_INTFL_OFFCHAN_TX_OK | | 
|  | IEEE80211_TX_CTL_NO_CCK_RATE; | 
|  | if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) | 
|  | info->hw_queue = | 
|  | local->hw.offchannel_tx_hw_queue; | 
|  | } | 
|  |  | 
|  | __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, | 
|  | status->band, 0); | 
|  | } | 
|  | dev_kfree_skb(rx->skb); | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | static ieee80211_rx_result debug_noinline | 
|  | ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; | 
|  | __le16 stype; | 
|  |  | 
|  | stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); | 
|  |  | 
|  | if (!ieee80211_vif_is_mesh(&sdata->vif) && | 
|  | sdata->vif.type != NL80211_IFTYPE_ADHOC && | 
|  | sdata->vif.type != NL80211_IFTYPE_OCB && | 
|  | sdata->vif.type != NL80211_IFTYPE_STATION) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | switch (stype) { | 
|  | case cpu_to_le16(IEEE80211_STYPE_AUTH): | 
|  | case cpu_to_le16(IEEE80211_STYPE_BEACON): | 
|  | case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): | 
|  | /* process for all: mesh, mlme, ibss */ | 
|  | break; | 
|  | case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): | 
|  | case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): | 
|  | case cpu_to_le16(IEEE80211_STYPE_DEAUTH): | 
|  | case cpu_to_le16(IEEE80211_STYPE_DISASSOC): | 
|  | if (is_multicast_ether_addr(mgmt->da) && | 
|  | !is_broadcast_ether_addr(mgmt->da)) | 
|  | return RX_DROP_MONITOR; | 
|  |  | 
|  | /* process only for station */ | 
|  | if (sdata->vif.type != NL80211_IFTYPE_STATION) | 
|  | return RX_DROP_MONITOR; | 
|  | break; | 
|  | case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): | 
|  | /* process only for ibss and mesh */ | 
|  | if (sdata->vif.type != NL80211_IFTYPE_ADHOC && | 
|  | sdata->vif.type != NL80211_IFTYPE_MESH_POINT) | 
|  | return RX_DROP_MONITOR; | 
|  | break; | 
|  | default: | 
|  | return RX_DROP_MONITOR; | 
|  | } | 
|  |  | 
|  | /* queue up frame and kick off work to process it */ | 
|  | skb_queue_tail(&sdata->skb_queue, rx->skb); | 
|  | ieee80211_queue_work(&rx->local->hw, &sdata->work); | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.packets++; | 
|  |  | 
|  | return RX_QUEUED; | 
|  | } | 
|  |  | 
|  | static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, | 
|  | struct ieee80211_rate *rate) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata; | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct sk_buff *skb = rx->skb, *skb2; | 
|  | struct net_device *prev_dev = NULL; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | int needed_headroom; | 
|  |  | 
|  | /* | 
|  | * If cooked monitor has been processed already, then | 
|  | * don't do it again. If not, set the flag. | 
|  | */ | 
|  | if (rx->flags & IEEE80211_RX_CMNTR) | 
|  | goto out_free_skb; | 
|  | rx->flags |= IEEE80211_RX_CMNTR; | 
|  |  | 
|  | /* If there are no cooked monitor interfaces, just free the SKB */ | 
|  | if (!local->cooked_mntrs) | 
|  | goto out_free_skb; | 
|  |  | 
|  | /* vendor data is long removed here */ | 
|  | status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; | 
|  | /* room for the radiotap header based on driver features */ | 
|  | needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); | 
|  |  | 
|  | if (skb_headroom(skb) < needed_headroom && | 
|  | pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) | 
|  | goto out_free_skb; | 
|  |  | 
|  | /* prepend radiotap information */ | 
|  | ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, | 
|  | false); | 
|  |  | 
|  | skb_reset_mac_header(skb); | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | skb->pkt_type = PACKET_OTHERHOST; | 
|  | skb->protocol = htons(ETH_P_802_2); | 
|  |  | 
|  | list_for_each_entry_rcu(sdata, &local->interfaces, list) { | 
|  | if (!ieee80211_sdata_running(sdata)) | 
|  | continue; | 
|  |  | 
|  | if (sdata->vif.type != NL80211_IFTYPE_MONITOR || | 
|  | !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) | 
|  | continue; | 
|  |  | 
|  | if (prev_dev) { | 
|  | skb2 = skb_clone(skb, GFP_ATOMIC); | 
|  | if (skb2) { | 
|  | skb2->dev = prev_dev; | 
|  | netif_receive_skb(skb2); | 
|  | } | 
|  | } | 
|  |  | 
|  | prev_dev = sdata->dev; | 
|  | ieee80211_rx_stats(sdata->dev, skb->len); | 
|  | } | 
|  |  | 
|  | if (prev_dev) { | 
|  | skb->dev = prev_dev; | 
|  | netif_receive_skb(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | out_free_skb: | 
|  | dev_kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, | 
|  | ieee80211_rx_result res) | 
|  | { | 
|  | switch (res) { | 
|  | case RX_DROP_MONITOR: | 
|  | I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.dropped++; | 
|  | /* fall through */ | 
|  | case RX_CONTINUE: { | 
|  | struct ieee80211_rate *rate = NULL; | 
|  | struct ieee80211_supported_band *sband; | 
|  | struct ieee80211_rx_status *status; | 
|  |  | 
|  | status = IEEE80211_SKB_RXCB((rx->skb)); | 
|  |  | 
|  | sband = rx->local->hw.wiphy->bands[status->band]; | 
|  | if (status->encoding == RX_ENC_LEGACY) | 
|  | rate = &sband->bitrates[status->rate_idx]; | 
|  |  | 
|  | ieee80211_rx_cooked_monitor(rx, rate); | 
|  | break; | 
|  | } | 
|  | case RX_DROP_UNUSABLE: | 
|  | I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); | 
|  | if (rx->sta) | 
|  | rx->sta->rx_stats.dropped++; | 
|  | dev_kfree_skb(rx->skb); | 
|  | break; | 
|  | case RX_QUEUED: | 
|  | I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, | 
|  | struct sk_buff_head *frames) | 
|  | { | 
|  | ieee80211_rx_result res = RX_DROP_MONITOR; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | #define CALL_RXH(rxh)			\ | 
|  | do {				\ | 
|  | res = rxh(rx);		\ | 
|  | if (res != RX_CONTINUE)	\ | 
|  | goto rxh_next;  \ | 
|  | } while (0) | 
|  |  | 
|  | /* Lock here to avoid hitting all of the data used in the RX | 
|  | * path (e.g. key data, station data, ...) concurrently when | 
|  | * a frame is released from the reorder buffer due to timeout | 
|  | * from the timer, potentially concurrently with RX from the | 
|  | * driver. | 
|  | */ | 
|  | spin_lock_bh(&rx->local->rx_path_lock); | 
|  |  | 
|  | while ((skb = __skb_dequeue(frames))) { | 
|  | /* | 
|  | * all the other fields are valid across frames | 
|  | * that belong to an aMPDU since they are on the | 
|  | * same TID from the same station | 
|  | */ | 
|  | rx->skb = skb; | 
|  |  | 
|  | CALL_RXH(ieee80211_rx_h_check_more_data); | 
|  | CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); | 
|  | CALL_RXH(ieee80211_rx_h_sta_process); | 
|  | CALL_RXH(ieee80211_rx_h_decrypt); | 
|  | CALL_RXH(ieee80211_rx_h_defragment); | 
|  | CALL_RXH(ieee80211_rx_h_michael_mic_verify); | 
|  | /* must be after MMIC verify so header is counted in MPDU mic */ | 
|  | #ifdef CONFIG_MAC80211_MESH | 
|  | if (ieee80211_vif_is_mesh(&rx->sdata->vif)) | 
|  | CALL_RXH(ieee80211_rx_h_mesh_fwding); | 
|  | #endif | 
|  | CALL_RXH(ieee80211_rx_h_amsdu); | 
|  | CALL_RXH(ieee80211_rx_h_data); | 
|  |  | 
|  | /* special treatment -- needs the queue */ | 
|  | res = ieee80211_rx_h_ctrl(rx, frames); | 
|  | if (res != RX_CONTINUE) | 
|  | goto rxh_next; | 
|  |  | 
|  | CALL_RXH(ieee80211_rx_h_mgmt_check); | 
|  | CALL_RXH(ieee80211_rx_h_action); | 
|  | CALL_RXH(ieee80211_rx_h_userspace_mgmt); | 
|  | CALL_RXH(ieee80211_rx_h_action_return); | 
|  | CALL_RXH(ieee80211_rx_h_mgmt); | 
|  |  | 
|  | rxh_next: | 
|  | ieee80211_rx_handlers_result(rx, res); | 
|  |  | 
|  | #undef CALL_RXH | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&rx->local->rx_path_lock); | 
|  | } | 
|  |  | 
|  | static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct sk_buff_head reorder_release; | 
|  | ieee80211_rx_result res = RX_DROP_MONITOR; | 
|  |  | 
|  | __skb_queue_head_init(&reorder_release); | 
|  |  | 
|  | #define CALL_RXH(rxh)			\ | 
|  | do {				\ | 
|  | res = rxh(rx);		\ | 
|  | if (res != RX_CONTINUE)	\ | 
|  | goto rxh_next;  \ | 
|  | } while (0) | 
|  |  | 
|  | CALL_RXH(ieee80211_rx_h_check_dup); | 
|  | CALL_RXH(ieee80211_rx_h_check); | 
|  |  | 
|  | ieee80211_rx_reorder_ampdu(rx, &reorder_release); | 
|  |  | 
|  | ieee80211_rx_handlers(rx, &reorder_release); | 
|  | return; | 
|  |  | 
|  | rxh_next: | 
|  | ieee80211_rx_handlers_result(rx, res); | 
|  |  | 
|  | #undef CALL_RXH | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function makes calls into the RX path, therefore | 
|  | * it has to be invoked under RCU read lock. | 
|  | */ | 
|  | void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) | 
|  | { | 
|  | struct sk_buff_head frames; | 
|  | struct ieee80211_rx_data rx = { | 
|  | .sta = sta, | 
|  | .sdata = sta->sdata, | 
|  | .local = sta->local, | 
|  | /* This is OK -- must be QoS data frame */ | 
|  | .security_idx = tid, | 
|  | .seqno_idx = tid, | 
|  | .napi = NULL, /* must be NULL to not have races */ | 
|  | }; | 
|  | struct tid_ampdu_rx *tid_agg_rx; | 
|  |  | 
|  | tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); | 
|  | if (!tid_agg_rx) | 
|  | return; | 
|  |  | 
|  | __skb_queue_head_init(&frames); | 
|  |  | 
|  | spin_lock(&tid_agg_rx->reorder_lock); | 
|  | ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); | 
|  | spin_unlock(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | if (!skb_queue_empty(&frames)) { | 
|  | struct ieee80211_event event = { | 
|  | .type = BA_FRAME_TIMEOUT, | 
|  | .u.ba.tid = tid, | 
|  | .u.ba.sta = &sta->sta, | 
|  | }; | 
|  | drv_event_callback(rx.local, rx.sdata, &event); | 
|  | } | 
|  |  | 
|  | ieee80211_rx_handlers(&rx, &frames); | 
|  | } | 
|  |  | 
|  | void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, | 
|  | u16 ssn, u64 filtered, | 
|  | u16 received_mpdus) | 
|  | { | 
|  | struct sta_info *sta; | 
|  | struct tid_ampdu_rx *tid_agg_rx; | 
|  | struct sk_buff_head frames; | 
|  | struct ieee80211_rx_data rx = { | 
|  | /* This is OK -- must be QoS data frame */ | 
|  | .security_idx = tid, | 
|  | .seqno_idx = tid, | 
|  | }; | 
|  | int i, diff; | 
|  |  | 
|  | if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) | 
|  | return; | 
|  |  | 
|  | __skb_queue_head_init(&frames); | 
|  |  | 
|  | sta = container_of(pubsta, struct sta_info, sta); | 
|  |  | 
|  | rx.sta = sta; | 
|  | rx.sdata = sta->sdata; | 
|  | rx.local = sta->local; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); | 
|  | if (!tid_agg_rx) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_bh(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { | 
|  | int release; | 
|  |  | 
|  | /* release all frames in the reorder buffer */ | 
|  | release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % | 
|  | IEEE80211_SN_MODULO; | 
|  | ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, | 
|  | release, &frames); | 
|  | /* update ssn to match received ssn */ | 
|  | tid_agg_rx->head_seq_num = ssn; | 
|  | } else { | 
|  | ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, | 
|  | &frames); | 
|  | } | 
|  |  | 
|  | /* handle the case that received ssn is behind the mac ssn. | 
|  | * it can be tid_agg_rx->buf_size behind and still be valid */ | 
|  | diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; | 
|  | if (diff >= tid_agg_rx->buf_size) { | 
|  | tid_agg_rx->reorder_buf_filtered = 0; | 
|  | goto release; | 
|  | } | 
|  | filtered = filtered >> diff; | 
|  | ssn += diff; | 
|  |  | 
|  | /* update bitmap */ | 
|  | for (i = 0; i < tid_agg_rx->buf_size; i++) { | 
|  | int index = (ssn + i) % tid_agg_rx->buf_size; | 
|  |  | 
|  | tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); | 
|  | if (filtered & BIT_ULL(i)) | 
|  | tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); | 
|  | } | 
|  |  | 
|  | /* now process also frames that the filter marking released */ | 
|  | ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); | 
|  |  | 
|  | release: | 
|  | spin_unlock_bh(&tid_agg_rx->reorder_lock); | 
|  |  | 
|  | ieee80211_rx_handlers(&rx, &frames); | 
|  |  | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); | 
|  |  | 
|  | /* main receive path */ | 
|  |  | 
|  | static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_hdr *hdr = (void *)skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); | 
|  | bool multicast = is_multicast_ether_addr(hdr->addr1); | 
|  |  | 
|  | switch (sdata->vif.type) { | 
|  | case NL80211_IFTYPE_STATION: | 
|  | if (!bssid && !sdata->u.mgd.use_4addr) | 
|  | return false; | 
|  | if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) | 
|  | return false; | 
|  | if (multicast) | 
|  | return true; | 
|  | return ether_addr_equal(sdata->vif.addr, hdr->addr1); | 
|  | case NL80211_IFTYPE_ADHOC: | 
|  | if (!bssid) | 
|  | return false; | 
|  | if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || | 
|  | ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) | 
|  | return false; | 
|  | if (ieee80211_is_beacon(hdr->frame_control)) | 
|  | return true; | 
|  | if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) | 
|  | return false; | 
|  | if (!multicast && | 
|  | !ether_addr_equal(sdata->vif.addr, hdr->addr1)) | 
|  | return false; | 
|  | if (!rx->sta) { | 
|  | int rate_idx; | 
|  | if (status->encoding != RX_ENC_LEGACY) | 
|  | rate_idx = 0; /* TODO: HT/VHT rates */ | 
|  | else | 
|  | rate_idx = status->rate_idx; | 
|  | ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, | 
|  | BIT(rate_idx)); | 
|  | } | 
|  | return true; | 
|  | case NL80211_IFTYPE_OCB: | 
|  | if (!bssid) | 
|  | return false; | 
|  | if (!ieee80211_is_data_present(hdr->frame_control)) | 
|  | return false; | 
|  | if (!is_broadcast_ether_addr(bssid)) | 
|  | return false; | 
|  | if (!multicast && | 
|  | !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) | 
|  | return false; | 
|  | if (!rx->sta) { | 
|  | int rate_idx; | 
|  | if (status->encoding != RX_ENC_LEGACY) | 
|  | rate_idx = 0; /* TODO: HT rates */ | 
|  | else | 
|  | rate_idx = status->rate_idx; | 
|  | ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, | 
|  | BIT(rate_idx)); | 
|  | } | 
|  | return true; | 
|  | case NL80211_IFTYPE_MESH_POINT: | 
|  | if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) | 
|  | return false; | 
|  | if (multicast) | 
|  | return true; | 
|  | return ether_addr_equal(sdata->vif.addr, hdr->addr1); | 
|  | case NL80211_IFTYPE_AP_VLAN: | 
|  | case NL80211_IFTYPE_AP: | 
|  | if (!bssid) | 
|  | return ether_addr_equal(sdata->vif.addr, hdr->addr1); | 
|  |  | 
|  | if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { | 
|  | /* | 
|  | * Accept public action frames even when the | 
|  | * BSSID doesn't match, this is used for P2P | 
|  | * and location updates. Note that mac80211 | 
|  | * itself never looks at these frames. | 
|  | */ | 
|  | if (!multicast && | 
|  | !ether_addr_equal(sdata->vif.addr, hdr->addr1)) | 
|  | return false; | 
|  | if (ieee80211_is_public_action(hdr, skb->len)) | 
|  | return true; | 
|  | return ieee80211_is_beacon(hdr->frame_control); | 
|  | } | 
|  |  | 
|  | if (!ieee80211_has_tods(hdr->frame_control)) { | 
|  | /* ignore data frames to TDLS-peers */ | 
|  | if (ieee80211_is_data(hdr->frame_control)) | 
|  | return false; | 
|  | /* ignore action frames to TDLS-peers */ | 
|  | if (ieee80211_is_action(hdr->frame_control) && | 
|  | !is_broadcast_ether_addr(bssid) && | 
|  | !ether_addr_equal(bssid, hdr->addr1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 802.11-2016 Table 9-26 says that for data frames, A1 must be | 
|  | * the BSSID - we've checked that already but may have accepted | 
|  | * the wildcard (ff:ff:ff:ff:ff:ff). | 
|  | * | 
|  | * It also says: | 
|  | *	The BSSID of the Data frame is determined as follows: | 
|  | *	a) If the STA is contained within an AP or is associated | 
|  | *	   with an AP, the BSSID is the address currently in use | 
|  | *	   by the STA contained in the AP. | 
|  | * | 
|  | * So we should not accept data frames with an address that's | 
|  | * multicast. | 
|  | * | 
|  | * Accepting it also opens a security problem because stations | 
|  | * could encrypt it with the GTK and inject traffic that way. | 
|  | */ | 
|  | if (ieee80211_is_data(hdr->frame_control) && multicast) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | case NL80211_IFTYPE_WDS: | 
|  | if (bssid || !ieee80211_is_data(hdr->frame_control)) | 
|  | return false; | 
|  | return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); | 
|  | case NL80211_IFTYPE_P2P_DEVICE: | 
|  | return ieee80211_is_public_action(hdr, skb->len) || | 
|  | ieee80211_is_probe_req(hdr->frame_control) || | 
|  | ieee80211_is_probe_resp(hdr->frame_control) || | 
|  | ieee80211_is_beacon(hdr->frame_control); | 
|  | case NL80211_IFTYPE_NAN: | 
|  | /* Currently no frames on NAN interface are allowed */ | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ieee80211_check_fast_rx(struct sta_info *sta) | 
|  | { | 
|  | struct ieee80211_sub_if_data *sdata = sta->sdata; | 
|  | struct ieee80211_local *local = sdata->local; | 
|  | struct ieee80211_key *key; | 
|  | struct ieee80211_fast_rx fastrx = { | 
|  | .dev = sdata->dev, | 
|  | .vif_type = sdata->vif.type, | 
|  | .control_port_protocol = sdata->control_port_protocol, | 
|  | }, *old, *new = NULL; | 
|  | bool assign = false; | 
|  |  | 
|  | /* use sparse to check that we don't return without updating */ | 
|  | __acquire(check_fast_rx); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); | 
|  | BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); | 
|  | ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); | 
|  | ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); | 
|  |  | 
|  | fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); | 
|  |  | 
|  | /* fast-rx doesn't do reordering */ | 
|  | if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && | 
|  | !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) | 
|  | goto clear; | 
|  |  | 
|  | switch (sdata->vif.type) { | 
|  | case NL80211_IFTYPE_STATION: | 
|  | if (sta->sta.tdls) { | 
|  | fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); | 
|  | fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); | 
|  | fastrx.expected_ds_bits = 0; | 
|  | } else { | 
|  | fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; | 
|  | fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); | 
|  | fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); | 
|  | fastrx.expected_ds_bits = | 
|  | cpu_to_le16(IEEE80211_FCTL_FROMDS); | 
|  | } | 
|  |  | 
|  | if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { | 
|  | fastrx.expected_ds_bits |= | 
|  | cpu_to_le16(IEEE80211_FCTL_TODS); | 
|  | fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); | 
|  | fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); | 
|  | } | 
|  |  | 
|  | if (!sdata->u.mgd.powersave) | 
|  | break; | 
|  |  | 
|  | /* software powersave is a huge mess, avoid all of it */ | 
|  | if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) | 
|  | goto clear; | 
|  | if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && | 
|  | !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) | 
|  | goto clear; | 
|  | break; | 
|  | case NL80211_IFTYPE_AP_VLAN: | 
|  | case NL80211_IFTYPE_AP: | 
|  | /* parallel-rx requires this, at least with calls to | 
|  | * ieee80211_sta_ps_transition() | 
|  | */ | 
|  | if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) | 
|  | goto clear; | 
|  | fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); | 
|  | fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); | 
|  | fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); | 
|  |  | 
|  | fastrx.internal_forward = | 
|  | !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && | 
|  | (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || | 
|  | !sdata->u.vlan.sta); | 
|  |  | 
|  | if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && | 
|  | sdata->u.vlan.sta) { | 
|  | fastrx.expected_ds_bits |= | 
|  | cpu_to_le16(IEEE80211_FCTL_FROMDS); | 
|  | fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); | 
|  | fastrx.internal_forward = 0; | 
|  | } | 
|  |  | 
|  | break; | 
|  | default: | 
|  | goto clear; | 
|  | } | 
|  |  | 
|  | if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) | 
|  | goto clear; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | key = rcu_dereference(sta->ptk[sta->ptk_idx]); | 
|  | if (key) { | 
|  | switch (key->conf.cipher) { | 
|  | case WLAN_CIPHER_SUITE_TKIP: | 
|  | /* we don't want to deal with MMIC in fast-rx */ | 
|  | goto clear_rcu; | 
|  | case WLAN_CIPHER_SUITE_CCMP: | 
|  | case WLAN_CIPHER_SUITE_CCMP_256: | 
|  | case WLAN_CIPHER_SUITE_GCMP: | 
|  | case WLAN_CIPHER_SUITE_GCMP_256: | 
|  | break; | 
|  | default: | 
|  | /* we also don't want to deal with WEP or cipher scheme | 
|  | * since those require looking up the key idx in the | 
|  | * frame, rather than assuming the PTK is used | 
|  | * (we need to revisit this once we implement the real | 
|  | * PTK index, which is now valid in the spec, but we | 
|  | * haven't implemented that part yet) | 
|  | */ | 
|  | goto clear_rcu; | 
|  | } | 
|  |  | 
|  | fastrx.key = true; | 
|  | fastrx.icv_len = key->conf.icv_len; | 
|  | } | 
|  |  | 
|  | assign = true; | 
|  | clear_rcu: | 
|  | rcu_read_unlock(); | 
|  | clear: | 
|  | __release(check_fast_rx); | 
|  |  | 
|  | if (assign) | 
|  | new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); | 
|  |  | 
|  | spin_lock_bh(&sta->lock); | 
|  | old = rcu_dereference_protected(sta->fast_rx, true); | 
|  | rcu_assign_pointer(sta->fast_rx, new); | 
|  | spin_unlock_bh(&sta->lock); | 
|  |  | 
|  | if (old) | 
|  | kfree_rcu(old, rcu_head); | 
|  | } | 
|  |  | 
|  | void ieee80211_clear_fast_rx(struct sta_info *sta) | 
|  | { | 
|  | struct ieee80211_fast_rx *old; | 
|  |  | 
|  | spin_lock_bh(&sta->lock); | 
|  | old = rcu_dereference_protected(sta->fast_rx, true); | 
|  | RCU_INIT_POINTER(sta->fast_rx, NULL); | 
|  | spin_unlock_bh(&sta->lock); | 
|  |  | 
|  | if (old) | 
|  | kfree_rcu(old, rcu_head); | 
|  | } | 
|  |  | 
|  | void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) | 
|  | { | 
|  | struct ieee80211_local *local = sdata->local; | 
|  | struct sta_info *sta; | 
|  |  | 
|  | lockdep_assert_held(&local->sta_mtx); | 
|  |  | 
|  | list_for_each_entry_rcu(sta, &local->sta_list, list) { | 
|  | if (sdata != sta->sdata && | 
|  | (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) | 
|  | continue; | 
|  | ieee80211_check_fast_rx(sta); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) | 
|  | { | 
|  | struct ieee80211_local *local = sdata->local; | 
|  |  | 
|  | mutex_lock(&local->sta_mtx); | 
|  | __ieee80211_check_fast_rx_iface(sdata); | 
|  | mutex_unlock(&local->sta_mtx); | 
|  | } | 
|  |  | 
|  | static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, | 
|  | struct ieee80211_fast_rx *fast_rx) | 
|  | { | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct ieee80211_hdr *hdr = (void *)skb->data; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  | struct sta_info *sta = rx->sta; | 
|  | int orig_len = skb->len; | 
|  | int hdrlen = ieee80211_hdrlen(hdr->frame_control); | 
|  | int snap_offs = hdrlen; | 
|  | struct { | 
|  | u8 snap[sizeof(rfc1042_header)]; | 
|  | __be16 proto; | 
|  | } *payload __aligned(2); | 
|  | struct { | 
|  | u8 da[ETH_ALEN]; | 
|  | u8 sa[ETH_ALEN]; | 
|  | } addrs __aligned(2); | 
|  | struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; | 
|  |  | 
|  | if (fast_rx->uses_rss) | 
|  | stats = this_cpu_ptr(sta->pcpu_rx_stats); | 
|  |  | 
|  | /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write | 
|  | * to a common data structure; drivers can implement that per queue | 
|  | * but we don't have that information in mac80211 | 
|  | */ | 
|  | if (!(status->flag & RX_FLAG_DUP_VALIDATED)) | 
|  | return false; | 
|  |  | 
|  | #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) | 
|  |  | 
|  | /* If using encryption, we also need to have: | 
|  | *  - PN_VALIDATED: similar, but the implementation is tricky | 
|  | *  - DECRYPTED: necessary for PN_VALIDATED | 
|  | */ | 
|  | if (fast_rx->key && | 
|  | (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) | 
|  | return false; | 
|  |  | 
|  | if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) | 
|  | return false; | 
|  |  | 
|  | if (unlikely(ieee80211_is_frag(hdr))) | 
|  | return false; | 
|  |  | 
|  | /* Since our interface address cannot be multicast, this | 
|  | * implicitly also rejects multicast frames without the | 
|  | * explicit check. | 
|  | * | 
|  | * We shouldn't get any *data* frames not addressed to us | 
|  | * (AP mode will accept multicast *management* frames), but | 
|  | * punting here will make it go through the full checks in | 
|  | * ieee80211_accept_frame(). | 
|  | */ | 
|  | if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) | 
|  | return false; | 
|  |  | 
|  | if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | | 
|  | IEEE80211_FCTL_TODS)) != | 
|  | fast_rx->expected_ds_bits) | 
|  | return false; | 
|  |  | 
|  | /* assign the key to drop unencrypted frames (later) | 
|  | * and strip the IV/MIC if necessary | 
|  | */ | 
|  | if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { | 
|  | /* GCMP header length is the same */ | 
|  | snap_offs += IEEE80211_CCMP_HDR_LEN; | 
|  | } | 
|  |  | 
|  | if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { | 
|  | if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) | 
|  | goto drop; | 
|  |  | 
|  | payload = (void *)(skb->data + snap_offs); | 
|  |  | 
|  | if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) | 
|  | return false; | 
|  |  | 
|  | /* Don't handle these here since they require special code. | 
|  | * Accept AARP and IPX even though they should come with a | 
|  | * bridge-tunnel header - but if we get them this way then | 
|  | * there's little point in discarding them. | 
|  | */ | 
|  | if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || | 
|  | payload->proto == fast_rx->control_port_protocol)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* after this point, don't punt to the slowpath! */ | 
|  |  | 
|  | if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && | 
|  | pskb_trim(skb, skb->len - fast_rx->icv_len)) | 
|  | goto drop; | 
|  |  | 
|  | if (unlikely(fast_rx->sta_notify)) { | 
|  | ieee80211_sta_rx_notify(rx->sdata, hdr); | 
|  | fast_rx->sta_notify = false; | 
|  | } | 
|  |  | 
|  | /* statistics part of ieee80211_rx_h_sta_process() */ | 
|  | if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { | 
|  | stats->last_signal = status->signal; | 
|  | if (!fast_rx->uses_rss) | 
|  | ewma_signal_add(&sta->rx_stats_avg.signal, | 
|  | -status->signal); | 
|  | } | 
|  |  | 
|  | if (status->chains) { | 
|  | int i; | 
|  |  | 
|  | stats->chains = status->chains; | 
|  | for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { | 
|  | int signal = status->chain_signal[i]; | 
|  |  | 
|  | if (!(status->chains & BIT(i))) | 
|  | continue; | 
|  |  | 
|  | stats->chain_signal_last[i] = signal; | 
|  | if (!fast_rx->uses_rss) | 
|  | ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], | 
|  | -signal); | 
|  | } | 
|  | } | 
|  | /* end of statistics */ | 
|  |  | 
|  | if (rx->key && !ieee80211_has_protected(hdr->frame_control)) | 
|  | goto drop; | 
|  |  | 
|  | if (status->rx_flags & IEEE80211_RX_AMSDU) { | 
|  | if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != | 
|  | RX_QUEUED) | 
|  | goto drop; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | stats->last_rx = jiffies; | 
|  | stats->last_rate = sta_stats_encode_rate(status); | 
|  |  | 
|  | stats->fragments++; | 
|  | stats->packets++; | 
|  |  | 
|  | /* do the header conversion - first grab the addresses */ | 
|  | ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); | 
|  | ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); | 
|  | /* remove the SNAP but leave the ethertype */ | 
|  | skb_pull(skb, snap_offs + sizeof(rfc1042_header)); | 
|  | /* push the addresses in front */ | 
|  | memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); | 
|  |  | 
|  | skb->dev = fast_rx->dev; | 
|  |  | 
|  | ieee80211_rx_stats(fast_rx->dev, skb->len); | 
|  |  | 
|  | /* The seqno index has the same property as needed | 
|  | * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS | 
|  | * for non-QoS-data frames. Here we know it's a data | 
|  | * frame, so count MSDUs. | 
|  | */ | 
|  | u64_stats_update_begin(&stats->syncp); | 
|  | stats->msdu[rx->seqno_idx]++; | 
|  | stats->bytes += orig_len; | 
|  | u64_stats_update_end(&stats->syncp); | 
|  |  | 
|  | if (fast_rx->internal_forward) { | 
|  | struct sk_buff *xmit_skb = NULL; | 
|  | bool multicast = is_multicast_ether_addr(skb->data); | 
|  |  | 
|  | if (multicast) { | 
|  | xmit_skb = skb_copy(skb, GFP_ATOMIC); | 
|  | } else if (sta_info_get(rx->sdata, skb->data)) { | 
|  | xmit_skb = skb; | 
|  | skb = NULL; | 
|  | } | 
|  |  | 
|  | if (xmit_skb) { | 
|  | /* | 
|  | * Send to wireless media and increase priority by 256 | 
|  | * to keep the received priority instead of | 
|  | * reclassifying the frame (see cfg80211_classify8021d). | 
|  | */ | 
|  | xmit_skb->priority += 256; | 
|  | xmit_skb->protocol = htons(ETH_P_802_3); | 
|  | skb_reset_network_header(xmit_skb); | 
|  | skb_reset_mac_header(xmit_skb); | 
|  | dev_queue_xmit(xmit_skb); | 
|  | } | 
|  |  | 
|  | if (!skb) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* deliver to local stack */ | 
|  | skb->protocol = eth_type_trans(skb, fast_rx->dev); | 
|  | memset(skb->cb, 0, sizeof(skb->cb)); | 
|  | if (rx->napi) | 
|  | napi_gro_receive(rx->napi, skb); | 
|  | else | 
|  | netif_receive_skb(skb); | 
|  |  | 
|  | return true; | 
|  | drop: | 
|  | dev_kfree_skb(skb); | 
|  | stats->dropped++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns whether or not the SKB | 
|  | * was destined for RX processing or not, which, | 
|  | * if consume is true, is equivalent to whether | 
|  | * or not the skb was consumed. | 
|  | */ | 
|  | static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, | 
|  | struct sk_buff *skb, bool consume) | 
|  | { | 
|  | struct ieee80211_local *local = rx->local; | 
|  | struct ieee80211_sub_if_data *sdata = rx->sdata; | 
|  |  | 
|  | rx->skb = skb; | 
|  |  | 
|  | /* See if we can do fast-rx; if we have to copy we already lost, | 
|  | * so punt in that case. We should never have to deliver a data | 
|  | * frame to multiple interfaces anyway. | 
|  | * | 
|  | * We skip the ieee80211_accept_frame() call and do the necessary | 
|  | * checking inside ieee80211_invoke_fast_rx(). | 
|  | */ | 
|  | if (consume && rx->sta) { | 
|  | struct ieee80211_fast_rx *fast_rx; | 
|  |  | 
|  | fast_rx = rcu_dereference(rx->sta->fast_rx); | 
|  | if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!ieee80211_accept_frame(rx)) | 
|  | return false; | 
|  |  | 
|  | if (!consume) { | 
|  | skb = skb_copy(skb, GFP_ATOMIC); | 
|  | if (!skb) { | 
|  | if (net_ratelimit()) | 
|  | wiphy_debug(local->hw.wiphy, | 
|  | "failed to copy skb for %s\n", | 
|  | sdata->name); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | rx->skb = skb; | 
|  | } | 
|  |  | 
|  | ieee80211_invoke_rx_handlers(rx); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the actual Rx frames handler. as it belongs to Rx path it must | 
|  | * be called with rcu_read_lock protection. | 
|  | */ | 
|  | static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, | 
|  | struct ieee80211_sta *pubsta, | 
|  | struct sk_buff *skb, | 
|  | struct napi_struct *napi) | 
|  | { | 
|  | struct ieee80211_local *local = hw_to_local(hw); | 
|  | struct ieee80211_sub_if_data *sdata; | 
|  | struct ieee80211_hdr *hdr; | 
|  | __le16 fc; | 
|  | struct ieee80211_rx_data rx; | 
|  | struct ieee80211_sub_if_data *prev; | 
|  | struct rhlist_head *tmp; | 
|  | int err = 0; | 
|  |  | 
|  | fc = ((struct ieee80211_hdr *)skb->data)->frame_control; | 
|  | memset(&rx, 0, sizeof(rx)); | 
|  | rx.skb = skb; | 
|  | rx.local = local; | 
|  | rx.napi = napi; | 
|  |  | 
|  | if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) | 
|  | I802_DEBUG_INC(local->dot11ReceivedFragmentCount); | 
|  |  | 
|  | if (ieee80211_is_mgmt(fc)) { | 
|  | /* drop frame if too short for header */ | 
|  | if (skb->len < ieee80211_hdrlen(fc)) | 
|  | err = -ENOBUFS; | 
|  | else | 
|  | err = skb_linearize(skb); | 
|  | } else { | 
|  | err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | dev_kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | ieee80211_parse_qos(&rx); | 
|  | ieee80211_verify_alignment(&rx); | 
|  |  | 
|  | if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || | 
|  | ieee80211_is_beacon(hdr->frame_control))) | 
|  | ieee80211_scan_rx(local, skb); | 
|  |  | 
|  | if (ieee80211_is_data(fc)) { | 
|  | struct sta_info *sta, *prev_sta; | 
|  |  | 
|  | if (pubsta) { | 
|  | rx.sta = container_of(pubsta, struct sta_info, sta); | 
|  | rx.sdata = rx.sta->sdata; | 
|  | if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) | 
|  | return; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prev_sta = NULL; | 
|  |  | 
|  | for_each_sta_info(local, hdr->addr2, sta, tmp) { | 
|  | if (!prev_sta) { | 
|  | prev_sta = sta; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rx.sta = prev_sta; | 
|  | rx.sdata = prev_sta->sdata; | 
|  | ieee80211_prepare_and_rx_handle(&rx, skb, false); | 
|  |  | 
|  | prev_sta = sta; | 
|  | } | 
|  |  | 
|  | if (prev_sta) { | 
|  | rx.sta = prev_sta; | 
|  | rx.sdata = prev_sta->sdata; | 
|  |  | 
|  | if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) | 
|  | return; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | prev = NULL; | 
|  |  | 
|  | list_for_each_entry_rcu(sdata, &local->interfaces, list) { | 
|  | if (!ieee80211_sdata_running(sdata)) | 
|  | continue; | 
|  |  | 
|  | if (sdata->vif.type == NL80211_IFTYPE_MONITOR || | 
|  | sdata->vif.type == NL80211_IFTYPE_AP_VLAN) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * frame is destined for this interface, but if it's | 
|  | * not also for the previous one we handle that after | 
|  | * the loop to avoid copying the SKB once too much | 
|  | */ | 
|  |  | 
|  | if (!prev) { | 
|  | prev = sdata; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rx.sta = sta_info_get_bss(prev, hdr->addr2); | 
|  | rx.sdata = prev; | 
|  | ieee80211_prepare_and_rx_handle(&rx, skb, false); | 
|  |  | 
|  | prev = sdata; | 
|  | } | 
|  |  | 
|  | if (prev) { | 
|  | rx.sta = sta_info_get_bss(prev, hdr->addr2); | 
|  | rx.sdata = prev; | 
|  |  | 
|  | if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | out: | 
|  | dev_kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the receive path handler. It is called by a low level driver when an | 
|  | * 802.11 MPDU is received from the hardware. | 
|  | */ | 
|  | void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, | 
|  | struct sk_buff *skb, struct napi_struct *napi) | 
|  | { | 
|  | struct ieee80211_local *local = hw_to_local(hw); | 
|  | struct ieee80211_rate *rate = NULL; | 
|  | struct ieee80211_supported_band *sband; | 
|  | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); | 
|  |  | 
|  | WARN_ON_ONCE(softirq_count() == 0); | 
|  |  | 
|  | if (WARN_ON(status->band >= NUM_NL80211_BANDS)) | 
|  | goto drop; | 
|  |  | 
|  | sband = local->hw.wiphy->bands[status->band]; | 
|  | if (WARN_ON(!sband)) | 
|  | goto drop; | 
|  |  | 
|  | /* | 
|  | * If we're suspending, it is possible although not too likely | 
|  | * that we'd be receiving frames after having already partially | 
|  | * quiesced the stack. We can't process such frames then since | 
|  | * that might, for example, cause stations to be added or other | 
|  | * driver callbacks be invoked. | 
|  | */ | 
|  | if (unlikely(local->quiescing || local->suspended)) | 
|  | goto drop; | 
|  |  | 
|  | /* We might be during a HW reconfig, prevent Rx for the same reason */ | 
|  | if (unlikely(local->in_reconfig)) | 
|  | goto drop; | 
|  |  | 
|  | /* | 
|  | * The same happens when we're not even started, | 
|  | * but that's worth a warning. | 
|  | */ | 
|  | if (WARN_ON(!local->started)) | 
|  | goto drop; | 
|  |  | 
|  | if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { | 
|  | /* | 
|  | * Validate the rate, unless a PLCP error means that | 
|  | * we probably can't have a valid rate here anyway. | 
|  | */ | 
|  |  | 
|  | switch (status->encoding) { | 
|  | case RX_ENC_HT: | 
|  | /* | 
|  | * rate_idx is MCS index, which can be [0-76] | 
|  | * as documented on: | 
|  | * | 
|  | * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n | 
|  | * | 
|  | * Anything else would be some sort of driver or | 
|  | * hardware error. The driver should catch hardware | 
|  | * errors. | 
|  | */ | 
|  | if (WARN(status->rate_idx > 76, | 
|  | "Rate marked as an HT rate but passed " | 
|  | "status->rate_idx is not " | 
|  | "an MCS index [0-76]: %d (0x%02x)\n", | 
|  | status->rate_idx, | 
|  | status->rate_idx)) | 
|  | goto drop; | 
|  | break; | 
|  | case RX_ENC_VHT: | 
|  | if (WARN_ONCE(status->rate_idx > 9 || | 
|  | !status->nss || | 
|  | status->nss > 8, | 
|  | "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", | 
|  | status->rate_idx, status->nss)) | 
|  | goto drop; | 
|  | break; | 
|  | case RX_ENC_HE: | 
|  | if (WARN_ONCE(status->rate_idx > 11 || | 
|  | !status->nss || | 
|  | status->nss > 8, | 
|  | "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", | 
|  | status->rate_idx, status->nss)) | 
|  | goto drop; | 
|  | break; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | /* fall through */ | 
|  | case RX_ENC_LEGACY: | 
|  | if (WARN_ON(status->rate_idx >= sband->n_bitrates)) | 
|  | goto drop; | 
|  | rate = &sband->bitrates[status->rate_idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | status->rx_flags = 0; | 
|  |  | 
|  | /* | 
|  | * key references and virtual interfaces are protected using RCU | 
|  | * and this requires that we are in a read-side RCU section during | 
|  | * receive processing | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* | 
|  | * Frames with failed FCS/PLCP checksum are not returned, | 
|  | * all other frames are returned without radiotap header | 
|  | * if it was previously present. | 
|  | * Also, frames with less than 16 bytes are dropped. | 
|  | */ | 
|  | skb = ieee80211_rx_monitor(local, skb, rate); | 
|  | if (!skb) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ieee80211_tpt_led_trig_rx(local, | 
|  | ((struct ieee80211_hdr *)skb->data)->frame_control, | 
|  | skb->len); | 
|  |  | 
|  | __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return; | 
|  | drop: | 
|  | kfree_skb(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(ieee80211_rx_napi); | 
|  |  | 
|  | /* This is a version of the rx handler that can be called from hard irq | 
|  | * context. Post the skb on the queue and schedule the tasklet */ | 
|  | void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_local *local = hw_to_local(hw); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); | 
|  |  | 
|  | skb->pkt_type = IEEE80211_RX_MSG; | 
|  | skb_queue_tail(&local->skb_queue, skb); | 
|  | tasklet_schedule(&local->tasklet); | 
|  | } | 
|  | EXPORT_SYMBOL(ieee80211_rx_irqsafe); |