|  | /* | 
|  | * builtin-timechart.c - make an svg timechart of system activity | 
|  | * | 
|  | * (C) Copyright 2009 Intel Corporation | 
|  | * | 
|  | * Authors: | 
|  | *     Arjan van de Ven <arjan@linux.intel.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | */ | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <inttypes.h> | 
|  | #include <traceevent/event-parse.h> | 
|  |  | 
|  | #include "builtin.h" | 
|  |  | 
|  | #include "util/util.h" | 
|  |  | 
|  | #include "util/color.h" | 
|  | #include <linux/list.h> | 
|  | #include "util/cache.h" | 
|  | #include "util/evlist.h" | 
|  | #include "util/evsel.h" | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/time64.h> | 
|  | #include "util/symbol.h" | 
|  | #include "util/thread.h" | 
|  | #include "util/callchain.h" | 
|  |  | 
|  | #include "perf.h" | 
|  | #include "util/header.h" | 
|  | #include <subcmd/parse-options.h> | 
|  | #include "util/parse-events.h" | 
|  | #include "util/event.h" | 
|  | #include "util/session.h" | 
|  | #include "util/svghelper.h" | 
|  | #include "util/tool.h" | 
|  | #include "util/data.h" | 
|  | #include "util/debug.h" | 
|  |  | 
|  | #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE | 
|  | FILE *open_memstream(char **ptr, size_t *sizeloc); | 
|  | #endif | 
|  |  | 
|  | #define SUPPORT_OLD_POWER_EVENTS 1 | 
|  | #define PWR_EVENT_EXIT -1 | 
|  |  | 
|  | struct per_pid; | 
|  | struct power_event; | 
|  | struct wake_event; | 
|  |  | 
|  | struct timechart { | 
|  | struct perf_tool	tool; | 
|  | struct per_pid		*all_data; | 
|  | struct power_event	*power_events; | 
|  | struct wake_event	*wake_events; | 
|  | int			proc_num; | 
|  | unsigned int		numcpus; | 
|  | u64			min_freq,	/* Lowest CPU frequency seen */ | 
|  | max_freq,	/* Highest CPU frequency seen */ | 
|  | turbo_frequency, | 
|  | first_time, last_time; | 
|  | bool			power_only, | 
|  | tasks_only, | 
|  | with_backtrace, | 
|  | topology; | 
|  | bool			force; | 
|  | /* IO related settings */ | 
|  | bool			io_only, | 
|  | skip_eagain; | 
|  | u64			io_events; | 
|  | u64			min_time, | 
|  | merge_dist; | 
|  | }; | 
|  |  | 
|  | struct per_pidcomm; | 
|  | struct cpu_sample; | 
|  | struct io_sample; | 
|  |  | 
|  | /* | 
|  | * Datastructure layout: | 
|  | * We keep an list of "pid"s, matching the kernels notion of a task struct. | 
|  | * Each "pid" entry, has a list of "comm"s. | 
|  | *	this is because we want to track different programs different, while | 
|  | *	exec will reuse the original pid (by design). | 
|  | * Each comm has a list of samples that will be used to draw | 
|  | * final graph. | 
|  | */ | 
|  |  | 
|  | struct per_pid { | 
|  | struct per_pid *next; | 
|  |  | 
|  | int		pid; | 
|  | int		ppid; | 
|  |  | 
|  | u64		start_time; | 
|  | u64		end_time; | 
|  | u64		total_time; | 
|  | u64		total_bytes; | 
|  | int		display; | 
|  |  | 
|  | struct per_pidcomm *all; | 
|  | struct per_pidcomm *current; | 
|  | }; | 
|  |  | 
|  |  | 
|  | struct per_pidcomm { | 
|  | struct per_pidcomm *next; | 
|  |  | 
|  | u64		start_time; | 
|  | u64		end_time; | 
|  | u64		total_time; | 
|  | u64		max_bytes; | 
|  | u64		total_bytes; | 
|  |  | 
|  | int		Y; | 
|  | int		display; | 
|  |  | 
|  | long		state; | 
|  | u64		state_since; | 
|  |  | 
|  | char		*comm; | 
|  |  | 
|  | struct cpu_sample *samples; | 
|  | struct io_sample  *io_samples; | 
|  | }; | 
|  |  | 
|  | struct sample_wrapper { | 
|  | struct sample_wrapper *next; | 
|  |  | 
|  | u64		timestamp; | 
|  | unsigned char	data[0]; | 
|  | }; | 
|  |  | 
|  | #define TYPE_NONE	0 | 
|  | #define TYPE_RUNNING	1 | 
|  | #define TYPE_WAITING	2 | 
|  | #define TYPE_BLOCKED	3 | 
|  |  | 
|  | struct cpu_sample { | 
|  | struct cpu_sample *next; | 
|  |  | 
|  | u64 start_time; | 
|  | u64 end_time; | 
|  | int type; | 
|  | int cpu; | 
|  | const char *backtrace; | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | IOTYPE_READ, | 
|  | IOTYPE_WRITE, | 
|  | IOTYPE_SYNC, | 
|  | IOTYPE_TX, | 
|  | IOTYPE_RX, | 
|  | IOTYPE_POLL, | 
|  | }; | 
|  |  | 
|  | struct io_sample { | 
|  | struct io_sample *next; | 
|  |  | 
|  | u64 start_time; | 
|  | u64 end_time; | 
|  | u64 bytes; | 
|  | int type; | 
|  | int fd; | 
|  | int err; | 
|  | int merges; | 
|  | }; | 
|  |  | 
|  | #define CSTATE 1 | 
|  | #define PSTATE 2 | 
|  |  | 
|  | struct power_event { | 
|  | struct power_event *next; | 
|  | int type; | 
|  | int state; | 
|  | u64 start_time; | 
|  | u64 end_time; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | struct wake_event { | 
|  | struct wake_event *next; | 
|  | int waker; | 
|  | int wakee; | 
|  | u64 time; | 
|  | const char *backtrace; | 
|  | }; | 
|  |  | 
|  | struct process_filter { | 
|  | char			*name; | 
|  | int			pid; | 
|  | struct process_filter	*next; | 
|  | }; | 
|  |  | 
|  | static struct process_filter *process_filter; | 
|  |  | 
|  |  | 
|  | static struct per_pid *find_create_pid(struct timechart *tchart, int pid) | 
|  | { | 
|  | struct per_pid *cursor = tchart->all_data; | 
|  |  | 
|  | while (cursor) { | 
|  | if (cursor->pid == pid) | 
|  | return cursor; | 
|  | cursor = cursor->next; | 
|  | } | 
|  | cursor = zalloc(sizeof(*cursor)); | 
|  | assert(cursor != NULL); | 
|  | cursor->pid = pid; | 
|  | cursor->next = tchart->all_data; | 
|  | tchart->all_data = cursor; | 
|  | return cursor; | 
|  | } | 
|  |  | 
|  | static void pid_set_comm(struct timechart *tchart, int pid, char *comm) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | p = find_create_pid(tchart, pid); | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (c->comm && strcmp(c->comm, comm) == 0) { | 
|  | p->current = c; | 
|  | return; | 
|  | } | 
|  | if (!c->comm) { | 
|  | c->comm = strdup(comm); | 
|  | p->current = c; | 
|  | return; | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | c = zalloc(sizeof(*c)); | 
|  | assert(c != NULL); | 
|  | c->comm = strdup(comm); | 
|  | p->current = c; | 
|  | c->next = p->all; | 
|  | p->all = c; | 
|  | } | 
|  |  | 
|  | static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) | 
|  | { | 
|  | struct per_pid *p, *pp; | 
|  | p = find_create_pid(tchart, pid); | 
|  | pp = find_create_pid(tchart, ppid); | 
|  | p->ppid = ppid; | 
|  | if (pp->current && pp->current->comm && !p->current) | 
|  | pid_set_comm(tchart, pid, pp->current->comm); | 
|  |  | 
|  | p->start_time = timestamp; | 
|  | if (p->current && !p->current->start_time) { | 
|  | p->current->start_time = timestamp; | 
|  | p->current->state_since = timestamp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) | 
|  | { | 
|  | struct per_pid *p; | 
|  | p = find_create_pid(tchart, pid); | 
|  | p->end_time = timestamp; | 
|  | if (p->current) | 
|  | p->current->end_time = timestamp; | 
|  | } | 
|  |  | 
|  | static void pid_put_sample(struct timechart *tchart, int pid, int type, | 
|  | unsigned int cpu, u64 start, u64 end, | 
|  | const char *backtrace) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct cpu_sample *sample; | 
|  |  | 
|  | p = find_create_pid(tchart, pid); | 
|  | c = p->current; | 
|  | if (!c) { | 
|  | c = zalloc(sizeof(*c)); | 
|  | assert(c != NULL); | 
|  | p->current = c; | 
|  | c->next = p->all; | 
|  | p->all = c; | 
|  | } | 
|  |  | 
|  | sample = zalloc(sizeof(*sample)); | 
|  | assert(sample != NULL); | 
|  | sample->start_time = start; | 
|  | sample->end_time = end; | 
|  | sample->type = type; | 
|  | sample->next = c->samples; | 
|  | sample->cpu = cpu; | 
|  | sample->backtrace = backtrace; | 
|  | c->samples = sample; | 
|  |  | 
|  | if (sample->type == TYPE_RUNNING && end > start && start > 0) { | 
|  | c->total_time += (end-start); | 
|  | p->total_time += (end-start); | 
|  | } | 
|  |  | 
|  | if (c->start_time == 0 || c->start_time > start) | 
|  | c->start_time = start; | 
|  | if (p->start_time == 0 || p->start_time > start) | 
|  | p->start_time = start; | 
|  | } | 
|  |  | 
|  | #define MAX_CPUS 4096 | 
|  |  | 
|  | static u64 cpus_cstate_start_times[MAX_CPUS]; | 
|  | static int cpus_cstate_state[MAX_CPUS]; | 
|  | static u64 cpus_pstate_start_times[MAX_CPUS]; | 
|  | static u64 cpus_pstate_state[MAX_CPUS]; | 
|  |  | 
|  | static int process_comm_event(struct perf_tool *tool, | 
|  | union perf_event *event, | 
|  | struct perf_sample *sample __maybe_unused, | 
|  | struct machine *machine __maybe_unused) | 
|  | { | 
|  | struct timechart *tchart = container_of(tool, struct timechart, tool); | 
|  | pid_set_comm(tchart, event->comm.tid, event->comm.comm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_fork_event(struct perf_tool *tool, | 
|  | union perf_event *event, | 
|  | struct perf_sample *sample __maybe_unused, | 
|  | struct machine *machine __maybe_unused) | 
|  | { | 
|  | struct timechart *tchart = container_of(tool, struct timechart, tool); | 
|  | pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_exit_event(struct perf_tool *tool, | 
|  | union perf_event *event, | 
|  | struct perf_sample *sample __maybe_unused, | 
|  | struct machine *machine __maybe_unused) | 
|  | { | 
|  | struct timechart *tchart = container_of(tool, struct timechart, tool); | 
|  | pid_exit(tchart, event->fork.pid, event->fork.time); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef SUPPORT_OLD_POWER_EVENTS | 
|  | static int use_old_power_events; | 
|  | #endif | 
|  |  | 
|  | static void c_state_start(int cpu, u64 timestamp, int state) | 
|  | { | 
|  | cpus_cstate_start_times[cpu] = timestamp; | 
|  | cpus_cstate_state[cpu] = state; | 
|  | } | 
|  |  | 
|  | static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) | 
|  | { | 
|  | struct power_event *pwr = zalloc(sizeof(*pwr)); | 
|  |  | 
|  | if (!pwr) | 
|  | return; | 
|  |  | 
|  | pwr->state = cpus_cstate_state[cpu]; | 
|  | pwr->start_time = cpus_cstate_start_times[cpu]; | 
|  | pwr->end_time = timestamp; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = CSTATE; | 
|  | pwr->next = tchart->power_events; | 
|  |  | 
|  | tchart->power_events = pwr; | 
|  | } | 
|  |  | 
|  | static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) | 
|  | { | 
|  | struct power_event *pwr; | 
|  |  | 
|  | if (new_freq > 8000000) /* detect invalid data */ | 
|  | return; | 
|  |  | 
|  | pwr = zalloc(sizeof(*pwr)); | 
|  | if (!pwr) | 
|  | return; | 
|  |  | 
|  | pwr->state = cpus_pstate_state[cpu]; | 
|  | pwr->start_time = cpus_pstate_start_times[cpu]; | 
|  | pwr->end_time = timestamp; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = PSTATE; | 
|  | pwr->next = tchart->power_events; | 
|  |  | 
|  | if (!pwr->start_time) | 
|  | pwr->start_time = tchart->first_time; | 
|  |  | 
|  | tchart->power_events = pwr; | 
|  |  | 
|  | cpus_pstate_state[cpu] = new_freq; | 
|  | cpus_pstate_start_times[cpu] = timestamp; | 
|  |  | 
|  | if ((u64)new_freq > tchart->max_freq) | 
|  | tchart->max_freq = new_freq; | 
|  |  | 
|  | if (new_freq < tchart->min_freq || tchart->min_freq == 0) | 
|  | tchart->min_freq = new_freq; | 
|  |  | 
|  | if (new_freq == tchart->max_freq - 1000) | 
|  | tchart->turbo_frequency = tchart->max_freq; | 
|  | } | 
|  |  | 
|  | static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, | 
|  | int waker, int wakee, u8 flags, const char *backtrace) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct wake_event *we = zalloc(sizeof(*we)); | 
|  |  | 
|  | if (!we) | 
|  | return; | 
|  |  | 
|  | we->time = timestamp; | 
|  | we->waker = waker; | 
|  | we->backtrace = backtrace; | 
|  |  | 
|  | if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) | 
|  | we->waker = -1; | 
|  |  | 
|  | we->wakee = wakee; | 
|  | we->next = tchart->wake_events; | 
|  | tchart->wake_events = we; | 
|  | p = find_create_pid(tchart, we->wakee); | 
|  |  | 
|  | if (p && p->current && p->current->state == TYPE_NONE) { | 
|  | p->current->state_since = timestamp; | 
|  | p->current->state = TYPE_WAITING; | 
|  | } | 
|  | if (p && p->current && p->current->state == TYPE_BLOCKED) { | 
|  | pid_put_sample(tchart, p->pid, p->current->state, cpu, | 
|  | p->current->state_since, timestamp, NULL); | 
|  | p->current->state_since = timestamp; | 
|  | p->current->state = TYPE_WAITING; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, | 
|  | int prev_pid, int next_pid, u64 prev_state, | 
|  | const char *backtrace) | 
|  | { | 
|  | struct per_pid *p = NULL, *prev_p; | 
|  |  | 
|  | prev_p = find_create_pid(tchart, prev_pid); | 
|  |  | 
|  | p = find_create_pid(tchart, next_pid); | 
|  |  | 
|  | if (prev_p->current && prev_p->current->state != TYPE_NONE) | 
|  | pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, | 
|  | prev_p->current->state_since, timestamp, | 
|  | backtrace); | 
|  | if (p && p->current) { | 
|  | if (p->current->state != TYPE_NONE) | 
|  | pid_put_sample(tchart, next_pid, p->current->state, cpu, | 
|  | p->current->state_since, timestamp, | 
|  | backtrace); | 
|  |  | 
|  | p->current->state_since = timestamp; | 
|  | p->current->state = TYPE_RUNNING; | 
|  | } | 
|  |  | 
|  | if (prev_p->current) { | 
|  | prev_p->current->state = TYPE_NONE; | 
|  | prev_p->current->state_since = timestamp; | 
|  | if (prev_state & 2) | 
|  | prev_p->current->state = TYPE_BLOCKED; | 
|  | if (prev_state == 0) | 
|  | prev_p->current->state = TYPE_WAITING; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *cat_backtrace(union perf_event *event, | 
|  | struct perf_sample *sample, | 
|  | struct machine *machine) | 
|  | { | 
|  | struct addr_location al; | 
|  | unsigned int i; | 
|  | char *p = NULL; | 
|  | size_t p_len; | 
|  | u8 cpumode = PERF_RECORD_MISC_USER; | 
|  | struct addr_location tal; | 
|  | struct ip_callchain *chain = sample->callchain; | 
|  | FILE *f = open_memstream(&p, &p_len); | 
|  |  | 
|  | if (!f) { | 
|  | perror("open_memstream error"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!chain) | 
|  | goto exit; | 
|  |  | 
|  | if (machine__resolve(machine, &al, sample) < 0) { | 
|  | fprintf(stderr, "problem processing %d event, skipping it.\n", | 
|  | event->header.type); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < chain->nr; i++) { | 
|  | u64 ip; | 
|  |  | 
|  | if (callchain_param.order == ORDER_CALLEE) | 
|  | ip = chain->ips[i]; | 
|  | else | 
|  | ip = chain->ips[chain->nr - i - 1]; | 
|  |  | 
|  | if (ip >= PERF_CONTEXT_MAX) { | 
|  | switch (ip) { | 
|  | case PERF_CONTEXT_HV: | 
|  | cpumode = PERF_RECORD_MISC_HYPERVISOR; | 
|  | break; | 
|  | case PERF_CONTEXT_KERNEL: | 
|  | cpumode = PERF_RECORD_MISC_KERNEL; | 
|  | break; | 
|  | case PERF_CONTEXT_USER: | 
|  | cpumode = PERF_RECORD_MISC_USER; | 
|  | break; | 
|  | default: | 
|  | pr_debug("invalid callchain context: " | 
|  | "%"PRId64"\n", (s64) ip); | 
|  |  | 
|  | /* | 
|  | * It seems the callchain is corrupted. | 
|  | * Discard all. | 
|  | */ | 
|  | zfree(&p); | 
|  | goto exit_put; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tal.filtered = 0; | 
|  | if (thread__find_symbol(al.thread, cpumode, ip, &tal)) | 
|  | fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name); | 
|  | else | 
|  | fprintf(f, "..... %016" PRIx64 "\n", ip); | 
|  | } | 
|  | exit_put: | 
|  | addr_location__put(&al); | 
|  | exit: | 
|  | fclose(f); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | typedef int (*tracepoint_handler)(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace); | 
|  |  | 
|  | static int process_sample_event(struct perf_tool *tool, | 
|  | union perf_event *event, | 
|  | struct perf_sample *sample, | 
|  | struct perf_evsel *evsel, | 
|  | struct machine *machine) | 
|  | { | 
|  | struct timechart *tchart = container_of(tool, struct timechart, tool); | 
|  |  | 
|  | if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { | 
|  | if (!tchart->first_time || tchart->first_time > sample->time) | 
|  | tchart->first_time = sample->time; | 
|  | if (tchart->last_time < sample->time) | 
|  | tchart->last_time = sample->time; | 
|  | } | 
|  |  | 
|  | if (evsel->handler != NULL) { | 
|  | tracepoint_handler f = evsel->handler; | 
|  | return f(tchart, evsel, sample, | 
|  | cat_backtrace(event, sample, machine)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_sample_cpu_idle(struct timechart *tchart __maybe_unused, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace __maybe_unused) | 
|  | { | 
|  | u32 state = perf_evsel__intval(evsel, sample, "state"); | 
|  | u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); | 
|  |  | 
|  | if (state == (u32)PWR_EVENT_EXIT) | 
|  | c_state_end(tchart, cpu_id, sample->time); | 
|  | else | 
|  | c_state_start(cpu_id, sample->time, state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_sample_cpu_frequency(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace __maybe_unused) | 
|  | { | 
|  | u32 state = perf_evsel__intval(evsel, sample, "state"); | 
|  | u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); | 
|  |  | 
|  | p_state_change(tchart, cpu_id, sample->time, state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_sample_sched_wakeup(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace) | 
|  | { | 
|  | u8 flags = perf_evsel__intval(evsel, sample, "common_flags"); | 
|  | int waker = perf_evsel__intval(evsel, sample, "common_pid"); | 
|  | int wakee = perf_evsel__intval(evsel, sample, "pid"); | 
|  |  | 
|  | sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_sample_sched_switch(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace) | 
|  | { | 
|  | int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"); | 
|  | int next_pid = perf_evsel__intval(evsel, sample, "next_pid"); | 
|  | u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); | 
|  |  | 
|  | sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, | 
|  | prev_state, backtrace); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef SUPPORT_OLD_POWER_EVENTS | 
|  | static int | 
|  | process_sample_power_start(struct timechart *tchart __maybe_unused, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace __maybe_unused) | 
|  | { | 
|  | u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); | 
|  | u64 value = perf_evsel__intval(evsel, sample, "value"); | 
|  |  | 
|  | c_state_start(cpu_id, sample->time, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_sample_power_end(struct timechart *tchart, | 
|  | struct perf_evsel *evsel __maybe_unused, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace __maybe_unused) | 
|  | { | 
|  | c_state_end(tchart, sample->cpu, sample->time); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_sample_power_frequency(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample, | 
|  | const char *backtrace __maybe_unused) | 
|  | { | 
|  | u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); | 
|  | u64 value = perf_evsel__intval(evsel, sample, "value"); | 
|  |  | 
|  | p_state_change(tchart, cpu_id, sample->time, value); | 
|  | return 0; | 
|  | } | 
|  | #endif /* SUPPORT_OLD_POWER_EVENTS */ | 
|  |  | 
|  | /* | 
|  | * After the last sample we need to wrap up the current C/P state | 
|  | * and close out each CPU for these. | 
|  | */ | 
|  | static void end_sample_processing(struct timechart *tchart) | 
|  | { | 
|  | u64 cpu; | 
|  | struct power_event *pwr; | 
|  |  | 
|  | for (cpu = 0; cpu <= tchart->numcpus; cpu++) { | 
|  | /* C state */ | 
|  | #if 0 | 
|  | pwr = zalloc(sizeof(*pwr)); | 
|  | if (!pwr) | 
|  | return; | 
|  |  | 
|  | pwr->state = cpus_cstate_state[cpu]; | 
|  | pwr->start_time = cpus_cstate_start_times[cpu]; | 
|  | pwr->end_time = tchart->last_time; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = CSTATE; | 
|  | pwr->next = tchart->power_events; | 
|  |  | 
|  | tchart->power_events = pwr; | 
|  | #endif | 
|  | /* P state */ | 
|  |  | 
|  | pwr = zalloc(sizeof(*pwr)); | 
|  | if (!pwr) | 
|  | return; | 
|  |  | 
|  | pwr->state = cpus_pstate_state[cpu]; | 
|  | pwr->start_time = cpus_pstate_start_times[cpu]; | 
|  | pwr->end_time = tchart->last_time; | 
|  | pwr->cpu = cpu; | 
|  | pwr->type = PSTATE; | 
|  | pwr->next = tchart->power_events; | 
|  |  | 
|  | if (!pwr->start_time) | 
|  | pwr->start_time = tchart->first_time; | 
|  | if (!pwr->state) | 
|  | pwr->state = tchart->min_freq; | 
|  | tchart->power_events = pwr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, | 
|  | u64 start, int fd) | 
|  | { | 
|  | struct per_pid *p = find_create_pid(tchart, pid); | 
|  | struct per_pidcomm *c = p->current; | 
|  | struct io_sample *sample; | 
|  | struct io_sample *prev; | 
|  |  | 
|  | if (!c) { | 
|  | c = zalloc(sizeof(*c)); | 
|  | if (!c) | 
|  | return -ENOMEM; | 
|  | p->current = c; | 
|  | c->next = p->all; | 
|  | p->all = c; | 
|  | } | 
|  |  | 
|  | prev = c->io_samples; | 
|  |  | 
|  | if (prev && prev->start_time && !prev->end_time) { | 
|  | pr_warning("Skip invalid start event: " | 
|  | "previous event already started!\n"); | 
|  |  | 
|  | /* remove previous event that has been started, | 
|  | * we are not sure we will ever get an end for it */ | 
|  | c->io_samples = prev->next; | 
|  | free(prev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sample = zalloc(sizeof(*sample)); | 
|  | if (!sample) | 
|  | return -ENOMEM; | 
|  | sample->start_time = start; | 
|  | sample->type = type; | 
|  | sample->fd = fd; | 
|  | sample->next = c->io_samples; | 
|  | c->io_samples = sample; | 
|  |  | 
|  | if (c->start_time == 0 || c->start_time > start) | 
|  | c->start_time = start; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pid_end_io_sample(struct timechart *tchart, int pid, int type, | 
|  | u64 end, long ret) | 
|  | { | 
|  | struct per_pid *p = find_create_pid(tchart, pid); | 
|  | struct per_pidcomm *c = p->current; | 
|  | struct io_sample *sample, *prev; | 
|  |  | 
|  | if (!c) { | 
|  | pr_warning("Invalid pidcomm!\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | sample = c->io_samples; | 
|  |  | 
|  | if (!sample) /* skip partially captured events */ | 
|  | return 0; | 
|  |  | 
|  | if (sample->end_time) { | 
|  | pr_warning("Skip invalid end event: " | 
|  | "previous event already ended!\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sample->type != type) { | 
|  | pr_warning("Skip invalid end event: invalid event type!\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sample->end_time = end; | 
|  | prev = sample->next; | 
|  |  | 
|  | /* we want to be able to see small and fast transfers, so make them | 
|  | * at least min_time long, but don't overlap them */ | 
|  | if (sample->end_time - sample->start_time < tchart->min_time) | 
|  | sample->end_time = sample->start_time + tchart->min_time; | 
|  | if (prev && sample->start_time < prev->end_time) { | 
|  | if (prev->err) /* try to make errors more visible */ | 
|  | sample->start_time = prev->end_time; | 
|  | else | 
|  | prev->end_time = sample->start_time; | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | sample->err = ret; | 
|  | } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || | 
|  | type == IOTYPE_TX || type == IOTYPE_RX) { | 
|  |  | 
|  | if ((u64)ret > c->max_bytes) | 
|  | c->max_bytes = ret; | 
|  |  | 
|  | c->total_bytes += ret; | 
|  | p->total_bytes += ret; | 
|  | sample->bytes = ret; | 
|  | } | 
|  |  | 
|  | /* merge two requests to make svg smaller and render-friendly */ | 
|  | if (prev && | 
|  | prev->type == sample->type && | 
|  | prev->err == sample->err && | 
|  | prev->fd == sample->fd && | 
|  | prev->end_time + tchart->merge_dist >= sample->start_time) { | 
|  |  | 
|  | sample->bytes += prev->bytes; | 
|  | sample->merges += prev->merges + 1; | 
|  |  | 
|  | sample->start_time = prev->start_time; | 
|  | sample->next = prev->next; | 
|  | free(prev); | 
|  |  | 
|  | if (!sample->err && sample->bytes > c->max_bytes) | 
|  | c->max_bytes = sample->bytes; | 
|  | } | 
|  |  | 
|  | tchart->io_events++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_enter_read(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long fd = perf_evsel__intval(evsel, sample, "fd"); | 
|  | return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, | 
|  | sample->time, fd); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_exit_read(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long ret = perf_evsel__intval(evsel, sample, "ret"); | 
|  | return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, | 
|  | sample->time, ret); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_enter_write(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long fd = perf_evsel__intval(evsel, sample, "fd"); | 
|  | return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, | 
|  | sample->time, fd); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_exit_write(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long ret = perf_evsel__intval(evsel, sample, "ret"); | 
|  | return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, | 
|  | sample->time, ret); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_enter_sync(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long fd = perf_evsel__intval(evsel, sample, "fd"); | 
|  | return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, | 
|  | sample->time, fd); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_exit_sync(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long ret = perf_evsel__intval(evsel, sample, "ret"); | 
|  | return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, | 
|  | sample->time, ret); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_enter_tx(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long fd = perf_evsel__intval(evsel, sample, "fd"); | 
|  | return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, | 
|  | sample->time, fd); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_exit_tx(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long ret = perf_evsel__intval(evsel, sample, "ret"); | 
|  | return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, | 
|  | sample->time, ret); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_enter_rx(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long fd = perf_evsel__intval(evsel, sample, "fd"); | 
|  | return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, | 
|  | sample->time, fd); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_exit_rx(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long ret = perf_evsel__intval(evsel, sample, "ret"); | 
|  | return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, | 
|  | sample->time, ret); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_enter_poll(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long fd = perf_evsel__intval(evsel, sample, "fd"); | 
|  | return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, | 
|  | sample->time, fd); | 
|  | } | 
|  |  | 
|  | static int | 
|  | process_exit_poll(struct timechart *tchart, | 
|  | struct perf_evsel *evsel, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | long ret = perf_evsel__intval(evsel, sample, "ret"); | 
|  | return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, | 
|  | sample->time, ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sort the pid datastructure | 
|  | */ | 
|  | static void sort_pids(struct timechart *tchart) | 
|  | { | 
|  | struct per_pid *new_list, *p, *cursor, *prev; | 
|  | /* sort by ppid first, then by pid, lowest to highest */ | 
|  |  | 
|  | new_list = NULL; | 
|  |  | 
|  | while (tchart->all_data) { | 
|  | p = tchart->all_data; | 
|  | tchart->all_data = p->next; | 
|  | p->next = NULL; | 
|  |  | 
|  | if (new_list == NULL) { | 
|  | new_list = p; | 
|  | p->next = NULL; | 
|  | continue; | 
|  | } | 
|  | prev = NULL; | 
|  | cursor = new_list; | 
|  | while (cursor) { | 
|  | if (cursor->ppid > p->ppid || | 
|  | (cursor->ppid == p->ppid && cursor->pid > p->pid)) { | 
|  | /* must insert before */ | 
|  | if (prev) { | 
|  | p->next = prev->next; | 
|  | prev->next = p; | 
|  | cursor = NULL; | 
|  | continue; | 
|  | } else { | 
|  | p->next = new_list; | 
|  | new_list = p; | 
|  | cursor = NULL; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | prev = cursor; | 
|  | cursor = cursor->next; | 
|  | if (!cursor) | 
|  | prev->next = p; | 
|  | } | 
|  | } | 
|  | tchart->all_data = new_list; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void draw_c_p_states(struct timechart *tchart) | 
|  | { | 
|  | struct power_event *pwr; | 
|  | pwr = tchart->power_events; | 
|  |  | 
|  | /* | 
|  | * two pass drawing so that the P state bars are on top of the C state blocks | 
|  | */ | 
|  | while (pwr) { | 
|  | if (pwr->type == CSTATE) | 
|  | svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); | 
|  | pwr = pwr->next; | 
|  | } | 
|  |  | 
|  | pwr = tchart->power_events; | 
|  | while (pwr) { | 
|  | if (pwr->type == PSTATE) { | 
|  | if (!pwr->state) | 
|  | pwr->state = tchart->min_freq; | 
|  | svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); | 
|  | } | 
|  | pwr = pwr->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_wakeups(struct timechart *tchart) | 
|  | { | 
|  | struct wake_event *we; | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  |  | 
|  | we = tchart->wake_events; | 
|  | while (we) { | 
|  | int from = 0, to = 0; | 
|  | char *task_from = NULL, *task_to = NULL; | 
|  |  | 
|  | /* locate the column of the waker and wakee */ | 
|  | p = tchart->all_data; | 
|  | while (p) { | 
|  | if (p->pid == we->waker || p->pid == we->wakee) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { | 
|  | if (p->pid == we->waker && !from) { | 
|  | from = c->Y; | 
|  | task_from = strdup(c->comm); | 
|  | } | 
|  | if (p->pid == we->wakee && !to) { | 
|  | to = c->Y; | 
|  | task_to = strdup(c->comm); | 
|  | } | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (p->pid == we->waker && !from) { | 
|  | from = c->Y; | 
|  | task_from = strdup(c->comm); | 
|  | } | 
|  | if (p->pid == we->wakee && !to) { | 
|  | to = c->Y; | 
|  | task_to = strdup(c->comm); | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  |  | 
|  | if (!task_from) { | 
|  | task_from = malloc(40); | 
|  | sprintf(task_from, "[%i]", we->waker); | 
|  | } | 
|  | if (!task_to) { | 
|  | task_to = malloc(40); | 
|  | sprintf(task_to, "[%i]", we->wakee); | 
|  | } | 
|  |  | 
|  | if (we->waker == -1) | 
|  | svg_interrupt(we->time, to, we->backtrace); | 
|  | else if (from && to && abs(from - to) == 1) | 
|  | svg_wakeline(we->time, from, to, we->backtrace); | 
|  | else | 
|  | svg_partial_wakeline(we->time, from, task_from, to, | 
|  | task_to, we->backtrace); | 
|  | we = we->next; | 
|  |  | 
|  | free(task_from); | 
|  | free(task_to); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_cpu_usage(struct timechart *tchart) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct cpu_sample *sample; | 
|  | p = tchart->all_data; | 
|  | while (p) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | sample = c->samples; | 
|  | while (sample) { | 
|  | if (sample->type == TYPE_RUNNING) { | 
|  | svg_process(sample->cpu, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | p->pid, | 
|  | c->comm, | 
|  | sample->backtrace); | 
|  | } | 
|  |  | 
|  | sample = sample->next; | 
|  | } | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_io_bars(struct timechart *tchart) | 
|  | { | 
|  | const char *suf; | 
|  | double bytes; | 
|  | char comm[256]; | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct io_sample *sample; | 
|  | int Y = 1; | 
|  |  | 
|  | p = tchart->all_data; | 
|  | while (p) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (!c->display) { | 
|  | c->Y = 0; | 
|  | c = c->next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | svg_box(Y, c->start_time, c->end_time, "process3"); | 
|  | sample = c->io_samples; | 
|  | for (sample = c->io_samples; sample; sample = sample->next) { | 
|  | double h = (double)sample->bytes / c->max_bytes; | 
|  |  | 
|  | if (tchart->skip_eagain && | 
|  | sample->err == -EAGAIN) | 
|  | continue; | 
|  |  | 
|  | if (sample->err) | 
|  | h = 1; | 
|  |  | 
|  | if (sample->type == IOTYPE_SYNC) | 
|  | svg_fbox(Y, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | 1, | 
|  | sample->err ? "error" : "sync", | 
|  | sample->fd, | 
|  | sample->err, | 
|  | sample->merges); | 
|  | else if (sample->type == IOTYPE_POLL) | 
|  | svg_fbox(Y, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | 1, | 
|  | sample->err ? "error" : "poll", | 
|  | sample->fd, | 
|  | sample->err, | 
|  | sample->merges); | 
|  | else if (sample->type == IOTYPE_READ) | 
|  | svg_ubox(Y, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | h, | 
|  | sample->err ? "error" : "disk", | 
|  | sample->fd, | 
|  | sample->err, | 
|  | sample->merges); | 
|  | else if (sample->type == IOTYPE_WRITE) | 
|  | svg_lbox(Y, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | h, | 
|  | sample->err ? "error" : "disk", | 
|  | sample->fd, | 
|  | sample->err, | 
|  | sample->merges); | 
|  | else if (sample->type == IOTYPE_RX) | 
|  | svg_ubox(Y, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | h, | 
|  | sample->err ? "error" : "net", | 
|  | sample->fd, | 
|  | sample->err, | 
|  | sample->merges); | 
|  | else if (sample->type == IOTYPE_TX) | 
|  | svg_lbox(Y, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | h, | 
|  | sample->err ? "error" : "net", | 
|  | sample->fd, | 
|  | sample->err, | 
|  | sample->merges); | 
|  | } | 
|  |  | 
|  | suf = ""; | 
|  | bytes = c->total_bytes; | 
|  | if (bytes > 1024) { | 
|  | bytes = bytes / 1024; | 
|  | suf = "K"; | 
|  | } | 
|  | if (bytes > 1024) { | 
|  | bytes = bytes / 1024; | 
|  | suf = "M"; | 
|  | } | 
|  | if (bytes > 1024) { | 
|  | bytes = bytes / 1024; | 
|  | suf = "G"; | 
|  | } | 
|  |  | 
|  |  | 
|  | sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); | 
|  | svg_text(Y, c->start_time, comm); | 
|  |  | 
|  | c->Y = Y; | 
|  | Y++; | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void draw_process_bars(struct timechart *tchart) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | struct cpu_sample *sample; | 
|  | int Y = 0; | 
|  |  | 
|  | Y = 2 * tchart->numcpus + 2; | 
|  |  | 
|  | p = tchart->all_data; | 
|  | while (p) { | 
|  | c = p->all; | 
|  | while (c) { | 
|  | if (!c->display) { | 
|  | c->Y = 0; | 
|  | c = c->next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | svg_box(Y, c->start_time, c->end_time, "process"); | 
|  | sample = c->samples; | 
|  | while (sample) { | 
|  | if (sample->type == TYPE_RUNNING) | 
|  | svg_running(Y, sample->cpu, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | sample->backtrace); | 
|  | if (sample->type == TYPE_BLOCKED) | 
|  | svg_blocked(Y, sample->cpu, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | sample->backtrace); | 
|  | if (sample->type == TYPE_WAITING) | 
|  | svg_waiting(Y, sample->cpu, | 
|  | sample->start_time, | 
|  | sample->end_time, | 
|  | sample->backtrace); | 
|  | sample = sample->next; | 
|  | } | 
|  |  | 
|  | if (c->comm) { | 
|  | char comm[256]; | 
|  | if (c->total_time > 5000000000) /* 5 seconds */ | 
|  | sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC); | 
|  | else | 
|  | sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC); | 
|  |  | 
|  | svg_text(Y, c->start_time, comm); | 
|  | } | 
|  | c->Y = Y; | 
|  | Y++; | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void add_process_filter(const char *string) | 
|  | { | 
|  | int pid = strtoull(string, NULL, 10); | 
|  | struct process_filter *filt = malloc(sizeof(*filt)); | 
|  |  | 
|  | if (!filt) | 
|  | return; | 
|  |  | 
|  | filt->name = strdup(string); | 
|  | filt->pid  = pid; | 
|  | filt->next = process_filter; | 
|  |  | 
|  | process_filter = filt; | 
|  | } | 
|  |  | 
|  | static int passes_filter(struct per_pid *p, struct per_pidcomm *c) | 
|  | { | 
|  | struct process_filter *filt; | 
|  | if (!process_filter) | 
|  | return 1; | 
|  |  | 
|  | filt = process_filter; | 
|  | while (filt) { | 
|  | if (filt->pid && p->pid == filt->pid) | 
|  | return 1; | 
|  | if (strcmp(filt->name, c->comm) == 0) | 
|  | return 1; | 
|  | filt = filt->next; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int determine_display_tasks_filtered(struct timechart *tchart) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | int count = 0; | 
|  |  | 
|  | p = tchart->all_data; | 
|  | while (p) { | 
|  | p->display = 0; | 
|  | if (p->start_time == 1) | 
|  | p->start_time = tchart->first_time; | 
|  |  | 
|  | /* no exit marker, task kept running to the end */ | 
|  | if (p->end_time == 0) | 
|  | p->end_time = tchart->last_time; | 
|  |  | 
|  | c = p->all; | 
|  |  | 
|  | while (c) { | 
|  | c->display = 0; | 
|  |  | 
|  | if (c->start_time == 1) | 
|  | c->start_time = tchart->first_time; | 
|  |  | 
|  | if (passes_filter(p, c)) { | 
|  | c->display = 1; | 
|  | p->display = 1; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (c->end_time == 0) | 
|  | c->end_time = tchart->last_time; | 
|  |  | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int determine_display_tasks(struct timechart *tchart, u64 threshold) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | int count = 0; | 
|  |  | 
|  | p = tchart->all_data; | 
|  | while (p) { | 
|  | p->display = 0; | 
|  | if (p->start_time == 1) | 
|  | p->start_time = tchart->first_time; | 
|  |  | 
|  | /* no exit marker, task kept running to the end */ | 
|  | if (p->end_time == 0) | 
|  | p->end_time = tchart->last_time; | 
|  | if (p->total_time >= threshold) | 
|  | p->display = 1; | 
|  |  | 
|  | c = p->all; | 
|  |  | 
|  | while (c) { | 
|  | c->display = 0; | 
|  |  | 
|  | if (c->start_time == 1) | 
|  | c->start_time = tchart->first_time; | 
|  |  | 
|  | if (c->total_time >= threshold) { | 
|  | c->display = 1; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (c->end_time == 0) | 
|  | c->end_time = tchart->last_time; | 
|  |  | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) | 
|  | { | 
|  | struct per_pid *p; | 
|  | struct per_pidcomm *c; | 
|  | int count = 0; | 
|  |  | 
|  | p = timechart->all_data; | 
|  | while (p) { | 
|  | /* no exit marker, task kept running to the end */ | 
|  | if (p->end_time == 0) | 
|  | p->end_time = timechart->last_time; | 
|  |  | 
|  | c = p->all; | 
|  |  | 
|  | while (c) { | 
|  | c->display = 0; | 
|  |  | 
|  | if (c->total_bytes >= threshold) { | 
|  | c->display = 1; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (c->end_time == 0) | 
|  | c->end_time = timechart->last_time; | 
|  |  | 
|  | c = c->next; | 
|  | } | 
|  | p = p->next; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #define BYTES_THRESH (1 * 1024 * 1024) | 
|  | #define TIME_THRESH 10000000 | 
|  |  | 
|  | static void write_svg_file(struct timechart *tchart, const char *filename) | 
|  | { | 
|  | u64 i; | 
|  | int count; | 
|  | int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; | 
|  |  | 
|  | if (tchart->power_only) | 
|  | tchart->proc_num = 0; | 
|  |  | 
|  | /* We'd like to show at least proc_num tasks; | 
|  | * be less picky if we have fewer */ | 
|  | do { | 
|  | if (process_filter) | 
|  | count = determine_display_tasks_filtered(tchart); | 
|  | else if (tchart->io_events) | 
|  | count = determine_display_io_tasks(tchart, thresh); | 
|  | else | 
|  | count = determine_display_tasks(tchart, thresh); | 
|  | thresh /= 10; | 
|  | } while (!process_filter && thresh && count < tchart->proc_num); | 
|  |  | 
|  | if (!tchart->proc_num) | 
|  | count = 0; | 
|  |  | 
|  | if (tchart->io_events) { | 
|  | open_svg(filename, 0, count, tchart->first_time, tchart->last_time); | 
|  |  | 
|  | svg_time_grid(0.5); | 
|  | svg_io_legenda(); | 
|  |  | 
|  | draw_io_bars(tchart); | 
|  | } else { | 
|  | open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); | 
|  |  | 
|  | svg_time_grid(0); | 
|  |  | 
|  | svg_legenda(); | 
|  |  | 
|  | for (i = 0; i < tchart->numcpus; i++) | 
|  | svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); | 
|  |  | 
|  | draw_cpu_usage(tchart); | 
|  | if (tchart->proc_num) | 
|  | draw_process_bars(tchart); | 
|  | if (!tchart->tasks_only) | 
|  | draw_c_p_states(tchart); | 
|  | if (tchart->proc_num) | 
|  | draw_wakeups(tchart); | 
|  | } | 
|  |  | 
|  | svg_close(); | 
|  | } | 
|  |  | 
|  | static int process_header(struct perf_file_section *section __maybe_unused, | 
|  | struct perf_header *ph, | 
|  | int feat, | 
|  | int fd __maybe_unused, | 
|  | void *data) | 
|  | { | 
|  | struct timechart *tchart = data; | 
|  |  | 
|  | switch (feat) { | 
|  | case HEADER_NRCPUS: | 
|  | tchart->numcpus = ph->env.nr_cpus_avail; | 
|  | break; | 
|  |  | 
|  | case HEADER_CPU_TOPOLOGY: | 
|  | if (!tchart->topology) | 
|  | break; | 
|  |  | 
|  | if (svg_build_topology_map(ph->env.sibling_cores, | 
|  | ph->env.nr_sibling_cores, | 
|  | ph->env.sibling_threads, | 
|  | ph->env.nr_sibling_threads)) | 
|  | fprintf(stderr, "problem building topology\n"); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __cmd_timechart(struct timechart *tchart, const char *output_name) | 
|  | { | 
|  | const struct perf_evsel_str_handler power_tracepoints[] = { | 
|  | { "power:cpu_idle",		process_sample_cpu_idle }, | 
|  | { "power:cpu_frequency",	process_sample_cpu_frequency }, | 
|  | { "sched:sched_wakeup",		process_sample_sched_wakeup }, | 
|  | { "sched:sched_switch",		process_sample_sched_switch }, | 
|  | #ifdef SUPPORT_OLD_POWER_EVENTS | 
|  | { "power:power_start",		process_sample_power_start }, | 
|  | { "power:power_end",		process_sample_power_end }, | 
|  | { "power:power_frequency",	process_sample_power_frequency }, | 
|  | #endif | 
|  |  | 
|  | { "syscalls:sys_enter_read",		process_enter_read }, | 
|  | { "syscalls:sys_enter_pread64",		process_enter_read }, | 
|  | { "syscalls:sys_enter_readv",		process_enter_read }, | 
|  | { "syscalls:sys_enter_preadv",		process_enter_read }, | 
|  | { "syscalls:sys_enter_write",		process_enter_write }, | 
|  | { "syscalls:sys_enter_pwrite64",	process_enter_write }, | 
|  | { "syscalls:sys_enter_writev",		process_enter_write }, | 
|  | { "syscalls:sys_enter_pwritev",		process_enter_write }, | 
|  | { "syscalls:sys_enter_sync",		process_enter_sync }, | 
|  | { "syscalls:sys_enter_sync_file_range",	process_enter_sync }, | 
|  | { "syscalls:sys_enter_fsync",		process_enter_sync }, | 
|  | { "syscalls:sys_enter_msync",		process_enter_sync }, | 
|  | { "syscalls:sys_enter_recvfrom",	process_enter_rx }, | 
|  | { "syscalls:sys_enter_recvmmsg",	process_enter_rx }, | 
|  | { "syscalls:sys_enter_recvmsg",		process_enter_rx }, | 
|  | { "syscalls:sys_enter_sendto",		process_enter_tx }, | 
|  | { "syscalls:sys_enter_sendmsg",		process_enter_tx }, | 
|  | { "syscalls:sys_enter_sendmmsg",	process_enter_tx }, | 
|  | { "syscalls:sys_enter_epoll_pwait",	process_enter_poll }, | 
|  | { "syscalls:sys_enter_epoll_wait",	process_enter_poll }, | 
|  | { "syscalls:sys_enter_poll",		process_enter_poll }, | 
|  | { "syscalls:sys_enter_ppoll",		process_enter_poll }, | 
|  | { "syscalls:sys_enter_pselect6",	process_enter_poll }, | 
|  | { "syscalls:sys_enter_select",		process_enter_poll }, | 
|  |  | 
|  | { "syscalls:sys_exit_read",		process_exit_read }, | 
|  | { "syscalls:sys_exit_pread64",		process_exit_read }, | 
|  | { "syscalls:sys_exit_readv",		process_exit_read }, | 
|  | { "syscalls:sys_exit_preadv",		process_exit_read }, | 
|  | { "syscalls:sys_exit_write",		process_exit_write }, | 
|  | { "syscalls:sys_exit_pwrite64",		process_exit_write }, | 
|  | { "syscalls:sys_exit_writev",		process_exit_write }, | 
|  | { "syscalls:sys_exit_pwritev",		process_exit_write }, | 
|  | { "syscalls:sys_exit_sync",		process_exit_sync }, | 
|  | { "syscalls:sys_exit_sync_file_range",	process_exit_sync }, | 
|  | { "syscalls:sys_exit_fsync",		process_exit_sync }, | 
|  | { "syscalls:sys_exit_msync",		process_exit_sync }, | 
|  | { "syscalls:sys_exit_recvfrom",		process_exit_rx }, | 
|  | { "syscalls:sys_exit_recvmmsg",		process_exit_rx }, | 
|  | { "syscalls:sys_exit_recvmsg",		process_exit_rx }, | 
|  | { "syscalls:sys_exit_sendto",		process_exit_tx }, | 
|  | { "syscalls:sys_exit_sendmsg",		process_exit_tx }, | 
|  | { "syscalls:sys_exit_sendmmsg",		process_exit_tx }, | 
|  | { "syscalls:sys_exit_epoll_pwait",	process_exit_poll }, | 
|  | { "syscalls:sys_exit_epoll_wait",	process_exit_poll }, | 
|  | { "syscalls:sys_exit_poll",		process_exit_poll }, | 
|  | { "syscalls:sys_exit_ppoll",		process_exit_poll }, | 
|  | { "syscalls:sys_exit_pselect6",		process_exit_poll }, | 
|  | { "syscalls:sys_exit_select",		process_exit_poll }, | 
|  | }; | 
|  | struct perf_data data = { | 
|  | .file      = { | 
|  | .path = input_name, | 
|  | }, | 
|  | .mode      = PERF_DATA_MODE_READ, | 
|  | .force     = tchart->force, | 
|  | }; | 
|  |  | 
|  | struct perf_session *session = perf_session__new(&data, false, | 
|  | &tchart->tool); | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (session == NULL) | 
|  | return -1; | 
|  |  | 
|  | symbol__init(&session->header.env); | 
|  |  | 
|  | (void)perf_header__process_sections(&session->header, | 
|  | perf_data__fd(session->data), | 
|  | tchart, | 
|  | process_header); | 
|  |  | 
|  | if (!perf_session__has_traces(session, "timechart record")) | 
|  | goto out_delete; | 
|  |  | 
|  | if (perf_session__set_tracepoints_handlers(session, | 
|  | power_tracepoints)) { | 
|  | pr_err("Initializing session tracepoint handlers failed\n"); | 
|  | goto out_delete; | 
|  | } | 
|  |  | 
|  | ret = perf_session__process_events(session); | 
|  | if (ret) | 
|  | goto out_delete; | 
|  |  | 
|  | end_sample_processing(tchart); | 
|  |  | 
|  | sort_pids(tchart); | 
|  |  | 
|  | write_svg_file(tchart, output_name); | 
|  |  | 
|  | pr_info("Written %2.1f seconds of trace to %s.\n", | 
|  | (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name); | 
|  | out_delete: | 
|  | perf_session__delete(session); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int timechart__io_record(int argc, const char **argv) | 
|  | { | 
|  | unsigned int rec_argc, i; | 
|  | const char **rec_argv; | 
|  | const char **p; | 
|  | char *filter = NULL; | 
|  |  | 
|  | const char * const common_args[] = { | 
|  | "record", "-a", "-R", "-c", "1", | 
|  | }; | 
|  | unsigned int common_args_nr = ARRAY_SIZE(common_args); | 
|  |  | 
|  | const char * const disk_events[] = { | 
|  | "syscalls:sys_enter_read", | 
|  | "syscalls:sys_enter_pread64", | 
|  | "syscalls:sys_enter_readv", | 
|  | "syscalls:sys_enter_preadv", | 
|  | "syscalls:sys_enter_write", | 
|  | "syscalls:sys_enter_pwrite64", | 
|  | "syscalls:sys_enter_writev", | 
|  | "syscalls:sys_enter_pwritev", | 
|  | "syscalls:sys_enter_sync", | 
|  | "syscalls:sys_enter_sync_file_range", | 
|  | "syscalls:sys_enter_fsync", | 
|  | "syscalls:sys_enter_msync", | 
|  |  | 
|  | "syscalls:sys_exit_read", | 
|  | "syscalls:sys_exit_pread64", | 
|  | "syscalls:sys_exit_readv", | 
|  | "syscalls:sys_exit_preadv", | 
|  | "syscalls:sys_exit_write", | 
|  | "syscalls:sys_exit_pwrite64", | 
|  | "syscalls:sys_exit_writev", | 
|  | "syscalls:sys_exit_pwritev", | 
|  | "syscalls:sys_exit_sync", | 
|  | "syscalls:sys_exit_sync_file_range", | 
|  | "syscalls:sys_exit_fsync", | 
|  | "syscalls:sys_exit_msync", | 
|  | }; | 
|  | unsigned int disk_events_nr = ARRAY_SIZE(disk_events); | 
|  |  | 
|  | const char * const net_events[] = { | 
|  | "syscalls:sys_enter_recvfrom", | 
|  | "syscalls:sys_enter_recvmmsg", | 
|  | "syscalls:sys_enter_recvmsg", | 
|  | "syscalls:sys_enter_sendto", | 
|  | "syscalls:sys_enter_sendmsg", | 
|  | "syscalls:sys_enter_sendmmsg", | 
|  |  | 
|  | "syscalls:sys_exit_recvfrom", | 
|  | "syscalls:sys_exit_recvmmsg", | 
|  | "syscalls:sys_exit_recvmsg", | 
|  | "syscalls:sys_exit_sendto", | 
|  | "syscalls:sys_exit_sendmsg", | 
|  | "syscalls:sys_exit_sendmmsg", | 
|  | }; | 
|  | unsigned int net_events_nr = ARRAY_SIZE(net_events); | 
|  |  | 
|  | const char * const poll_events[] = { | 
|  | "syscalls:sys_enter_epoll_pwait", | 
|  | "syscalls:sys_enter_epoll_wait", | 
|  | "syscalls:sys_enter_poll", | 
|  | "syscalls:sys_enter_ppoll", | 
|  | "syscalls:sys_enter_pselect6", | 
|  | "syscalls:sys_enter_select", | 
|  |  | 
|  | "syscalls:sys_exit_epoll_pwait", | 
|  | "syscalls:sys_exit_epoll_wait", | 
|  | "syscalls:sys_exit_poll", | 
|  | "syscalls:sys_exit_ppoll", | 
|  | "syscalls:sys_exit_pselect6", | 
|  | "syscalls:sys_exit_select", | 
|  | }; | 
|  | unsigned int poll_events_nr = ARRAY_SIZE(poll_events); | 
|  |  | 
|  | rec_argc = common_args_nr + | 
|  | disk_events_nr * 4 + | 
|  | net_events_nr * 4 + | 
|  | poll_events_nr * 4 + | 
|  | argc; | 
|  | rec_argv = calloc(rec_argc + 1, sizeof(char *)); | 
|  |  | 
|  | if (rec_argv == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (asprintf(&filter, "common_pid != %d", getpid()) < 0) { | 
|  | free(rec_argv); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | p = rec_argv; | 
|  | for (i = 0; i < common_args_nr; i++) | 
|  | *p++ = strdup(common_args[i]); | 
|  |  | 
|  | for (i = 0; i < disk_events_nr; i++) { | 
|  | if (!is_valid_tracepoint(disk_events[i])) { | 
|  | rec_argc -= 4; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | *p++ = "-e"; | 
|  | *p++ = strdup(disk_events[i]); | 
|  | *p++ = "--filter"; | 
|  | *p++ = filter; | 
|  | } | 
|  | for (i = 0; i < net_events_nr; i++) { | 
|  | if (!is_valid_tracepoint(net_events[i])) { | 
|  | rec_argc -= 4; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | *p++ = "-e"; | 
|  | *p++ = strdup(net_events[i]); | 
|  | *p++ = "--filter"; | 
|  | *p++ = filter; | 
|  | } | 
|  | for (i = 0; i < poll_events_nr; i++) { | 
|  | if (!is_valid_tracepoint(poll_events[i])) { | 
|  | rec_argc -= 4; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | *p++ = "-e"; | 
|  | *p++ = strdup(poll_events[i]); | 
|  | *p++ = "--filter"; | 
|  | *p++ = filter; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < (unsigned int)argc; i++) | 
|  | *p++ = argv[i]; | 
|  |  | 
|  | return cmd_record(rec_argc, rec_argv); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int timechart__record(struct timechart *tchart, int argc, const char **argv) | 
|  | { | 
|  | unsigned int rec_argc, i, j; | 
|  | const char **rec_argv; | 
|  | const char **p; | 
|  | unsigned int record_elems; | 
|  |  | 
|  | const char * const common_args[] = { | 
|  | "record", "-a", "-R", "-c", "1", | 
|  | }; | 
|  | unsigned int common_args_nr = ARRAY_SIZE(common_args); | 
|  |  | 
|  | const char * const backtrace_args[] = { | 
|  | "-g", | 
|  | }; | 
|  | unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); | 
|  |  | 
|  | const char * const power_args[] = { | 
|  | "-e", "power:cpu_frequency", | 
|  | "-e", "power:cpu_idle", | 
|  | }; | 
|  | unsigned int power_args_nr = ARRAY_SIZE(power_args); | 
|  |  | 
|  | const char * const old_power_args[] = { | 
|  | #ifdef SUPPORT_OLD_POWER_EVENTS | 
|  | "-e", "power:power_start", | 
|  | "-e", "power:power_end", | 
|  | "-e", "power:power_frequency", | 
|  | #endif | 
|  | }; | 
|  | unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); | 
|  |  | 
|  | const char * const tasks_args[] = { | 
|  | "-e", "sched:sched_wakeup", | 
|  | "-e", "sched:sched_switch", | 
|  | }; | 
|  | unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); | 
|  |  | 
|  | #ifdef SUPPORT_OLD_POWER_EVENTS | 
|  | if (!is_valid_tracepoint("power:cpu_idle") && | 
|  | is_valid_tracepoint("power:power_start")) { | 
|  | use_old_power_events = 1; | 
|  | power_args_nr = 0; | 
|  | } else { | 
|  | old_power_args_nr = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (tchart->power_only) | 
|  | tasks_args_nr = 0; | 
|  |  | 
|  | if (tchart->tasks_only) { | 
|  | power_args_nr = 0; | 
|  | old_power_args_nr = 0; | 
|  | } | 
|  |  | 
|  | if (!tchart->with_backtrace) | 
|  | backtrace_args_no = 0; | 
|  |  | 
|  | record_elems = common_args_nr + tasks_args_nr + | 
|  | power_args_nr + old_power_args_nr + backtrace_args_no; | 
|  |  | 
|  | rec_argc = record_elems + argc; | 
|  | rec_argv = calloc(rec_argc + 1, sizeof(char *)); | 
|  |  | 
|  | if (rec_argv == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p = rec_argv; | 
|  | for (i = 0; i < common_args_nr; i++) | 
|  | *p++ = strdup(common_args[i]); | 
|  |  | 
|  | for (i = 0; i < backtrace_args_no; i++) | 
|  | *p++ = strdup(backtrace_args[i]); | 
|  |  | 
|  | for (i = 0; i < tasks_args_nr; i++) | 
|  | *p++ = strdup(tasks_args[i]); | 
|  |  | 
|  | for (i = 0; i < power_args_nr; i++) | 
|  | *p++ = strdup(power_args[i]); | 
|  |  | 
|  | for (i = 0; i < old_power_args_nr; i++) | 
|  | *p++ = strdup(old_power_args[i]); | 
|  |  | 
|  | for (j = 0; j < (unsigned int)argc; j++) | 
|  | *p++ = argv[j]; | 
|  |  | 
|  | return cmd_record(rec_argc, rec_argv); | 
|  | } | 
|  |  | 
|  | static int | 
|  | parse_process(const struct option *opt __maybe_unused, const char *arg, | 
|  | int __maybe_unused unset) | 
|  | { | 
|  | if (arg) | 
|  | add_process_filter(arg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | parse_highlight(const struct option *opt __maybe_unused, const char *arg, | 
|  | int __maybe_unused unset) | 
|  | { | 
|  | unsigned long duration = strtoul(arg, NULL, 0); | 
|  |  | 
|  | if (svg_highlight || svg_highlight_name) | 
|  | return -1; | 
|  |  | 
|  | if (duration) | 
|  | svg_highlight = duration; | 
|  | else | 
|  | svg_highlight_name = strdup(arg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) | 
|  | { | 
|  | char unit = 'n'; | 
|  | u64 *value = opt->value; | 
|  |  | 
|  | if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { | 
|  | switch (unit) { | 
|  | case 'm': | 
|  | *value *= NSEC_PER_MSEC; | 
|  | break; | 
|  | case 'u': | 
|  | *value *= NSEC_PER_USEC; | 
|  | break; | 
|  | case 'n': | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cmd_timechart(int argc, const char **argv) | 
|  | { | 
|  | struct timechart tchart = { | 
|  | .tool = { | 
|  | .comm		 = process_comm_event, | 
|  | .fork		 = process_fork_event, | 
|  | .exit		 = process_exit_event, | 
|  | .sample		 = process_sample_event, | 
|  | .ordered_events	 = true, | 
|  | }, | 
|  | .proc_num = 15, | 
|  | .min_time = NSEC_PER_MSEC, | 
|  | .merge_dist = 1000, | 
|  | }; | 
|  | const char *output_name = "output.svg"; | 
|  | const struct option timechart_common_options[] = { | 
|  | OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), | 
|  | OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"), | 
|  | OPT_END() | 
|  | }; | 
|  | const struct option timechart_options[] = { | 
|  | OPT_STRING('i', "input", &input_name, "file", "input file name"), | 
|  | OPT_STRING('o', "output", &output_name, "file", "output file name"), | 
|  | OPT_INTEGER('w', "width", &svg_page_width, "page width"), | 
|  | OPT_CALLBACK(0, "highlight", NULL, "duration or task name", | 
|  | "highlight tasks. Pass duration in ns or process name.", | 
|  | parse_highlight), | 
|  | OPT_CALLBACK('p', "process", NULL, "process", | 
|  | "process selector. Pass a pid or process name.", | 
|  | parse_process), | 
|  | OPT_CALLBACK(0, "symfs", NULL, "directory", | 
|  | "Look for files with symbols relative to this directory", | 
|  | symbol__config_symfs), | 
|  | OPT_INTEGER('n', "proc-num", &tchart.proc_num, | 
|  | "min. number of tasks to print"), | 
|  | OPT_BOOLEAN('t', "topology", &tchart.topology, | 
|  | "sort CPUs according to topology"), | 
|  | OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, | 
|  | "skip EAGAIN errors"), | 
|  | OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", | 
|  | "all IO faster than min-time will visually appear longer", | 
|  | parse_time), | 
|  | OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", | 
|  | "merge events that are merge-dist us apart", | 
|  | parse_time), | 
|  | OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"), | 
|  | OPT_PARENT(timechart_common_options), | 
|  | }; | 
|  | const char * const timechart_subcommands[] = { "record", NULL }; | 
|  | const char *timechart_usage[] = { | 
|  | "perf timechart [<options>] {record}", | 
|  | NULL | 
|  | }; | 
|  | const struct option timechart_record_options[] = { | 
|  | OPT_BOOLEAN('I', "io-only", &tchart.io_only, | 
|  | "record only IO data"), | 
|  | OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), | 
|  | OPT_PARENT(timechart_common_options), | 
|  | }; | 
|  | const char * const timechart_record_usage[] = { | 
|  | "perf timechart record [<options>]", | 
|  | NULL | 
|  | }; | 
|  | argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands, | 
|  | timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); | 
|  |  | 
|  | if (tchart.power_only && tchart.tasks_only) { | 
|  | pr_err("-P and -T options cannot be used at the same time.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (argc && !strncmp(argv[0], "rec", 3)) { | 
|  | argc = parse_options(argc, argv, timechart_record_options, | 
|  | timechart_record_usage, | 
|  | PARSE_OPT_STOP_AT_NON_OPTION); | 
|  |  | 
|  | if (tchart.power_only && tchart.tasks_only) { | 
|  | pr_err("-P and -T options cannot be used at the same time.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (tchart.io_only) | 
|  | return timechart__io_record(argc, argv); | 
|  | else | 
|  | return timechart__record(&tchart, argc, argv); | 
|  | } else if (argc) | 
|  | usage_with_options(timechart_usage, timechart_options); | 
|  |  | 
|  | setup_pager(); | 
|  |  | 
|  | return __cmd_timechart(&tchart, output_name); | 
|  | } |