| /* | 
 |  * PPC Huge TLB Page Support for Kernel. | 
 |  * | 
 |  * Copyright (C) 2003 David Gibson, IBM Corporation. | 
 |  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor | 
 |  * | 
 |  * Based on the IA-32 version: | 
 |  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/io.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/export.h> | 
 | #include <linux/of_fdt.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/hugetlb.h> | 
 | #include <asm/pte-walk.h> | 
 |  | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 |  | 
 | #define PAGE_SHIFT_64K	16 | 
 | #define PAGE_SHIFT_512K	19 | 
 | #define PAGE_SHIFT_8M	23 | 
 | #define PAGE_SHIFT_16M	24 | 
 | #define PAGE_SHIFT_16G	34 | 
 |  | 
 | bool hugetlb_disabled = false; | 
 |  | 
 | unsigned int HPAGE_SHIFT; | 
 | EXPORT_SYMBOL(HPAGE_SHIFT); | 
 |  | 
 | #define hugepd_none(hpd)	(hpd_val(hpd) == 0) | 
 |  | 
 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) | 
 | { | 
 | 	/* | 
 | 	 * Only called for hugetlbfs pages, hence can ignore THP and the | 
 | 	 * irq disabled walk. | 
 | 	 */ | 
 | 	return __find_linux_pte(mm->pgd, addr, NULL, NULL); | 
 | } | 
 |  | 
 | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
 | 			   unsigned long address, unsigned int pdshift, | 
 | 			   unsigned int pshift, spinlock_t *ptl) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	pte_t *new; | 
 | 	int i; | 
 | 	int num_hugepd; | 
 |  | 
 | 	if (pshift >= pdshift) { | 
 | 		cachep = hugepte_cache; | 
 | 		num_hugepd = 1 << (pshift - pdshift); | 
 | 	} else { | 
 | 		cachep = PGT_CACHE(pdshift - pshift); | 
 | 		num_hugepd = 1; | 
 | 	} | 
 |  | 
 | 	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); | 
 |  | 
 | 	BUG_ON(pshift > HUGEPD_SHIFT_MASK); | 
 | 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); | 
 |  | 
 | 	if (! new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Make sure other cpus find the hugepd set only after a | 
 | 	 * properly initialized page table is visible to them. | 
 | 	 * For more details look for comment in __pte_alloc(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	spin_lock(ptl); | 
 | 	/* | 
 | 	 * We have multiple higher-level entries that point to the same | 
 | 	 * actual pte location.  Fill in each as we go and backtrack on error. | 
 | 	 * We need all of these so the DTLB pgtable walk code can find the | 
 | 	 * right higher-level entry without knowing if it's a hugepage or not. | 
 | 	 */ | 
 | 	for (i = 0; i < num_hugepd; i++, hpdp++) { | 
 | 		if (unlikely(!hugepd_none(*hpdp))) | 
 | 			break; | 
 | 		else { | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 			*hpdp = __hugepd(__pa(new) | | 
 | 					 (shift_to_mmu_psize(pshift) << 2)); | 
 | #elif defined(CONFIG_PPC_8xx) | 
 | 			*hpdp = __hugepd(__pa(new) | _PMD_USER | | 
 | 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : | 
 | 					  _PMD_PAGE_512K) | _PMD_PRESENT); | 
 | #else | 
 | 			/* We use the old format for PPC_FSL_BOOK3E */ | 
 | 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); | 
 | #endif | 
 | 		} | 
 | 	} | 
 | 	/* If we bailed from the for loop early, an error occurred, clean up */ | 
 | 	if (i < num_hugepd) { | 
 | 		for (i = i - 1 ; i >= 0; i--, hpdp--) | 
 | 			*hpdp = __hugepd(0); | 
 | 		kmem_cache_free(cachep, new); | 
 | 	} else { | 
 | 		kmemleak_ignore(new); | 
 | 	} | 
 | 	spin_unlock(ptl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * At this point we do the placement change only for BOOK3S 64. This would | 
 |  * possibly work on other subarchs. | 
 |  */ | 
 | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	pmd_t *pm; | 
 | 	hugepd_t *hpdp = NULL; | 
 | 	unsigned pshift = __ffs(sz); | 
 | 	unsigned pdshift = PGDIR_SHIFT; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	addr &= ~(sz-1); | 
 | 	pg = pgd_offset(mm, addr); | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 	if (pshift == PGDIR_SHIFT) | 
 | 		/* 16GB huge page */ | 
 | 		return (pte_t *) pg; | 
 | 	else if (pshift > PUD_SHIFT) { | 
 | 		/* | 
 | 		 * We need to use hugepd table | 
 | 		 */ | 
 | 		ptl = &mm->page_table_lock; | 
 | 		hpdp = (hugepd_t *)pg; | 
 | 	} else { | 
 | 		pdshift = PUD_SHIFT; | 
 | 		pu = pud_alloc(mm, pg, addr); | 
 | 		if (!pu) | 
 | 			return NULL; | 
 | 		if (pshift == PUD_SHIFT) | 
 | 			return (pte_t *)pu; | 
 | 		else if (pshift > PMD_SHIFT) { | 
 | 			ptl = pud_lockptr(mm, pu); | 
 | 			hpdp = (hugepd_t *)pu; | 
 | 		} else { | 
 | 			pdshift = PMD_SHIFT; | 
 | 			pm = pmd_alloc(mm, pu, addr); | 
 | 			if (!pm) | 
 | 				return NULL; | 
 | 			if (pshift == PMD_SHIFT) | 
 | 				/* 16MB hugepage */ | 
 | 				return (pte_t *)pm; | 
 | 			else { | 
 | 				ptl = pmd_lockptr(mm, pm); | 
 | 				hpdp = (hugepd_t *)pm; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #else | 
 | 	if (pshift >= PGDIR_SHIFT) { | 
 | 		ptl = &mm->page_table_lock; | 
 | 		hpdp = (hugepd_t *)pg; | 
 | 	} else { | 
 | 		pdshift = PUD_SHIFT; | 
 | 		pu = pud_alloc(mm, pg, addr); | 
 | 		if (!pu) | 
 | 			return NULL; | 
 | 		if (pshift >= PUD_SHIFT) { | 
 | 			ptl = pud_lockptr(mm, pu); | 
 | 			hpdp = (hugepd_t *)pu; | 
 | 		} else { | 
 | 			pdshift = PMD_SHIFT; | 
 | 			pm = pmd_alloc(mm, pu, addr); | 
 | 			if (!pm) | 
 | 				return NULL; | 
 | 			ptl = pmd_lockptr(mm, pm); | 
 | 			hpdp = (hugepd_t *)pm; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	if (!hpdp) | 
 | 		return NULL; | 
 |  | 
 | 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); | 
 |  | 
 | 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, | 
 | 						  pdshift, pshift, ptl)) | 
 | 		return NULL; | 
 |  | 
 | 	return hugepte_offset(*hpdp, addr, pdshift); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | /* | 
 |  * Tracks gpages after the device tree is scanned and before the | 
 |  * huge_boot_pages list is ready on pseries. | 
 |  */ | 
 | #define MAX_NUMBER_GPAGES	1024 | 
 | __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; | 
 | __initdata static unsigned nr_gpages; | 
 |  | 
 | /* | 
 |  * Build list of addresses of gigantic pages.  This function is used in early | 
 |  * boot before the buddy allocator is setup. | 
 |  */ | 
 | void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) | 
 | { | 
 | 	if (!addr) | 
 | 		return; | 
 | 	while (number_of_pages > 0) { | 
 | 		gpage_freearray[nr_gpages] = addr; | 
 | 		nr_gpages++; | 
 | 		number_of_pages--; | 
 | 		addr += page_size; | 
 | 	} | 
 | } | 
 |  | 
 | int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 | 	if (nr_gpages == 0) | 
 | 		return 0; | 
 | 	m = phys_to_virt(gpage_freearray[--nr_gpages]); | 
 | 	gpage_freearray[nr_gpages] = 0; | 
 | 	list_add(&m->list, &huge_boot_pages); | 
 | 	m->hstate = hstate; | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | int __init alloc_bootmem_huge_page(struct hstate *h) | 
 | { | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) | 
 | 		return pseries_alloc_bootmem_huge_page(h); | 
 | #endif | 
 | 	return __alloc_bootmem_huge_page(h); | 
 | } | 
 |  | 
 | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
 | #define HUGEPD_FREELIST_SIZE \ | 
 | 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) | 
 |  | 
 | struct hugepd_freelist { | 
 | 	struct rcu_head	rcu; | 
 | 	unsigned int index; | 
 | 	void *ptes[0]; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); | 
 |  | 
 | static void hugepd_free_rcu_callback(struct rcu_head *head) | 
 | { | 
 | 	struct hugepd_freelist *batch = | 
 | 		container_of(head, struct hugepd_freelist, rcu); | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < batch->index; i++) | 
 | 		kmem_cache_free(hugepte_cache, batch->ptes[i]); | 
 |  | 
 | 	free_page((unsigned long)batch); | 
 | } | 
 |  | 
 | static void hugepd_free(struct mmu_gather *tlb, void *hugepte) | 
 | { | 
 | 	struct hugepd_freelist **batchp; | 
 |  | 
 | 	batchp = &get_cpu_var(hugepd_freelist_cur); | 
 |  | 
 | 	if (atomic_read(&tlb->mm->mm_users) < 2 || | 
 | 	    mm_is_thread_local(tlb->mm)) { | 
 | 		kmem_cache_free(hugepte_cache, hugepte); | 
 | 		put_cpu_var(hugepd_freelist_cur); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (*batchp == NULL) { | 
 | 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); | 
 | 		(*batchp)->index = 0; | 
 | 	} | 
 |  | 
 | 	(*batchp)->ptes[(*batchp)->index++] = hugepte; | 
 | 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { | 
 | 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); | 
 | 		*batchp = NULL; | 
 | 	} | 
 | 	put_cpu_var(hugepd_freelist_cur); | 
 | } | 
 | #else | 
 | static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} | 
 | #endif | 
 |  | 
 | static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, | 
 | 			      unsigned long start, unsigned long end, | 
 | 			      unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pte_t *hugepte = hugepd_page(*hpdp); | 
 | 	int i; | 
 |  | 
 | 	unsigned long pdmask = ~((1UL << pdshift) - 1); | 
 | 	unsigned int num_hugepd = 1; | 
 | 	unsigned int shift = hugepd_shift(*hpdp); | 
 |  | 
 | 	/* Note: On fsl the hpdp may be the first of several */ | 
 | 	if (shift > pdshift) | 
 | 		num_hugepd = 1 << (shift - pdshift); | 
 |  | 
 | 	start &= pdmask; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= pdmask; | 
 | 		if (! ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < num_hugepd; i++, hpdp++) | 
 | 		*hpdp = __hugepd(0); | 
 |  | 
 | 	if (shift >= pdshift) | 
 | 		hugepd_free(tlb, hugepte); | 
 | 	else | 
 | 		pgtable_free_tlb(tlb, hugepte, | 
 | 				 get_hugepd_cache_index(pdshift - shift)); | 
 | } | 
 |  | 
 | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	do { | 
 | 		unsigned long more; | 
 |  | 
 | 		pmd = pmd_offset(pud, addr); | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { | 
 | 			/* | 
 | 			 * if it is not hugepd pointer, we should already find | 
 | 			 * it cleared. | 
 | 			 */ | 
 | 			WARN_ON(!pmd_none_or_clear_bad(pmd)); | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * Increment next by the size of the huge mapping since | 
 | 		 * there may be more than one entry at this level for a | 
 | 		 * single hugepage, but all of them point to | 
 | 		 * the same kmem cache that holds the hugepte. | 
 | 		 */ | 
 | 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); | 
 | 		if (more > next) | 
 | 			next = more; | 
 |  | 
 | 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, | 
 | 				  addr, next, floor, ceiling); | 
 | 	} while (addr = next, addr != end); | 
 |  | 
 | 	start &= PUD_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PUD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, start); | 
 | 	pud_clear(pud); | 
 | 	pmd_free_tlb(tlb, pmd, start); | 
 | 	mm_dec_nr_pmds(tlb->mm); | 
 | } | 
 |  | 
 | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	do { | 
 | 		pud = pud_offset(pgd, addr); | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (!is_hugepd(__hugepd(pud_val(*pud)))) { | 
 | 			if (pud_none_or_clear_bad(pud)) | 
 | 				continue; | 
 | 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor, | 
 | 					       ceiling); | 
 | 		} else { | 
 | 			unsigned long more; | 
 | 			/* | 
 | 			 * Increment next by the size of the huge mapping since | 
 | 			 * there may be more than one entry at this level for a | 
 | 			 * single hugepage, but all of them point to | 
 | 			 * the same kmem cache that holds the hugepte. | 
 | 			 */ | 
 | 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); | 
 | 			if (more > next) | 
 | 				next = more; | 
 |  | 
 | 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, | 
 | 					  addr, next, floor, ceiling); | 
 | 		} | 
 | 	} while (addr = next, addr != end); | 
 |  | 
 | 	start &= PGDIR_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PGDIR_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, start); | 
 | 	pgd_clear(pgd); | 
 | 	pud_free_tlb(tlb, pud, start); | 
 | 	mm_dec_nr_puds(tlb->mm); | 
 | } | 
 |  | 
 | /* | 
 |  * This function frees user-level page tables of a process. | 
 |  */ | 
 | void hugetlb_free_pgd_range(struct mmu_gather *tlb, | 
 | 			    unsigned long addr, unsigned long end, | 
 | 			    unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	/* | 
 | 	 * Because there are a number of different possible pagetable | 
 | 	 * layouts for hugepage ranges, we limit knowledge of how | 
 | 	 * things should be laid out to the allocation path | 
 | 	 * (huge_pte_alloc(), above).  Everything else works out the | 
 | 	 * structure as it goes from information in the hugepd | 
 | 	 * pointers.  That means that we can't here use the | 
 | 	 * optimization used in the normal page free_pgd_range(), of | 
 | 	 * checking whether we're actually covering a large enough | 
 | 	 * range to have to do anything at the top level of the walk | 
 | 	 * instead of at the bottom. | 
 | 	 * | 
 | 	 * To make sense of this, you should probably go read the big | 
 | 	 * block comment at the top of the normal free_pgd_range(), | 
 | 	 * too. | 
 | 	 */ | 
 |  | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		pgd = pgd_offset(tlb->mm, addr); | 
 | 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { | 
 | 			if (pgd_none_or_clear_bad(pgd)) | 
 | 				continue; | 
 | 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
 | 		} else { | 
 | 			unsigned long more; | 
 | 			/* | 
 | 			 * Increment next by the size of the huge mapping since | 
 | 			 * there may be more than one entry at the pgd level | 
 | 			 * for a single hugepage, but all of them point to the | 
 | 			 * same kmem cache that holds the hugepte. | 
 | 			 */ | 
 | 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); | 
 | 			if (more > next) | 
 | 				next = more; | 
 |  | 
 | 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, | 
 | 					  addr, next, floor, ceiling); | 
 | 		} | 
 | 	} while (addr = next, addr != end); | 
 | } | 
 |  | 
 | struct page *follow_huge_pd(struct vm_area_struct *vma, | 
 | 			    unsigned long address, hugepd_t hpd, | 
 | 			    int flags, int pdshift) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page = NULL; | 
 | 	unsigned long mask; | 
 | 	int shift = hugepd_shift(hpd); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | retry: | 
 | 	/* | 
 | 	 * hugepage directory entries are protected by mm->page_table_lock | 
 | 	 * Use this instead of huge_pte_lockptr | 
 | 	 */ | 
 | 	ptl = &mm->page_table_lock; | 
 | 	spin_lock(ptl); | 
 |  | 
 | 	ptep = hugepte_offset(hpd, address, pdshift); | 
 | 	if (pte_present(*ptep)) { | 
 | 		mask = (1UL << shift) - 1; | 
 | 		page = pte_page(*ptep); | 
 | 		page += ((address & mask) >> PAGE_SHIFT); | 
 | 		if (flags & FOLL_GET) | 
 | 			get_page(page); | 
 | 	} else { | 
 | 		if (is_hugetlb_entry_migration(*ptep)) { | 
 | 			spin_unlock(ptl); | 
 | 			__migration_entry_wait(mm, ptep, ptl); | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(ptl); | 
 | 	return page; | 
 | } | 
 |  | 
 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | 
 | 				      unsigned long sz) | 
 | { | 
 | 	unsigned long __boundary = (addr + sz) & ~(sz-1); | 
 | 	return (__boundary - 1 < end - 1) ? __boundary : end; | 
 | } | 
 |  | 
 | int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, | 
 | 		unsigned long end, int write, struct page **pages, int *nr) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long sz = 1UL << hugepd_shift(hugepd); | 
 | 	unsigned long next; | 
 |  | 
 | 	ptep = hugepte_offset(hugepd, addr, pdshift); | 
 | 	do { | 
 | 		next = hugepte_addr_end(addr, end, sz); | 
 | 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) | 
 | 			return 0; | 
 | 	} while (ptep++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_MM_SLICES | 
 | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
 | 					unsigned long len, unsigned long pgoff, | 
 | 					unsigned long flags) | 
 | { | 
 | 	struct hstate *hstate = hstate_file(file); | 
 | 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); | 
 |  | 
 | #ifdef CONFIG_PPC_RADIX_MMU | 
 | 	if (radix_enabled()) | 
 | 		return radix__hugetlb_get_unmapped_area(file, addr, len, | 
 | 						       pgoff, flags); | 
 | #endif | 
 | 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); | 
 | } | 
 | #endif | 
 |  | 
 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
 | { | 
 | #ifdef CONFIG_PPC_MM_SLICES | 
 | 	/* With radix we don't use slice, so derive it from vma*/ | 
 | 	if (!radix_enabled()) { | 
 | 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); | 
 |  | 
 | 		return 1UL << mmu_psize_to_shift(psize); | 
 | 	} | 
 | #endif | 
 | 	return vma_kernel_pagesize(vma); | 
 | } | 
 |  | 
 | static inline bool is_power_of_4(unsigned long x) | 
 | { | 
 | 	if (is_power_of_2(x)) | 
 | 		return (__ilog2(x) % 2) ? false : true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static int __init add_huge_page_size(unsigned long long size) | 
 | { | 
 | 	int shift = __ffs(size); | 
 | 	int mmu_psize; | 
 |  | 
 | 	/* Check that it is a page size supported by the hardware and | 
 | 	 * that it fits within pagetable and slice limits. */ | 
 | 	if (size <= PAGE_SIZE) | 
 | 		return -EINVAL; | 
 | #if defined(CONFIG_PPC_FSL_BOOK3E) | 
 | 	if (!is_power_of_4(size)) | 
 | 		return -EINVAL; | 
 | #elif !defined(CONFIG_PPC_8xx) | 
 | 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) | 
 | 		return -EINVAL; | 
 | #endif | 
 |  | 
 | 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 	/* | 
 | 	 * We need to make sure that for different page sizes reported by | 
 | 	 * firmware we only add hugetlb support for page sizes that can be | 
 | 	 * supported by linux page table layout. | 
 | 	 * For now we have | 
 | 	 * Radix: 2M and 1G | 
 | 	 * Hash: 16M and 16G | 
 | 	 */ | 
 | 	if (radix_enabled()) { | 
 | 		if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G) | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) | 
 | 			return -EINVAL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); | 
 |  | 
 | 	/* Return if huge page size has already been setup */ | 
 | 	if (size_to_hstate(size)) | 
 | 		return 0; | 
 |  | 
 | 	hugetlb_add_hstate(shift - PAGE_SHIFT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init hugepage_setup_sz(char *str) | 
 | { | 
 | 	unsigned long long size; | 
 |  | 
 | 	size = memparse(str, &str); | 
 |  | 
 | 	if (add_huge_page_size(size) != 0) { | 
 | 		hugetlb_bad_size(); | 
 | 		pr_err("Invalid huge page size specified(%llu)\n", size); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("hugepagesz=", hugepage_setup_sz); | 
 |  | 
 | struct kmem_cache *hugepte_cache; | 
 | static int __init hugetlbpage_init(void) | 
 | { | 
 | 	int psize; | 
 |  | 
 | 	if (hugetlb_disabled) { | 
 | 		pr_info("HugeTLB support is disabled!\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) | 
 | 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) | 
 | 		return -ENODEV; | 
 | #endif | 
 | 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { | 
 | 		unsigned shift; | 
 | 		unsigned pdshift; | 
 |  | 
 | 		if (!mmu_psize_defs[psize].shift) | 
 | 			continue; | 
 |  | 
 | 		shift = mmu_psize_to_shift(psize); | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 		if (shift > PGDIR_SHIFT) | 
 | 			continue; | 
 | 		else if (shift > PUD_SHIFT) | 
 | 			pdshift = PGDIR_SHIFT; | 
 | 		else if (shift > PMD_SHIFT) | 
 | 			pdshift = PUD_SHIFT; | 
 | 		else | 
 | 			pdshift = PMD_SHIFT; | 
 | #else | 
 | 		if (shift < PUD_SHIFT) | 
 | 			pdshift = PMD_SHIFT; | 
 | 		else if (shift < PGDIR_SHIFT) | 
 | 			pdshift = PUD_SHIFT; | 
 | 		else | 
 | 			pdshift = PGDIR_SHIFT; | 
 | #endif | 
 |  | 
 | 		if (add_huge_page_size(1ULL << shift) < 0) | 
 | 			continue; | 
 | 		/* | 
 | 		 * if we have pdshift and shift value same, we don't | 
 | 		 * use pgt cache for hugepd. | 
 | 		 */ | 
 | 		if (pdshift > shift) | 
 | 			pgtable_cache_add(pdshift - shift, NULL); | 
 | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
 | 		else if (!hugepte_cache) { | 
 | 			/* | 
 | 			 * Create a kmem cache for hugeptes.  The bottom bits in | 
 | 			 * the pte have size information encoded in them, so | 
 | 			 * align them to allow this | 
 | 			 */ | 
 | 			hugepte_cache = kmem_cache_create("hugepte-cache", | 
 | 							  sizeof(pte_t), | 
 | 							  HUGEPD_SHIFT_MASK + 1, | 
 | 							  0, NULL); | 
 | 			if (hugepte_cache == NULL) | 
 | 				panic("%s: Unable to create kmem cache " | 
 | 				      "for hugeptes\n", __func__); | 
 |  | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
 | 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_4M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; | 
 | 	else if (mmu_psize_defs[MMU_PAGE_512K].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; | 
 | #else | 
 | 	/* Set default large page size. Currently, we pick 16M or 1M | 
 | 	 * depending on what is available | 
 | 	 */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; | 
 | 	else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; | 
 | 	else if (mmu_psize_defs[MMU_PAGE_2M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | arch_initcall(hugetlbpage_init); | 
 |  | 
 | void flush_dcache_icache_hugepage(struct page *page) | 
 | { | 
 | 	int i; | 
 | 	void *start; | 
 |  | 
 | 	BUG_ON(!PageCompound(page)); | 
 |  | 
 | 	for (i = 0; i < (1UL << compound_order(page)); i++) { | 
 | 		if (!PageHighMem(page)) { | 
 | 			__flush_dcache_icache(page_address(page+i)); | 
 | 		} else { | 
 | 			start = kmap_atomic(page+i); | 
 | 			__flush_dcache_icache(start); | 
 | 			kunmap_atomic(start); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #endif /* CONFIG_HUGETLB_PAGE */ | 
 |  | 
 | /* | 
 |  * We have 4 cases for pgds and pmds: | 
 |  * (1) invalid (all zeroes) | 
 |  * (2) pointer to next table, as normal; bottom 6 bits == 0 | 
 |  * (3) leaf pte for huge page _PAGE_PTE set | 
 |  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table | 
 |  * | 
 |  * So long as we atomically load page table pointers we are safe against teardown, | 
 |  * we can follow the address down to the the page and take a ref on it. | 
 |  * This function need to be called with interrupts disabled. We use this variant | 
 |  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED | 
 |  */ | 
 | pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, | 
 | 			bool *is_thp, unsigned *hpage_shift) | 
 | { | 
 | 	pgd_t pgd, *pgdp; | 
 | 	pud_t pud, *pudp; | 
 | 	pmd_t pmd, *pmdp; | 
 | 	pte_t *ret_pte; | 
 | 	hugepd_t *hpdp = NULL; | 
 | 	unsigned pdshift = PGDIR_SHIFT; | 
 |  | 
 | 	if (hpage_shift) | 
 | 		*hpage_shift = 0; | 
 |  | 
 | 	if (is_thp) | 
 | 		*is_thp = false; | 
 |  | 
 | 	pgdp = pgdir + pgd_index(ea); | 
 | 	pgd  = READ_ONCE(*pgdp); | 
 | 	/* | 
 | 	 * Always operate on the local stack value. This make sure the | 
 | 	 * value don't get updated by a parallel THP split/collapse, | 
 | 	 * page fault or a page unmap. The return pte_t * is still not | 
 | 	 * stable. So should be checked there for above conditions. | 
 | 	 */ | 
 | 	if (pgd_none(pgd)) | 
 | 		return NULL; | 
 | 	else if (pgd_huge(pgd)) { | 
 | 		ret_pte = (pte_t *) pgdp; | 
 | 		goto out; | 
 | 	} else if (is_hugepd(__hugepd(pgd_val(pgd)))) | 
 | 		hpdp = (hugepd_t *)&pgd; | 
 | 	else { | 
 | 		/* | 
 | 		 * Even if we end up with an unmap, the pgtable will not | 
 | 		 * be freed, because we do an rcu free and here we are | 
 | 		 * irq disabled | 
 | 		 */ | 
 | 		pdshift = PUD_SHIFT; | 
 | 		pudp = pud_offset(&pgd, ea); | 
 | 		pud  = READ_ONCE(*pudp); | 
 |  | 
 | 		if (pud_none(pud)) | 
 | 			return NULL; | 
 | 		else if (pud_huge(pud)) { | 
 | 			ret_pte = (pte_t *) pudp; | 
 | 			goto out; | 
 | 		} else if (is_hugepd(__hugepd(pud_val(pud)))) | 
 | 			hpdp = (hugepd_t *)&pud; | 
 | 		else { | 
 | 			pdshift = PMD_SHIFT; | 
 | 			pmdp = pmd_offset(&pud, ea); | 
 | 			pmd  = READ_ONCE(*pmdp); | 
 | 			/* | 
 | 			 * A hugepage collapse is captured by pmd_none, because | 
 | 			 * it mark the pmd none and do a hpte invalidate. | 
 | 			 */ | 
 | 			if (pmd_none(pmd)) | 
 | 				return NULL; | 
 |  | 
 | 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { | 
 | 				if (is_thp) | 
 | 					*is_thp = true; | 
 | 				ret_pte = (pte_t *) pmdp; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (pmd_huge(pmd)) { | 
 | 				ret_pte = (pte_t *) pmdp; | 
 | 				goto out; | 
 | 			} else if (is_hugepd(__hugepd(pmd_val(pmd)))) | 
 | 				hpdp = (hugepd_t *)&pmd; | 
 | 			else | 
 | 				return pte_offset_kernel(&pmd, ea); | 
 | 		} | 
 | 	} | 
 | 	if (!hpdp) | 
 | 		return NULL; | 
 |  | 
 | 	ret_pte = hugepte_offset(*hpdp, ea, pdshift); | 
 | 	pdshift = hugepd_shift(*hpdp); | 
 | out: | 
 | 	if (hpage_shift) | 
 | 		*hpage_shift = pdshift; | 
 | 	return ret_pte; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__find_linux_pte); | 
 |  | 
 | int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | 
 | 		unsigned long end, int write, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long pte_end; | 
 | 	struct page *head, *page; | 
 | 	pte_t pte; | 
 | 	int refs; | 
 |  | 
 | 	pte_end = (addr + sz) & ~(sz-1); | 
 | 	if (pte_end < end) | 
 | 		end = pte_end; | 
 |  | 
 | 	pte = READ_ONCE(*ptep); | 
 |  | 
 | 	if (!pte_access_permitted(pte, write)) | 
 | 		return 0; | 
 |  | 
 | 	/* hugepages are never "special" */ | 
 | 	VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
 |  | 
 | 	refs = 0; | 
 | 	head = pte_page(pte); | 
 |  | 
 | 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT); | 
 | 	do { | 
 | 		VM_BUG_ON(compound_head(page) != head); | 
 | 		pages[*nr] = page; | 
 | 		(*nr)++; | 
 | 		page++; | 
 | 		refs++; | 
 | 	} while (addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	if (!page_cache_add_speculative(head, refs)) { | 
 | 		*nr -= refs; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(pte_val(pte) != pte_val(*ptep))) { | 
 | 		/* Could be optimized better */ | 
 | 		*nr -= refs; | 
 | 		while (refs--) | 
 | 			put_page(head); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } |